qcow2: Fix corruption bug in qcow2_detect_metadata_preallocation()
[qemu/ar7.git] / scripts / dump-guest-memory.py
blob2c587cbefc5702544b78ffea196d9dcdd984085d
1 """
2 This python script adds a new gdb command, "dump-guest-memory". It
3 should be loaded with "source dump-guest-memory.py" at the (gdb)
4 prompt.
6 Copyright (C) 2013, Red Hat, Inc.
8 Authors:
9 Laszlo Ersek <lersek@redhat.com>
10 Janosch Frank <frankja@linux.vnet.ibm.com>
12 This work is licensed under the terms of the GNU GPL, version 2 or later. See
13 the COPYING file in the top-level directory.
14 """
15 from __future__ import print_function
17 import ctypes
18 import struct
20 try:
21 UINTPTR_T = gdb.lookup_type("uintptr_t")
22 except Exception as inst:
23 raise gdb.GdbError("Symbols must be loaded prior to sourcing dump-guest-memory.\n"
24 "Symbols may be loaded by 'attach'ing a QEMU process id or by "
25 "'load'ing a QEMU binary.")
27 TARGET_PAGE_SIZE = 0x1000
28 TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000
30 # Special value for e_phnum. This indicates that the real number of
31 # program headers is too large to fit into e_phnum. Instead the real
32 # value is in the field sh_info of section 0.
33 PN_XNUM = 0xFFFF
35 EV_CURRENT = 1
37 ELFCLASS32 = 1
38 ELFCLASS64 = 2
40 ELFDATA2LSB = 1
41 ELFDATA2MSB = 2
43 ET_CORE = 4
45 PT_LOAD = 1
46 PT_NOTE = 4
48 EM_386 = 3
49 EM_PPC = 20
50 EM_PPC64 = 21
51 EM_S390 = 22
52 EM_AARCH = 183
53 EM_X86_64 = 62
55 VMCOREINFO_FORMAT_ELF = 1
57 def le16_to_cpu(val):
58 return struct.unpack("<H", struct.pack("=H", val))[0]
60 def le32_to_cpu(val):
61 return struct.unpack("<I", struct.pack("=I", val))[0]
63 def le64_to_cpu(val):
64 return struct.unpack("<Q", struct.pack("=Q", val))[0]
66 class ELF(object):
67 """Representation of a ELF file."""
69 def __init__(self, arch):
70 self.ehdr = None
71 self.notes = []
72 self.segments = []
73 self.notes_size = 0
74 self.endianness = None
75 self.elfclass = ELFCLASS64
77 if arch == 'aarch64-le':
78 self.endianness = ELFDATA2LSB
79 self.elfclass = ELFCLASS64
80 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
81 self.ehdr.e_machine = EM_AARCH
83 elif arch == 'aarch64-be':
84 self.endianness = ELFDATA2MSB
85 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
86 self.ehdr.e_machine = EM_AARCH
88 elif arch == 'X86_64':
89 self.endianness = ELFDATA2LSB
90 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
91 self.ehdr.e_machine = EM_X86_64
93 elif arch == '386':
94 self.endianness = ELFDATA2LSB
95 self.elfclass = ELFCLASS32
96 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
97 self.ehdr.e_machine = EM_386
99 elif arch == 's390':
100 self.endianness = ELFDATA2MSB
101 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
102 self.ehdr.e_machine = EM_S390
104 elif arch == 'ppc64-le':
105 self.endianness = ELFDATA2LSB
106 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
107 self.ehdr.e_machine = EM_PPC64
109 elif arch == 'ppc64-be':
110 self.endianness = ELFDATA2MSB
111 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
112 self.ehdr.e_machine = EM_PPC64
114 else:
115 raise gdb.GdbError("No valid arch type specified.\n"
116 "Currently supported types:\n"
117 "aarch64-be, aarch64-le, X86_64, 386, s390, "
118 "ppc64-be, ppc64-le")
120 self.add_segment(PT_NOTE, 0, 0)
122 def add_note(self, n_name, n_desc, n_type):
123 """Adds a note to the ELF."""
125 note = get_arch_note(self.endianness, len(n_name), len(n_desc))
126 note.n_namesz = len(n_name) + 1
127 note.n_descsz = len(n_desc)
128 note.n_name = n_name.encode()
129 note.n_type = n_type
131 # Desc needs to be 4 byte aligned (although the 64bit spec
132 # specifies 8 byte). When defining n_desc as uint32 it will be
133 # automatically aligned but we need the memmove to copy the
134 # string into it.
