vhost-user: allow slave to send fds via slave channel
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blobcb9a3a542d51023ee39238b20eea2108afcfb69b
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
24 ARMCPU *arm_cpu = ARM_CPU(cpu);
25 CPUARMState *env = &arm_cpu->env;
27 env->gicv3state = (void *)s;
30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
32 return env->gicv3state;
35 static bool gicv3_use_ns_bank(CPUARMState *env)
37 /* Return true if we should use the NonSecure bank for a banked GIC
38 * CPU interface register. Note that this differs from the
39 * access_secure_reg() function because GICv3 banked registers are
40 * banked even for AArch64, unlike the other CPU system registers.
42 return !arm_is_secure_below_el3(env);
45 /* The minimum BPR for the virtual interface is a configurable property */
46 static inline int icv_min_vbpr(GICv3CPUState *cs)
48 return 7 - cs->vprebits;
51 /* Simple accessor functions for LR fields */
52 static uint32_t ich_lr_vintid(uint64_t lr)
54 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
57 static uint32_t ich_lr_pintid(uint64_t lr)
59 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
62 static uint32_t ich_lr_prio(uint64_t lr)
64 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
67 static int ich_lr_state(uint64_t lr)
69 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
72 static bool icv_access(CPUARMState *env, int hcr_flags)
74 /* Return true if this ICC_ register access should really be
75 * directed to an ICV_ access. hcr_flags is a mask of
76 * HCR_EL2 bits to check: we treat this as an ICV_ access
77 * if we are in NS EL1 and at least one of the specified
78 * HCR_EL2 bits is set.
80 * ICV registers fall into four categories:
81 * * access if NS EL1 and HCR_EL2.FMO == 1:
82 * all ICV regs with '0' in their name
83 * * access if NS EL1 and HCR_EL2.IMO == 1:
84 * all ICV regs with '1' in their name
85 * * access if NS EL1 and either IMO or FMO == 1:
86 * CTLR, DIR, PMR, RPR
88 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
89 && !arm_is_secure_below_el3(env);
92 static int read_vbpr(GICv3CPUState *cs, int grp)
94 /* Read VBPR value out of the VMCR field (caller must handle
95 * VCBPR effects if required)
97 if (grp == GICV3_G0) {
98 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
99 ICH_VMCR_EL2_VBPR0_LENGTH);
100 } else {
101 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
102 ICH_VMCR_EL2_VBPR1_LENGTH);
106 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
108 /* Write new VBPR1 value, handling the "writing a value less than
109 * the minimum sets it to the minimum" semantics.
111 int min = icv_min_vbpr(cs);
113 if (grp != GICV3_G0) {
114 min++;
117 value = MAX(value, min);
119 if (grp == GICV3_G0) {
120 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
121 ICH_VMCR_EL2_VBPR0_LENGTH, value);
122 } else {
123 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
124 ICH_VMCR_EL2_VBPR1_LENGTH, value);
128 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
130 /* Return a mask word which clears the unimplemented priority bits
131 * from a priority value for a virtual interrupt. (Not to be confused
132 * with the group priority, whose mask depends on the value of VBPR
133 * for the interrupt group.)
135 return ~0U << (8 - cs->vpribits);
138 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
140 /* Calculate the current running priority based on the set bits
141 * in the ICH Active Priority Registers.
143 int i;
144 int aprmax = 1 << (cs->vprebits - 5);
146 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
148 for (i = 0; i < aprmax; i++) {
149 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
150 cs->ich_apr[GICV3_G1NS][i];
152 if (!apr) {
153 continue;
155 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
157 /* No current active interrupts: return idle priority */
158 return 0xff;
161 static int hppvi_index(GICv3CPUState *cs)
163 /* Return the list register index of the highest priority pending
164 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
165 * pseudocode. If no pending virtual interrupts, return -1.
167 int idx = -1;
168 int i;
169 /* Note that a list register entry with a priority of 0xff will
170 * never be reported by this function; this is the architecturally
171 * correct behaviour.
173 int prio = 0xff;
175 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
176 /* Both groups disabled, definitely nothing to do */
177 return idx;
180 for (i = 0; i < cs->num_list_regs; i++) {
181 uint64_t lr = cs->ich_lr_el2[i];
182 int thisprio;
184 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
185 /* Not Pending */
186 continue;
189 /* Ignore interrupts if relevant group enable not set */
190 if (lr & ICH_LR_EL2_GROUP) {
191 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
192 continue;
194 } else {
195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
196 continue;
200 thisprio = ich_lr_prio(lr);
202 if (thisprio < prio) {
203 prio = thisprio;
204 idx = i;
208 return idx;
211 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
213 /* Return a mask word which clears the subpriority bits from
214 * a priority value for a virtual interrupt in the specified group.
215 * This depends on the VBPR value.
216 * If using VBPR0 then:
217 * a BPR of 0 means the group priority bits are [7:1];
218 * a BPR of 1 means they are [7:2], and so on down to
219 * a BPR of 7 meaning no group priority bits at all.
220 * If using VBPR1 then:
221 * a BPR of 0 is impossible (the minimum value is 1)
222 * a BPR of 1 means the group priority bits are [7:1];
223 * a BPR of 2 means they are [7:2], and so on down to
224 * a BPR of 7 meaning the group priority is [7].
226 * Which BPR to use depends on the group of the interrupt and
227 * the current ICH_VMCR_EL2.VCBPR settings.
229 * This corresponds to the VGroupBits() pseudocode.
231 int bpr;
233 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
234 group = GICV3_G0;
237 bpr = read_vbpr(cs, group);
238 if (group == GICV3_G1NS) {
239 assert(bpr > 0);
240 bpr--;
243 return ~0U << (bpr + 1);
246 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
248 /* Return true if we can signal this virtual interrupt defined by
249 * the given list register value; see the pseudocode functions
250 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
251 * Compare also icc_hppi_can_preempt() which is the non-virtual
252 * equivalent of these checks.
254 int grp;
255 uint32_t mask, prio, rprio, vpmr;
257 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
258 /* Virtual interface disabled */
259 return false;
262 /* We don't need to check that this LR is in Pending state because
263 * that has already been done in hppvi_index().
266 prio = ich_lr_prio(lr);
267 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
268 ICH_VMCR_EL2_VPMR_LENGTH);
270 if (prio >= vpmr) {
271 /* Priority mask masks this interrupt */
272 return false;
275 rprio = ich_highest_active_virt_prio(cs);
276 if (rprio == 0xff) {
277 /* No running interrupt so we can preempt */
278 return true;
281 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
283 mask = icv_gprio_mask(cs, grp);
285 /* We only preempt a running interrupt if the pending interrupt's
286 * group priority is sufficient (the subpriorities are not considered).
288 if ((prio & mask) < (rprio & mask)) {
289 return true;
292 return false;
295 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
296 uint32_t *misr)
298 /* Return a set of bits indicating the EOI maintenance interrupt status
299 * for each list register. The EOI maintenance interrupt status is
300 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
301 * (see the GICv3 spec for the ICH_EISR_EL2 register).
302 * If misr is not NULL then we should also collect the information
303 * about the MISR.EOI, MISR.NP and MISR.U bits.
