2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
46 tcg_debug_assert(oprsz
<= maxsz
);
49 tcg_debug_assert(oprsz
== maxsz
);
52 tcg_debug_assert(maxsz
<= (8 << SIMD_MAXSZ_BITS
));
54 max_align
= maxsz
>= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz
& max_align
) == 0);
56 tcg_debug_assert((ofs
& max_align
) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
62 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
68 check_overlap_2(d
, a
, s
);
69 check_overlap_2(d
, b
, s
);
70 check_overlap_2(a
, b
, s
);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
75 uint32_t c
, uint32_t s
)
77 check_overlap_2(d
, a
, s
);
78 check_overlap_2(d
, b
, s
);
79 check_overlap_2(d
, c
, s
);
80 check_overlap_2(a
, b
, s
);
81 check_overlap_2(a
, c
, s
);
82 check_overlap_2(b
, c
, s
);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
90 check_size_align(oprsz
, maxsz
, 0);
91 tcg_debug_assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
93 oprsz
= (oprsz
/ 8) - 1;
94 maxsz
= (maxsz
/ 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz
== maxsz
) {
105 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
106 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
107 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
114 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
115 gen_helper_gvec_2
*fn
)
118 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
120 a0
= tcg_temp_new_ptr();
121 a1
= tcg_temp_new_ptr();
123 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
124 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
128 tcg_temp_free_ptr(a0
);
129 tcg_temp_free_ptr(a1
);
130 tcg_temp_free_i32(desc
);
133 /* Generate a call to a gvec-style helper with two vector operands
134 and one scalar operand. */
135 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
136 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
137 gen_helper_gvec_2i
*fn
)
140 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
142 a0
= tcg_temp_new_ptr();
143 a1
= tcg_temp_new_ptr();
145 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
146 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
150 tcg_temp_free_ptr(a0
);
151 tcg_temp_free_ptr(a1
);
152 tcg_temp_free_i32(desc
);
155 /* Generate a call to a gvec-style helper with three vector operands. */
156 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
157 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
158 gen_helper_gvec_3
*fn
)
161 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
163 a0
= tcg_temp_new_ptr();
164 a1
= tcg_temp_new_ptr();
165 a2
= tcg_temp_new_ptr();
167 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
168 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
169 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
171 fn(a0
, a1
, a2
, desc
);
173 tcg_temp_free_ptr(a0
);
174 tcg_temp_free_ptr(a1
);
175 tcg_temp_free_ptr(a2
);
176 tcg_temp_free_i32(desc
);
179 /* Generate a call to a gvec-style helper with four vector operands. */
180 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
181 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
182 int32_t data
, gen_helper_gvec_4
*fn
)
184 TCGv_ptr a0
, a1
, a2
, a3
;
185 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
187 a0
= tcg_temp_new_ptr();
188 a1
= tcg_temp_new_ptr();
189 a2
= tcg_temp_new_ptr();
190 a3
= tcg_temp_new_ptr();
192 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
193 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
194 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
195 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
197 fn(a0
, a1
, a2
, a3
, desc
);
199 tcg_temp_free_ptr(a0
);
200 tcg_temp_free_ptr(a1
);
201 tcg_temp_free_ptr(a2
);
202 tcg_temp_free_ptr(a3
);
203 tcg_temp_free_i32(desc
);
206 /* Generate a call to a gvec-style helper with five vector operands. */
207 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
208 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
209 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
211 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
212 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
214 a0
= tcg_temp_new_ptr();
215 a1
= tcg_temp_new_ptr();
216 a2
= tcg_temp_new_ptr();
217 a3
= tcg_temp_new_ptr();
218 a4
= tcg_temp_new_ptr();
220 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
221 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
222 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
223 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
224 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
226 fn(a0
, a1
, a2
, a3
, a4
, desc
);
228 tcg_temp_free_ptr(a0
);
229 tcg_temp_free_ptr(a1
);
230 tcg_temp_free_ptr(a2
);
231 tcg_temp_free_ptr(a3
);
232 tcg_temp_free_ptr(a4
);
233 tcg_temp_free_i32(desc
);
236 /* Generate a call to a gvec-style helper with three vector operands
237 and an extra pointer operand. */
238 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
239 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
240 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
243 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
245 a0
= tcg_temp_new_ptr();
246 a1
= tcg_temp_new_ptr();
248 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
249 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
251 fn(a0
, a1
, ptr
, desc
);
253 tcg_temp_free_ptr(a0
);
254 tcg_temp_free_ptr(a1
);
255 tcg_temp_free_i32(desc
);
258 /* Generate a call to a gvec-style helper with three vector operands
259 and an extra pointer operand. */
260 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
261 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
262 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
265 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
267 a0
= tcg_temp_new_ptr();
268 a1
= tcg_temp_new_ptr();
269 a2
= tcg_temp_new_ptr();
271 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
272 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
273 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
275 fn(a0
, a1
, a2
, ptr
, desc
);
277 tcg_temp_free_ptr(a0
);
278 tcg_temp_free_ptr(a1
);
279 tcg_temp_free_ptr(a2
);
280 tcg_temp_free_i32(desc
);
283 /* Generate a call to a gvec-style helper with four vector operands
284 and an extra pointer operand. */
285 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
286 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
287 uint32_t maxsz
, int32_t data
,
288 gen_helper_gvec_4_ptr
*fn
)
290 TCGv_ptr a0
, a1
, a2
, a3
;
291 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
293 a0
= tcg_temp_new_ptr();
294 a1
= tcg_temp_new_ptr();
295 a2
= tcg_temp_new_ptr();
296 a3
= tcg_temp_new_ptr();
298 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
299 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
300 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
301 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
303 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
305 tcg_temp_free_ptr(a0
);
306 tcg_temp_free_ptr(a1
);
307 tcg_temp_free_ptr(a2
);
308 tcg_temp_free_ptr(a3
);
309 tcg_temp_free_i32(desc
);
312 /* Generate a call to a gvec-style helper with five vector operands
313 and an extra pointer operand. */
314 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
315 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
316 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
317 gen_helper_gvec_5_ptr
*fn
)
319 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
320 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
322 a0
= tcg_temp_new_ptr();
323 a1
= tcg_temp_new_ptr();
324 a2
= tcg_temp_new_ptr();
325 a3
= tcg_temp_new_ptr();
326 a4
= tcg_temp_new_ptr();
328 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
329 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
330 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
331 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
332 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
334 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
336 tcg_temp_free_ptr(a0
);
337 tcg_temp_free_ptr(a1
);
338 tcg_temp_free_ptr(a2
);
339 tcg_temp_free_ptr(a3
);
340 tcg_temp_free_ptr(a4
);
341 tcg_temp_free_i32(desc
);
344 /* Return true if we want to implement something of OPRSZ bytes
345 in units of LNSZ. This limits the expansion of inline code. */
346 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
356 tcg_debug_assert((r
& 7) == 0);
359 /* For sizes below 16, accept no remainder. */
365 * Recall that ARM SVE allows vector sizes that are not a
366 * power of 2, but always a multiple of 16. The intent is
367 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
368 * In addition, expand_clr needs to handle a multiple of 8.
369 * Thus we can handle the tail with one more operation per
370 * diminishing power of 2.
375 return q
<= MAX_UNROLL
;
378 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
380 /* Duplicate C as per VECE. */
381 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
385 return 0x0101010101010101ull
* (uint8_t)c
;
387 return 0x0001000100010001ull
* (uint16_t)c
;
389 return 0x0000000100000001ull
* (uint32_t)c
;
393 g_assert_not_reached();
397 /* Duplicate IN into OUT as per VECE. */
398 static void gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
402 tcg_gen_ext8u_i32(out
, in
);
403 tcg_gen_muli_i32(out
, out
, 0x01010101);
406 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
409 tcg_gen_mov_i32(out
, in
);
412 g_assert_not_reached();
416 static void gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
420 tcg_gen_ext8u_i64(out
, in
);
421 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
424 tcg_gen_ext16u_i64(out
, in
);
425 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
428 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
431 tcg_gen_mov_i64(out
, in
);
434 g_assert_not_reached();
438 /* Select a supported vector type for implementing an operation on SIZE
439 * bytes. If OP is 0, assume that the real operation to be performed is
440 * required by all backends. Otherwise, make sure than OP can be performed
441 * on elements of size VECE in the selected type. Do not select V64 if
442 * PREFER_I64 is true. Return 0 if no vector type is selected.
444 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
445 uint32_t size
, bool prefer_i64
)
448 * Recall that ARM SVE allows vector sizes that are not a
449 * power of 2, but always a multiple of 16. The intent is
450 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
451 * It is hard to imagine a case in which v256 is supported
452 * but v128 is not, but check anyway.
453 * In addition, expand_clr needs to handle a multiple of 8.
455 if (TCG_TARGET_HAS_v256
&&
456 check_size_impl(size
, 32) &&
457 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
459 (TCG_TARGET_HAS_v128
&&
460 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
462 (TCG_TARGET_HAS_v64
&&
463 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
464 return TCG_TYPE_V256
;
466 if (TCG_TARGET_HAS_v128
&&
467 check_size_impl(size
, 16) &&
468 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
470 (TCG_TARGET_HAS_v64
&&
471 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
472 return TCG_TYPE_V128
;
474 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
475 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
481 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
482 uint32_t maxsz
, TCGv_vec t_vec
)
486 tcg_debug_assert(oprsz
>= 8);
489 * This may be expand_clr for the tail of an operation, e.g.
490 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
491 * are misaligned wrt the maximum vector size, so do that first.
494 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
501 * Recall that ARM SVE allows vector sizes that are not a
502 * power of 2, but always a multiple of 16. The intent is
503 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
505 for (; i
+ 32 <= oprsz
; i
+= 32) {
506 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
510 for (; i
+ 16 <= oprsz
; i
+= 16) {
511 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
515 for (; i
< oprsz
; i
+= 8) {
516 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
520 g_assert_not_reached();
524 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
528 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
529 * Only one of IN_32 or IN_64 may be set;
530 * IN_C is used if IN_32 and IN_64 are unset.
532 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
533 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
538 TCGv_i32 t_32
, t_desc
;
542 assert(vece
<= (in_32
? MO_32
: MO_64
));
543 assert(in_32
== NULL
|| in_64
== NULL
);
545 /* If we're storing 0, expand oprsz to maxsz. */
546 if (in_32
== NULL
&& in_64
== NULL
) {
547 in_c
= dup_const(vece
, in_c
);
553 /* Implement inline with a vector type, if possible.
