vhost-user: allow slave to send fds via slave channel
[qemu/ar7.git] / hw / block / onenand.c
blobed77f859e9e45550f7c5c8ae97f761d5fa201fb6
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "exec/memory.h"
30 #include "exec/address-spaces.h"
31 #include "hw/sysbus.h"
32 #include "qemu/error-report.h"
34 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35 #define PAGE_SHIFT 11
37 /* Fixed */
38 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
40 #define TYPE_ONE_NAND "onenand"
41 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
43 typedef struct OneNANDState {
44 SysBusDevice parent_obj;
46 struct {
47 uint16_t man;
48 uint16_t dev;
49 uint16_t ver;
50 } id;
51 int shift;
52 hwaddr base;
53 qemu_irq intr;
54 qemu_irq rdy;
55 BlockBackend *blk;
56 BlockBackend *blk_cur;
57 uint8_t *image;
58 uint8_t *otp;
59 uint8_t *current;
60 MemoryRegion ram;
61 MemoryRegion mapped_ram;
62 uint8_t current_direction;
63 uint8_t *boot[2];
64 uint8_t *data[2][2];
65 MemoryRegion iomem;
66 MemoryRegion container;
67 int cycle;
68 int otpmode;
70 uint16_t addr[8];
71 uint16_t unladdr[8];
72 int bufaddr;
73 int count;
74 uint16_t command;
75 uint16_t config[2];
76 uint16_t status;
77 uint16_t intstatus;
78 uint16_t wpstatus;
80 ECCState ecc;
82 int density_mask;
83 int secs;
84 int secs_cur;
85 int blocks;
86 uint8_t *blockwp;
87 } OneNANDState;
89 enum {
90 ONEN_BUF_BLOCK = 0,
91 ONEN_BUF_BLOCK2 = 1,
92 ONEN_BUF_DEST_BLOCK = 2,
93 ONEN_BUF_DEST_PAGE = 3,
94 ONEN_BUF_PAGE = 7,
97 enum {
98 ONEN_ERR_CMD = 1 << 10,
99 ONEN_ERR_ERASE = 1 << 11,
100 ONEN_ERR_PROG = 1 << 12,
101 ONEN_ERR_LOAD = 1 << 13,
104 enum {
105 ONEN_INT_RESET = 1 << 4,
106 ONEN_INT_ERASE = 1 << 5,
107 ONEN_INT_PROG = 1 << 6,
108 ONEN_INT_LOAD = 1 << 7,
109 ONEN_INT = 1 << 15,
112 enum {
113 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
114 ONEN_LOCK_LOCKED = 1 << 1,
115 ONEN_LOCK_UNLOCKED = 1 << 2,
118 static void onenand_mem_setup(OneNANDState *s)
120 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
121 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
122 * write boot commands. Also take note of the BWPS bit. */
123 memory_region_init(&s->container, OBJECT(s), "onenand",
124 0x10000 << s->shift);
125 memory_region_add_subregion(&s->container, 0, &s->iomem);
126 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
127 &s->ram, 0x0200 << s->shift,
128 0xbe00 << s->shift);
129 memory_region_add_subregion_overlap(&s->container,
130 0x0200 << s->shift,
131 &s->mapped_ram,
135 static void onenand_intr_update(OneNANDState *s)
137 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
140 static int onenand_pre_save(void *opaque)
142 OneNANDState *s = opaque;
143 if (s->current == s->otp) {
144 s->current_direction = 1;
145 } else if (s->current == s->image) {
146 s->current_direction = 2;
147 } else {
148 s->current_direction = 0;
151 return 0;
154 static int onenand_post_load(void *opaque, int version_id)
156 OneNANDState *s = opaque;
157 switch (s->current_direction) {
158 case 0:
159 break;
160 case 1:
161 s->current = s->otp;
162 break;
163 case 2:
164 s->current = s->image;
165 break;
166 default:
167 return -1;
169 onenand_intr_update(s);
170 return 0;
173 static const VMStateDescription vmstate_onenand = {
174 .name = "onenand",
175 .version_id = 1,
176 .minimum_version_id = 1,
177 .pre_save = onenand_pre_save,
178 .post_load = onenand_post_load,
179 .fields = (VMStateField[]) {
180 VMSTATE_UINT8(current_direction, OneNANDState),
181 VMSTATE_INT32(cycle, OneNANDState),
182 VMSTATE_INT32(otpmode, OneNANDState),
183 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
184 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
185 VMSTATE_INT32(bufaddr, OneNANDState),
186 VMSTATE_INT32(count, OneNANDState),
187 VMSTATE_UINT16(command, OneNANDState),
188 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
189 VMSTATE_UINT16(status, OneNANDState),
190 VMSTATE_UINT16(intstatus, OneNANDState),
191 VMSTATE_UINT16(wpstatus, OneNANDState),
192 VMSTATE_INT32(secs_cur, OneNANDState),
193 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
194 VMSTATE_UINT8(ecc.cp, OneNANDState),
195 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
196 VMSTATE_UINT16(ecc.count, OneNANDState),
197 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
198 ((64 + 2) << PAGE_SHIFT)),
199 VMSTATE_END_OF_LIST()
203 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
204 static void onenand_reset(OneNANDState *s, int cold)