135 ctypes.memmove(note.n_desc, n_desc.encode(), len(n_desc))
137 self.notes.append(note)
138 self.segments[0].p_filesz += ctypes.sizeof(note)
139 self.segments[0].p_memsz += ctypes.sizeof(note)
142 def add_vmcoreinfo_note(self, vmcoreinfo):
143 """Adds a vmcoreinfo note to the ELF dump."""
144 # compute the header size, and copy that many bytes from the note
145 header = get_arch_note(self.endianness, 0, 0)
146 ctypes.memmove(ctypes.pointer(header),
147 vmcoreinfo, ctypes.sizeof(header))
148 if header.n_descsz > 1 << 20:
149 print('warning: invalid vmcoreinfo size')
150 return
151 # now get the full note
152 note = get_arch_note(self.endianness,
153 header.n_namesz - 1, header.n_descsz)
154 ctypes.memmove(ctypes.pointer(note), vmcoreinfo, ctypes.sizeof(note))
156 self.notes.append(note)
157 self.segments[0].p_filesz += ctypes.sizeof(note)
158 self.segments[0].p_memsz += ctypes.sizeof(note)
160 def add_segment(self, p_type, p_paddr, p_size):
161 """Adds a segment to the elf."""
163 phdr = get_arch_phdr(self.endianness, self.elfclass)
164 phdr.p_type = p_type
165 phdr.p_paddr = p_paddr
166 phdr.p_vaddr = p_paddr
167 phdr.p_filesz = p_size
168 phdr.p_memsz = p_size
169 self.segments.append(phdr)
170 self.ehdr.e_phnum += 1
172 def to_file(self, elf_file):
173 """Writes all ELF structures to the the passed file.
175 Structure:
176 Ehdr
177 Segment 0:PT_NOTE
178 Segment 1:PT_LOAD
179 Segment N:PT_LOAD
180 Note 0..N
181 Dump contents
183 elf_file.write(self.ehdr)
184 off = ctypes.sizeof(self.ehdr) + \
185 len(self.segments) * ctypes.sizeof(self.segments[0])
187 for phdr in self.segments:
188 phdr.p_offset = off
189 elf_file.write(phdr)
190 off += phdr.p_filesz
192 for note in self.notes:
193 elf_file.write(note)
196 def get_arch_note(endianness, len_name, len_desc):
197 """Returns a Note class with the specified endianness."""
199 if endianness == ELFDATA2LSB:
200 superclass = ctypes.LittleEndianStructure
201 else:
202 superclass = ctypes.BigEndianStructure
204 len_name = len_name + 1
206 class Note(superclass):
207 """Represents an ELF note, includes the content."""
209 _fields_ = [("n_namesz", ctypes.c_uint32),
210 ("n_descsz", ctypes.c_uint32),
211 ("n_type", ctypes.c_uint32),
212 ("n_name", ctypes.c_char * len_name),
213 ("n_desc", ctypes.c_uint32 * ((len_desc + 3) // 4))]
214 return Note()
217 class Ident(ctypes.Structure):
218 """Represents the ELF ident array in the ehdr structure."""
220 _fields_ = [('ei_mag0', ctypes.c_ubyte),
221 ('ei_mag1', ctypes.c_ubyte),
222 ('ei_mag2', ctypes.c_ubyte),
223 ('ei_mag3', ctypes.c_ubyte),
224 ('ei_class', ctypes.c_ubyte),
225 ('ei_data', ctypes.c_ubyte),
226 ('ei_version', ctypes.c_ubyte),
227 ('ei_osabi', ctypes.c_ubyte),
228 ('ei_abiversion', ctypes.c_ubyte),
229 ('ei_pad', ctypes.c_ubyte * 7)]
231 def __init__(self, endianness, elfclass):
232 self.ei_mag0 = 0x7F
233 self.ei_mag1 = ord('E')
234 self.ei_mag2 = ord('L')
235 self.ei_mag3 = ord('F')
236 self.ei_class = elfclass
237 self.ei_data = endianness
238 self.ei_version = EV_CURRENT
241 def get_arch_ehdr(endianness, elfclass):
242 """Returns a EHDR64 class with the specified endianness."""
244 if endianness == ELFDATA2LSB:
245 superclass = ctypes.LittleEndianStructure
246 else:
247 superclass = ctypes.BigEndianStructure
249 class EHDR64(superclass):
250 """Represents the 64 bit ELF header struct."""