554 * Prefer integer when 64-bit host and no variable dup.
556 type
= choose_vector_type(NULL
, vece
, oprsz
,
557 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
558 && (in_64
== NULL
|| vece
== MO_64
)));
560 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
563 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
565 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
567 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
569 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
570 tcg_temp_free_vec(t_vec
);
574 /* Otherwise, inline with an integer type, unless "large". */
575 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
580 /* We are given a 32-bit variable input. For a 64-bit host,
581 use a 64-bit operation unless the 32-bit operation would
583 if (TCG_TARGET_REG_BITS
== 64
584 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
585 t_64
= tcg_temp_new_i64();
586 tcg_gen_extu_i32_i64(t_64
, in_32
);
587 gen_dup_i64(vece
, t_64
, t_64
);
589 t_32
= tcg_temp_new_i32();
590 gen_dup_i32(vece
, t_32
, in_32
);
593 /* We are given a 64-bit variable input. */
594 t_64
= tcg_temp_new_i64();
595 gen_dup_i64(vece
, t_64
, in_64
);
597 /* We are given a constant input. */
598 /* For 64-bit hosts, use 64-bit constants for "simple" constants
599 or when we'd need too many 32-bit stores, or when a 64-bit
600 constant is really required. */
602 || (TCG_TARGET_REG_BITS
== 64
603 && (in_c
== 0 || in_c
== -1
604 || !check_size_impl(oprsz
, 4)))) {
605 t_64
= tcg_const_i64(in_c
);
607 t_32
= tcg_const_i32(in_c
);
611 /* Implement inline if we picked an implementation size above. */
613 for (i
= 0; i
< oprsz
; i
+= 4) {
614 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
616 tcg_temp_free_i32(t_32
);
620 for (i
= 0; i
< oprsz
; i
+= 8) {
621 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
623 tcg_temp_free_i64(t_64
);
628 /* Otherwise implement out of line. */
629 t_ptr
= tcg_temp_new_ptr();
630 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
631 t_desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, 0));
635 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
637 t_64
= tcg_const_i64(in_c
);
638 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
639 tcg_temp_free_i64(t_64
);
642 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
643 static dup_fn
* const fns
[3] = {
644 gen_helper_gvec_dup8
,
645 gen_helper_gvec_dup16
,
646 gen_helper_gvec_dup32
650 fns
[vece
](t_ptr
, t_desc
, in_32
);
652 t_32
= tcg_temp_new_i32();
654 tcg_gen_extrl_i64_i32(t_32
, in_64
);
655 } else if (vece
== MO_8
) {
656 tcg_gen_movi_i32(t_32
, in_c
& 0xff);
657 } else if (vece
== MO_16
) {
658 tcg_gen_movi_i32(t_32
, in_c
& 0xffff);
660 tcg_gen_movi_i32(t_32
, in_c
);
662 fns
[vece
](t_ptr
, t_desc
, t_32
);
663 tcg_temp_free_i32(t_32
);
667 tcg_temp_free_ptr(t_ptr
);
668 tcg_temp_free_i32(t_desc
);
673 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
677 /* Likewise, but with zero. */
678 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
680 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
683 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
684 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
685 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
687 TCGv_i32 t0
= tcg_temp_new_i32();
688 TCGv_i32 t1
= tcg_temp_new_i32();
691 for (i
= 0; i
< oprsz
; i
+= 4) {
692 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
694 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
697 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
699 tcg_temp_free_i32(t0
);
700 tcg_temp_free_i32(t1
);
703 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
704 int32_t c
, bool load_dest
,
705 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
707 TCGv_i32 t0
= tcg_temp_new_i32();
708 TCGv_i32 t1
= tcg_temp_new_i32();
711 for (i
= 0; i
< oprsz
; i
+= 4) {
712 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
714 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
717 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
719 tcg_temp_free_i32(t0
);
720 tcg_temp_free_i32(t1
);
723 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
724 TCGv_i32 c
, bool scalar_first
,
725 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
727 TCGv_i32 t0
= tcg_temp_new_i32();
728 TCGv_i32 t1
= tcg_temp_new_i32();
731 for (i
= 0; i
< oprsz
; i
+= 4) {
732 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
738 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
740 tcg_temp_free_i32(t0
);
741 tcg_temp_free_i32(t1
);
744 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
745 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
746 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
747 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
749 TCGv_i32 t0
= tcg_temp_new_i32();
750 TCGv_i32 t1
= tcg_temp_new_i32();
751 TCGv_i32 t2
= tcg_temp_new_i32();
754 for (i
= 0; i
< oprsz
; i
+= 4) {
755 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
756 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
758 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
761 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
763 tcg_temp_free_i32(t2
);
764 tcg_temp_free_i32(t1
);
765 tcg_temp_free_i32(t0
);
768 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
769 uint32_t oprsz
, int32_t c
, bool load_dest
,
770 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
772 TCGv_i32 t0
= tcg_temp_new_i32();
773 TCGv_i32 t1
= tcg_temp_new_i32();
774 TCGv_i32 t2
= tcg_temp_new_i32();
777 for (i
= 0; i
< oprsz
; i
+= 4) {
778 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
779 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
781 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
784 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
786 tcg_temp_free_i32(t0
);
787 tcg_temp_free_i32(t1
);
788 tcg_temp_free_i32(t2
);
791 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
792 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
793 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
794 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
796 TCGv_i32 t0
= tcg_temp_new_i32();
797 TCGv_i32 t1
= tcg_temp_new_i32();
798 TCGv_i32 t2
= tcg_temp_new_i32();
799 TCGv_i32 t3
= tcg_temp_new_i32();
802 for (i
= 0; i
< oprsz
; i
+= 4) {
803 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
804 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
805 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
807 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
809 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
812 tcg_temp_free_i32(t3
);
813 tcg_temp_free_i32(t2
);
814 tcg_temp_free_i32(t1
);
815 tcg_temp_free_i32(t0
);
818 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
819 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
820 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
822 TCGv_i64 t0
= tcg_temp_new_i64();
823 TCGv_i64 t1
= tcg_temp_new_i64();
826 for (i
= 0; i
< oprsz
; i
+= 8) {
827 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
829 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
832 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
834 tcg_temp_free_i64(t0
);
835 tcg_temp_free_i64(t1
);
838 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
839 int64_t c
, bool load_dest
,
840 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
842 TCGv_i64 t0
= tcg_temp_new_i64();
843 TCGv_i64 t1
= tcg_temp_new_i64();
846 for (i
= 0; i
< oprsz
; i
+= 8) {
847 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
849 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
852 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
854 tcg_temp_free_i64(t0
);
855 tcg_temp_free_i64(t1
);
858 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
859 TCGv_i64 c
, bool scalar_first
,
860 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
862 TCGv_i64 t0
= tcg_temp_new_i64();
863 TCGv_i64 t1
= tcg_temp_new_i64();
866 for (i
= 0; i
< oprsz
; i
+= 8) {
867 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
873 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
875 tcg_temp_free_i64(t0
);
876 tcg_temp_free_i64(t1
);
879 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
880 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
881 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
882 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
884 TCGv_i64 t0
= tcg_temp_new_i64();
885 TCGv_i64 t1
= tcg_temp_new_i64();
886 TCGv_i64 t2
= tcg_temp_new_i64();
889 for (i
= 0; i
< oprsz
; i
+= 8) {
890 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
891 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
893 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
896 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
898 tcg_temp_free_i64(t2
);
899 tcg_temp_free_i64(t1
);
900 tcg_temp_free_i64(t0
);
903 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
904 uint32_t oprsz
, int64_t c
, bool load_dest
,
905 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
907 TCGv_i64 t0
= tcg_temp_new_i64();
908 TCGv_i64 t1
= tcg_temp_new_i64();
909 TCGv_i64 t2
= tcg_temp_new_i64();
912 for (i
= 0; i
< oprsz
; i
+= 8) {
913 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
914 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
916 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
919 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
921 tcg_temp_free_i64(t0
);
922 tcg_temp_free_i64(t1
);
923 tcg_temp_free_i64(t2
);
926 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
927 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
928 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
929 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
931 TCGv_i64 t0
= tcg_temp_new_i64();
932 TCGv_i64 t1
= tcg_temp_new_i64();
933 TCGv_i64 t2
= tcg_temp_new_i64();
934 TCGv_i64 t3
= tcg_temp_new_i64();
937 for (i
= 0; i
< oprsz
; i
+= 8) {
938 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
939 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
940 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
942 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
944 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
947 tcg_temp_free_i64(t3
);
948 tcg_temp_free_i64(t2
);
949 tcg_temp_free_i64(t1
);
950 tcg_temp_free_i64(t0
);
953 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
954 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
955 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
957 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
959 TCGv_vec t0
= tcg_temp_new_vec(type
);
960 TCGv_vec t1
= tcg_temp_new_vec(type
);
963 for (i
= 0; i
< oprsz
; i
+= tysz
) {
964 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
966 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
969 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
971 tcg_temp_free_vec(t0
);
972 tcg_temp_free_vec(t1
);
975 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
976 using host vectors. */
977 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
978 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
979 int64_t c
, bool load_dest
,
980 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
982 TCGv_vec t0
= tcg_temp_new_vec(type
);
983 TCGv_vec t1
= tcg_temp_new_vec(type
);
986 for (i
= 0; i
< oprsz
; i
+= tysz
) {
987 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
989 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
991 fni(vece
, t1
, t0
, c
);
992 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
994 tcg_temp_free_vec(t0
);
995 tcg_temp_free_vec(t1
);
998 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
999 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1000 TCGv_vec c
, bool scalar_first
,
1001 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1003 TCGv_vec t0
= tcg_temp_new_vec(type
);
1004 TCGv_vec t1
= tcg_temp_new_vec(type
);
1007 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1008 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1010 fni(vece
, t1
, c
, t0
);
1012 fni(vece
, t1
, t0
, c
);
1014 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1016 tcg_temp_free_vec(t0
);
1017 tcg_temp_free_vec(t1
);
1020 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1021 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1022 uint32_t bofs
, uint32_t oprsz
,
1023 uint32_t tysz
, TCGType type
, bool load_dest
,
1024 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1026 TCGv_vec t0
= tcg_temp_new_vec(type
);
1027 TCGv_vec t1
= tcg_temp_new_vec(type
);
1028 TCGv_vec t2
= tcg_temp_new_vec(type
);
1031 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1032 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1033 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1035 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1037 fni(vece
, t2
, t0
, t1
);
1038 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1040 tcg_temp_free_vec(t2
);
1041 tcg_temp_free_vec(t1
);
1042 tcg_temp_free_vec(t0
);
1046 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1047 * using host vectors.