206 memset(&s->addr, 0, sizeof(s->addr));
207 s->command = 0;
208 s->count = 1;
209 s->bufaddr = 0;
210 s->config[0] = 0x40c0;
211 s->config[1] = 0x0000;
212 onenand_intr_update(s);
213 qemu_irq_raise(s->rdy);
214 s->status = 0x0000;
215 s->intstatus = cold ? 0x8080 : 0x8010;
216 s->unladdr[0] = 0;
217 s->unladdr[1] = 0;
218 s->wpstatus = 0x0002;
219 s->cycle = 0;
220 s->otpmode = 0;
221 s->blk_cur = s->blk;
222 s->current = s->image;
223 s->secs_cur = s->secs;
225 if (cold) {
226 /* Lock the whole flash */
227 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
229 if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
230 8 << BDRV_SECTOR_BITS) < 0) {
231 hw_error("%s: Loading the BootRAM failed.\n", __func__);
236 static void onenand_system_reset(DeviceState *dev)
238 OneNANDState *s = ONE_NAND(dev);
240 onenand_reset(s, 1);
243 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
244 void *dest)
246 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
247 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
248 if (s->blk_cur) {
249 return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
250 secn << BDRV_SECTOR_BITS) < 0;
251 } else if (sec + secn > s->secs_cur) {
252 return 1;
255 memcpy(dest, s->current + (sec << 9), secn << 9);
257 return 0;
260 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
261 void *src)
263 int result = 0;
265 if (secn > 0) {
266 uint32_t size = secn << BDRV_SECTOR_BITS;
267 uint32_t offset = sec << BDRV_SECTOR_BITS;
268 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
269 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
270 const uint8_t *sp = (const uint8_t *)src;
271 uint8_t *dp = 0;
272 if (s->blk_cur) {
273 dp = g_malloc(size);
274 if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
275 result = 1;
277 } else {
278 if (sec + secn > s->secs_cur) {
279 result = 1;
280 } else {
281 dp = (uint8_t *)s->current + offset;
284 if (!result) {
285 uint32_t i;
286 for (i = 0; i < size; i++) {
287 dp[i] &= sp[i];
289 if (s->blk_cur) {
290 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
293 if (dp && s->blk_cur) {
294 g_free(dp);
298 return result;
301 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
302 void *dest)
304 uint8_t buf[512];
306 if (s->blk_cur) {
307 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
308 if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
309 return 1;
311 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
312 } else if (sec + secn > s->secs_cur) {
313 return 1;
314 } else {
315 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
318 return 0;
321 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
322 void *src)
324 int result = 0;
325 if (secn > 0) {
326 const uint8_t *sp = (const uint8_t *)src;
327 uint8_t *dp = 0, *dpp = 0;
328 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
329 assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
330 if (s->blk_cur) {
331 dp = g_malloc(512);
332 if (!dp
333 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
334 result = 1;
335 } else {
336 dpp = dp + ((sec & 31) << 4);
338 } else {
339 if (sec + secn > s->secs_cur) {
340 result = 1;
341 } else {
342 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
345 if (!result) {
346 uint32_t i;
347 for (i = 0; i < (secn << 4); i++) {
348 dpp[i] &= sp[i];
350 if (s->blk_cur) {
351 result = blk_pwrite(s->blk_cur, offset, dp,
352 BDRV_SECTOR_SIZE, 0) < 0;
355 g_free(dp);
357 return result;
360 static inline int onenand_erase(OneNANDState *s, int sec, int num)
362 uint8_t *blankbuf, *tmpbuf;
364 blankbuf = g_malloc(512);
365 tmpbuf = g_malloc(512);
366 memset(blankbuf, 0xff, 512);
367 for (; num > 0; num--, sec++) {
368 if (s->blk_cur) {
369 int erasesec = s->secs_cur + (sec >> 5);
370 if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
371 BDRV_SECTOR_SIZE, 0) < 0) {
372 goto fail;
374 if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
375 BDRV_SECTOR_SIZE) < 0) {
376 goto fail;
378 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
379 if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
380 BDRV_SECTOR_SIZE, 0) < 0) {
381 goto fail;
383 } else {
384 if (sec + 1 > s->secs_cur) {
385 goto fail;
387 memcpy(s->current + (sec << 9), blankbuf, 512);
388 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
389 blankbuf, 1 << 4);
393 g_free(tmpbuf);
394 g_free(blankbuf);
395 return 0;
397 fail:
398 g_free(tmpbuf);
399 g_free(blankbuf);
400 return 1;
403 static void onenand_command(OneNANDState *s)
