2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/timer/mc146818rtc.h"
31 #include "qapi/visitor.h"
32 #include "qapi-event.h"
33 #include "qmp-commands.h"
36 #include "hw/i386/apic.h"
40 //#define DEBUG_COALESCED
43 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
45 # define CMOS_DPRINTF(format, ...) do { } while (0)
48 #ifdef DEBUG_COALESCED
49 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
51 # define DPRINTF_C(format, ...) do { } while (0)
54 #define SEC_PER_MIN 60
55 #define MIN_PER_HOUR 60
56 #define SEC_PER_HOUR 3600
57 #define HOUR_PER_DAY 24
58 #define SEC_PER_DAY 86400
60 #define RTC_REINJECT_ON_ACK_COUNT 20
61 #define RTC_CLOCK_RATE 32768
62 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
64 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
66 typedef struct RTCState
{
70 uint8_t cmos_data
[128];
79 QEMUTimer
*periodic_timer
;
80 int64_t next_periodic_time
;
81 /* update-ended timer */
82 QEMUTimer
*update_timer
;
83 uint64_t next_alarm_time
;
84 uint16_t irq_reinject_on_ack_count
;
85 uint32_t irq_coalesced
;
87 QEMUTimer
*coalesced_timer
;
88 Notifier clock_reset_notifier
;
89 LostTickPolicy lost_tick_policy
;
90 Notifier suspend_notifier
;
91 QLIST_ENTRY(RTCState
) link
;
94 static void rtc_set_time(RTCState
*s
);
95 static void rtc_update_time(RTCState
*s
);
96 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
97 static inline int rtc_from_bcd(RTCState
*s
, int a
);
98 static uint64_t get_next_alarm(RTCState
*s
);
100 static inline bool rtc_running(RTCState
*s
)
102 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
103 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
106 static uint64_t get_guest_rtc_ns(RTCState
*s
)
108 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
110 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
111 guest_clock
- s
->last_update
+ s
->offset
;
115 static void rtc_coalesced_timer_update(RTCState
*s
)
117 if (s
->irq_coalesced
== 0) {
118 timer_del(s
->coalesced_timer
);
120 /* divide each RTC interval to 2 - 8 smaller intervals */
121 int c
= MIN(s
->irq_coalesced
, 7) + 1;
122 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
123 muldiv64(s
->period
/ c
, NANOSECONDS_PER_SECOND
, RTC_CLOCK_RATE
);
124 timer_mod(s
->coalesced_timer
, next_clock
);
128 static void rtc_coalesced_timer(void *opaque
)
130 RTCState
*s
= opaque
;
132 if (s
->irq_coalesced
!= 0) {
133 apic_reset_irq_delivered();
134 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
135 DPRINTF_C("cmos: injecting from timer\n");
136 qemu_irq_raise(s
->irq
);
137 if (apic_get_irq_delivered()) {
139 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
144 rtc_coalesced_timer_update(s
);
148 /* handle periodic timer */
149 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
151 int period_code
, period
;
152 int64_t cur_clock
, next_irq_clock
;
154 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
156 && (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
157 if (period_code
<= 2)
159 /* period in 32 Khz cycles */
160 period
= 1 << (period_code
- 1);
162 if (period
!= s
->period
) {
163 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
164 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
168 /* compute 32 khz clock */
170 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
172 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
173 s
->next_periodic_time
= muldiv64(next_irq_clock
, NANOSECONDS_PER_SECOND
,
175 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
178 s
->irq_coalesced
= 0;
180 timer_del(s
->periodic_timer
);
184 static void rtc_periodic_timer(void *opaque
)
186 RTCState
*s
= opaque
;
188 periodic_timer_update(s
, s
->next_periodic_time
);
189 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
190 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
191 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
193 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
194 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
195 s
->irq_reinject_on_ack_count
= 0;
196 apic_reset_irq_delivered();
197 qemu_irq_raise(s
->irq
);
198 if (!apic_get_irq_delivered()) {
200 rtc_coalesced_timer_update(s
);
201 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
206 qemu_irq_raise(s
->irq
);
210 /* handle update-ended timer */
211 static void check_update_timer(RTCState
*s
)
213 uint64_t next_update_time
;
217 /* From the data sheet: "Holding the dividers in reset prevents
218 * interrupts from operating, while setting the SET bit allows"
219 * them to occur. However, it will prevent an alarm interrupt
220 * from occurring, because the time of day is not updated.