252 _fields_ = [('e_ident', Ident),
253 ('e_type', ctypes.c_uint16),
254 ('e_machine', ctypes.c_uint16),
255 ('e_version', ctypes.c_uint32),
256 ('e_entry', ctypes.c_uint64),
257 ('e_phoff', ctypes.c_uint64),
258 ('e_shoff', ctypes.c_uint64),
259 ('e_flags', ctypes.c_uint32),
260 ('e_ehsize', ctypes.c_uint16),
261 ('e_phentsize', ctypes.c_uint16),
262 ('e_phnum', ctypes.c_uint16),
263 ('e_shentsize', ctypes.c_uint16),
264 ('e_shnum', ctypes.c_uint16),
265 ('e_shstrndx', ctypes.c_uint16)]
267 def __init__(self):
268 super(superclass, self).__init__()
269 self.e_ident = Ident(endianness, elfclass)
270 self.e_type = ET_CORE
271 self.e_version = EV_CURRENT
272 self.e_ehsize = ctypes.sizeof(self)
273 self.e_phoff = ctypes.sizeof(self)
274 self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianness, elfclass))
275 self.e_phnum = 0
278 class EHDR32(superclass):
279 """Represents the 32 bit ELF header struct."""
281 _fields_ = [('e_ident', Ident),
282 ('e_type', ctypes.c_uint16),
283 ('e_machine', ctypes.c_uint16),
284 ('e_version', ctypes.c_uint32),
285 ('e_entry', ctypes.c_uint32),
286 ('e_phoff', ctypes.c_uint32),
287 ('e_shoff', ctypes.c_uint32),
288 ('e_flags', ctypes.c_uint32),
289 ('e_ehsize', ctypes.c_uint16),
290 ('e_phentsize', ctypes.c_uint16),
291 ('e_phnum', ctypes.c_uint16),
292 ('e_shentsize', ctypes.c_uint16),
293 ('e_shnum', ctypes.c_uint16),
294 ('e_shstrndx', ctypes.c_uint16)]
296 def __init__(self):
297 super(superclass, self).__init__()
298 self.e_ident = Ident(endianness, elfclass)
299 self.e_type = ET_CORE
300 self.e_version = EV_CURRENT
301 self.e_ehsize = ctypes.sizeof(self)
302 self.e_phoff = ctypes.sizeof(self)
303 self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianness, elfclass))
304 self.e_phnum = 0
306 # End get_arch_ehdr
307 if elfclass == ELFCLASS64:
308 return EHDR64()
309 else:
310 return EHDR32()
313 def get_arch_phdr(endianness, elfclass):
314 """Returns a 32 or 64 bit PHDR class with the specified endianness."""
316 if endianness == ELFDATA2LSB:
317 superclass = ctypes.LittleEndianStructure
318 else:
319 superclass = ctypes.BigEndianStructure
321 class PHDR64(superclass):
322 """Represents the 64 bit ELF program header struct."""
324 _fields_ = [('p_type', ctypes.c_uint32),
325 ('p_flags', ctypes.c_uint32),
326 ('p_offset', ctypes.c_uint64),
327 ('p_vaddr', ctypes.c_uint64),
328 ('p_paddr', ctypes.c_uint64),
329 ('p_filesz', ctypes.c_uint64),
330 ('p_memsz', ctypes.c_uint64),
331 ('p_align', ctypes.c_uint64)]
333 class PHDR32(superclass):
334 """Represents the 32 bit ELF program header struct."""
336 _fields_ = [('p_type', ctypes.c_uint32),
337 ('p_offset', ctypes.c_uint32),
338 ('p_vaddr', ctypes.c_uint32),
339 ('p_paddr', ctypes.c_uint32),
340 ('p_filesz', ctypes.c_uint32),
341 ('p_memsz', ctypes.c_uint32),
342 ('p_flags', ctypes.c_uint32),
343 ('p_align', ctypes.c_uint32)]
345 # End get_arch_phdr
346 if elfclass == ELFCLASS64:
347 return PHDR64()
348 else:
349 return PHDR32()
352 def int128_get64(val):
353 """Returns low 64bit part of Int128 struct."""