305 uint32_t value = 0;
306 int validcount = 0;
307 bool seenpending = false;
308 int i;
310 for (i = 0; i < cs->num_list_regs; i++) {
311 uint64_t lr = cs->ich_lr_el2[i];
313 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
314 == ICH_LR_EL2_EOI) {
315 value |= (1 << i);
317 if ((lr & ICH_LR_EL2_STATE_MASK)) {
318 validcount++;
320 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
321 seenpending = true;
325 if (misr) {
326 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
327 *misr |= ICH_MISR_EL2_U;
329 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
330 *misr |= ICH_MISR_EL2_NP;
332 if (value) {
333 *misr |= ICH_MISR_EL2_EOI;
336 return value;
339 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
341 /* Return a set of bits indicating the maintenance interrupt status
342 * (as seen in the ICH_MISR_EL2 register).
344 uint32_t value = 0;
346 /* Scan list registers and fill in the U, NP and EOI bits */
347 eoi_maintenance_interrupt_state(cs, &value);
349 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
350 value |= ICH_MISR_EL2_LRENP;
353 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
354 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
355 value |= ICH_MISR_EL2_VGRP0E;
358 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
359 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
360 value |= ICH_MISR_EL2_VGRP0D;
362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
363 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
364 value |= ICH_MISR_EL2_VGRP1E;
367 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
368 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
369 value |= ICH_MISR_EL2_VGRP1D;
372 return value;
375 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
377 /* Tell the CPU about any pending virtual interrupts or
378 * maintenance interrupts, following a change to the state
379 * of the CPU interface relevant to virtual interrupts.
381 * CAUTION: this function will call qemu_set_irq() on the
382 * CPU maintenance IRQ line, which is typically wired up
383 * to the GIC as a per-CPU interrupt. This means that it
384 * will recursively call back into the GIC code via
385 * gicv3_redist_set_irq() and thus into the CPU interface code's
386 * gicv3_cpuif_update(). It is therefore important that this
387 * function is only called as the final action of a CPU interface
388 * register write implementation, after all the GIC state
389 * fields have been updated. gicv3_cpuif_update() also must
390 * not cause this function to be called, but that happens
391 * naturally as a result of there being no architectural
392 * linkage between the physical and virtual GIC logic.
394 int idx;
395 int irqlevel = 0;
396 int fiqlevel = 0;
397 int maintlevel = 0;
399 idx = hppvi_index(cs);
400 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
401 if (idx >= 0) {
402 uint64_t lr = cs->ich_lr_el2[idx];
404 if (icv_hppi_can_preempt(cs, lr)) {
405 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
406 if (lr & ICH_LR_EL2_GROUP) {
407 irqlevel = 1;
408 } else {
409 fiqlevel = 1;
414 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
415 maintlevel = maintenance_interrupt_state(cs);
418 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
419 irqlevel, maintlevel);
421 qemu_set_irq(cs->parent_vfiq, fiqlevel);
422 qemu_set_irq(cs->parent_virq, irqlevel);
423 qemu_set_irq(cs->maintenance_irq, maintlevel);
426 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
428 GICv3CPUState *cs = icc_cs_from_env(env);
429 int regno = ri->opc2 & 3;
430 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
431 uint64_t value = cs->ich_apr[grp][regno];
433 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
434 return value;
437 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
438 uint64_t value)
440 GICv3CPUState *cs = icc_cs_from_env(env);
441 int regno = ri->opc2 & 3;
442 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
444 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
446 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
448 gicv3_cpuif_virt_update(cs);
449 return;
452 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
454 GICv3CPUState *cs = icc_cs_from_env(env);
455 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
456 uint64_t bpr;
457 bool satinc = false;
459 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
460 /* reads return bpr0 + 1 saturated to 7, writes ignored */
461 grp = GICV3_G0;
462 satinc = true;
465 bpr = read_vbpr(cs, grp);
467 if (satinc) {
468 bpr++;
469 bpr = MIN(bpr, 7);
472 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
474 return bpr;
477 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
478 uint64_t value)
480 GICv3CPUState *cs = icc_cs_from_env(env);
481 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
483 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
484 gicv3_redist_affid(cs), value);
486 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
487 /* reads return bpr0 + 1 saturated to 7, writes ignored */
488 return;
491 write_vbpr(cs, grp, value);
493 gicv3_cpuif_virt_update(cs);
496 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
498 GICv3CPUState *cs = icc_cs_from_env(env);
499 uint64_t value;
501 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
502 ICH_VMCR_EL2_VPMR_LENGTH);
504 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
505 return value;
508 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 GICv3CPUState *cs = icc_cs_from_env(env);
513 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
515 value &= icv_fullprio_mask(cs);
517 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
518 ICH_VMCR_EL2_VPMR_LENGTH, value);
520 gicv3_cpuif_virt_update(cs);
523 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
525 GICv3CPUState *cs = icc_cs_from_env(env);
526 int enbit;
527 uint64_t value;
529 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
530 value = extract64(cs->ich_vmcr_el2, enbit, 1);
532 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
533 gicv3_redist_affid(cs), value);
534 return value;
537 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
538 uint64_t value)
540 GICv3CPUState *cs = icc_cs_from_env(env);
541 int enbit;
543 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
544 gicv3_redist_affid(cs), value);
546 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
548 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
549 gicv3_cpuif_virt_update(cs);
552 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
554 GICv3CPUState *cs = icc_cs_from_env(env);
555 uint64_t value;
557 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
558 * should match the ones reported in ich_vtr_read().
560 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
561 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
563 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
564 value |= ICC_CTLR_EL1_EOIMODE;
567 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
568 value |= ICC_CTLR_EL1_CBPR;
571 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
572 return value;
575 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
576 uint64_t value)
578 GICv3CPUState *cs = icc_cs_from_env(env);
580 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
582 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
583 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
584 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
585 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
587 gicv3_cpuif_virt_update(cs);
590 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
592 GICv3CPUState *cs = icc_cs_from_env(env);
593 int prio = ich_highest_active_virt_prio(cs);
595 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
596 return prio;
599 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
601 GICv3CPUState *cs = icc_cs_from_env(env);
602 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
603 int idx = hppvi_index(cs);
604 uint64_t value = INTID_SPURIOUS;
606 if (idx >= 0) {
607 uint64_t lr = cs->ich_lr_el2[idx];
608 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
610 if (grp == thisgrp) {
611 value = ich_lr_vintid(lr);
615 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
616 return value;
619 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
621 /* Activate the interrupt in the specified list register
622 * by moving it from Pending to Active state, and update the
623 * Active Priority Registers.
625 uint32_t mask = icv_gprio_mask(cs, grp);
626 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
627 int aprbit = prio >> (8 - cs->vprebits);
628 int regno = aprbit / 32;
629 int regbit = aprbit % 32;
631 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
632 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
633 cs->ich_apr[grp][regno] |= (1 << regbit);
636 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
638 GICv3CPUState *cs = icc_cs_from_env(env);
639 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
640 int idx = hppvi_index(cs);
641 uint64_t intid = INTID_SPURIOUS;
643 if (idx >= 0) {
644 uint64_t lr = cs->ich_lr_el2[idx];
645 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
647 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
648 intid = ich_lr_vintid(lr);
649 if (intid < INTID_SECURE) {
650 icv_activate_irq(cs, idx, grp);
651 } else {
652 /* Interrupt goes from Pending to Invalid */
653 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
654 /* We will now return the (bogus) ID from the list register,
655 * as per the pseudocode.
661 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
662 gicv3_redist_affid(cs), intid);
663 return intid;
666 static int icc_highest_active_prio(GICv3CPUState *cs)
668 /* Calculate the current running priority based on the set bits
669 * in the Active Priority Registers.
