hw/misc/iotkit-sysctl: Implement SSE-200 and SSE-300 PID register values
[qemu/ar7.git] / hw / misc / zynq_slcr.c
blobc66d7db177d9dbc12ee433bf6565c8f9220fa153
1 /*
2 * Status and system control registers for Xilinx Zynq Platform
4 * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
5 * Copyright (c) 2012 PetaLogix Pty Ltd.
6 * Based on hw/arm_sysctl.c, written by Paul Brook
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 #include "qemu/osdep.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "hw/sysbus.h"
21 #include "migration/vmstate.h"
22 #include "qemu/log.h"
23 #include "qemu/module.h"
24 #include "hw/registerfields.h"
25 #include "hw/qdev-clock.h"
26 #include "qom/object.h"
28 #ifndef ZYNQ_SLCR_ERR_DEBUG
29 #define ZYNQ_SLCR_ERR_DEBUG 0
30 #endif
32 #define DB_PRINT(...) do { \
33 if (ZYNQ_SLCR_ERR_DEBUG) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } \
37 } while (0)
39 #define XILINX_LOCK_KEY 0x767b
40 #define XILINX_UNLOCK_KEY 0xdf0d
42 REG32(SCL, 0x000)
43 REG32(LOCK, 0x004)
44 REG32(UNLOCK, 0x008)
45 REG32(LOCKSTA, 0x00c)
47 REG32(ARM_PLL_CTRL, 0x100)
48 REG32(DDR_PLL_CTRL, 0x104)
49 REG32(IO_PLL_CTRL, 0x108)
50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
51 FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
52 FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
53 FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
54 FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
55 FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
56 REG32(PLL_STATUS, 0x10c)
57 REG32(ARM_PLL_CFG, 0x110)
58 REG32(DDR_PLL_CFG, 0x114)
59 REG32(IO_PLL_CFG, 0x118)
61 REG32(ARM_CLK_CTRL, 0x120)
62 REG32(DDR_CLK_CTRL, 0x124)
63 REG32(DCI_CLK_CTRL, 0x128)
64 REG32(APER_CLK_CTRL, 0x12c)
65 REG32(USB0_CLK_CTRL, 0x130)
66 REG32(USB1_CLK_CTRL, 0x134)
67 REG32(GEM0_RCLK_CTRL, 0x138)
68 REG32(GEM1_RCLK_CTRL, 0x13c)
69 REG32(GEM0_CLK_CTRL, 0x140)
70 REG32(GEM1_CLK_CTRL, 0x144)
71 REG32(SMC_CLK_CTRL, 0x148)
72 REG32(LQSPI_CLK_CTRL, 0x14c)
73 REG32(SDIO_CLK_CTRL, 0x150)
74 REG32(UART_CLK_CTRL, 0x154)
75 FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
76 FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
77 FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
78 FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
79 REG32(SPI_CLK_CTRL, 0x158)
80 REG32(CAN_CLK_CTRL, 0x15c)
81 REG32(CAN_MIOCLK_CTRL, 0x160)
82 REG32(DBG_CLK_CTRL, 0x164)
83 REG32(PCAP_CLK_CTRL, 0x168)
84 REG32(TOPSW_CLK_CTRL, 0x16c)
86 #define FPGA_CTRL_REGS(n, start) \
87 REG32(FPGA ## n ## _CLK_CTRL, (start)) \
88 REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
89 REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\
90 REG32(FPGA ## n ## _THR_STA, (start) + 0xc)
91 FPGA_CTRL_REGS(0, 0x170)
92 FPGA_CTRL_REGS(1, 0x180)
93 FPGA_CTRL_REGS(2, 0x190)
94 FPGA_CTRL_REGS(3, 0x1a0)
96 REG32(BANDGAP_TRIP, 0x1b8)
97 REG32(PLL_PREDIVISOR, 0x1c0)
98 REG32(CLK_621_TRUE, 0x1c4)
100 REG32(PSS_RST_CTRL, 0x200)
101 FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
102 REG32(DDR_RST_CTRL, 0x204)
103 REG32(TOPSW_RESET_CTRL, 0x208)
104 REG32(DMAC_RST_CTRL, 0x20c)
105 REG32(USB_RST_CTRL, 0x210)
106 REG32(GEM_RST_CTRL, 0x214)
107 REG32(SDIO_RST_CTRL, 0x218)
108 REG32(SPI_RST_CTRL, 0x21c)
109 REG32(CAN_RST_CTRL, 0x220)
110 REG32(I2C_RST_CTRL, 0x224)
111 REG32(UART_RST_CTRL, 0x228)
112 REG32(GPIO_RST_CTRL, 0x22c)
113 REG32(LQSPI_RST_CTRL, 0x230)
114 REG32(SMC_RST_CTRL, 0x234)
115 REG32(OCM_RST_CTRL, 0x238)
116 REG32(FPGA_RST_CTRL, 0x240)
117 REG32(A9_CPU_RST_CTRL, 0x244)