355 try:
356 assert val["hi"] == 0
357 return val["lo"]
358 except gdb.error:
359 u64t = gdb.lookup_type('uint64_t').array(2)
360 u64 = val.cast(u64t)
361 if sys.byteorder == 'little':
362 assert u64[1] == 0
363 return u64[0]
364 else:
365 assert u64[0] == 0
366 return u64[1]
369 def qlist_foreach(head, field_str):
370 """Generator for qlists."""
372 var_p = head["lh_first"]
373 while var_p != 0:
374 var = var_p.dereference()
375 var_p = var[field_str]["le_next"]
376 yield var
379 def qemu_map_ram_ptr(block, offset):
380 """Returns qemu vaddr for given guest physical address."""
382 return block["host"] + offset
385 def memory_region_get_ram_ptr(memory_region):
386 if memory_region["alias"] != 0:
387 return (memory_region_get_ram_ptr(memory_region["alias"].dereference())
388 + memory_region["alias_offset"])
390 return qemu_map_ram_ptr(memory_region["ram_block"], 0)
393 def get_guest_phys_blocks():
394 """Returns a list of ram blocks.
396 Each block entry contains:
397 'target_start': guest block phys start address
398 'target_end': guest block phys end address
399 'host_addr': qemu vaddr of the block's start
402 guest_phys_blocks = []
404 print("guest RAM blocks:")
405 print("target_start target_end host_addr message "
406 "count")
407 print("---------------- ---------------- ---------------- ------- "
408 "-----")
410 current_map_p = gdb.parse_and_eval("address_space_memory.current_map")
411 current_map = current_map_p.dereference()
413 # Conversion to int is needed for python 3
414 # compatibility. Otherwise range doesn't cast the value itself and
415 # breaks.
416 for cur in range(int(current_map["nr"])):
417 flat_range = (current_map["ranges"] + cur).dereference()
418 memory_region = flat_range["mr"].dereference()
420 # we only care about RAM
421 if (not memory_region["ram"] or
422 memory_region["ram_device"] or
423 memory_region["nonvolatile"]):
424 continue
426 section_size = int128_get64(flat_range["addr"]["size"])
427 target_start = int128_get64(flat_range["addr"]["start"])
428 target_end = target_start + section_size
429 host_addr = (memory_region_get_ram_ptr(memory_region)
430 + flat_range["offset_in_region"])
431 predecessor = None
433 # find continuity in guest physical address space
434 if len(guest_phys_blocks) > 0:
435 predecessor = guest_phys_blocks[-1]
436 predecessor_size = (predecessor["target_end"] -
437 predecessor["target_start"])
439 # the memory API guarantees monotonically increasing
440 # traversal
441 assert predecessor["target_end"] <= target_start
443 # we want continuity in both guest-physical and
444 # host-virtual memory
445 if (predecessor["target_end"] < target_start or
446 predecessor["host_addr"] + predecessor_size != host_addr):
447 predecessor = None
449 if predecessor is None:
450 # isolated mapping, add it to the list
451 guest_phys_blocks.append({"target_start": target_start,
452 "target_end": target_end,
453 "host_addr": host_addr})
454 message = "added"
455 else:
456 # expand predecessor until @target_end; predecessor's
457 # start doesn't change
458 predecessor["target_end"] = target_end
459 message = "joined"
461 print("%016x %016x %016x %-7s %5u" %
462 (target_start, target_end, host_addr.cast(UINTPTR_T),
463 message, len(guest_phys_blocks)))
465 return guest_phys_blocks
468 # The leading docstring doesn't have idiomatic Python formatting. It is
469 # printed by gdb's "help" command (the first line is printed in the
470 # "help data" summary), and it should match how other help texts look in
471 # gdb.
472 class DumpGuestMemory(gdb.Command):
473 """Extract guest vmcore from qemu process coredump.
475 The two required arguments are FILE and ARCH:
476 FILE identifies the target file to write the guest vmcore to.
477 ARCH specifies the architecture for which the core will be generated.
479 This GDB command reimplements the dump-guest-memory QMP command in
480 python, using the representation of guest memory as captured in the qemu
481 coredump. The qemu process that has been dumped must have had the
482 command line option "-machine dump-guest-core=on" which is the default.
484 For simplicity, the "paging", "begin" and "end" parameters of the QMP
485 command are not supported -- no attempt is made to get the guest's
486 internal paging structures (ie. paging=false is hard-wired), and guest
487 memory is always fully dumped.
489 Currently aarch64-be, aarch64-le, X86_64, 386, s390, ppc64-be,
490 ppc64-le guests are supported.