405 int b;
406 int sec;
407 void *buf;
408 #define SETADDR(block, page) \
409 sec = (s->addr[page] & 3) + \
410 ((((s->addr[page] >> 2) & 0x3f) + \
411 (((s->addr[block] & 0xfff) | \
412 (s->addr[block] >> 15 ? \
413 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
414 #define SETBUF_M() \
415 buf = (s->bufaddr & 8) ? \
416 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
417 buf += (s->bufaddr & 3) << 9;
418 #define SETBUF_S() \
419 buf = (s->bufaddr & 8) ? \
420 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
421 buf += (s->bufaddr & 3) << 4;
423 switch (s->command) {
424 case 0x00: /* Load single/multiple sector data unit into buffer */
425 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
427 SETBUF_M()
428 if (onenand_load_main(s, sec, s->count, buf))
429 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
431 #if 0
432 SETBUF_S()
433 if (onenand_load_spare(s, sec, s->count, buf))
434 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
435 #endif
437 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
438 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
439 * then we need two split the read/write into two chunks.
441 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
442 break;
443 case 0x13: /* Load single/multiple spare sector into buffer */
444 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
446 SETBUF_S()
447 if (onenand_load_spare(s, sec, s->count, buf))
448 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
450 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
451 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
452 * then we need two split the read/write into two chunks.
454 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
455 break;
456 case 0x80: /* Program single/multiple sector data unit from buffer */
457 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
459 SETBUF_M()
460 if (onenand_prog_main(s, sec, s->count, buf))
461 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
463 #if 0
464 SETBUF_S()
465 if (onenand_prog_spare(s, sec, s->count, buf))
466 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
467 #endif
469 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
470 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
471 * then we need two split the read/write into two chunks.
473 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
474 break;
475 case 0x1a: /* Program single/multiple spare area sector from buffer */
476 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
478 SETBUF_S()
479 if (onenand_prog_spare(s, sec, s->count, buf))
480 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
482 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
483 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
484 * then we need two split the read/write into two chunks.
486 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
487 break;
488 case 0x1b: /* Copy-back program */
489 SETBUF_S()
491 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
492 if (onenand_load_main(s, sec, s->count, buf))
493 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
495 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
496 if (onenand_prog_main(s, sec, s->count, buf))
497 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
499 /* TODO: spare areas */
501 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
502 break;
504 case 0x23: /* Unlock NAND array block(s) */
505 s->intstatus |= ONEN_INT;
507 /* XXX the previous (?) area should be locked automatically */
508 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
509 if (b >= s->blocks) {
510 s->status |= ONEN_ERR_CMD;
511 break;
513 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
514 break;
516 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
518 break;
519 case 0x27: /* Unlock All NAND array blocks */
520 s->intstatus |= ONEN_INT;
522 for (b = 0; b < s->blocks; b ++) {
523 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
524 break;
526 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
528 break;
530 case 0x2a: /* Lock NAND array block(s) */
531 s->intstatus |= ONEN_INT;
533 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
534 if (b >= s->blocks) {
535 s->status |= ONEN_ERR_CMD;
536 break;
538 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
539 break;
541 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
543 break;
544 case 0x2c: /* Lock-tight NAND array block(s) */
545 s->intstatus |= ONEN_INT;
