2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
40 * Print and error on both the Monitor and the Log file.
42 #define ERROR(errp, fmt, ...) \
44 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
45 if (errp && (*(errp) == NULL)) { \
46 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
50 #define RDMA_RESOLVE_TIMEOUT_MS 10000
52 /* Do not merge data if larger than this. */
53 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
54 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
56 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
59 * This is only for non-live state being migrated.
60 * Instead of RDMA_WRITE messages, we use RDMA_SEND
61 * messages for that state, which requires a different
62 * delivery design than main memory.
64 #define RDMA_SEND_INCREMENT 32768
67 * Maximum size infiniband SEND message
69 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
70 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
72 #define RDMA_CONTROL_VERSION_CURRENT 1
74 * Capabilities for negotiation.
76 #define RDMA_CAPABILITY_PIN_ALL 0x01
79 * Add the other flags above to this list of known capabilities
80 * as they are introduced.
82 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
84 #define CHECK_ERROR_STATE() \
86 if (rdma->error_state) { \
87 if (!rdma->error_reported) { \
88 error_report("RDMA is in an error state waiting migration" \
90 rdma->error_reported = 1; \
92 return rdma->error_state; \
97 * A work request ID is 64-bits and we split up these bits
100 * bits 0-15 : type of control message, 2^16
101 * bits 16-29: ram block index, 2^14
102 * bits 30-63: ram block chunk number, 2^34
104 * The last two bit ranges are only used for RDMA writes,
105 * in order to track their completion and potentially
106 * also track unregistration status of the message.
108 #define RDMA_WRID_TYPE_SHIFT 0UL
109 #define RDMA_WRID_BLOCK_SHIFT 16UL
110 #define RDMA_WRID_CHUNK_SHIFT 30UL
112 #define RDMA_WRID_TYPE_MASK \
113 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
115 #define RDMA_WRID_BLOCK_MASK \
116 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
118 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
121 * RDMA migration protocol:
122 * 1. RDMA Writes (data messages, i.e. RAM)
123 * 2. IB Send/Recv (control channel messages)
127 RDMA_WRID_RDMA_WRITE
= 1,
128 RDMA_WRID_SEND_CONTROL
= 2000,
129 RDMA_WRID_RECV_CONTROL
= 4000,
132 static const char *wrid_desc
[] = {
133 [RDMA_WRID_NONE
] = "NONE",
134 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
135 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
136 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
140 * Work request IDs for IB SEND messages only (not RDMA writes).
141 * This is used by the migration protocol to transmit
142 * control messages (such as device state and registration commands)
144 * We could use more WRs, but we have enough for now.
154 * SEND/RECV IB Control Messages.
157 RDMA_CONTROL_NONE
= 0,
159 RDMA_CONTROL_READY
, /* ready to receive */
160 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
161 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
162 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
163 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
164 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
165 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
166 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
167 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
168 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
173 * Memory and MR structures used to represent an IB Send/Recv work request.
174 * This is *not* used for RDMA writes, only IB Send/Recv.
177 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
178 struct ibv_mr
*control_mr
; /* registration metadata */
179 size_t control_len
; /* length of the message */
180 uint8_t *control_curr
; /* start of unconsumed bytes */
181 } RDMAWorkRequestData
;
184 * Negotiate RDMA capabilities during connection-setup time.
191 static void caps_to_network(RDMACapabilities
*cap
)
193 cap
->version
= htonl(cap
->version
);
194 cap
->flags
= htonl(cap
->flags
);
197 static void network_to_caps(RDMACapabilities
*cap
)
199 cap
->version
= ntohl(cap
->version
);
200 cap
->flags
= ntohl(cap
->flags
);
204 * Representation of a RAMBlock from an RDMA perspective.
205 * This is not transmitted, only local.
206 * This and subsequent structures cannot be linked lists
207 * because we're using a single IB message to transmit
208 * the information. It's small anyway, so a list is overkill.
210 typedef struct RDMALocalBlock
{
212 uint8_t *local_host_addr
; /* local virtual address */
213 uint64_t remote_host_addr
; /* remote virtual address */
216 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
217 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
218 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
219 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
220 int index
; /* which block are we */
221 unsigned int src_index
; /* (Only used on dest) */
224 unsigned long *transit_bitmap
;
225 unsigned long *unregister_bitmap
;
229 * Also represents a RAMblock, but only on the dest.