1049 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1050 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1051 TCGType type
, int64_t c
, bool load_dest
,
1052 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1055 TCGv_vec t0
= tcg_temp_new_vec(type
);
1056 TCGv_vec t1
= tcg_temp_new_vec(type
);
1057 TCGv_vec t2
= tcg_temp_new_vec(type
);
1060 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1061 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1062 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1064 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1066 fni(vece
, t2
, t0
, t1
, c
);
1067 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1069 tcg_temp_free_vec(t0
);
1070 tcg_temp_free_vec(t1
);
1071 tcg_temp_free_vec(t2
);
1074 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1075 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1076 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1077 uint32_t tysz
, TCGType type
, bool write_aofs
,
1078 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1079 TCGv_vec
, TCGv_vec
))
1081 TCGv_vec t0
= tcg_temp_new_vec(type
);
1082 TCGv_vec t1
= tcg_temp_new_vec(type
);
1083 TCGv_vec t2
= tcg_temp_new_vec(type
);
1084 TCGv_vec t3
= tcg_temp_new_vec(type
);
1087 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1088 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1089 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1090 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1091 fni(vece
, t0
, t1
, t2
, t3
);
1092 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1094 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1097 tcg_temp_free_vec(t3
);
1098 tcg_temp_free_vec(t2
);
1099 tcg_temp_free_vec(t1
);
1100 tcg_temp_free_vec(t0
);
1103 /* Expand a vector two-operand operation. */
1104 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1105 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1107 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1108 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1112 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1113 check_overlap_2(dofs
, aofs
, maxsz
);
1117 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1121 /* Recall that ARM SVE allows vector sizes that are not a
1122 * power of 2, but always a multiple of 16. The intent is
1123 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1125 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1126 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1127 g
->load_dest
, g
->fniv
);
1128 if (some
== oprsz
) {
1137 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1138 g
->load_dest
, g
->fniv
);
1141 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1142 g
->load_dest
, g
->fniv
);
1146 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1147 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1148 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1149 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1151 assert(g
->fno
!= NULL
);
1152 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1158 g_assert_not_reached();
1160 tcg_swap_vecop_list(hold_list
);
1162 if (oprsz
< maxsz
) {
1163 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1167 /* Expand a vector operation with two vectors and an immediate. */
1168 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1169 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1171 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1172 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1176 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1177 check_overlap_2(dofs
, aofs
, maxsz
);
1181 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1185 /* Recall that ARM SVE allows vector sizes that are not a
1186 * power of 2, but always a multiple of 16. The intent is
1187 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1189 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1190 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1191 c
, g
->load_dest
, g
->fniv
);
1192 if (some
== oprsz
) {
1201 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1202 c
, g
->load_dest
, g
->fniv
);
1205 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1206 c
, g
->load_dest
, g
->fniv
);
1210 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1211 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1212 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1213 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1216 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1218 TCGv_i64 tcg_c
= tcg_const_i64(c
);
1219 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1221 tcg_temp_free_i64(tcg_c
);
1228 g_assert_not_reached();
1230 tcg_swap_vecop_list(hold_list
);
1232 if (oprsz
< maxsz
) {
1233 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1237 /* Expand a vector operation with two vectors and a scalar. */
1238 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1239 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1243 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1244 check_overlap_2(dofs
, aofs
, maxsz
);
1248 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1251 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1252 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1253 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1256 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1260 /* Recall that ARM SVE allows vector sizes that are not a
1261 * power of 2, but always a multiple of 16. The intent is
1262 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1264 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1265 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1266 t_vec
, g
->scalar_first
, g
->fniv
);
1267 if (some
== oprsz
) {
1277 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1278 t_vec
, g
->scalar_first
, g
->fniv
);
1282 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1283 t_vec
, g
->scalar_first
, g
->fniv
);
1287 g_assert_not_reached();
1289 tcg_temp_free_vec(t_vec
);
1290 tcg_swap_vecop_list(hold_list
);
1291 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1292 TCGv_i64 t64
= tcg_temp_new_i64();
1294 gen_dup_i64(g
->vece
, t64
, c
);
1295 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1296 tcg_temp_free_i64(t64
);
1297 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1298 TCGv_i32 t32
= tcg_temp_new_i32();
1300 tcg_gen_extrl_i64_i32(t32
, c
);
1301 gen_dup_i32(g
->vece
, t32
, t32
);
1302 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1303 tcg_temp_free_i32(t32
);
1305 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1309 if (oprsz
< maxsz
) {
1310 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1314 /* Expand a vector three-operand operation. */
1315 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1316 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1318 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1319 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1323 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1324 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1328 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1332 /* Recall that ARM SVE allows vector sizes that are not a
1333 * power of 2, but always a multiple of 16. The intent is
1334 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1336 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1337 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1338 g
->load_dest
, g
->fniv
);
1339 if (some
== oprsz
) {
1349 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1350 g
->load_dest
, g
->fniv
);
1353 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1354 g
->load_dest
, g
->fniv
);
1358 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1359 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1360 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1361 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1363 assert(g
->fno
!= NULL
);
1364 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1365 maxsz
, g
->data
, g
->fno
);
1371 g_assert_not_reached();
1373 tcg_swap_vecop_list(hold_list
);
1375 if (oprsz
< maxsz
) {
1376 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1380 /* Expand a vector operation with three vectors and an immediate. */
1381 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1382 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1385 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1386 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1390 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1391 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1395 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1400 * Recall that ARM SVE allows vector sizes that are not a
1401 * power of 2, but always a multiple of 16. The intent is
1402 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1404 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1405 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1406 c
, g
->load_dest
, g
->fniv
);
1407 if (some
== oprsz
) {
1417 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1418 c
, g
->load_dest
, g
->fniv
);
1421 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1422 c
, g
->load_dest
, g
->fniv
);
1426 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1427 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1428 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1429 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1431 assert(g
->fno
!= NULL
);
1432 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1438 g_assert_not_reached();
1440 tcg_swap_vecop_list(hold_list
);
1442 if (oprsz
< maxsz
) {
1443 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1447 /* Expand a vector four-operand operation. */
1448 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1449 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1451 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1452 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1456 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1457 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1461 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1465 /* Recall that ARM SVE allows vector sizes that are not a
1466 * power of 2, but always a multiple of 16. The intent is
1467 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1469 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1470 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1471 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1472 if (some
== oprsz
) {
1483 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1484 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1487 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1488 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1492 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1493 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1494 g
->write_aofs
, g
->fni8
);
1495 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1496 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1497 g
->write_aofs
, g
->fni4
);
1499 assert(g
->fno
!= NULL
);
1500 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1501 oprsz
, maxsz
, g
->data
, g
->fno
);
1507 g_assert_not_reached();
1509 tcg_swap_vecop_list(hold_list
);
1511 if (oprsz
< maxsz
) {