671 int i;
673 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
674 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
675 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
677 if (!apr) {
678 continue;
680 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
682 /* No current active interrupts: return idle priority */
683 return 0xff;
686 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
688 /* Return a mask word which clears the subpriority bits from
689 * a priority value for an interrupt in the specified group.
690 * This depends on the BPR value. For CBPR0 (S or NS):
691 * a BPR of 0 means the group priority bits are [7:1];
692 * a BPR of 1 means they are [7:2], and so on down to
693 * a BPR of 7 meaning no group priority bits at all.
694 * For CBPR1 NS:
695 * a BPR of 0 is impossible (the minimum value is 1)
696 * a BPR of 1 means the group priority bits are [7:1];
697 * a BPR of 2 means they are [7:2], and so on down to
698 * a BPR of 7 meaning the group priority is [7].
700 * Which BPR to use depends on the group of the interrupt and
701 * the current ICC_CTLR.CBPR settings.
703 * This corresponds to the GroupBits() pseudocode.
705 int bpr;
707 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
708 (group == GICV3_G1NS &&
709 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
710 group = GICV3_G0;
713 bpr = cs->icc_bpr[group] & 7;
715 if (group == GICV3_G1NS) {
716 assert(bpr > 0);
717 bpr--;
720 return ~0U << (bpr + 1);
723 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
725 /* Return true if there is no pending interrupt, or the
726 * highest priority pending interrupt is in a group which has been
727 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
729 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
732 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
734 /* Return true if we have a pending interrupt of sufficient
735 * priority to preempt.
737 int rprio;
738 uint32_t mask;
740 if (icc_no_enabled_hppi(cs)) {
741 return false;
744 if (cs->hppi.prio >= cs->icc_pmr_el1) {
745 /* Priority mask masks this interrupt */
746 return false;
749 rprio = icc_highest_active_prio(cs);
750 if (rprio == 0xff) {
751 /* No currently running interrupt so we can preempt */
752 return true;
755 mask = icc_gprio_mask(cs, cs->hppi.grp);
757 /* We only preempt a running interrupt if the pending interrupt's
758 * group priority is sufficient (the subpriorities are not considered).
760 if ((cs->hppi.prio & mask) < (rprio & mask)) {
761 return true;
764 return false;
767 void gicv3_cpuif_update(GICv3CPUState *cs)
769 /* Tell the CPU about its highest priority pending interrupt */
770 int irqlevel = 0;
771 int fiqlevel = 0;
772 ARMCPU *cpu = ARM_CPU(cs->cpu);
773 CPUARMState *env = &cpu->env;
775 g_assert(qemu_mutex_iothread_locked());
777 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
778 cs->hppi.grp, cs->hppi.prio);
780 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
781 /* If a Security-enabled GIC sends a G1S interrupt to a
782 * Security-disabled CPU, we must treat it as if it were G0.
784 cs->hppi.grp = GICV3_G0;
787 if (icc_hppi_can_preempt(cs)) {
788 /* We have an interrupt: should we signal it as IRQ or FIQ?
789 * This is described in the GICv3 spec section 4.6.2.
791 bool isfiq;
793 switch (cs->hppi.grp) {
794 case GICV3_G0:
795 isfiq = true;
796 break;
797 case GICV3_G1:
798 isfiq = (!arm_is_secure(env) ||
799 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
800 break;
801 case GICV3_G1NS:
802 isfiq = arm_is_secure(env);
803 break;
804 default:
805 g_assert_not_reached();
808 if (isfiq) {
809 fiqlevel = 1;
810 } else {
811 irqlevel = 1;
815 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
817 qemu_set_irq(cs->parent_fiq, fiqlevel);
818 qemu_set_irq(cs->parent_irq, irqlevel);
821 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
823 GICv3CPUState *cs = icc_cs_from_env(env);
824 uint32_t value = cs->icc_pmr_el1;
826 if (icv_access(env, HCR_FMO | HCR_IMO)) {
827 return icv_pmr_read(env, ri);
830 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
831 (env->cp15.scr_el3 & SCR_FIQ)) {
832 /* NS access and Group 0 is inaccessible to NS: return the
833 * NS view of the current priority
835 if ((value & 0x80) == 0) {
836 /* Secure priorities not visible to NS */
837 value = 0;
838 } else if (value != 0xff) {
839 value = (value << 1) & 0xff;
843 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
845 return value;
848 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
849 uint64_t value)
851 GICv3CPUState *cs = icc_cs_from_env(env);
853 if (icv_access(env, HCR_FMO | HCR_IMO)) {
854 return icv_pmr_write(env, ri, value);
857 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
859 value &= 0xff;
861 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
862 (env->cp15.scr_el3 & SCR_FIQ)) {
863 /* NS access and Group 0 is inaccessible to NS: return the
864 * NS view of the current priority
866 if (!(cs->icc_pmr_el1 & 0x80)) {
867 /* Current PMR in the secure range, don't allow NS to change it */
868 return;
870 value = (value >> 1) | 0x80;
872 cs->icc_pmr_el1 = value;
873 gicv3_cpuif_update(cs);
876 static void icc_activate_irq(GICv3CPUState *cs, int irq)
878 /* Move the interrupt from the Pending state to Active, and update
879 * the Active Priority Registers
881 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
882 int prio = cs->hppi.prio & mask;
883 int aprbit = prio >> 1;
884 int regno = aprbit / 32;
885 int regbit = aprbit % 32;
887 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
889 if (irq < GIC_INTERNAL) {
890 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
891 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
892 gicv3_redist_update(cs);
893 } else {
894 gicv3_gicd_active_set(cs->gic, irq);
895 gicv3_gicd_pending_clear(cs->gic, irq);
896 gicv3_update(cs->gic, irq, 1);
900 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
902 /* Return the highest priority pending interrupt register value
903 * for group 0.
905 bool irq_is_secure;
907 if (cs->hppi.prio == 0xff) {
908 return INTID_SPURIOUS;
911 /* Check whether we can return the interrupt or if we should return
912 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
913 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
914 * is always zero.)
916 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
917 (cs->hppi.grp != GICV3_G1NS));
919 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
920 return INTID_SPURIOUS;
922 if (irq_is_secure && !arm_is_secure(env)) {
923 /* Secure interrupts not visible to Nonsecure */
924 return INTID_SPURIOUS;
927 if (cs->hppi.grp != GICV3_G0) {
928 /* Indicate to EL3 that there's a Group 1 interrupt for the other
929 * state pending.
931 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
934 return cs->hppi.irq;
937 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
939 /* Return the highest priority pending interrupt register value
940 * for group 1.
942 bool irq_is_secure;
944 if (cs->hppi.prio == 0xff) {
945 return INTID_SPURIOUS;
948 /* Check whether we can return the interrupt or if we should return
949 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
950 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
951 * is always zero.)