222 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
223 timer_del(s
->update_timer
);
226 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
227 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
228 timer_del(s
->update_timer
);
231 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
232 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
233 timer_del(s
->update_timer
);
237 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
238 /* if UF is clear, reprogram to next second */
239 next_update_time
= qemu_clock_get_ns(rtc_clock
)
240 + NANOSECONDS_PER_SECOND
- guest_nsec
;
242 /* Compute time of next alarm. One second is already accounted
243 * for in next_update_time.
245 next_alarm_sec
= get_next_alarm(s
);
246 s
->next_alarm_time
= next_update_time
+
247 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
249 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
250 /* UF is set, but AF is clear. Program the timer to target
252 next_update_time
= s
->next_alarm_time
;
254 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
255 timer_mod(s
->update_timer
, next_update_time
);
259 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
261 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
263 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
270 static uint64_t get_next_alarm(RTCState
*s
)
272 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
273 int32_t hour
, min
, sec
;
277 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
278 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
279 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
280 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
282 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
283 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
284 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
285 cur_hour
= convert_hour(s
, cur_hour
);
287 if (alarm_hour
== -1) {
288 alarm_hour
= cur_hour
;
289 if (alarm_min
== -1) {
291 if (alarm_sec
== -1) {
292 alarm_sec
= cur_sec
+ 1;
293 } else if (cur_sec
> alarm_sec
) {
296 } else if (cur_min
== alarm_min
) {
297 if (alarm_sec
== -1) {
298 alarm_sec
= cur_sec
+ 1;
300 if (cur_sec
> alarm_sec
) {
304 if (alarm_sec
== SEC_PER_MIN
) {
305 /* wrap to next hour, minutes is not in don't care mode */
309 } else if (cur_min
> alarm_min
) {
312 } else if (cur_hour
== alarm_hour
) {
313 if (alarm_min
== -1) {
315 if (alarm_sec
== -1) {
316 alarm_sec
= cur_sec
+ 1;
317 } else if (cur_sec
> alarm_sec
) {
321 if (alarm_sec
== SEC_PER_MIN
) {
325 /* wrap to next day, hour is not in don't care mode */
326 alarm_min
%= MIN_PER_HOUR
;
327 } else if (cur_min
== alarm_min
) {
328 if (alarm_sec
== -1) {
329 alarm_sec
= cur_sec
+ 1;
331 /* wrap to next day, hours+minutes not in don't care mode */
332 alarm_sec
%= SEC_PER_MIN
;
336 /* values that are still don't care fire at the next min/sec */
337 if (alarm_min
== -1) {
340 if (alarm_sec
== -1) {
344 /* keep values in range */
345 if (alarm_sec
== SEC_PER_MIN
) {
349 if (alarm_min
== MIN_PER_HOUR
) {
353 alarm_hour
%= HOUR_PER_DAY
;
355 hour
= alarm_hour
- cur_hour
;
356 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
357 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
358 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
361 static void rtc_update_timer(void *opaque
)
363 RTCState
*s
= opaque
;
364 int32_t irqs
= REG_C_UF
;
367 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
369 /* UIP might have been latched, update time and clear it. */
371 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
373 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
375 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
376 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
380 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
381 s
->cmos_data
[RTC_REG_C
] |= irqs
;
382 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
383 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
384 qemu_irq_raise(s
->irq
);
386 check_update_timer(s
);
389 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
390 uint64_t data
, unsigned size
)
392 RTCState
*s
= opaque
;
394 if ((addr
& 1) == 0) {
395 s
->cmos_index
= data
& 0x7f;
397 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
398 s
->cmos_index
, data
);
399 switch(s
->cmos_index
) {
400 case RTC_SECONDS_ALARM
:
401 case RTC_MINUTES_ALARM
:
402 case RTC_HOURS_ALARM
:
403 s
->cmos_data
[s
->cmos_index
] = data
;
404 check_update_timer(s
);
406 case RTC_IBM_PS2_CENTURY_BYTE
:
407 s
->cmos_index
= RTC_CENTURY
;
413 case RTC_DAY_OF_WEEK
:
414 case RTC_DAY_OF_MONTH
:
417 s
->cmos_data
[s
->cmos_index
] = data
;
418 /* if in set mode, do not update the time */
419 if (rtc_running(s
)) {
421 check_update_timer(s
);
425 if ((data
& 0x60) == 0x60) {
426 if (rtc_running(s
)) {
429 /* What happens to UIP when divider reset is enabled is
430 * unclear from the datasheet. Shouldn't matter much
433 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
434 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
435 (data
& 0x70) <= 0x20) {
436 /* when the divider reset is removed, the first update cycle
437 * begins one-half second later*/
438 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
439 s
->offset
= 500000000;
442 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
444 /* UIP bit is read only */
445 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
446 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
447 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
448 check_update_timer(s
);
451 if (data
& REG_B_SET
) {
452 /* update cmos to when the rtc was stopping */
453 if (rtc_running(s
)) {
456 /* set mode: reset UIP mode */
457 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
460 /* if disabling set mode, update the time */
461 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
462 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
463 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
467 /* if an interrupt flag is already set when the interrupt
468 * becomes enabled, raise an interrupt immediately. */
469 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
470 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
471 qemu_irq_raise(s
->irq
);
473 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
474 qemu_irq_lower(s
->irq
);
476 s
->cmos_data
[RTC_REG_B
] = data
;
477 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
478 check_update_timer(s
);
482 /* cannot write to them */
485 s
->cmos_data
[s
->cmos_index
] = data
;
491 static inline int rtc_to_bcd(RTCState
*s
, int a
)
493 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
496 return ((a
/ 10) << 4) | (a
% 10);
500 static inline int rtc_from_bcd(RTCState
*s
, int a
)
502 if ((a
& 0xc0) == 0xc0) {
505 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
508 return ((a
>> 4) * 10) + (a
& 0x0f);
512 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
514 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
515 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
516 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
517 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
519 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
523 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
524 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
525 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
527 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
528 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
531 static QLIST_HEAD(, RTCState
) rtc_devices
=
532 QLIST_HEAD_INITIALIZER(rtc_devices
);
535 void qmp_rtc_reset_reinjection(Error
**errp
)
539 QLIST_FOREACH(s
, &rtc_devices
, link
) {
540 s
->irq_coalesced
= 0;
545 static void rtc_set_time(RTCState
*s
)
549 rtc_get_time(s
, &tm
);
550 s
->base_rtc
= mktimegm(&tm
);
551 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
553 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), &error_abort
);
556 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
560 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
561 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
562 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
564 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
567 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
568 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
569 if (tm
->tm_hour
>= 12)
570 s
->cmos_data
[RTC_HOURS
] |= 0x80;
572 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
573 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
574 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
575 year
= tm
->tm_year
+ 1900 - s
->base_year
;
576 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
577 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
580 static void rtc_update_time(RTCState
*s
)
586 guest_nsec
= get_guest_rtc_ns(s
);
587 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
588 gmtime_r(&guest_sec
, &ret
);
590 /* Is SET flag of Register B disabled? */