119 REG32(RS_AWDT_CTRL, 0x24c)
120 REG32(RST_REASON, 0x250)
122 REG32(REBOOT_STATUS, 0x258)
123 REG32(BOOT_MODE, 0x25c)
125 REG32(APU_CTRL, 0x300)
126 REG32(WDT_CLK_SEL, 0x304)
128 REG32(TZ_DMA_NS, 0x440)
129 REG32(TZ_DMA_IRQ_NS, 0x444)
130 REG32(TZ_DMA_PERIPH_NS, 0x448)
132 REG32(PSS_IDCODE, 0x530)
134 REG32(DDR_URGENT, 0x600)
135 REG32(DDR_CAL_START, 0x60c)
136 REG32(DDR_REF_START, 0x614)
137 REG32(DDR_CMD_STA, 0x618)
138 REG32(DDR_URGENT_SEL, 0x61c)
139 REG32(DDR_DFI_STATUS, 0x620)
141 REG32(MIO, 0x700)
142 #define MIO_LENGTH 54
144 REG32(MIO_LOOPBACK, 0x804)
145 REG32(MIO_MST_TRI0, 0x808)
146 REG32(MIO_MST_TRI1, 0x80c)
148 REG32(SD0_WP_CD_SEL, 0x830)
149 REG32(SD1_WP_CD_SEL, 0x834)
151 REG32(LVL_SHFTR_EN, 0x900)
152 REG32(OCM_CFG, 0x910)
154 REG32(CPU_RAM, 0xa00)
156 REG32(IOU, 0xa30)
158 REG32(DMAC_RAM, 0xa50)
160 REG32(AFI0, 0xa60)
161 REG32(AFI1, 0xa6c)
162 REG32(AFI2, 0xa78)
163 REG32(AFI3, 0xa84)
164 #define AFI_LENGTH 3
166 REG32(OCM, 0xa90)
168 REG32(DEVCI_RAM, 0xaa0)
170 REG32(CSG_RAM, 0xab0)
172 REG32(GPIOB_CTRL, 0xb00)
173 REG32(GPIOB_CFG_CMOS18, 0xb04)
174 REG32(GPIOB_CFG_CMOS25, 0xb08)
175 REG32(GPIOB_CFG_CMOS33, 0xb0c)
176 REG32(GPIOB_CFG_HSTL, 0xb14)
177 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
179 REG32(DDRIOB, 0xb40)
180 #define DDRIOB_LENGTH 14
182 #define ZYNQ_SLCR_MMIO_SIZE 0x1000
183 #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4)
185 #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
186 OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR)
188 struct ZynqSLCRState {
189 SysBusDevice parent_obj;
191 MemoryRegion iomem;
193 uint32_t regs[ZYNQ_SLCR_NUM_REGS];
195 Clock *ps_clk;
196 Clock *uart0_ref_clk;
197 Clock *uart1_ref_clk;
201 * return the output frequency of ARM/DDR/IO pll
202 * using input frequency and PLL_CTRL register
204 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
206 uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
207 R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
209 /* first, check if pll is bypassed */
210 if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
211 return input;
214 /* is pll disabled ? */
215 if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
216 R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
217 return 0;
220 /* Consider zero feedback as maximum divide ratio possible */
221 if (!mult) {
222 mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH;
225 /* frequency multiplier -> period division */
226 return input / mult;
230 * return the output period of a clock given:
231 * + the periods in an array corresponding to input mux selector
232 * + the register xxx_CLK_CTRL value
233 * + enable bit index in ctrl register
235 * This function makes the assumption that the ctrl_reg value is organized as
236 * follows:
237 * + bits[13:8] clock frequency divisor
238 * + bits[5:4] clock mux selector (index in array)
239 * + bits[index] clock enable
241 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
242 uint32_t ctrl_reg,
243 unsigned index)
245 uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
246 uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
248 /* first, check if clock is disabled */
249 if (((ctrl_reg >> index) & 1u) == 0) {
250 return 0;
254 * according to the Zynq technical ref. manual UG585 v1.12.2 in
255 * Clocks chapter, section 25.10.1 page 705:
256 * "The 6-bit divider provides a divide range of 1 to 63"
257 * We follow here what is implemented in linux kernel and consider
258 * the 0 value as a bypass (no division).