953 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
954 (cs->hppi.grp != GICV3_G1NS));
956 if (cs->hppi.grp == GICV3_G0) {
957 /* Group 0 interrupts not visible via HPPIR1 */
958 return INTID_SPURIOUS;
960 if (irq_is_secure) {
961 if (!arm_is_secure(env)) {
962 /* Secure interrupts not visible in Non-secure */
963 return INTID_SPURIOUS;
965 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
966 /* Group 1 non-secure interrupts not visible in Secure EL1 */
967 return INTID_SPURIOUS;
970 return cs->hppi.irq;
973 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
975 GICv3CPUState *cs = icc_cs_from_env(env);
976 uint64_t intid;
978 if (icv_access(env, HCR_FMO)) {
979 return icv_iar_read(env, ri);
982 if (!icc_hppi_can_preempt(cs)) {
983 intid = INTID_SPURIOUS;
984 } else {
985 intid = icc_hppir0_value(cs, env);
988 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
989 icc_activate_irq(cs, intid);
992 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
993 return intid;
996 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
998 GICv3CPUState *cs = icc_cs_from_env(env);
999 uint64_t intid;
1001 if (icv_access(env, HCR_IMO)) {
1002 return icv_iar_read(env, ri);
1005 if (!icc_hppi_can_preempt(cs)) {
1006 intid = INTID_SPURIOUS;
1007 } else {
1008 intid = icc_hppir1_value(cs, env);
1011 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1012 icc_activate_irq(cs, intid);
1015 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1016 return intid;
1019 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1021 /* Drop the priority of the currently active interrupt in
1022 * the specified group.
1024 * Note that we can guarantee (because of the requirement to nest
1025 * ICC_IAR reads [which activate an interrupt and raise priority]
1026 * with ICC_EOIR writes [which drop the priority for the interrupt])
1027 * that the interrupt we're being called for is the highest priority
1028 * active interrupt, meaning that it has the lowest set bit in the
1029 * APR registers.
1031 * If the guest does not honour the ordering constraints then the
1032 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1033 * the values of the APR registers might become incorrect and the
1034 * running priority will be wrong, so interrupts that should preempt
1035 * might not do so, and interrupts that should not preempt might do so.
1037 int i;
1039 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1040 uint64_t *papr = &cs->icc_apr[grp][i];
1042 if (!*papr) {
1043 continue;
1045 /* Clear the lowest set bit */
1046 *papr &= *papr - 1;
1047 break;
1050 /* running priority change means we need an update for this cpu i/f */
1051 gicv3_cpuif_update(cs);
1054 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1056 /* Return true if we should split priority drop and interrupt
1057 * deactivation, ie whether the relevant EOIMode bit is set.
1059 if (arm_is_el3_or_mon(env)) {
1060 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1062 if (arm_is_secure_below_el3(env)) {
1063 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1064 } else {
1065 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1069 static int icc_highest_active_group(GICv3CPUState *cs)
1071 /* Return the group with the highest priority active interrupt.
1072 * We can do this by just comparing the APRs to see which one
1073 * has the lowest set bit.
1074 * (If more than one group is active at the same priority then
1075 * we're in UNPREDICTABLE territory.)
1077 int i;
1079 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1080 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1081 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1082 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1084 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1085 return GICV3_G1NS;
1087 if (g1ctz < g0ctz) {
1088 return GICV3_G1;
1090 if (g0ctz < 32) {
1091 return GICV3_G0;
1094 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1095 * ignores the spurious EOI attempt.
1097 return -1;
1100 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1102 if (irq < GIC_INTERNAL) {
1103 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1104 gicv3_redist_update(cs);
1105 } else {
1106 gicv3_gicd_active_clear(cs->gic, irq);
1107 gicv3_update(cs->gic, irq, 1);
1111 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1113 /* Return true if we should split priority drop and interrupt
1114 * deactivation, ie whether the virtual EOIMode bit is set.
1116 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1119 static int icv_find_active(GICv3CPUState *cs, int irq)
1121 /* Given an interrupt number for an active interrupt, return the index
1122 * of the corresponding list register, or -1 if there is no match.
1123 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1125 int i;
1127 for (i = 0; i < cs->num_list_regs; i++) {
1128 uint64_t lr = cs->ich_lr_el2[i];
1130 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1131 return i;
1135 return -1;
1138 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1140 /* Deactivate the interrupt in the specified list register index */
1141 uint64_t lr = cs->ich_lr_el2[idx];
1143 if (lr & ICH_LR_EL2_HW) {
1144 /* Deactivate the associated physical interrupt */
1145 int pirq = ich_lr_pintid(lr);
1147 if (pirq < INTID_SECURE) {
1148 icc_deactivate_irq(cs, pirq);
1152 /* Clear the 'active' part of the state, so ActivePending->Pending
1153 * and Active->Invalid.
1155 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1156 cs->ich_lr_el2[idx] = lr;
1159 static void icv_increment_eoicount(GICv3CPUState *cs)
1161 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1162 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1163 ICH_HCR_EL2_EOICOUNT_LENGTH);
1165 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1166 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1169 static int icv_drop_prio(GICv3CPUState *cs)
1171 /* Drop the priority of the currently active virtual interrupt
1172 * (favouring group 0 if there is a set active bit at
1173 * the same priority for both group 0 and group 1).
1174 * Return the priority value for the bit we just cleared,
1175 * or 0xff if no bits were set in the AP registers at all.
1176 * Note that though the ich_apr[] are uint64_t only the low
1177 * 32 bits are actually relevant.
1179 int i;
1180 int aprmax = 1 << (cs->vprebits - 5);
1182 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1184 for (i = 0; i < aprmax; i++) {
1185 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1186 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1187 int apr0count, apr1count;
1189 if (!*papr0 && !*papr1) {
1190 continue;
1193 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1194 * because we need to return the bit number we cleared so
1195 * it can be compared against the list register's priority field.
1197 apr0count = ctz32(*papr0);
1198 apr1count = ctz32(*papr1);
1200 if (apr0count <= apr1count) {
1201 *papr0 &= *papr0 - 1;
1202 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1203 } else {
1204 *papr1 &= *papr1 - 1;
1205 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1208 return 0xff;
1211 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1212 uint64_t value)
1214 /* Deactivate interrupt */
1215 GICv3CPUState *cs = icc_cs_from_env(env);
1216 int idx;
1217 int irq = value & 0xffffff;
1219 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1221 if (irq >= cs->gic->num_irq) {
1222 /* Also catches special interrupt numbers and LPIs */
1223 return;
1226 if (!icv_eoi_split(env, cs)) {
1227 return;
1230 idx = icv_find_active(cs, irq);
1232 if (idx < 0) {
1233 /* No list register matching this, so increment the EOI count
1234 * (might trigger a maintenance interrupt)
1236 icv_increment_eoicount(cs);
1237 } else {
1238 icv_deactivate_irq(cs, idx);
1241 gicv3_cpuif_virt_update(cs);
1244 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1245 uint64_t value)
1247 /* End of Interrupt */
1248 GICv3CPUState *cs = icc_cs_from_env(env);
1249 int irq = value & 0xffffff;
1250 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1251 int idx, dropprio;
1253 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1254 gicv3_redist_affid(cs), value);
1256 if (irq >= cs->gic->num_irq) {
1257 /* Also catches special interrupt numbers and LPIs */
1258 return;
1261 /* We implement the IMPDEF choice of "drop priority before doing
1262 * error checks" (because that lets us avoid scanning the AP
1263 * registers twice).
1265 dropprio = icv_drop_prio(cs);
1266 if (dropprio == 0xff) {
1267 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1268 * whether the list registers are checked in this
1269 * situation; we choose not to.