1512 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1517 * Expand specific vector operations.
1520 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1522 tcg_gen_mov_vec(a
, b
);
1525 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1526 uint32_t oprsz
, uint32_t maxsz
)
1528 static const GVecGen2 g
= {
1529 .fni8
= tcg_gen_mov_i64
,
1531 .fno
= gen_helper_gvec_mov
,
1532 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1535 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1537 check_size_align(oprsz
, maxsz
, dofs
);
1538 if (oprsz
< maxsz
) {
1539 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1544 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1545 uint32_t maxsz
, TCGv_i32 in
)
1547 check_size_align(oprsz
, maxsz
, dofs
);
1548 tcg_debug_assert(vece
<= MO_32
);
1549 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1552 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1553 uint32_t maxsz
, TCGv_i64 in
)
1555 check_size_align(oprsz
, maxsz
, dofs
);
1556 tcg_debug_assert(vece
<= MO_64
);
1557 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1560 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1561 uint32_t oprsz
, uint32_t maxsz
)
1563 check_size_align(oprsz
, maxsz
, dofs
);
1564 if (vece
<= MO_64
) {
1565 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1567 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1568 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1569 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1570 tcg_temp_free_vec(t_vec
);
1571 } else if (vece
<= MO_32
) {
1572 TCGv_i32 in
= tcg_temp_new_i32();
1575 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1578 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1581 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1584 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1585 tcg_temp_free_i32(in
);
1587 TCGv_i64 in
= tcg_temp_new_i64();
1588 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1589 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1590 tcg_temp_free_i64(in
);
1592 } else if (vece
== 4) {
1593 /* 128-bit duplicate. */
1596 tcg_debug_assert(oprsz
>= 16);
1597 if (TCG_TARGET_HAS_v128
) {
1598 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1600 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1601 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1602 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1604 tcg_temp_free_vec(in
);
1606 TCGv_i64 in0
= tcg_temp_new_i64();
1607 TCGv_i64 in1
= tcg_temp_new_i64();
1609 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1610 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1611 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1612 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1613 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1615 tcg_temp_free_i64(in0
);
1616 tcg_temp_free_i64(in1
);
1618 if (oprsz
< maxsz
) {
1619 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1621 } else if (vece
== 5) {
1622 /* 256-bit duplicate. */
1625 tcg_debug_assert(oprsz
>= 32);
1626 tcg_debug_assert(oprsz
% 32 == 0);
1627 if (TCG_TARGET_HAS_v256
) {
1628 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1630 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1631 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1632 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1634 tcg_temp_free_vec(in
);
1635 } else if (TCG_TARGET_HAS_v128
) {
1636 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1637 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1639 tcg_gen_ld_vec(in0
, cpu_env
, aofs
);
1640 tcg_gen_ld_vec(in1
, cpu_env
, aofs
+ 16);
1641 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1642 tcg_gen_st_vec(in0
, cpu_env
, dofs
+ i
);
1643 tcg_gen_st_vec(in1
, cpu_env
, dofs
+ i
+ 16);
1645 tcg_temp_free_vec(in0
);
1646 tcg_temp_free_vec(in1
);
1651 for (j
= 0; j
< 4; ++j
) {
1652 in
[j
] = tcg_temp_new_i64();
1653 tcg_gen_ld_i64(in
[j
], cpu_env
, aofs
+ j
* 8);
1655 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1656 for (j
= 0; j
< 4; ++j
) {
1657 tcg_gen_st_i64(in
[j
], cpu_env
, dofs
+ i
+ j
* 8);
1660 for (j
= 0; j
< 4; ++j
) {
1661 tcg_temp_free_i64(in
[j
]);
1664 if (oprsz
< maxsz
) {
1665 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1668 g_assert_not_reached();
1672 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1673 uint32_t maxsz
, uint64_t x
)
1675 check_size_align(oprsz
, maxsz
, dofs
);
1676 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1679 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1680 uint32_t oprsz
, uint32_t maxsz
)
1682 static const GVecGen2 g
= {
1683 .fni8
= tcg_gen_not_i64
,
1684 .fniv
= tcg_gen_not_vec
,
1685 .fno
= gen_helper_gvec_not
,
1686 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1688 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1691 /* Perform a vector addition using normal addition and a mask. The mask
1692 should be the sign bit of each lane. This 6-operation form is more
1693 efficient than separate additions when there are 4 or more lanes in
1694 the 64-bit operation. */
1695 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1697 TCGv_i64 t1
= tcg_temp_new_i64();
1698 TCGv_i64 t2
= tcg_temp_new_i64();
1699 TCGv_i64 t3
= tcg_temp_new_i64();
1701 tcg_gen_andc_i64(t1
, a
, m
);
1702 tcg_gen_andc_i64(t2
, b
, m
);
1703 tcg_gen_xor_i64(t3
, a
, b
);
1704 tcg_gen_add_i64(d
, t1
, t2
);
1705 tcg_gen_and_i64(t3
, t3
, m
);
1706 tcg_gen_xor_i64(d
, d
, t3
);
1708 tcg_temp_free_i64(t1
);
1709 tcg_temp_free_i64(t2
);
1710 tcg_temp_free_i64(t3
);
1713 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1715 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
1716 gen_addv_mask(d
, a
, b
, m
);
1717 tcg_temp_free_i64(m
);
1720 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1722 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
1723 gen_addv_mask(d
, a
, b
, m
);
1724 tcg_temp_free_i64(m
);
1727 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1729 TCGv_i64 t1
= tcg_temp_new_i64();
1730 TCGv_i64 t2
= tcg_temp_new_i64();
1732 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1733 tcg_gen_add_i64(t2
, a
, b
);
1734 tcg_gen_add_i64(t1
, t1
, b
);
1735 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1737 tcg_temp_free_i64(t1
);
1738 tcg_temp_free_i64(t2
);
1741 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1743 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1744 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1746 static const GVecGen3 g
[4] = {
1747 { .fni8
= tcg_gen_vec_add8_i64
,
1748 .fniv
= tcg_gen_add_vec
,
1749 .fno
= gen_helper_gvec_add8
,
1750 .opt_opc
= vecop_list_add
,
1752 { .fni8
= tcg_gen_vec_add16_i64
,
1753 .fniv
= tcg_gen_add_vec
,
1754 .fno
= gen_helper_gvec_add16
,
1755 .opt_opc
= vecop_list_add
,
1757 { .fni4
= tcg_gen_add_i32
,
1758 .fniv
= tcg_gen_add_vec
,
1759 .fno
= gen_helper_gvec_add32
,
1760 .opt_opc
= vecop_list_add
,
1762 { .fni8
= tcg_gen_add_i64
,
1763 .fniv
= tcg_gen_add_vec
,
1764 .fno
= gen_helper_gvec_add64
,
1765 .opt_opc
= vecop_list_add
,
1766 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1770 tcg_debug_assert(vece
<= MO_64
);
1771 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1774 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1775 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1777 static const GVecGen2s g
[4] = {
1778 { .fni8
= tcg_gen_vec_add8_i64
,
1779 .fniv
= tcg_gen_add_vec
,
1780 .fno
= gen_helper_gvec_adds8
,
1781 .opt_opc
= vecop_list_add
,
1783 { .fni8
= tcg_gen_vec_add16_i64
,
1784 .fniv
= tcg_gen_add_vec
,
1785 .fno
= gen_helper_gvec_adds16
,
1786 .opt_opc
= vecop_list_add
,
1788 { .fni4
= tcg_gen_add_i32
,
1789 .fniv
= tcg_gen_add_vec
,
1790 .fno
= gen_helper_gvec_adds32
,
1791 .opt_opc
= vecop_list_add
,
1793 { .fni8
= tcg_gen_add_i64
,
1794 .fniv
= tcg_gen_add_vec
,
1795 .fno
= gen_helper_gvec_adds64
,
1796 .opt_opc
= vecop_list_add
,
1797 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1801 tcg_debug_assert(vece
<= MO_64
);
1802 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1805 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1806 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1808 TCGv_i64 tmp
= tcg_const_i64(c
);
1809 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1810 tcg_temp_free_i64(tmp
);
1813 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
1815 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1816 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1818 static const GVecGen2s g
[4] = {
1819 { .fni8
= tcg_gen_vec_sub8_i64
,
1820 .fniv
= tcg_gen_sub_vec
,
1821 .fno
= gen_helper_gvec_subs8
,
1822 .opt_opc
= vecop_list_sub
,
1824 { .fni8
= tcg_gen_vec_sub16_i64
,
1825 .fniv
= tcg_gen_sub_vec
,
1826 .fno
= gen_helper_gvec_subs16
,
1827 .opt_opc
= vecop_list_sub
,
1829 { .fni4
= tcg_gen_sub_i32
,
1830 .fniv
= tcg_gen_sub_vec
,
1831 .fno
= gen_helper_gvec_subs32
,
1832 .opt_opc
= vecop_list_sub
,
1834 { .fni8
= tcg_gen_sub_i64
,
1835 .fniv
= tcg_gen_sub_vec
,
1836 .fno
= gen_helper_gvec_subs64
,
1837 .opt_opc
= vecop_list_sub
,
1838 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1842 tcg_debug_assert(vece
<= MO_64
);
1843 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1846 /* Perform a vector subtraction using normal subtraction and a mask.
1847 Compare gen_addv_mask above. */
1848 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1850 TCGv_i64 t1
= tcg_temp_new_i64();
1851 TCGv_i64 t2
= tcg_temp_new_i64();
1852 TCGv_i64 t3
= tcg_temp_new_i64();
1854 tcg_gen_or_i64(t1
, a
, m
);
1855 tcg_gen_andc_i64(t2
, b
, m
);
1856 tcg_gen_eqv_i64(t3
, a
, b
);
1857 tcg_gen_sub_i64(d
, t1
, t2
);
1858 tcg_gen_and_i64(t3
, t3
, m
);
1859 tcg_gen_xor_i64(d
, d
, t3
);
1861 tcg_temp_free_i64(t1
);
1862 tcg_temp_free_i64(t2
);
1863 tcg_temp_free_i64(t3
);
1866 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1868 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
1869 gen_subv_mask(d
, a
, b
, m
);
1870 tcg_temp_free_i64(m
);
1873 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1875 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
1876 gen_subv_mask(d
, a
, b
, m
);
1877 tcg_temp_free_i64(m
);
1880 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1882 TCGv_i64 t1
= tcg_temp_new_i64();
1883 TCGv_i64 t2
= tcg_temp_new_i64();
1885 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
1886 tcg_gen_sub_i64(t2
, a
, b
);
1887 tcg_gen_sub_i64(t1
, a
, t1
);
1888 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1890 tcg_temp_free_i64(t1
);
1891 tcg_temp_free_i64(t2
);
1894 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1895 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1897 static const GVecGen3 g
[4] = {
1898 { .fni8
= tcg_gen_vec_sub8_i64
,
1899 .fniv
= tcg_gen_sub_vec
,
1900 .fno
= gen_helper_gvec_sub8
,
1901 .opt_opc
= vecop_list_sub
,
1903 { .fni8
= tcg_gen_vec_sub16_i64
,
1904 .fniv
= tcg_gen_sub_vec
,
1905 .fno
= gen_helper_gvec_sub16
,
1906 .opt_opc
= vecop_list_sub
,
1908 { .fni4
= tcg_gen_sub_i32
,
1909 .fniv
= tcg_gen_sub_vec
,
1910 .fno
= gen_helper_gvec_sub32
,
1911 .opt_opc
= vecop_list_sub
,
1913 { .fni8
= tcg_gen_sub_i64
,
1914 .fniv
= tcg_gen_sub_vec
,
1915 .fno
= gen_helper_gvec_sub64
,
1916 .opt_opc
= vecop_list_sub
,
1917 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1921 tcg_debug_assert(vece