260 /* frequency divisor -> period multiplication */
261 return periods[srcsel] * (divisor ? divisor : 1u);
265 * macro helper around zynq_slcr_compute_clock to avoid repeating
266 * the register name.
268 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
269 zynq_slcr_compute_clock((plls), (state)->regs[reg], \
270 reg ## _ ## enable_field ## _SHIFT)
273 * Compute and set the ouputs clocks periods.
274 * But do not propagate them further. Connected clocks
275 * will not receive any updates (See zynq_slcr_compute_clocks())
277 static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
279 uint64_t ps_clk = clock_get(s->ps_clk);
281 /* consider outputs clocks are disabled while in reset */
282 if (device_is_in_reset(DEVICE(s))) {
283 ps_clk = 0;
286 uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
287 uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
288 uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
290 uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
292 /* compute uartX reference clocks */
293 clock_set(s->uart0_ref_clk,
294 ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
295 clock_set(s->uart1_ref_clk,
296 ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
300 * Propagate the outputs clocks.
301 * zynq_slcr_compute_clocks() should have been called before
302 * to configure them.
304 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
306 clock_propagate(s->uart0_ref_clk);
307 clock_propagate(s->uart1_ref_clk);
310 static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event)
312 ZynqSLCRState *s = (ZynqSLCRState *) opaque;
314 zynq_slcr_compute_clocks(s);
315 zynq_slcr_propagate_clocks(s);
318 static void zynq_slcr_reset_init(Object *obj, ResetType type)
320 ZynqSLCRState *s = ZYNQ_SLCR(obj);
321 int i;
323 DB_PRINT("RESET\n");
325 s->regs[R_LOCKSTA] = 1;
326 /* 0x100 - 0x11C */
327 s->regs[R_ARM_PLL_CTRL] = 0x0001A008;
328 s->regs[R_DDR_PLL_CTRL] = 0x0001A008;
329 s->regs[R_IO_PLL_CTRL] = 0x0001A008;
330 s->regs[R_PLL_STATUS] = 0x0000003F;
331 s->regs[R_ARM_PLL_CFG] = 0x00014000;
332 s->regs[R_DDR_PLL_CFG] = 0x00014000;
333 s->regs[R_IO_PLL_CFG] = 0x00014000;
335 /* 0x120 - 0x16C */
336 s->regs[R_ARM_CLK_CTRL] = 0x1F000400;
337 s->regs[R_DDR_CLK_CTRL] = 0x18400003;
338 s->regs[R_DCI_CLK_CTRL] = 0x01E03201;
339 s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD;
340 s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941;
341 s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
342 s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01;
343 s->regs[R_SMC_CLK_CTRL] = 0x00003C01;
344 s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
345 s->regs[R_SDIO_CLK_CTRL] = 0x00001E03;
346 s->regs[R_UART_CLK_CTRL] = 0x00003F03;
347 s->regs[R_SPI_CLK_CTRL] = 0x00003F03;
348 s->regs[R_CAN_CLK_CTRL] = 0x00501903;
349 s->regs[R_DBG_CLK_CTRL] = 0x00000F03;
350 s->regs[R_PCAP_CLK_CTRL] = 0x00000F01;
352 /* 0x170 - 0x1AC */
353 s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
354 = s->regs[R_FPGA2_CLK_CTRL]
355 = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
356 s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
357 = s->regs[R_FPGA2_THR_STA]
358 = s->regs[R_FPGA3_THR_STA] = 0x00010000;
360 /* 0x1B0 - 0x1D8 */
361 s->regs[R_BANDGAP_TRIP] = 0x0000001F;
362 s->regs[R_PLL_PREDIVISOR] = 0x00000001;
363 s->regs[R_CLK_621_TRUE] = 0x00000001;
365 /* 0x200 - 0x25C */
366 s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F;
367 s->regs[R_RST_REASON] = 0x00000040;
369 s->regs[R_BOOT_MODE] = 0x00000001;
371 /* 0x700 - 0x7D4 */
372 for (i = 0; i < 54; i++) {
373 s->regs[R_MIO + i] = 0x00001601;
375 for (i = 2; i <= 8; i++) {