1271 return;
1274 idx = icv_find_active(cs, irq);
1276 if (idx < 0) {
1277 /* No valid list register corresponding to EOI ID */
1278 icv_increment_eoicount(cs);
1279 } else {
1280 uint64_t lr = cs->ich_lr_el2[idx];
1281 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1282 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1284 if (thisgrp == grp && lr_gprio == dropprio) {
1285 if (!icv_eoi_split(env, cs)) {
1286 /* Priority drop and deactivate not split: deactivate irq now */
1287 icv_deactivate_irq(cs, idx);
1292 gicv3_cpuif_virt_update(cs);
1295 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1296 uint64_t value)
1298 /* End of Interrupt */
1299 GICv3CPUState *cs = icc_cs_from_env(env);
1300 int irq = value & 0xffffff;
1301 int grp;
1303 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1304 icv_eoir_write(env, ri, value);
1305 return;
1308 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1309 gicv3_redist_affid(cs), value);
1311 if (ri->crm == 8) {
1312 /* EOIR0 */
1313 grp = GICV3_G0;
1314 } else {
1315 /* EOIR1 */
1316 if (arm_is_secure(env)) {
1317 grp = GICV3_G1;
1318 } else {
1319 grp = GICV3_G1NS;
1323 if (irq >= cs->gic->num_irq) {
1324 /* This handles two cases:
1325 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1326 * to the GICC_EOIR, the GIC ignores that write.
1327 * 2. If software writes the number of a non-existent interrupt
1328 * this must be a subcase of "value written does not match the last
1329 * valid interrupt value read from the Interrupt Acknowledge
1330 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1332 return;
1335 if (icc_highest_active_group(cs) != grp) {
1336 return;
1339 icc_drop_prio(cs, grp);
1341 if (!icc_eoi_split(env, cs)) {
1342 /* Priority drop and deactivate not split: deactivate irq now */
1343 icc_deactivate_irq(cs, irq);
1347 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1349 GICv3CPUState *cs = icc_cs_from_env(env);
1350 uint64_t value;
1352 if (icv_access(env, HCR_FMO)) {
1353 return icv_hppir_read(env, ri);
1356 value = icc_hppir0_value(cs, env);
1357 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1358 return value;
1361 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1363 GICv3CPUState *cs = icc_cs_from_env(env);
1364 uint64_t value;
1366 if (icv_access(env, HCR_IMO)) {
1367 return icv_hppir_read(env, ri);
1370 value = icc_hppir1_value(cs, env);
1371 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1372 return value;
1375 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1377 GICv3CPUState *cs = icc_cs_from_env(env);
1378 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1379 bool satinc = false;
1380 uint64_t bpr;
1382 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1383 return icv_bpr_read(env, ri);
1386 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1387 grp = GICV3_G1NS;
1390 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1391 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1392 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1393 * modify BPR0
1395 grp = GICV3_G0;
1398 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1399 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1400 /* reads return bpr0 + 1 sat to 7, writes ignored */
1401 grp = GICV3_G0;
1402 satinc = true;
1405 bpr = cs->icc_bpr[grp];
1406 if (satinc) {
1407 bpr++;
1408 bpr = MIN(bpr, 7);
1411 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1413 return bpr;
1416 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1417 uint64_t value)
1419 GICv3CPUState *cs = icc_cs_from_env(env);
1420 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1421 uint64_t minval;
1423 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1424 icv_bpr_write(env, ri, value);
1425 return;
1428 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1429 gicv3_redist_affid(cs), value);
1431 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1432 grp = GICV3_G1NS;
1435 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1436 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1437 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1438 * modify BPR0
1440 grp = GICV3_G0;
1443 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1444 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1445 /* reads return bpr0 + 1 sat to 7, writes ignored */
1446 return;
1449 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1450 if (value < minval) {
1451 value = minval;
1454 cs->icc_bpr[grp] = value & 7;
1455 gicv3_cpuif_update(cs);
1458 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1460 GICv3CPUState *cs = icc_cs_from_env(env);
1461 uint64_t value;
1463 int regno = ri->opc2 & 3;
1464 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1466 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1467 return icv_ap_read(env, ri);
1470 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1471 grp = GICV3_G1NS;
1474 value = cs->icc_apr[grp][regno];
1476 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1477 return value;
1480 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1481 uint64_t value)
1483 GICv3CPUState *cs = icc_cs_from_env(env);
1485 int regno = ri->opc2 & 3;
1486 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1488 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1489 icv_ap_write(env, ri, value);
1490 return;
1493 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1495 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1496 grp = GICV3_G1NS;
1499 /* It's not possible to claim that a Non-secure interrupt is active
1500 * at a priority outside the Non-secure range (128..255), since this
1501 * would otherwise allow malicious NS code to block delivery of S interrupts
1502 * by writing a bad value to these registers.
1504 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1505 return;
1508 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1509 gicv3_cpuif_update(cs);
1512 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 uint64_t value)
1515 /* Deactivate interrupt */
1516 GICv3CPUState *cs = icc_cs_from_env(env);
1517 int irq = value & 0xffffff;
1518 bool irq_is_secure, single_sec_state, irq_is_grp0;
1519 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1521 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1522 icv_dir_write(env, ri, value);
1523 return;
1526 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1528 if (irq >= cs->gic->num_irq) {
1529 /* Also catches special interrupt numbers and LPIs */
1530 return;
1533 if (!icc_eoi_split(env, cs)) {
1534 return;
1537 int grp = gicv3_irq_group(cs->gic, cs, irq);
1539 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1540 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1541 irq_is_grp0 = grp == GICV3_G0;
1543 /* Check whether we're allowed to deactivate this interrupt based
1544 * on its group and the current CPU state.
1545 * These checks are laid out to correspond to the spec's pseudocode.
1547 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1548 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1549 /* No need to include !IsSecure in route_*_to_el2 as it's only
1550 * tested in cases where we know !IsSecure is true.
1552 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1553 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1555 switch (arm_current_el(env)) {
1556 case 3:
1557 break;
1558 case 2:
1559 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1560 break;
1562 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1563 break;
1565 return;
1566 case 1:
1567 if (!arm_is_secure_below_el3(env)) {
1568 if (single_sec_state && irq_is_grp0 &&
1569 !route_fiq_to_el3 && !route_fiq_to_el2) {
1570 break;
1572 if (!irq_is_secure && !irq_is_grp0 &&
1573 !route_irq_to_el3 && !route_irq_to_el2) {
1574 break;
1576 } else {
1577 if (irq_is_grp0 && !route_fiq_to_el3) {
1578 break;
1580 if (!irq_is_grp0 &&
1581 (!irq_is_secure || !single_sec_state) &&
1582 !route_irq_to_el3) {
1583 break;
1586 return;
1587 default:
1588 g_assert_not_reached();
1591 icc_deactivate_irq(cs, irq);
1594 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1596 GICv3CPUState *cs = icc_cs_from_env(env);
1597 int prio;
1599 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1600 return icv_rpr_read(env, ri);
1603 prio = icc_highest_active_prio(cs);
1605 if (arm_feature(env, ARM_FEATURE_EL3) &&
1606 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1607 /* NS GIC access and Group 0 is inaccessible to NS */
1608 if ((prio & 0x80) == 0) {
1609 /* NS mustn't see priorities in the Secure half of the range */
1610 prio = 0;
1611 } else if (prio != 0xff) {
1612 /* Non-idle priority: show the Non-secure view of it */
1613 prio = (prio << 1) & 0xff;
1617 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1618 return prio;
1621 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1622 uint64_t value, int grp, bool ns)
1624 GICv3State *s = cs->gic;
1626 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1627 uint64_t aff = extract64(value, 48, 8) << 16 |
1628 extract64(value, 32, 8) << 8 |
1629 extract64(value, 16, 8);
1630 uint32_t targetlist = extract64(value, 0, 16);
1631 uint32_t irq = extract64(value, 24, 4);
1632 bool irm = extract64(value, 40, 1);
1633 int i;
1635 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1636 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1637 * interrupts as Group 0 interrupts and must send Secure Group 0
1638 * interrupts to the target CPUs.