492 The CORE/NT_PRSTATUS and QEMU notes (that is, the VCPUs' statuses) are
493 not written to the vmcore. Preparing these would require context that is
494 only present in the KVM host kernel module when the guest is alive. A
495 fake ELF note is written instead, only to keep the ELF parser of "crash"
496 happy.
498 Dependent on how busted the qemu process was at the time of the
499 coredump, this command might produce unpredictable results. If qemu
500 deliberately called abort(), or it was dumped in response to a signal at
501 a halfway fortunate point, then its coredump should be in reasonable
502 shape and this command should mostly work."""
504 def __init__(self):
505 super(DumpGuestMemory, self).__init__("dump-guest-memory",
506 gdb.COMMAND_DATA,
507 gdb.COMPLETE_FILENAME)
508 self.elf = None
509 self.guest_phys_blocks = None
511 def dump_init(self, vmcore):
512 """Prepares and writes ELF structures to core file."""
514 # Needed to make crash happy, data for more useful notes is
515 # not available in a qemu core.
516 self.elf.add_note("NONE", "EMPTY", 0)
518 # We should never reach PN_XNUM for paging=false dumps,
519 # there's just a handful of discontiguous ranges after
520 # merging.
521 # The constant is needed to account for the PT_NOTE segment.
522 phdr_num = len(self.guest_phys_blocks) + 1
523 assert phdr_num < PN_XNUM
525 for block in self.guest_phys_blocks:
526 block_size = block["target_end"] - block["target_start"]
527 self.elf.add_segment(PT_LOAD, block["target_start"], block_size)
529 self.elf.to_file(vmcore)
531 def dump_iterate(self, vmcore):
532 """Writes guest core to file."""
534 qemu_core = gdb.inferiors()[0]
535 for block in self.guest_phys_blocks:
536 cur = block["host_addr"]
537 left = block["target_end"] - block["target_start"]
538 print("dumping range at %016x for length %016x" %
539 (cur.cast(UINTPTR_T), left))
541 while left > 0:
542 chunk_size = min(TARGET_PAGE_SIZE, left)
543 chunk = qemu_core.read_memory(cur, chunk_size)
544 vmcore.write(chunk)
545 cur += chunk_size
546 left -= chunk_size
548 def phys_memory_read(self, addr, size):
549 qemu_core = gdb.inferiors()[0]
550 for block in self.guest_phys_blocks:
551 if block["target_start"] <= addr \
552 and addr + size <= block["target_end"]:
553 haddr = block["host_addr"] + (addr - block["target_start"])
554 return qemu_core.read_memory(haddr, size)
555 return None
557 def add_vmcoreinfo(self):
558 if gdb.lookup_symbol("vmcoreinfo_realize")[0] is None:
559 return
560 vmci = 'vmcoreinfo_realize::vmcoreinfo_state'
561 if not gdb.parse_and_eval("%s" % vmci) \
562 or not gdb.parse_and_eval("(%s)->has_vmcoreinfo" % vmci):
563 return
565 fmt = gdb.parse_and_eval("(%s)->vmcoreinfo.guest_format" % vmci)
566 addr = gdb.parse_and_eval("(%s)->vmcoreinfo.paddr" % vmci)
567 size = gdb.parse_and_eval("(%s)->vmcoreinfo.size" % vmci)
569 fmt = le16_to_cpu(fmt)
570 addr = le64_to_cpu(addr)
571 size = le32_to_cpu(size)
573 if fmt != VMCOREINFO_FORMAT_ELF:
574 return
576 vmcoreinfo = self.phys_memory_read(addr, size)
577 if vmcoreinfo:
578 self.elf.add_vmcoreinfo_note(bytes(vmcoreinfo))
580 def invoke(self, args, from_tty):
581 """Handles command invocation from gdb."""
583 # Unwittingly pressing the Enter key after the command should
584 # not dump the same multi-gig coredump to the same file.
585 self.dont_repeat()
587 argv = gdb.string_to_argv(args)
588 if len(argv) != 2:
589 raise gdb.GdbError("usage: dump-guest-memory FILE ARCH")
591 self.elf = ELF(argv[1])
592 self.guest_phys_blocks = get_guest_phys_blocks()
593 self.add_vmcoreinfo()
595 with open(argv[0], "wb") as vmcore:
596 self.dump_init(vmcore)
597 self.dump_iterate(vmcore)
599 DumpGuestMemory()