<= MO_64
);
1922 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1925 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
1927 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1928 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1930 static const GVecGen3 g
[4] = {
1931 { .fniv
= tcg_gen_mul_vec
,
1932 .fno
= gen_helper_gvec_mul8
,
1933 .opt_opc
= vecop_list_mul
,
1935 { .fniv
= tcg_gen_mul_vec
,
1936 .fno
= gen_helper_gvec_mul16
,
1937 .opt_opc
= vecop_list_mul
,
1939 { .fni4
= tcg_gen_mul_i32
,
1940 .fniv
= tcg_gen_mul_vec
,
1941 .fno
= gen_helper_gvec_mul32
,
1942 .opt_opc
= vecop_list_mul
,
1944 { .fni8
= tcg_gen_mul_i64
,
1945 .fniv
= tcg_gen_mul_vec
,
1946 .fno
= gen_helper_gvec_mul64
,
1947 .opt_opc
= vecop_list_mul
,
1948 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1952 tcg_debug_assert(vece
<= MO_64
);
1953 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1956 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1957 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1959 static const GVecGen2s g
[4] = {
1960 { .fniv
= tcg_gen_mul_vec
,
1961 .fno
= gen_helper_gvec_muls8
,
1962 .opt_opc
= vecop_list_mul
,
1964 { .fniv
= tcg_gen_mul_vec
,
1965 .fno
= gen_helper_gvec_muls16
,
1966 .opt_opc
= vecop_list_mul
,
1968 { .fni4
= tcg_gen_mul_i32
,
1969 .fniv
= tcg_gen_mul_vec
,
1970 .fno
= gen_helper_gvec_muls32
,
1971 .opt_opc
= vecop_list_mul
,
1973 { .fni8
= tcg_gen_mul_i64
,
1974 .fniv
= tcg_gen_mul_vec
,
1975 .fno
= gen_helper_gvec_muls64
,
1976 .opt_opc
= vecop_list_mul
,
1977 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1981 tcg_debug_assert(vece
<= MO_64
);
1982 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1985 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1986 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1988 TCGv_i64 tmp
= tcg_const_i64(c
);
1989 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1990 tcg_temp_free_i64(tmp
);
1993 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1994 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1996 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
1997 static const GVecGen3 g
[4] = {
1998 { .fniv
= tcg_gen_ssadd_vec
,
1999 .fno
= gen_helper_gvec_ssadd8
,
2000 .opt_opc
= vecop_list
,
2002 { .fniv
= tcg_gen_ssadd_vec
,
2003 .fno
= gen_helper_gvec_ssadd16
,
2004 .opt_opc
= vecop_list
,
2006 { .fniv
= tcg_gen_ssadd_vec
,
2007 .fno
= gen_helper_gvec_ssadd32
,
2008 .opt_opc
= vecop_list
,
2010 { .fniv
= tcg_gen_ssadd_vec
,
2011 .fno
= gen_helper_gvec_ssadd64
,
2012 .opt_opc
= vecop_list
,
2015 tcg_debug_assert(vece
<= MO_64
);
2016 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2019 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2020 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2022 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2023 static const GVecGen3 g
[4] = {
2024 { .fniv
= tcg_gen_sssub_vec
,
2025 .fno
= gen_helper_gvec_sssub8
,
2026 .opt_opc
= vecop_list
,
2028 { .fniv
= tcg_gen_sssub_vec
,
2029 .fno
= gen_helper_gvec_sssub16
,
2030 .opt_opc
= vecop_list
,
2032 { .fniv
= tcg_gen_sssub_vec
,
2033 .fno
= gen_helper_gvec_sssub32
,
2034 .opt_opc
= vecop_list
,
2036 { .fniv
= tcg_gen_sssub_vec
,
2037 .fno
= gen_helper_gvec_sssub64
,
2038 .opt_opc
= vecop_list
,
2041 tcg_debug_assert(vece
<= MO_64
);
2042 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2045 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2047 TCGv_i32 max
= tcg_const_i32(-1);
2048 tcg_gen_add_i32(d
, a
, b
);
2049 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2050 tcg_temp_free_i32(max
);
2053 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2055 TCGv_i64 max
= tcg_const_i64(-1);
2056 tcg_gen_add_i64(d
, a
, b
);
2057 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2058 tcg_temp_free_i64(max
);
2061 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2062 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2064 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2065 static const GVecGen3 g
[4] = {
2066 { .fniv
= tcg_gen_usadd_vec
,
2067 .fno
= gen_helper_gvec_usadd8
,
2068 .opt_opc
= vecop_list
,
2070 { .fniv
= tcg_gen_usadd_vec
,
2071 .fno
= gen_helper_gvec_usadd16
,
2072 .opt_opc
= vecop_list
,
2074 { .fni4
= tcg_gen_usadd_i32
,
2075 .fniv
= tcg_gen_usadd_vec
,
2076 .fno
= gen_helper_gvec_usadd32
,
2077 .opt_opc
= vecop_list
,
2079 { .fni8
= tcg_gen_usadd_i64
,
2080 .fniv
= tcg_gen_usadd_vec
,
2081 .fno
= gen_helper_gvec_usadd64
,
2082 .opt_opc
= vecop_list
,
2085 tcg_debug_assert(vece
<= MO_64
);
2086 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2089 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2091 TCGv_i32 min
= tcg_const_i32(0);
2092 tcg_gen_sub_i32(d
, a
, b
);
2093 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2094 tcg_temp_free_i32(min
);
2097 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2099 TCGv_i64 min
= tcg_const_i64(0);
2100 tcg_gen_sub_i64(d
, a
, b
);
2101 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2102 tcg_temp_free_i64(min
);
2105 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2106 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2108 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2109 static const GVecGen3 g
[4] = {
2110 { .fniv
= tcg_gen_ussub_vec
,
2111 .fno
= gen_helper_gvec_ussub8
,
2112 .opt_opc
= vecop_list
,
2114 { .fniv
= tcg_gen_ussub_vec
,
2115 .fno
= gen_helper_gvec_ussub16
,
2116 .opt_opc
= vecop_list
,
2118 { .fni4
= tcg_gen_ussub_i32
,
2119 .fniv
= tcg_gen_ussub_vec
,
2120 .fno
= gen_helper_gvec_ussub32
,
2121 .opt_opc
= vecop_list
,
2123 { .fni8
= tcg_gen_ussub_i64
,
2124 .fniv
= tcg_gen_ussub_vec
,
2125 .fno
= gen_helper_gvec_ussub64
,
2126 .opt_opc
= vecop_list
,
2129 tcg_debug_assert(vece
<= MO_64
);
2130 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2133 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2134 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2136 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2137 static const GVecGen3 g
[4] = {
2138 { .fniv
= tcg_gen_smin_vec
,
2139 .fno
= gen_helper_gvec_smin8
,
2140 .opt_opc
= vecop_list
,
2142 { .fniv
= tcg_gen_smin_vec
,
2143 .fno
= gen_helper_gvec_smin16
,
2144 .opt_opc
= vecop_list
,
2146 { .fni4
= tcg_gen_smin_i32
,
2147 .fniv
= tcg_gen_smin_vec
,
2148 .fno
= gen_helper_gvec_smin32
,
2149 .opt_opc
= vecop_list
,
2151 { .fni8
= tcg_gen_smin_i64
,
2152 .fniv
= tcg_gen_smin_vec
,
2153 .fno
= gen_helper_gvec_smin64
,
2154 .opt_opc
= vecop_list
,
2157 tcg_debug_assert(vece
<= MO_64
);
2158 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2161 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2162 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2164 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2165 static const GVecGen3 g
[4] = {
2166 { .fniv
= tcg_gen_umin_vec
,
2167 .fno
= gen_helper_gvec_umin8
,
2168 .opt_opc
= vecop_list
,
2170 { .fniv
= tcg_gen_umin_vec
,
2171 .fno
= gen_helper_gvec_umin16
,
2172 .opt_opc
= vecop_list
,
2174 { .fni4
= tcg_gen_umin_i32
,
2175 .fniv
= tcg_gen_umin_vec
,
2176 .fno
= gen_helper_gvec_umin32
,
2177 .opt_opc
= vecop_list
,
2179 { .fni8
= tcg_gen_umin_i64
,
2180 .fniv
= tcg_gen_umin_vec
,
2181 .fno
= gen_helper_gvec_umin64
,
2182 .opt_opc
= vecop_list
,
2185 tcg_debug_assert(vece
<= MO_64
);
2186 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2189 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2190 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2192 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2193 static const GVecGen3 g
[4] = {
2194 { .fniv
= tcg_gen_smax_vec
,
2195 .fno
= gen_helper_gvec_smax8
,
2196 .opt_opc
= vecop_list
,
2198 { .fniv
= tcg_gen_smax_vec
,
2199 .fno
= gen_helper_gvec_smax16
,
2200 .opt_opc
= vecop_list
,
2202 { .fni4
= tcg_gen_smax_i32
,
2203 .fniv
= tcg_gen_smax_vec
,
2204 .fno
= gen_helper_gvec_smax32
,
2205 .opt_opc
= vecop_list
,
2207 { .fni8
= tcg_gen_smax_i64
,
2208 .fniv
= tcg_gen_smax_vec
,
2209 .fno
= gen_helper_gvec_smax64
,
2210 .opt_opc
= vecop_list
,
2213 tcg_debug_assert(vece
<= MO_64
);
2214 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2217 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2218 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2220 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2221 static const GVecGen3 g
[4] = {
2222 { .fniv
= tcg_gen_umax_vec
,
2223 .fno
= gen_helper_gvec_umax8
,
2224 .opt_opc
= vecop_list
,
2226 { .fniv
= tcg_gen_umax_vec
,
2227 .fno
= gen_helper_gvec_umax16
,
2228 .opt_opc
= vecop_list
,
2230 { .fni4
= tcg_gen_umax_i32
,
2231 .fniv
= tcg_gen_umax_vec
,
2232 .fno
= gen_helper_gvec_umax32
,
2233 .opt_opc
= vecop_list
,
2235 { .fni8
= tcg_gen_umax_i64
,
2236 .fniv
= tcg_gen_umax_vec
,
2237 .fno
= gen_helper_gvec_umax64
,
2238 .opt_opc
= vecop_list
,
2241 tcg_debug_assert(vece
<= MO_64
);
2242 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2245 /* Perform a vector negation using normal negation and a mask.
2246 Compare gen_subv_mask above. */
2247 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2249 TCGv_i64 t2
= tcg_temp_new_i64();
2250 TCGv_i64 t3
= tcg_temp_new_i64();
2252 tcg_gen_andc_i64(t3
, m
, b
);
2253 tcg_gen_andc_i64(t2
, b
, m
);
2254 tcg_gen_sub_i64(d
, m
, t2
);
2255 tcg_gen_xor_i64(d
, d
, t3
);
2257 tcg_temp_free_i64(t2
);
2258 tcg_temp_free_i64(t3
);
2261 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2263 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
2264 gen_negv_mask(d
, b
, m
);
2265 tcg_temp_free_i64(m
);
2268 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2270 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
2271 gen_negv_mask(d
, b
, m
);
2272 tcg_temp_free_i64(m
);
2275 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2277 TCGv_i64 t1
= tcg_temp_new_i64();
2278 TCGv_i64 t2
= tcg_temp_new_i64();
2280 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2281 tcg_gen_neg_i64(t2
, b
);
2282 tcg_gen_neg_i64(t1
, t1
);
2283 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2285 tcg_temp_free_i64(t1
);
2286 tcg_temp_free_i64(t2
);
2289 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2290 uint32_t oprsz
, uint32_t maxsz
)
2292 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2293 static const GVecGen2 g
[4] = {
2294 { .fni8
= tcg_gen_vec_neg8_i64
,
2295 .fniv
= tcg_gen_neg_vec
,
2296 .fno
= gen_helper_gvec_neg8
,
2297 .opt_opc
= vecop_list
,
2299 { .fni8
= tcg_gen_vec_neg16_i64
,
2300 .fniv
= tcg_gen_neg_vec
,
2301 .fno
= gen_helper_gvec_neg16
,
2302 .opt_opc
= vecop_list
,
2304 { .fni4
= tcg_gen_neg_i32
,
2305 .fniv
= tcg_gen_neg_vec
,
2306 .fno
= gen_helper_gvec_neg32
,
2307 .opt_opc
= vecop_list
,
2309 { .fni8
= tcg_gen_neg_i64
,
2310 .fniv
= tcg_gen_neg_vec
,
2311 .fno
= gen_helper_gvec_neg64
,
2312 .opt_opc
= vecop_list
,
2313 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2317 tcg_debug_assert(vece
<= MO_64
);
2318 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2321 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2323 TCGv_i64 t
= tcg_temp_new_i64();
2324 int nbit
= 8 << vece
;
2326 /* Create -1 for each negative element. */
2327 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2328 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2329 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2332 * Invert (via xor -1) and add one.