1640 grp = GICV3_G0;
1643 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1644 aff, targetlist);
1646 for (i = 0; i < s->num_cpu; i++) {
1647 GICv3CPUState *ocs = &s->cpu[i];
1649 if (irm) {
1650 /* IRM == 1 : route to all CPUs except self */
1651 if (cs == ocs) {
1652 continue;
1654 } else {
1655 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1656 * where the corresponding bit is set in targetlist
1658 int aff0;
1660 if (ocs->gicr_typer >> 40 != aff) {
1661 continue;
1663 aff0 = extract64(ocs->gicr_typer, 32, 8);
1664 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1665 continue;
1669 /* The redistributor will check against its own GICR_NSACR as needed */
1670 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1674 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1675 uint64_t value)
1677 /* Generate Secure Group 0 SGI. */
1678 GICv3CPUState *cs = icc_cs_from_env(env);
1679 bool ns = !arm_is_secure(env);
1681 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1684 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1687 /* Generate Group 1 SGI for the current Security state */
1688 GICv3CPUState *cs = icc_cs_from_env(env);
1689 int grp;
1690 bool ns = !arm_is_secure(env);
1692 grp = ns ? GICV3_G1NS : GICV3_G1;
1693 icc_generate_sgi(env, cs, value, grp, ns);
1696 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 uint64_t value)
1699 /* Generate Group 1 SGI for the Security state that is not
1700 * the current state
1702 GICv3CPUState *cs = icc_cs_from_env(env);
1703 int grp;
1704 bool ns = !arm_is_secure(env);
1706 grp = ns ? GICV3_G1 : GICV3_G1NS;
1707 icc_generate_sgi(env, cs, value, grp, ns);
1710 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1712 GICv3CPUState *cs = icc_cs_from_env(env);
1713 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1714 uint64_t value;
1716 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1717 return icv_igrpen_read(env, ri);
1720 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1721 grp = GICV3_G1NS;
1724 value = cs->icc_igrpen[grp];
1725 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1726 gicv3_redist_affid(cs), value);
1727 return value;
1730 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1731 uint64_t value)
1733 GICv3CPUState *cs = icc_cs_from_env(env);
1734 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1736 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1737 icv_igrpen_write(env, ri, value);
1738 return;
1741 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1742 gicv3_redist_affid(cs), value);
1744 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1745 grp = GICV3_G1NS;
1748 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1749 gicv3_cpuif_update(cs);
1752 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1754 GICv3CPUState *cs = icc_cs_from_env(env);
1755 uint64_t value;
1757 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1758 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1759 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1760 return value;
1763 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1766 GICv3CPUState *cs = icc_cs_from_env(env);
1768 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1770 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1771 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1772 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1773 gicv3_cpuif_update(cs);
1776 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1778 GICv3CPUState *cs = icc_cs_from_env(env);
1779 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1780 uint64_t value;
1782 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1783 return icv_ctlr_read(env, ri);
1786 value = cs->icc_ctlr_el1[bank];
1787 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1788 return value;
1791 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 GICv3CPUState *cs = icc_cs_from_env(env);
1795 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1796 uint64_t mask;
1798 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1799 icv_ctlr_write(env, ri, value);
1800 return;
1803 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1805 /* Only CBPR and EOIMODE can be RW;
1806 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1807 * the asseciated priority-based routing of them);
1808 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1810 if (arm_feature(env, ARM_FEATURE_EL3) &&
1811 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1812 mask = ICC_CTLR_EL1_EOIMODE;
1813 } else {
1814 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1817 cs->icc_ctlr_el1[bank] &= ~mask;
1818 cs->icc_ctlr_el1[bank] |= (value & mask);
1819 gicv3_cpuif_update(cs);
1823 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1825 GICv3CPUState *cs = icc_cs_from_env(env);
1826 uint64_t value;
1828 value = cs->icc_ctlr_el3;
1829 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1830 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1832 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1833 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1835 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1836 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1838 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1839 value |= ICC_CTLR_EL3_CBPR_EL1S;
1842 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1843 return value;
1846 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 GICv3CPUState *cs = icc_cs_from_env(env);
1850 uint64_t mask;
1852 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1854 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1855 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1856 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1857 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1859 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1860 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1863 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1864 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1865 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1867 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1868 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1871 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1872 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1874 cs->icc_ctlr_el3 &= ~mask;
1875 cs->icc_ctlr_el3 |= (value & mask);
1876 gicv3_cpuif_update(cs);
1879 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1880 const ARMCPRegInfo *ri, bool isread)
1882 CPAccessResult r = CP_ACCESS_OK;
1883 GICv3CPUState *cs = icc_cs_from_env(env);
1884 int el = arm_current_el(env);
1886 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1887 el == 1 && !arm_is_secure_below_el3(env)) {
1888 /* Takes priority over a possible EL3 trap */
1889 return CP_ACCESS_TRAP_EL2;
1892 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1893 switch (el) {
1894 case 1:
1895 if (arm_is_secure_below_el3(env) ||
1896 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1897 r = CP_ACCESS_TRAP_EL3;
1899 break;
1900 case 2:
1901 r = CP_ACCESS_TRAP_EL3;
1902 break;
1903 case 3:
1904 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1905 r = CP_ACCESS_TRAP_EL3;
1907 break;
1908 default:
1909 g_assert_not_reached();
1913 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1914 r = CP_ACCESS_TRAP;
1916 return r;
1919 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1920 const ARMCPRegInfo *ri, bool isread)
1922 GICv3CPUState *cs = icc_cs_from_env(env);
1924 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1925 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1926 /* Takes priority over a possible EL3 trap */
1927 return CP_ACCESS_TRAP_EL2;
1930 return gicv3_irqfiq_access(env, ri, isread);
1933 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1934 const ARMCPRegInfo *ri, bool isread)
1936 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1937 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1938 /* Takes priority over a possible EL3 trap */
1939 return CP_ACCESS_TRAP_EL2;
1942 return gicv3_irqfiq_access(env, ri, isread);
1945 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1946 const ARMCPRegInfo *ri, bool isread)
1948 CPAccessResult r = CP_ACCESS_OK;
1949 GICv3CPUState *cs = icc_cs_from_env(env);
1950 int el = arm_current_el(env);
1952 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1953 el == 1 && !arm_is_secure_below_el3(env)) {
1954 /* Takes priority over a possible EL3 trap */
1955 return CP_ACCESS_TRAP_EL2;
1958 if (env->cp15.scr_el3 & SCR_FIQ) {
1959 switch (el) {
1960 case 1:
1961 if (arm_is_secure_below_el3(env) ||
1962 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1963 r = CP_ACCESS_TRAP_EL3;
1965 break;
1966 case 2:
1967 r = CP_ACCESS_TRAP_EL3;
1968 break;
1969 case 3:
1970 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1971 r = CP_ACCESS_TRAP_EL3;
1973 break;
1974 default:
1975 g_assert_not_reached();
1979 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1980 r = CP_ACCESS_TRAP;
1982 return r;
1985 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1986 const ARMCPRegInfo *ri, bool isread)
1988 CPAccessResult r = CP_ACCESS_OK;
1989 GICv3CPUState *cs = icc_cs_from_env(env);
1990 int el = arm_current_el(env);
1992 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1993 el == 1 && !arm_is_secure_below_el3(env)) {
1994 /* Takes priority over a possible EL3 trap */
1995 return CP_ACCESS_TRAP_EL2;
1998 if (env->cp15.scr_el3 & SCR_IRQ) {
1999 switch (el) {
2000 case 1:
2001 if (arm_is_secure_below_el3(env) ||
2002 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
2003 r = CP_ACCESS_TRAP_EL3;
2005 break;
2006 case 2:
2007 r = CP_ACCESS_TRAP_EL3;
2008 break;
2009 case 3:
2010 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2011 r = CP_ACCESS_TRAP_EL3;
2013 break;
2014 default:
2015 g_assert_not_reached();
2019 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2020 r = CP_ACCESS_TRAP;
2022 return r;
2025 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2027 GICv3CPUState *cs = icc_cs_from_env(env);
2029 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2030 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2031 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2032 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2033 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2034 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2035 cs->icc_pmr_el1 = 0;
2036 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2037 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2038 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2039 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2040 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2041 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2042 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2043 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2045 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2046 cs->ich_hcr_el2 = 0;