376 s->regs[R_MIO + i] = 0x00000601;
379 s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
381 s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
382 = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
383 = 0x00010101;
384 s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
385 s->regs[R_CPU_RAM + 6] = 0x00000001;
387 s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
388 = s->regs[R_IOU + 3] = 0x09090909;
389 s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
390 s->regs[R_IOU + 6] = 0x00000909;
392 s->regs[R_DMAC_RAM] = 0x00000009;
394 s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
395 s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
396 s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
397 s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
398 s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
399 = s->regs[R_AFI3 + 2] = 0x00000909;
401 s->regs[R_OCM + 0] = 0x01010101;
402 s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
404 s->regs[R_DEVCI_RAM] = 0x00000909;
405 s->regs[R_CSG_RAM] = 0x00000001;
407 s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
408 = s->regs[R_DDRIOB + 3] = 0x00000e00;
409 s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
410 = 0x00000e00;
411 s->regs[R_DDRIOB + 12] = 0x00000021;
414 static void zynq_slcr_reset_hold(Object *obj)
416 ZynqSLCRState *s = ZYNQ_SLCR(obj);
418 /* will disable all output clocks */
419 zynq_slcr_compute_clocks(s);
420 zynq_slcr_propagate_clocks(s);
423 static void zynq_slcr_reset_exit(Object *obj)
425 ZynqSLCRState *s = ZYNQ_SLCR(obj);
427 /* will compute output clocks according to ps_clk and registers */
428 zynq_slcr_compute_clocks(s);
429 zynq_slcr_propagate_clocks(s);
432 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
434 switch (offset) {
435 case R_LOCK:
436 case R_UNLOCK:
437 case R_DDR_CAL_START:
438 case R_DDR_REF_START:
439 return !rnw; /* Write only */
440 case R_LOCKSTA:
441 case R_FPGA0_THR_STA:
442 case R_FPGA1_THR_STA:
443 case R_FPGA2_THR_STA:
444 case R_FPGA3_THR_STA:
445 case R_BOOT_MODE:
446 case R_PSS_IDCODE:
447 case R_DDR_CMD_STA:
448 case R_DDR_DFI_STATUS:
449 case R_PLL_STATUS:
450 return rnw;/* read only */
451 case R_SCL:
452 case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
453 case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
454 case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
455 case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
456 case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
457 case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
458 case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
459 case R_BANDGAP_TRIP:
460 case R_PLL_PREDIVISOR:
461 case R_CLK_621_TRUE:
462 case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
463 case R_RS_AWDT_CTRL:
464 case R_RST_REASON:
465 case R_REBOOT_STATUS:
466 case R_APU_CTRL:
467 case R_WDT_CLK_SEL:
468 case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
469 case R_DDR_URGENT:
470 case R_DDR_URGENT_SEL:
471 case R_MIO ... R_MIO + MIO_LENGTH - 1:
472 case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
473 case R_SD0_WP_CD_SEL:
474 case R_SD1_WP_CD_SEL:
475 case R_LVL_SHFTR_EN:
476 case R_OCM_CFG:
477 case R_CPU_RAM:
478 case R_IOU:
479 case R_DMAC_RAM:
480 case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
481 case R_OCM:
482 case R_DEVCI_RAM:
483 case R_CSG_RAM:
484 case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
485 case R_GPIOB_CFG_HSTL:
486 case R_GPIOB_DRVR_BIAS_CTRL:
487 case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
488 return true;
489 default:
490 return false;
494 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