2333 * Because of the ordering the msb is cleared,
2334 * so we never have carry into the next element.
2336 tcg_gen_xor_i64(d
, b
, t
);
2337 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2338 tcg_gen_add_i64(d
, d
, t
);
2340 tcg_temp_free_i64(t
);
2343 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2345 gen_absv_mask(d
, b
, MO_8
);
2348 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2350 gen_absv_mask(d
, b
, MO_16
);
2353 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2354 uint32_t oprsz
, uint32_t maxsz
)
2356 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2357 static const GVecGen2 g
[4] = {
2358 { .fni8
= tcg_gen_vec_abs8_i64
,
2359 .fniv
= tcg_gen_abs_vec
,
2360 .fno
= gen_helper_gvec_abs8
,
2361 .opt_opc
= vecop_list
,
2363 { .fni8
= tcg_gen_vec_abs16_i64
,
2364 .fniv
= tcg_gen_abs_vec
,
2365 .fno
= gen_helper_gvec_abs16
,
2366 .opt_opc
= vecop_list
,
2368 { .fni4
= tcg_gen_abs_i32
,
2369 .fniv
= tcg_gen_abs_vec
,
2370 .fno
= gen_helper_gvec_abs32
,
2371 .opt_opc
= vecop_list
,
2373 { .fni8
= tcg_gen_abs_i64
,
2374 .fniv
= tcg_gen_abs_vec
,
2375 .fno
= gen_helper_gvec_abs64
,
2376 .opt_opc
= vecop_list
,
2377 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2381 tcg_debug_assert(vece
<= MO_64
);
2382 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2385 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2386 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2388 static const GVecGen3 g
= {
2389 .fni8
= tcg_gen_and_i64
,
2390 .fniv
= tcg_gen_and_vec
,
2391 .fno
= gen_helper_gvec_and
,
2392 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2396 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2398 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2402 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2403 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2405 static const GVecGen3 g
= {
2406 .fni8
= tcg_gen_or_i64
,
2407 .fniv
= tcg_gen_or_vec
,
2408 .fno
= gen_helper_gvec_or
,
2409 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2413 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2415 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2419 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2420 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2422 static const GVecGen3 g
= {
2423 .fni8
= tcg_gen_xor_i64
,
2424 .fniv
= tcg_gen_xor_vec
,
2425 .fno
= gen_helper_gvec_xor
,
2426 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2430 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2432 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2436 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2437 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2439 static const GVecGen3 g
= {
2440 .fni8
= tcg_gen_andc_i64
,
2441 .fniv
= tcg_gen_andc_vec
,
2442 .fno
= gen_helper_gvec_andc
,
2443 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2447 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2449 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2453 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2454 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2456 static const GVecGen3 g
= {
2457 .fni8
= tcg_gen_orc_i64
,
2458 .fniv
= tcg_gen_orc_vec
,
2459 .fno
= gen_helper_gvec_orc
,
2460 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2464 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2466 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2470 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2471 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2473 static const GVecGen3 g
= {
2474 .fni8
= tcg_gen_nand_i64
,
2475 .fniv
= tcg_gen_nand_vec
,
2476 .fno
= gen_helper_gvec_nand
,
2477 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2481 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2483 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2487 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2488 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2490 static const GVecGen3 g
= {
2491 .fni8
= tcg_gen_nor_i64
,
2492 .fniv
= tcg_gen_nor_vec
,
2493 .fno
= gen_helper_gvec_nor
,
2494 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2498 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2500 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2504 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2505 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2507 static const GVecGen3 g
= {
2508 .fni8
= tcg_gen_eqv_i64
,
2509 .fniv
= tcg_gen_eqv_vec
,
2510 .fno
= gen_helper_gvec_eqv
,
2511 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2515 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2517 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2521 static const GVecGen2s gop_ands
= {
2522 .fni8
= tcg_gen_and_i64
,
2523 .fniv
= tcg_gen_and_vec
,
2524 .fno
= gen_helper_gvec_ands
,
2525 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2529 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2530 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2532 TCGv_i64 tmp
= tcg_temp_new_i64();
2533 gen_dup_i64(vece
, tmp
, c
);
2534 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2535 tcg_temp_free_i64(tmp
);
2538 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2539 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2541 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2542 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2543 tcg_temp_free_i64(tmp
);
2546 static const GVecGen2s gop_xors
= {
2547 .fni8
= tcg_gen_xor_i64
,
2548 .fniv
= tcg_gen_xor_vec
,
2549 .fno
= gen_helper_gvec_xors
,
2550 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2554 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2555 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2557 TCGv_i64 tmp
= tcg_temp_new_i64();
2558 gen_dup_i64(vece
, tmp
, c
);
2559 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2560 tcg_temp_free_i64(tmp
);
2563 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2564 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2566 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2567 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2568 tcg_temp_free_i64(tmp
);
2571 static const GVecGen2s gop_ors
= {
2572 .fni8
= tcg_gen_or_i64
,
2573 .fniv
= tcg_gen_or_vec
,
2574 .fno
= gen_helper_gvec_ors
,
2575 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2579 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2580 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2582 TCGv_i64 tmp
= tcg_temp_new_i64();
2583 gen_dup_i64(vece
, tmp
, c
);
2584 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2585 tcg_temp_free_i64(tmp
);
2588 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2589 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2591 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2592 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2593 tcg_temp_free_i64(tmp
);
2596 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2598 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2599 tcg_gen_shli_i64(d
, a
, c
);
2600 tcg_gen_andi_i64(d
, d
, mask
);
2603 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2605 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2606 tcg_gen_shli_i64(d
, a
, c
);
2607 tcg_gen_andi_i64(d
, d
, mask
);
2610 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2611 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2613 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2614 static const GVecGen2i g
[4] = {
2615 { .fni8
= tcg_gen_vec_shl8i_i64
,
2616 .fniv
= tcg_gen_shli_vec
,
2617 .fno
= gen_helper_gvec_shl8i
,
2618 .opt_opc
= vecop_list
,
2620 { .fni8
= tcg_gen_vec_shl16i_i64
,
2621 .fniv
= tcg_gen_shli_vec
,
2622 .fno
= gen_helper_gvec_shl16i
,
2623 .opt_opc
= vecop_list
,
2625 { .fni4
= tcg_gen_shli_i32
,
2626 .fniv
= tcg_gen_shli_vec
,
2627 .fno
= gen_helper_gvec_shl32i
,
2628 .opt_opc
= vecop_list
,
2630 { .fni8
= tcg_gen_shli_i64
,
2631 .fniv
= tcg_gen_shli_vec
,
2632 .fno
= gen_helper_gvec_shl64i
,
2633 .opt_opc
= vecop_list
,
2634 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2638 tcg_debug_assert(vece
<= MO_64
);
2639 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2641 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2643 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2647 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2649 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2650 tcg_gen_shri_i64(d
, a
, c
);
2651 tcg_gen_andi_i64(d
, d
, mask
);
2654 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2656 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2657 tcg_gen_shri_i64(d
, a
, c
);
2658 tcg_gen_andi_i64(d
, d
, mask
);
2661 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2662 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2664 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2665 static const GVecGen2i g
[4] = {
2666 { .fni8
= tcg_gen_vec_shr8i_i64
,
2667 .fniv
= tcg_gen_shri_vec
,
2668 .fno
= gen_helper_gvec_shr8i
,
2669 .opt_opc
= vecop_list
,
2671 { .fni8
= tcg_gen_vec_shr16i_i64
,
2672 .fniv
= tcg_gen_shri_vec
,
2673 .fno
= gen_helper_gvec_shr16i
,
2674 .opt_opc
= vecop_list
,
2676 { .fni4
= tcg_gen_shri_i32
,
2677 .fniv
= tcg_gen_shri_vec
,
2678 .fno
= gen_helper_gvec_shr32i
,
2679 .opt_opc
= vecop_list
,
2681 { .fni8
= tcg_gen_shri_i64
,
2682 .fniv
= tcg_gen_shri_vec
,
2683 .fno
= gen_helper_gvec_shr64i
,
2684 .opt_opc
= vecop_list
,
2685 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2689 tcg_debug_assert(vece
<= MO_64
);
2690 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2692 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2694 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2698 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2700 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2701 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2702 TCGv_i64 s
= tcg_temp_new_i64();
2704 tcg_gen_shri_i64(d
, a
, c
);
2705 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2706 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2707 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2708 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2709 tcg_temp_free_i64(s
);
2712 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2714 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2715 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2716 TCGv_i64 s
= tcg_temp_new_i64();
2718 tcg_gen_shri_i64(d
, a
, c
);
2719 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2720 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2721 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2722 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2723 tcg_temp_free_i64(s
);
2726 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2727 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2729 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
2730 static const GVecGen2i g
[4] = {
2731 { .fni8
= tcg_gen_vec_sar8i_i64
,
2732 .fniv
= tcg_gen_sari_vec
,
2733 .fno
= gen_helper_gvec_sar8i
,
2734 .opt_opc
= vecop_list
,
2736 { .fni8
= tcg_gen_vec_sar16i_i64
,
2737 .fniv
= tcg_gen_sari_vec
,
2738 .fno
= gen_helper_gvec_sar16i
,
2739 .opt_opc
= vecop_list
,
2741 { .fni4
= tcg_gen_sari_i32
,
2742 .fniv
= tcg_gen_sari_vec
,
2743 .fno
= gen_helper_gvec_sar32i
,
2744 .opt_opc
= vecop_list
,
2746 { .fni8
= tcg_gen_sari_i64
,
2747 .fniv
= tcg_gen_sari_vec
,
2748 .fno
= gen_helper_gvec_sar64i
,
2749 .opt_opc
= vecop_list
,
2750 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2754 tcg_debug_assert(vece
<= MO_64
);
2755 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2757 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2759 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2763 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2765 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2767 tcg_gen_shli_i64(d
, a
, c
);
2768 tcg_gen_shri_i64(a
, a
, 8 - c
);
2769 tcg_gen_andi_i64(d
, d
, mask
);
2770 tcg_gen_andi_i64(a
, a
, ~mask
);
2771 tcg_gen_or_i64(d
, d
, a
);
2774 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2776 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2778 tcg_gen_shli_i64(d
, a
, c
);
2779 tcg_gen_shri_i64(a
, a
, 16 - c
);
2780 tcg_gen_andi_i64(d
, d
, mask
);
2781 tcg_gen_andi_i64(a
, a
, ~mask
);
2782 tcg_gen_or_i64(d
, d
, a
);
2785 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2786 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2788 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
2789 static const GVecGen2i g
[4] = {
2790 { .fni8
= tcg_gen_vec_rotl8i_i64
,
2791 .fniv
= tcg_gen_rotli_vec
,
2792 .fno
= gen_helper_gvec_rotl8i
,
2793 .opt_opc
= vecop_list
,
2795 { .fni8
= tcg_gen_vec_rotl16i_i64
,
2796 .fniv
= tcg_gen_rotli_vec
,
2797 .fno
= gen_helper_gvec_rotl16i
,
2798 .opt_opc
= vecop_list
,
2800 { .fni4
= tcg_gen_rotli_i32
,
2801 .fniv
= tcg_gen_rotli_vec
,
2802 .fno
= gen_helper_gvec_rotl32i
,
2803 .opt_opc
= vecop_list
,
2805 { .fni8
= tcg_gen_rotli_i64
,
2806 .fniv
= tcg_gen_rotli_vec
,
2807 .fno
= gen_helper_gvec_rotl64i
,
2808 .opt_opc
= vecop_list
,
2809 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2813 tcg_debug_assert(vece
<= MO_64
);
2814 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2816 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2818 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2822 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2823 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2825 tcg_debug_assert(vece
<= MO_64
);
2826 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2827 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
2832 * Specialized generation vector shifts by a non-constant scalar.