2047 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2048 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2049 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2050 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2053 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2054 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2055 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2056 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2057 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2058 .readfn = icc_pmr_read,
2059 .writefn = icc_pmr_write,
2060 /* We hang the whole cpu interface reset routine off here
2061 * rather than parcelling it out into one little function
2062 * per register
2064 .resetfn = icc_reset,
2066 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2067 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2068 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2069 .access = PL1_R, .accessfn = gicv3_fiq_access,
2070 .readfn = icc_iar0_read,
2072 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2074 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2075 .access = PL1_W, .accessfn = gicv3_fiq_access,
2076 .writefn = icc_eoir_write,
2078 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2079 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2080 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2081 .access = PL1_R, .accessfn = gicv3_fiq_access,
2082 .readfn = icc_hppir0_read,
2084 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2086 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2087 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2088 .readfn = icc_bpr_read,
2089 .writefn = icc_bpr_write,
2091 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2092 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2093 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2094 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2095 .readfn = icc_ap_read,
2096 .writefn = icc_ap_write,
2098 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2100 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2101 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2102 .readfn = icc_ap_read,
2103 .writefn = icc_ap_write,
2105 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2107 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2108 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2109 .readfn = icc_ap_read,
2110 .writefn = icc_ap_write,
2112 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2114 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2115 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2116 .readfn = icc_ap_read,
2117 .writefn = icc_ap_write,
2119 /* All the ICC_AP1R*_EL1 registers are banked */
2120 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2121 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2122 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2123 .access = PL1_RW, .accessfn = gicv3_irq_access,
2124 .readfn = icc_ap_read,
2125 .writefn = icc_ap_write,
2127 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2128 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2129 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2130 .access = PL1_RW, .accessfn = gicv3_irq_access,
2131 .readfn = icc_ap_read,
2132 .writefn = icc_ap_write,
2134 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2136 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2137 .access = PL1_RW, .accessfn = gicv3_irq_access,
2138 .readfn = icc_ap_read,
2139 .writefn = icc_ap_write,
2141 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2143 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2144 .access = PL1_RW, .accessfn = gicv3_irq_access,
2145 .readfn = icc_ap_read,
2146 .writefn = icc_ap_write,
2148 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2149 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2150 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2151 .access = PL1_W, .accessfn = gicv3_dir_access,
2152 .writefn = icc_dir_write,
2154 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2155 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2156 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2157 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2158 .readfn = icc_rpr_read,
2160 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2162 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2163 .access = PL1_W, .accessfn = gicv3_sgi_access,
2164 .writefn = icc_sgi1r_write,
2166 { .name = "ICC_SGI1R",
2167 .cp = 15, .opc1 = 0, .crm = 12,
2168 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2169 .access = PL1_W, .accessfn = gicv3_sgi_access,
2170 .writefn = icc_sgi1r_write,
2172 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2173 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2174 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2175 .access = PL1_W, .accessfn = gicv3_sgi_access,
2176 .writefn = icc_asgi1r_write,
2178 { .name = "ICC_ASGI1R",
2179 .cp = 15, .opc1 = 1, .crm = 12,
2180 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2181 .access = PL1_W, .accessfn = gicv3_sgi_access,
2182 .writefn = icc_asgi1r_write,
2184 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2185 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2186 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2187 .access = PL1_W, .accessfn = gicv3_sgi_access,
2188 .writefn = icc_sgi0r_write,
2190 { .name = "ICC_SGI0R",
2191 .cp = 15, .opc1 = 2, .crm = 12,
2192 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2193 .access = PL1_W, .accessfn = gicv3_sgi_access,
2194 .writefn = icc_sgi0r_write,
2196 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2197 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2198 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2199 .access = PL1_R, .accessfn = gicv3_irq_access,
2200 .readfn = icc_iar1_read,
2202 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2203 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2204 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2205 .access = PL1_W, .accessfn = gicv3_irq_access,
2206 .writefn = icc_eoir_write,
2208 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2209 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2210 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2211 .access = PL1_R, .accessfn = gicv3_irq_access,
2212 .readfn = icc_hppir1_read,
2214 /* This register is banked */
2215 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2217 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2218 .access = PL1_RW, .accessfn = gicv3_irq_access,
2219 .readfn = icc_bpr_read,
2220 .writefn = icc_bpr_write,
2222 /* This register is banked */
2223 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2224 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2225 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2226 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2227 .readfn = icc_ctlr_el1_read,
2228 .writefn = icc_ctlr_el1_write,
2230 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2232 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2233 .access = PL1_RW,
2234 /* We don't support IRQ/FIQ bypass and system registers are
2235 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2236 * This register is banked but since it's constant we don't
2237 * need to do anything special.
2239 .resetvalue = 0x7,
2241 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2242 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2243 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2244 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2245 .readfn = icc_igrpen_read,
2246 .writefn = icc_igrpen_write,
2248 /* This register is banked */
2249 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2250 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2251 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2252 .access = PL1_RW, .accessfn = gicv3_irq_access,
2253 .readfn = icc_igrpen_read,
2254 .writefn = icc_igrpen_write,
2256 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2257 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2258 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2259 .access = PL2_RW,
2260 /* We don't support IRQ/FIQ bypass and system registers are
2261 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2263 .resetvalue = 0xf,
2265 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2266 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2267 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2268 .access = PL3_RW,
2269 .readfn = icc_ctlr_el3_read,
2270 .writefn = icc_ctlr_el3_write,
2272 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2273 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2274 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2275 .access = PL3_RW,
2276 /* We don't support IRQ/FIQ bypass and system registers are
2277 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2279 .resetvalue = 0xf,
2281 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2282 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2283 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2284 .access = PL3_RW,
2285 .readfn = icc_igrpen1_el3_read,
2286 .writefn = icc_igrpen1_el3_write,
2288 REGINFO_SENTINEL
2291 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2293 GICv3CPUState *cs = icc_cs_from_env(env);
2294 int regno = ri->opc2 & 3;
2295 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2296 uint64_t value;
2298 value = cs->ich_apr[grp][regno];
2299 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2300 return value;
2303 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2304 uint64_t value)
2306 GICv3CPUState *cs = icc_cs_from_env(env);
2307 int regno = ri->opc2 & 3;
2308 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2310 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2312 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2313 gicv3_cpuif_virt_update(cs);
2316 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2318 GICv3CPUState *cs = icc_cs_from_env(env);
2319 uint64_t value = cs->ich_hcr_el2;
2321 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2322 return value;
2325 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2326 uint64_t value)
2328 GICv3CPUState *cs = icc_cs_from_env(env);
2330 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2332 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2333 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2334 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2335 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2336 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2338 cs->ich_hcr_el2 = value;
2339 gicv3_cpuif_virt_update(cs);
2342 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2344 GICv3CPUState *cs = icc_cs_from_env(env);
2345 uint64_t value = cs->ich_vmcr_el2;
2347 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2348 return value;
2351 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2352 uint64_t value)
2354 GICv3CPUState *cs = icc_cs_from_env(env);
2356 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2358 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2359 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2360 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2361 value |= ICH_VMCR_EL2_VFIQEN;
2363 cs->ich_vmcr_el2 = value;
2364 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2365 * by reading and writing back the fields.