591 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
592 rtc_set_cmos(s
, &ret
);
596 static int update_in_progress(RTCState
*s
)
600 if (!rtc_running(s
)) {
603 if (timer_pending(s
->update_timer
)) {
604 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
605 /* Latch UIP until the timer expires. */
606 if (qemu_clock_get_ns(rtc_clock
) >=
607 (next_update_time
- UIP_HOLD_LENGTH
)) {
608 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
613 guest_nsec
= get_guest_rtc_ns(s
);
614 /* UIP bit will be set at last 244us of every second. */
615 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
616 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
622 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
625 RTCState
*s
= opaque
;
627 if ((addr
& 1) == 0) {
630 switch(s
->cmos_index
) {
631 case RTC_IBM_PS2_CENTURY_BYTE
:
632 s
->cmos_index
= RTC_CENTURY
;
638 case RTC_DAY_OF_WEEK
:
639 case RTC_DAY_OF_MONTH
:
642 /* if not in set mode, calibrate cmos before
644 if (rtc_running(s
)) {
647 ret
= s
->cmos_data
[s
->cmos_index
];
650 if (update_in_progress(s
)) {
651 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
653 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
655 ret
= s
->cmos_data
[s
->cmos_index
];
658 ret
= s
->cmos_data
[s
->cmos_index
];
659 qemu_irq_lower(s
->irq
);
660 s
->cmos_data
[RTC_REG_C
] = 0x00;
661 if (ret
& (REG_C_UF
| REG_C_AF
)) {
662 check_update_timer(s
);
665 if(s
->irq_coalesced
&&
666 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
667 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
668 s
->irq_reinject_on_ack_count
++;
669 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
670 apic_reset_irq_delivered();
671 DPRINTF_C("cmos: injecting on ack\n");
672 qemu_irq_raise(s
->irq
);
673 if (apic_get_irq_delivered()) {
675 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
682 ret
= s
->cmos_data
[s
->cmos_index
];
685 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
691 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
693 RTCState
*s
= MC146818_RTC(dev
);
694 if (addr
>= 0 && addr
<= 127)
695 s
->cmos_data
[addr
] = val
;
698 int rtc_get_memory(ISADevice
*dev
, int addr
)
700 RTCState
*s
= MC146818_RTC(dev
);
701 assert(addr
>= 0 && addr
<= 127);
702 return s
->cmos_data
[addr
];
705 static void rtc_set_date_from_host(ISADevice
*dev
)
707 RTCState
*s
= MC146818_RTC(dev
);
710 qemu_get_timedate(&tm
, 0);
712 s
->base_rtc
= mktimegm(&tm
);
713 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
716 /* set the CMOS date */
717 rtc_set_cmos(s
, &tm
);
720 static void rtc_pre_save(void *opaque
)
722 RTCState
*s
= opaque
;
727 static int rtc_post_load(void *opaque
, int version_id
)
729 RTCState
*s
= opaque
;
731 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
734 check_update_timer(s
);
737 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
738 if (now
< s
->next_periodic_time
||
739 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
740 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
744 if (version_id
>= 2) {
745 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
746 rtc_coalesced_timer_update(s
);
753 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
755 RTCState
*s
= (RTCState
*)opaque
;
756 return s
->irq_reinject_on_ack_count
!= 0;
759 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
760 .name
= "mc146818rtc/irq_reinject_on_ack_count",
762 .minimum_version_id
= 1,
763 .needed
= rtc_irq_reinject_on_ack_count_needed
,
764 .fields
= (VMStateField
[]) {
765 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
766 VMSTATE_END_OF_LIST()
770 static const VMStateDescription vmstate_rtc
= {
771 .name
= "mc146818rtc",
773 .minimum_version_id
= 1,
774 .pre_save
= rtc_pre_save
,
775 .post_load
= rtc_post_load
,
776 .fields
= (VMStateField
[]) {
777 VMSTATE_BUFFER(cmos_data
, RTCState
),
778 VMSTATE_UINT8(cmos_index
, RTCState
),
780 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
781 VMSTATE_INT64(next_periodic_time
, RTCState
),
783 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
784 VMSTATE_UINT32_V(period
, RTCState
, 2),
785 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
786 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
787 VMSTATE_INT64_V(offset
, RTCState
, 3),
788 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
789 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
790 VMSTATE_END_OF_LIST()
792 .subsections
= (const VMStateDescription
*[]) {
793 &vmstate_rtc_irq_reinject_on_ack_count
,