2836 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
2837 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
2838 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
2839 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
2840 gen_helper_gvec_2
*fno
[4];
2841 TCGOpcode s_list
[2];
2842 TCGOpcode v_list
[2];
2845 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2846 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
2848 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
2850 TCGv_vec t0
= tcg_temp_new_vec(type
);
2853 for (i
= 0; i
< oprsz
; i
+= tysz
) {
2854 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
2855 fni(vece
, t0
, t0
, shift
);
2856 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
2858 tcg_temp_free_vec(t0
);
2862 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
2863 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
2868 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
2869 check_overlap_2(dofs
, aofs
, maxsz
);
2871 /* If the backend has a scalar expansion, great. */
2872 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
2874 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2877 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2878 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
2879 TCG_TYPE_V256
, shift
, g
->fniv_s
);
2880 if (some
== oprsz
) {
2889 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
2890 TCG_TYPE_V128
, shift
, g
->fniv_s
);
2893 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
2894 TCG_TYPE_V64
, shift
, g
->fniv_s
);
2897 g_assert_not_reached();
2899 tcg_swap_vecop_list(hold_list
);
2903 /* If the backend supports variable vector shifts, also cool. */
2904 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
2906 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2907 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
2909 if (vece
== MO_64
) {
2910 TCGv_i64 sh64
= tcg_temp_new_i64();
2911 tcg_gen_extu_i32_i64(sh64
, shift
);
2912 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
2913 tcg_temp_free_i64(sh64
);
2915 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
2920 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2921 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
2922 v_shift
, false, g
->fniv_v
);
2923 if (some
== oprsz
) {
2932 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
2933 v_shift
, false, g
->fniv_v
);
2936 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
2937 v_shift
, false, g
->fniv_v
);
2940 g_assert_not_reached();
2942 tcg_temp_free_vec(v_shift
);
2943 tcg_swap_vecop_list(hold_list
);
2947 /* Otherwise fall back to integral... */
2948 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
2949 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
2950 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
2951 TCGv_i64 sh64
= tcg_temp_new_i64();
2952 tcg_gen_extu_i32_i64(sh64
, shift
);
2953 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
2954 tcg_temp_free_i64(sh64
);
2956 TCGv_ptr a0
= tcg_temp_new_ptr();
2957 TCGv_ptr a1
= tcg_temp_new_ptr();
2958 TCGv_i32 desc
= tcg_temp_new_i32();
2960 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
2961 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
2962 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
2963 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
2965 g
->fno
[vece
](a0
, a1
, desc
);
2967 tcg_temp_free_ptr(a0
);
2968 tcg_temp_free_ptr(a1
);
2969 tcg_temp_free_i32(desc
);
2974 if (oprsz
< maxsz
) {
2975 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
2979 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2980 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2982 static const GVecGen2sh g
= {
2983 .fni4
= tcg_gen_shl_i32
,
2984 .fni8
= tcg_gen_shl_i64
,
2985 .fniv_s
= tcg_gen_shls_vec
,
2986 .fniv_v
= tcg_gen_shlv_vec
,
2988 gen_helper_gvec_shl8i
,
2989 gen_helper_gvec_shl16i
,
2990 gen_helper_gvec_shl32i
,
2991 gen_helper_gvec_shl64i
,
2993 .s_list
= { INDEX_op_shls_vec
, 0 },
2994 .v_list
= { INDEX_op_shlv_vec
, 0 },
2997 tcg_debug_assert(vece
<= MO_64
);
2998 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3001 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3002 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3004 static const GVecGen2sh g
= {
3005 .fni4
= tcg_gen_shr_i32
,
3006 .fni8
= tcg_gen_shr_i64
,
3007 .fniv_s
= tcg_gen_shrs_vec
,
3008 .fniv_v
= tcg_gen_shrv_vec
,
3010 gen_helper_gvec_shr8i
,
3011 gen_helper_gvec_shr16i
,
3012 gen_helper_gvec_shr32i
,
3013 gen_helper_gvec_shr64i
,
3015 .s_list
= { INDEX_op_shrs_vec
, 0 },
3016 .v_list
= { INDEX_op_shrv_vec
, 0 },
3019 tcg_debug_assert(vece
<= MO_64
);
3020 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3023 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3024 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3026 static const GVecGen2sh g
= {
3027 .fni4
= tcg_gen_sar_i32
,
3028 .fni8
= tcg_gen_sar_i64
,
3029 .fniv_s
= tcg_gen_sars_vec
,
3030 .fniv_v
= tcg_gen_sarv_vec
,
3032 gen_helper_gvec_sar8i
,
3033 gen_helper_gvec_sar16i
,
3034 gen_helper_gvec_sar32i
,
3035 gen_helper_gvec_sar64i
,
3037 .s_list
= { INDEX_op_sars_vec
, 0 },
3038 .v_list
= { INDEX_op_sarv_vec
, 0 },
3041 tcg_debug_assert(vece
<= MO_64
);
3042 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3045 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3046 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3048 static const GVecGen2sh g
= {
3049 .fni4
= tcg_gen_rotl_i32
,
3050 .fni8
= tcg_gen_rotl_i64
,
3051 .fniv_s
= tcg_gen_rotls_vec
,
3052 .fniv_v
= tcg_gen_rotlv_vec
,
3054 gen_helper_gvec_rotl8i
,
3055 gen_helper_gvec_rotl16i
,
3056 gen_helper_gvec_rotl32i
,
3057 gen_helper_gvec_rotl64i
,
3059 .s_list
= { INDEX_op_rotls_vec
, 0 },
3060 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3063 tcg_debug_assert(vece
<= MO_64
);
3064 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3068 * Expand D = A << (B % element bits)
3070 * Unlike scalar shifts, where it is easy for the target front end
3071 * to include the modulo as part of the expansion. If the target
3072 * naturally includes the modulo as part of the operation, great!
3073 * If the target has some other behaviour from out-of-range shifts,
3074 * then it could not use this function anyway, and would need to
3075 * do it's own expansion with custom functions.
3077 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3078 TCGv_vec a
, TCGv_vec b
)
3080 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3082 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3083 tcg_gen_and_vec(vece
, t
, t
, b
);
3084 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3085 tcg_temp_free_vec(t
);
3088 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3090 TCGv_i32 t
= tcg_temp_new_i32();
3092 tcg_gen_andi_i32(t
, b
, 31);
3093 tcg_gen_shl_i32(d
, a
, t
);
3094 tcg_temp_free_i32(t
);
3097 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3099 TCGv_i64 t
= tcg_temp_new_i64();
3101 tcg_gen_andi_i64(t
, b
, 63);
3102 tcg_gen_shl_i64(d
, a
, t
);
3103 tcg_temp_free_i64(t
);
3106 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3107 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3109 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3110 static const GVecGen3 g
[4] = {
3111 { .fniv
= tcg_gen_shlv_mod_vec
,
3112 .fno
= gen_helper_gvec_shl8v
,
3113 .opt_opc
= vecop_list
,
3115 { .fniv
= tcg_gen_shlv_mod_vec
,
3116 .fno
= gen_helper_gvec_shl16v
,
3117 .opt_opc
= vecop_list
,
3119 { .fni4
= tcg_gen_shl_mod_i32
,
3120 .fniv
= tcg_gen_shlv_mod_vec
,
3121 .fno
= gen_helper_gvec_shl32v
,
3122 .opt_opc
= vecop_list
,
3124 { .fni8
= tcg_gen_shl_mod_i64
,
3125 .fniv
= tcg_gen_shlv_mod_vec
,
3126 .fno
= gen_helper_gvec_shl64v
,
3127 .opt_opc
= vecop_list
,
3128 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3132 tcg_debug_assert(vece
<= MO_64
);
3133 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3137 * Similarly for logical right shifts.