495 unsigned size)
497 ZynqSLCRState *s = opaque;
498 offset /= 4;
499 uint32_t ret = s->regs[offset];
501 if (!zynq_slcr_check_offset(offset, true)) {
502 qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
503 " addr %" HWADDR_PRIx "\n", offset * 4);
506 DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
507 return ret;
510 static void zynq_slcr_write(void *opaque, hwaddr offset,
511 uint64_t val, unsigned size)
513 ZynqSLCRState *s = (ZynqSLCRState *)opaque;
514 offset /= 4;
516 DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
518 if (!zynq_slcr_check_offset(offset, false)) {
519 qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
520 "addr %" HWADDR_PRIx "\n", offset * 4);
521 return;
524 switch (offset) {
525 case R_SCL:
526 s->regs[R_SCL] = val & 0x1;
527 return;
528 case R_LOCK:
529 if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
530 DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
531 (unsigned)val & 0xFFFF);
532 s->regs[R_LOCKSTA] = 1;
533 } else {
534 DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
535 (int)offset, (unsigned)val & 0xFFFF);
537 return;
538 case R_UNLOCK:
539 if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
540 DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
541 (unsigned)val & 0xFFFF);
542 s->regs[R_LOCKSTA] = 0;
543 } else {
544 DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
545 (int)offset, (unsigned)val & 0xFFFF);
547 return;
550 if (s->regs[R_LOCKSTA]) {
551 qemu_log_mask(LOG_GUEST_ERROR,
552 "SCLR registers are locked. Unlock them first\n");
553 return;
555 s->regs[offset] = val;
557 switch (offset) {
558 case R_PSS_RST_CTRL:
559 if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
560 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
562 break;
563 case R_IO_PLL_CTRL:
564 case R_ARM_PLL_CTRL:
565 case R_DDR_PLL_CTRL:
566 case R_UART_CLK_CTRL:
567 zynq_slcr_compute_clocks(s);
568 zynq_slcr_propagate_clocks(s);
569 break;
573 static const MemoryRegionOps slcr_ops = {
574 .read = zynq_slcr_read,
575 .write = zynq_slcr_write,
576 .endianness = DEVICE_NATIVE_ENDIAN,
579 static const ClockPortInitArray zynq_slcr_clocks = {
580 QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate),
581 QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
582 QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
583 QDEV_CLOCK_END
586 static void zynq_slcr_init(Object *obj)
588 ZynqSLCRState *s = ZYNQ_SLCR(obj);
590 memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
591 ZYNQ_SLCR_MMIO_SIZE);
592 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
594 qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
597 static const VMStateDescription vmstate_zynq_slcr = {
598 .name = "zynq_slcr",
599 .version_id = 3,
600 .minimum_version_id = 2,
601 .fields = (VMStateField[]) {
602 VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
603 VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
604 VMSTATE_END_OF_LIST()
608 static void zynq_slcr_class_init(ObjectClass *klass, void *data)
610 DeviceClass *dc = DEVICE_CLASS(klass);
611 ResettableClass *rc = RESETTABLE_CLASS(klass);
613 dc->vmsd = &vmstate_zynq_slcr;
614 rc->phases.enter = zynq_slcr_reset_init;
615 rc->phases.hold = zynq_slcr_reset_hold;
616 rc->phases.exit = zynq_slcr_reset_exit;
619 static const TypeInfo zynq_slcr_info = {
620 .class_init = zynq_slcr_class_init,
621 .name = TYPE_ZYNQ_SLCR,
622 .parent = TYPE_SYS_BUS_DEVICE,
623 .instance_size = sizeof(ZynqSLCRState),
624 .instance_init = zynq_slcr_init,
627 static void zynq_slcr_register_types(void)
629 type_register_static(&zynq_slcr_info);
632 type_init(zynq_slcr_register_types)