547 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
548 if (b >= s->blocks) {
549 s->status |= ONEN_ERR_CMD;
550 break;
552 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
553 continue;
555 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
557 break;
559 case 0x71: /* Erase-Verify-Read */
560 s->intstatus |= ONEN_INT;
561 break;
562 case 0x95: /* Multi-block erase */
563 qemu_irq_pulse(s->intr);
564 /* Fall through. */
565 case 0x94: /* Block erase */
566 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
567 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
568 << (BLOCK_SHIFT - 9);
569 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
570 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
572 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
573 break;
574 case 0xb0: /* Erase suspend */
575 break;
576 case 0x30: /* Erase resume */
577 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
578 break;
580 case 0xf0: /* Reset NAND Flash core */
581 onenand_reset(s, 0);
582 break;
583 case 0xf3: /* Reset OneNAND */
584 onenand_reset(s, 0);
585 break;
587 case 0x65: /* OTP Access */
588 s->intstatus |= ONEN_INT;
589 s->blk_cur = NULL;
590 s->current = s->otp;
591 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
592 s->addr[ONEN_BUF_BLOCK] = 0;
593 s->otpmode = 1;
594 break;
596 default:
597 s->status |= ONEN_ERR_CMD;
598 s->intstatus |= ONEN_INT;
599 fprintf(stderr, "%s: unknown OneNAND command %x\n",
600 __func__, s->command);
603 onenand_intr_update(s);
606 static uint64_t onenand_read(void *opaque, hwaddr addr,
607 unsigned size)
609 OneNANDState *s = (OneNANDState *) opaque;
610 int offset = addr >> s->shift;
612 switch (offset) {
613 case 0x0000 ... 0xc000:
614 return lduw_le_p(s->boot[0] + addr);
616 case 0xf000: /* Manufacturer ID */
617 return s->id.man;
618 case 0xf001: /* Device ID */
619 return s->id.dev;
620 case 0xf002: /* Version ID */
621 return s->id.ver;
622 /* TODO: get the following values from a real chip! */
623 case 0xf003: /* Data Buffer size */
624 return 1 << PAGE_SHIFT;
625 case 0xf004: /* Boot Buffer size */
626 return 0x200;
627 case 0xf005: /* Amount of buffers */
628 return 1 | (2 << 8);
629 case 0xf006: /* Technology */
630 return 0;
632 case 0xf100 ... 0xf107: /* Start addresses */
633 return s->addr[offset - 0xf100];
635 case 0xf200: /* Start buffer */
636 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
638 case 0xf220: /* Command */
639 return s->command;
640 case 0xf221: /* System Configuration 1 */
641 return s->config[0] & 0xffe0;
642 case 0xf222: /* System Configuration 2 */
643 return s->config[1];
645 case 0xf240: /* Controller Status */
646 return s->status;
647 case 0xf241: /* Interrupt */
648 return s->intstatus;
649 case 0xf24c: /* Unlock Start Block Address */
650 return s->unladdr[0];
651 case 0xf24d: /* Unlock End Block Address */
652 return s->unladdr[1];
653 case 0xf24e: /* Write Protection Status */
654 return s->wpstatus;
656 case 0xff00: /* ECC Status */
657 return 0x00;
658 case 0xff01: /* ECC Result of main area data */
659 case 0xff02: /* ECC Result of spare area data */
660 case 0xff03: /* ECC Result of main area data */
661 case 0xff04: /* ECC Result of spare area data */
662 hw_error("%s: implement ECC\n", __func__);
663 return 0x0000;
666 fprintf(stderr, "%s: unknown OneNAND register %x\n",
667 __func__, offset);
668 return 0;
671 static void onenand_write(void *opaque, hwaddr addr,
672 uint64_t value, unsigned size)
674 OneNANDState *s = (OneNANDState *) opaque;
675 int offset = addr >> s->shift;
676 int sec;
678 switch (offset) {
679 case 0x0000 ... 0x01ff:
680 case 0x8000 ... 0x800f:
681 if (s->cycle) {
682 s->cycle = 0;
684 if (value == 0x0000) {
685 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
686 onenand_load_main(s, sec,
687 1 << (PAGE_SHIFT - 9), s->data[0][0]);
688 s->addr[ONEN_BUF_PAGE] += 4;
689 s->addr[ONEN_BUF_PAGE] &= 0xff;
691 break;
694 switch (value) {
695 case 0x00f0: /* Reset OneNAND */
696 onenand_reset(s, 0);
697 break;
699 case 0x00e0: /* Load Data into Buffer */
700 s->cycle = 1;
701 break;
703 case 0x0090: /* Read Identification Data */
704 memset(s->boot[0], 0, 3 << s->shift);
705 s->boot[0][0 << s->shift] = s->id.man & 0xff;
706 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
707 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
708 break;
710 default:
711 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
712 __func__, value);
714 break;