3140 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3141 TCGv_vec a
, TCGv_vec b
)
3143 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3145 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3146 tcg_gen_and_vec(vece
, t
, t
, b
);
3147 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3148 tcg_temp_free_vec(t
);
3151 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3153 TCGv_i32 t
= tcg_temp_new_i32();
3155 tcg_gen_andi_i32(t
, b
, 31);
3156 tcg_gen_shr_i32(d
, a
, t
);
3157 tcg_temp_free_i32(t
);
3160 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3162 TCGv_i64 t
= tcg_temp_new_i64();
3164 tcg_gen_andi_i64(t
, b
, 63);
3165 tcg_gen_shr_i64(d
, a
, t
);
3166 tcg_temp_free_i64(t
);
3169 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3170 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3172 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3173 static const GVecGen3 g
[4] = {
3174 { .fniv
= tcg_gen_shrv_mod_vec
,
3175 .fno
= gen_helper_gvec_shr8v
,
3176 .opt_opc
= vecop_list
,
3178 { .fniv
= tcg_gen_shrv_mod_vec
,
3179 .fno
= gen_helper_gvec_shr16v
,
3180 .opt_opc
= vecop_list
,
3182 { .fni4
= tcg_gen_shr_mod_i32
,
3183 .fniv
= tcg_gen_shrv_mod_vec
,
3184 .fno
= gen_helper_gvec_shr32v
,
3185 .opt_opc
= vecop_list
,
3187 { .fni8
= tcg_gen_shr_mod_i64
,
3188 .fniv
= tcg_gen_shrv_mod_vec
,
3189 .fno
= gen_helper_gvec_shr64v
,
3190 .opt_opc
= vecop_list
,
3191 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3195 tcg_debug_assert(vece
<= MO_64
);
3196 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3200 * Similarly for arithmetic right shifts.
3203 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3204 TCGv_vec a
, TCGv_vec b
)
3206 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3208 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3209 tcg_gen_and_vec(vece
, t
, t
, b
);
3210 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3211 tcg_temp_free_vec(t
);
3214 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3216 TCGv_i32 t
= tcg_temp_new_i32();
3218 tcg_gen_andi_i32(t
, b
, 31);
3219 tcg_gen_sar_i32(d
, a
, t
);
3220 tcg_temp_free_i32(t
);
3223 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3225 TCGv_i64 t
= tcg_temp_new_i64();
3227 tcg_gen_andi_i64(t
, b
, 63);
3228 tcg_gen_sar_i64(d
, a
, t
);
3229 tcg_temp_free_i64(t
);
3232 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3233 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3235 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3236 static const GVecGen3 g
[4] = {
3237 { .fniv
= tcg_gen_sarv_mod_vec
,
3238 .fno
= gen_helper_gvec_sar8v
,
3239 .opt_opc
= vecop_list
,
3241 { .fniv
= tcg_gen_sarv_mod_vec
,
3242 .fno
= gen_helper_gvec_sar16v
,
3243 .opt_opc
= vecop_list
,
3245 { .fni4
= tcg_gen_sar_mod_i32
,
3246 .fniv
= tcg_gen_sarv_mod_vec
,
3247 .fno
= gen_helper_gvec_sar32v
,
3248 .opt_opc
= vecop_list
,
3250 { .fni8
= tcg_gen_sar_mod_i64
,
3251 .fniv
= tcg_gen_sarv_mod_vec
,
3252 .fno
= gen_helper_gvec_sar64v
,
3253 .opt_opc
= vecop_list
,
3254 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3258 tcg_debug_assert(vece
<= MO_64
);
3259 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3263 * Similarly for rotates.
3266 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3267 TCGv_vec a
, TCGv_vec b
)
3269 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3271 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3272 tcg_gen_and_vec(vece
, t
, t
, b
);
3273 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3274 tcg_temp_free_vec(t
);
3277 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3279 TCGv_i32 t
= tcg_temp_new_i32();
3281 tcg_gen_andi_i32(t
, b
, 31);
3282 tcg_gen_rotl_i32(d
, a
, t
);
3283 tcg_temp_free_i32(t
);
3286 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3288 TCGv_i64 t
= tcg_temp_new_i64();
3290 tcg_gen_andi_i64(t
, b
, 63);
3291 tcg_gen_rotl_i64(d
, a
, t
);
3292 tcg_temp_free_i64(t
);
3295 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3296 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3298 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3299 static const GVecGen3 g
[4] = {
3300 { .fniv
= tcg_gen_rotlv_mod_vec
,
3301 .fno
= gen_helper_gvec_rotl8v
,
3302 .opt_opc
= vecop_list
,
3304 { .fniv
= tcg_gen_rotlv_mod_vec
,
3305 .fno
= gen_helper_gvec_rotl16v
,
3306 .opt_opc
= vecop_list
,
3308 { .fni4
= tcg_gen_rotl_mod_i32
,
3309 .fniv
= tcg_gen_rotlv_mod_vec
,
3310 .fno
= gen_helper_gvec_rotl32v
,
3311 .opt_opc
= vecop_list
,
3313 { .fni8
= tcg_gen_rotl_mod_i64
,
3314 .fniv
= tcg_gen_rotlv_mod_vec
,
3315 .fno
= gen_helper_gvec_rotl64v
,
3316 .opt_opc
= vecop_list
,
3317 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3321 tcg_debug_assert(vece
<= MO_64
);
3322 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3325 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3326 TCGv_vec a
, TCGv_vec b
)
3328 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3330 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3331 tcg_gen_and_vec(vece
, t
, t
, b
);
3332 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3333 tcg_temp_free_vec(t
);
3336 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3338 TCGv_i32 t
= tcg_temp_new_i32();
3340 tcg_gen_andi_i32(t
, b
, 31);
3341 tcg_gen_rotr_i32(d
, a
, t
);
3342 tcg_temp_free_i32(t
);
3345 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3347 TCGv_i64 t
= tcg_temp_new_i64();
3349 tcg_gen_andi_i64(t
, b
, 63);
3350 tcg_gen_rotr_i64(d
, a
, t
);
3351 tcg_temp_free_i64(t
);
3354 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3355 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3357 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3358 static const GVecGen3 g
[4] = {
3359 { .fniv
= tcg_gen_rotrv_mod_vec
,
3360 .fno
= gen_helper_gvec_rotr8v
,
3361 .opt_opc
= vecop_list
,
3363 { .fniv
= tcg_gen_rotrv_mod_vec
,
3364 .fno
= gen_helper_gvec_rotr16v
,
3365 .opt_opc
= vecop_list
,
3367 { .fni4
= tcg_gen_rotr_mod_i32
,
3368 .fniv
= tcg_gen_rotrv_mod_vec
,
3369 .fno
= gen_helper_gvec_rotr32v
,
3370 .opt_opc
= vecop_list
,
3372 { .fni8
= tcg_gen_rotr_mod_i64
,
3373 .fniv
= tcg_gen_rotrv_mod_vec
,
3374 .fno
= gen_helper_gvec_rotr64v
,
3375 .opt_opc
= vecop_list
,
3376 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3380 tcg_debug_assert(vece
<= MO_64
);
3381 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3384 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3385 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3386 uint32_t oprsz
, TCGCond cond
)
3388 TCGv_i32 t0
= tcg_temp_new_i32();
3389 TCGv_i32 t1
= tcg_temp_new_i32();
3392 for (i
= 0; i
< oprsz
; i
+= 4) {
3393 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3394 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3395 tcg_gen_setcond_i32(cond
, t0
, t0
, t1
);
3396 tcg_gen_neg_i32(t0
, t0
);
3397 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3399 tcg_temp_free_i32(t1
);
3400 tcg_temp_free_i32(t0
);
3403 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3404 uint32_t oprsz
, TCGCond cond
)
3406 TCGv_i64 t0
= tcg_temp_new_i64();
3407 TCGv_i64 t1
= tcg_temp_new_i64();
3410 for (i
= 0; i
< oprsz
; i
+= 8) {
3411 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3412 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3413 tcg_gen_setcond_i64(cond
, t0
, t0
, t1
);
3414 tcg_gen_neg_i64(t0
, t0
);
3415 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3417 tcg_temp_free_i64(t1
);
3418 tcg_temp_free_i64(t0
);
3421 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3422 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3423 TCGType type
, TCGCond cond
)
3425 TCGv_vec t0
= tcg_temp_new_vec(type
);
3426 TCGv_vec t1
= tcg_temp_new_vec(type
);
3429 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3430 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3431 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3432 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3433 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3435 tcg_temp_free_vec(t1
);
3436 tcg_temp_free_vec(t0
);
3439 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3440 uint32_t aofs
, uint32_t bofs
,
3441 uint32_t oprsz
, uint32_t maxsz
)
3443 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3444 static gen_helper_gvec_3
* const eq_fn
[4] = {
3445 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3446 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3448 static gen_helper_gvec_3
* const ne_fn
[4] = {
3449 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3450 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3452 static gen_helper_gvec_3
* const lt_fn
[4] = {
3453 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3454 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3456 static gen_helper_gvec_3
* const le_fn
[4] = {
3457 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3458 gen_helper_gvec_le32
, gen_helper_gvec_le64
3460 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3461 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3462 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3464 static gen_helper_gvec_3
* const leu_fn
[4] = {
3465 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3466 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3468 static gen_helper_gvec_3
* const * const fns
[16] = {
3469 [TCG_COND_EQ
] = eq_fn
,
3470 [TCG_COND_NE
] = ne_fn
,
3471 [TCG_COND_LT
] = lt_fn
,
3472 [TCG_COND_LE
] = le_fn
,
3473 [TCG_COND_LTU
] = ltu_fn
,
3474 [TCG_COND_LEU
] = leu_fn
,
3477 const TCGOpcode
*hold_list
;
3481 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3482 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3484 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3485 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3486 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3491 * Implement inline with a vector type, if possible.
3492 * Prefer integer when 64-bit host and 64-bit comparison.
3494 hold_list
= tcg_swap_vecop_list(cmp_list
);
3495 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3496 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3499 /* Recall that ARM SVE allows vector sizes that are not a
3500 * power of 2, but always a multiple of 16. The intent is
3501 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3503 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3504 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3505 if (some
== oprsz
) {
3515 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3518 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3522 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3523 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3524 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3525 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3527 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3531 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3532 cond
= tcg_swap_cond(cond
);
3536 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3542 g_assert_not_reached();
3544 tcg_swap_vecop_list(hold_list
);
3546 if (oprsz
< maxsz
) {
3547 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3551 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3553 TCGv_i64 t
= tcg_temp_new_i64();
3555 tcg_gen_and_i64(t
, b
, a
);
3556 tcg_gen_andc_i64(d
, c
, a
);
3557 tcg_gen_or_i64(d
, d
, t
);
3558 tcg_temp_free_i64(t
);
3561 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3562 uint32_t bofs
, uint32_t cofs
,
3563 uint32_t oprsz
, uint32_t maxsz
)
3565 static const GVecGen4 g
= {
3566 .fni8
= tcg_gen_bitsel_i64
,
3567 .fniv
= tcg_gen_bitsel_vec
,
3568 .fno
= gen_helper_gvec_bitsel
,
3571 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);