2367 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2368 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2370 gicv3_cpuif_virt_update(cs);
2373 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2375 GICv3CPUState *cs = icc_cs_from_env(env);
2376 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2377 uint64_t value;
2379 /* This read function handles all of:
2380 * 64-bit reads of the whole LR
2381 * 32-bit reads of the low half of the LR
2382 * 32-bit reads of the high half of the LR
2384 if (ri->state == ARM_CP_STATE_AA32) {
2385 if (ri->crm >= 14) {
2386 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2387 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2388 } else {
2389 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2390 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2392 } else {
2393 value = cs->ich_lr_el2[regno];
2394 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2397 return value;
2400 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2401 uint64_t value)
2403 GICv3CPUState *cs = icc_cs_from_env(env);
2404 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2406 /* This write function handles all of:
2407 * 64-bit writes to the whole LR
2408 * 32-bit writes to the low half of the LR
2409 * 32-bit writes to the high half of the LR
2411 if (ri->state == ARM_CP_STATE_AA32) {
2412 if (ri->crm >= 14) {
2413 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2414 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2415 } else {
2416 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2417 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2419 } else {
2420 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2423 /* Enforce RES0 bits in priority field */
2424 if (cs->vpribits < 8) {
2425 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2426 8 - cs->vpribits, 0);
2429 cs->ich_lr_el2[regno] = value;
2430 gicv3_cpuif_virt_update(cs);
2433 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2435 GICv3CPUState *cs = icc_cs_from_env(env);
2436 uint64_t value;
2438 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2439 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2440 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2441 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2442 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2444 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2445 return value;
2448 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2450 GICv3CPUState *cs = icc_cs_from_env(env);
2451 uint64_t value = maintenance_interrupt_state(cs);
2453 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2454 return value;
2457 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2459 GICv3CPUState *cs = icc_cs_from_env(env);
2460 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2462 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2463 return value;
2466 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2468 GICv3CPUState *cs = icc_cs_from_env(env);
2469 uint64_t value = 0;
2470 int i;
2472 for (i = 0; i < cs->num_list_regs; i++) {
2473 uint64_t lr = cs->ich_lr_el2[i];
2475 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2476 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2477 value |= (1 << i);
2481 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2482 return value;
2485 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2486 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2487 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2488 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2489 .access = PL2_RW,
2490 .readfn = ich_ap_read,
2491 .writefn = ich_ap_write,
2493 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2495 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2496 .access = PL2_RW,
2497 .readfn = ich_ap_read,
2498 .writefn = ich_ap_write,
2500 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2501 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2502 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2503 .access = PL2_RW,
2504 .readfn = ich_hcr_read,
2505 .writefn = ich_hcr_write,
2507 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2508 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2509 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2510 .access = PL2_R,
2511 .readfn = ich_vtr_read,
2513 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2514 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2515 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2516 .access = PL2_R,
2517 .readfn = ich_misr_read,
2519 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2521 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2522 .access = PL2_R,
2523 .readfn = ich_eisr_read,
2525 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2526 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2527 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2528 .access = PL2_R,
2529 .readfn = ich_elrsr_read,
2531 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2532 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2533 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2534 .access = PL2_RW,
2535 .readfn = ich_vmcr_read,
2536 .writefn = ich_vmcr_write,
2538 REGINFO_SENTINEL
2541 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2542 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2543 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2544 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2545 .access = PL2_RW,
2546 .readfn = ich_ap_read,
2547 .writefn = ich_ap_write,
2549 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2551 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2552 .access = PL2_RW,
2553 .readfn = ich_ap_read,
2554 .writefn = ich_ap_write,
2556 REGINFO_SENTINEL
2559 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2560 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2561 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2562 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2563 .access = PL2_RW,
2564 .readfn = ich_ap_read,
2565 .writefn = ich_ap_write,
2567 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2568 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2569 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2570 .access = PL2_RW,
2571 .readfn = ich_ap_read,
2572 .writefn = ich_ap_write,
2574 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2575 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2576 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2577 .access = PL2_RW,
2578 .readfn = ich_ap_read,
2579 .writefn = ich_ap_write,
2581 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2582 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2583 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2584 .access = PL2_RW,
2585 .readfn = ich_ap_read,
2586 .writefn = ich_ap_write,
2588 REGINFO_SENTINEL
2591 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2593 GICv3CPUState *cs = opaque;
2595 gicv3_cpuif_update(cs);
2598 void gicv3_init_cpuif(GICv3State *s)
2600 /* Called from the GICv3 realize function; register our system
2601 * registers with the CPU
2603 int i;
2605 for (i = 0; i < s->num_cpu; i++) {
2606 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2607 GICv3CPUState *cs = &s->cpu[i];
2609 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2610 * in define_arm_cp_regs_with_opaque(), because when we're called back
2611 * it might be with code translated by CPU 0 but run by CPU 1, in
2612 * which case we'd get the wrong value.
2613 * So instead we define the regs with no ri->opaque info, and
2614 * get back to the GICv3CPUState from the CPUARMState.
2616 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2617 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2618 && cpu->gic_num_lrs) {
2619 int j;
2621 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2623 cs->num_list_regs = cpu->gic_num_lrs;
2624 cs->vpribits = cpu->gic_vpribits;
2625 cs->vprebits = cpu->gic_vprebits;
2627 /* Check against architectural constraints: getting these
2628 * wrong would be a bug in the CPU code defining these,
2629 * and the implementation relies on them holding.
2631 g_assert(cs->vprebits <= cs->vpribits);
2632 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2633 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2635 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2637 for (j = 0; j < cs->num_list_regs; j++) {
2638 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2639 * are split into two cp15 regs, LR (the low part, with the
2640 * same encoding as the AArch64 LR) and LRC (the high part).
2642 ARMCPRegInfo lr_regset[] = {
2643 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2644 .opc0 = 3, .opc1 = 4, .crn = 12,
2645 .crm = 12 + (j >> 3), .opc2 = j & 7,
2646 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2647 .access = PL2_RW,
2648 .readfn = ich_lr_read,
2649 .writefn = ich_lr_write,
2651 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2652 .cp = 15, .opc1 = 4, .crn = 12,
2653 .crm = 14 + (j >> 3), .opc2 = j & 7,
2654 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2655 .access = PL2_RW,
2656 .readfn = ich_lr_read,
2657 .writefn = ich_lr_write,
2659 REGINFO_SENTINEL
2661 define_arm_cp_regs(cpu, lr_regset);
2663 if (cs->vprebits >= 6) {
2664 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2666 if (cs->vprebits == 7) {
2667 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2670 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);