716 case 0xf100 ... 0xf107: /* Start addresses */
717 s->addr[offset - 0xf100] = value;
718 break;
720 case 0xf200: /* Start buffer */
721 s->bufaddr = (value >> 8) & 0xf;
722 if (PAGE_SHIFT == 11)
723 s->count = (value & 3) ?: 4;
724 else if (PAGE_SHIFT == 10)
725 s->count = (value & 1) ?: 2;
726 break;
728 case 0xf220: /* Command */
729 if (s->intstatus & (1 << 15))
730 break;
731 s->command = value;
732 onenand_command(s);
733 break;
734 case 0xf221: /* System Configuration 1 */
735 s->config[0] = value;
736 onenand_intr_update(s);
737 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
738 break;
739 case 0xf222: /* System Configuration 2 */
740 s->config[1] = value;
741 break;
743 case 0xf241: /* Interrupt */
744 s->intstatus &= value;
745 if ((1 << 15) & ~s->intstatus)
746 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
747 ONEN_ERR_PROG | ONEN_ERR_LOAD);
748 onenand_intr_update(s);
749 break;
750 case 0xf24c: /* Unlock Start Block Address */
751 s->unladdr[0] = value & (s->blocks - 1);
752 /* For some reason we have to set the end address to by default
753 * be same as start because the software forgets to write anything
754 * in there. */
755 s->unladdr[1] = value & (s->blocks - 1);
756 break;
757 case 0xf24d: /* Unlock End Block Address */
758 s->unladdr[1] = value & (s->blocks - 1);
759 break;
761 default:
762 fprintf(stderr, "%s: unknown OneNAND register %x\n",
763 __func__, offset);
767 static const MemoryRegionOps onenand_ops = {
768 .read = onenand_read,
769 .write = onenand_write,
770 .endianness = DEVICE_NATIVE_ENDIAN,
773 static int onenand_initfn(SysBusDevice *sbd)
775 DeviceState *dev = DEVICE(sbd);
776 OneNANDState *s = ONE_NAND(dev);
777 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
778 void *ram;
779 Error *local_err = NULL;
781 s->base = (hwaddr)-1;
782 s->rdy = NULL;
783 s->blocks = size >> BLOCK_SHIFT;
784 s->secs = size >> 9;
785 s->blockwp = g_malloc(s->blocks);
786 s->density_mask = (s->id.dev & 0x08)
787 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
788 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
789 0x10000 << s->shift);
790 if (!s->blk) {
791 s->image = memset(g_malloc(size + (size >> 5)),
792 0xff, size + (size >> 5));
793 } else {
794 if (blk_is_read_only(s->blk)) {
795 error_report("Can't use a read-only drive");
796 return -1;
798 blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
799 BLK_PERM_ALL, &local_err);
800 if (local_err) {
801 error_report_err(local_err);
802 return -1;
804 s->blk_cur = s->blk;
806 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
807 0xff, (64 + 2) << PAGE_SHIFT);
808 memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
809 0xc000 << s->shift, &error_fatal);
810 vmstate_register_ram_global(&s->ram);
811 ram = memory_region_get_ram_ptr(&s->ram);
812 s->boot[0] = ram + (0x0000 << s->shift);
813 s->boot[1] = ram + (0x8000 << s->shift);
814 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
815 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
816 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
817 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
818 onenand_mem_setup(s);
819 sysbus_init_irq(sbd, &s->intr);
820 sysbus_init_mmio(sbd, &s->container);
821 vmstate_register(dev,
822 ((s->shift & 0x7f) << 24)
823 | ((s->id.man & 0xff) << 16)
824 | ((s->id.dev & 0xff) << 8)
825 | (s->id.ver & 0xff),
826 &vmstate_onenand, s);
827 return 0;
830 static Property onenand_properties[] = {
831 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
832 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
833 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
834 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
835 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
836 DEFINE_PROP_END_OF_LIST(),
839 static void onenand_class_init(ObjectClass *klass, void *data)
841 DeviceClass *dc = DEVICE_CLASS(klass);
842 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
844 k->init = onenand_initfn;
845 dc->reset = onenand_system_reset;
846 dc->props = onenand_properties;
849 static const TypeInfo onenand_info = {
850 .name = TYPE_ONE_NAND,
851 .parent = TYPE_SYS_BUS_DEVICE,
852 .instance_size = sizeof(OneNANDState),
853 .class_init = onenand_class_init,
856 static void onenand_register_types(void)
858 type_register_static(&onenand_info);
861 void *onenand_raw_otp(DeviceState *onenand_device)
863 OneNANDState *s = ONE_NAND(onenand_device);
865 return s->otp;
868 type_init(onenand_register_types)