798 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
800 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
801 int64_t now
= *(int64_t *)data
;
803 rtc_set_date_from_host(ISA_DEVICE(s
));
804 periodic_timer_update(s
, now
);
805 check_update_timer(s
);
807 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
808 rtc_coalesced_timer_update(s
);
813 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
814 BIOS will read it and start S3 resume at POST Entry */
815 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
817 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
818 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
821 static void rtc_reset(void *opaque
)
823 RTCState
*s
= opaque
;
825 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
826 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
827 check_update_timer(s
);
829 qemu_irq_lower(s
->irq
);
832 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
833 s
->irq_coalesced
= 0;
834 s
->irq_reinject_on_ack_count
= 0;
839 static const MemoryRegionOps cmos_ops
= {
840 .read
= cmos_ioport_read
,
841 .write
= cmos_ioport_write
,
843 .min_access_size
= 1,
844 .max_access_size
= 1,
846 .endianness
= DEVICE_LITTLE_ENDIAN
,
849 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
851 RTCState
*s
= MC146818_RTC(obj
);
854 rtc_get_time(s
, current_tm
);
857 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
859 ISADevice
*isadev
= ISA_DEVICE(dev
);
860 RTCState
*s
= MC146818_RTC(dev
);
863 s
->cmos_data
[RTC_REG_A
] = 0x26;
864 s
->cmos_data
[RTC_REG_B
] = 0x02;
865 s
->cmos_data
[RTC_REG_C
] = 0x00;
866 s
->cmos_data
[RTC_REG_D
] = 0x80;
868 /* This is for historical reasons. The default base year qdev property
869 * was set to 2000 for most machine types before the century byte was
872 * This if statement means that the century byte will be always 0
873 * (at least until 2079...) for base_year = 1980, but will be set
874 * correctly for base_year = 2000.
876 if (s
->base_year
== 2000) {
880 rtc_set_date_from_host(isadev
);
883 switch (s
->lost_tick_policy
) {
884 case LOST_TICK_POLICY_SLEW
:
886 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
888 case LOST_TICK_POLICY_DISCARD
:
891 error_setg(errp
, "Invalid lost tick policy.");
896 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
897 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
898 check_update_timer(s
);
900 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
901 qemu_clock_register_reset_notifier(rtc_clock
,
902 &s
->clock_reset_notifier
);
904 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
905 qemu_register_suspend_notifier(&s
->suspend_notifier
);
907 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
908 isa_register_ioport(isadev
, &s
->io
, base
);
910 qdev_set_legacy_instance_id(dev
, base
, 3);
911 qemu_register_reset(rtc_reset
, s
);
913 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
, NULL
);
915 object_property_add_alias(qdev_get_machine(), "rtc-time",
916 OBJECT(s
), "date", NULL
);
918 qdev_init_gpio_out(dev
, &s
->irq
, 1);
921 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
927 isadev
= isa_create(bus
, TYPE_MC146818_RTC
);
928 dev
= DEVICE(isadev
);
929 s
= MC146818_RTC(isadev
);
930 qdev_prop_set_int32(dev
, "base_year", base_year
);
931 qdev_init_nofail(dev
);
933 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
935 isa_connect_gpio_out(isadev
, 0, RTC_ISA_IRQ
);
937 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
942 static Property mc146818rtc_properties
[] = {
943 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
944 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
945 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
946 DEFINE_PROP_END_OF_LIST(),
949 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
951 DeviceClass
*dc
= DEVICE_CLASS(klass
);
953 dc
->realize
= rtc_realizefn
;
954 dc
->vmsd
= &vmstate_rtc
;
955 dc
->props
= mc146818rtc_properties
;
956 /* Reason: needs to be wired up by rtc_init() */
957 dc
->cannot_instantiate_with_device_add_yet
= true;
960 static void rtc_finalize(Object
*obj
)
962 object_property_del(qdev_get_machine(), "rtc", NULL
);
965 static const TypeInfo mc146818rtc_info
= {
966 .name
= TYPE_MC146818_RTC
,
967 .parent
= TYPE_ISA_DEVICE
,
968 .instance_size
= sizeof(RTCState
),
969 .class_init
= rtc_class_initfn
,
970 .instance_finalize
= rtc_finalize
,
973 static void mc146818rtc_register_types(void)
975 type_register_static(&mc146818rtc_info
);
978 type_init(mc146818rtc_register_types
)