230 * This gets transmitted by the dest during connection-time
231 * to the source VM and then is used to populate the
232 * corresponding RDMALocalBlock with
233 * the information needed to perform the actual RDMA.
235 typedef struct QEMU_PACKED RDMADestBlock
{
236 uint64_t remote_host_addr
;
239 uint32_t remote_rkey
;
243 static const char *control_desc(unsigned int rdma_control
)
245 static const char *strs
[] = {
246 [RDMA_CONTROL_NONE
] = "NONE",
247 [RDMA_CONTROL_ERROR
] = "ERROR",
248 [RDMA_CONTROL_READY
] = "READY",
249 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
250 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
251 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
252 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
253 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
254 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
255 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
256 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
257 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
260 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
261 return "??BAD CONTROL VALUE??";
264 return strs
[rdma_control
];
267 static uint64_t htonll(uint64_t v
)
269 union { uint32_t lv
[2]; uint64_t llv
; } u
;
270 u
.lv
[0] = htonl(v
>> 32);
271 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
275 static uint64_t ntohll(uint64_t v
) {
276 union { uint32_t lv
[2]; uint64_t llv
; } u
;
278 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
281 static void dest_block_to_network(RDMADestBlock
*db
)
283 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
284 db
->offset
= htonll(db
->offset
);
285 db
->length
= htonll(db
->length
);
286 db
->remote_rkey
= htonl(db
->remote_rkey
);
289 static void network_to_dest_block(RDMADestBlock
*db
)
291 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
292 db
->offset
= ntohll(db
->offset
);
293 db
->length
= ntohll(db
->length
);
294 db
->remote_rkey
= ntohl(db
->remote_rkey
);
298 * Virtual address of the above structures used for transmitting
299 * the RAMBlock descriptions at connection-time.
300 * This structure is *not* transmitted.
302 typedef struct RDMALocalBlocks
{
304 bool init
; /* main memory init complete */
305 RDMALocalBlock
*block
;
309 * Main data structure for RDMA state.
310 * While there is only one copy of this structure being allocated right now,
311 * this is the place where one would start if you wanted to consider
312 * having more than one RDMA connection open at the same time.
314 typedef struct RDMAContext
{
318 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
321 * This is used by *_exchange_send() to figure out whether or not
322 * the initial "READY" message has already been received or not.
323 * This is because other functions may potentially poll() and detect
324 * the READY message before send() does, in which case we need to
325 * know if it completed.
327 int control_ready_expected
;
329 /* number of outstanding writes */
332 /* store info about current buffer so that we can
333 merge it with future sends */
334 uint64_t current_addr
;
335 uint64_t current_length
;
336 /* index of ram block the current buffer belongs to */
338 /* index of the chunk in the current ram block */
344 * infiniband-specific variables for opening the device
345 * and maintaining connection state and so forth.
347 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
348 * cm_id->verbs, cm_id->channel, and cm_id->qp.
350 struct rdma_cm_id
*cm_id
; /* connection manager ID */
351 struct rdma_cm_id
*listen_id
;
354 struct ibv_context
*verbs
;
355 struct rdma_event_channel
*channel
;
356 struct ibv_qp
*qp
; /* queue pair */
357 struct ibv_comp_channel
*comp_channel
; /* completion channel */
358 struct ibv_pd
*pd
; /* protection domain */
359 struct ibv_cq
*cq
; /* completion queue */
362 * If a previous write failed (perhaps because of a failed
363 * memory registration, then do not attempt any future work
364 * and remember the error state.
371 * Description of ram blocks used throughout the code.
373 RDMALocalBlocks local_ram_blocks
;
374 RDMADestBlock
*dest_blocks
;
376 /* Index of the next RAMBlock received during block registration */
377 unsigned int next_src_index
;
380 * Migration on *destination* started.
381 * Then use coroutine yield function.
382 * Source runs in a thread, so we don't care.
384 int migration_started_on_destination
;
386 int total_registrations
;
389 int unregister_current
, unregister_next
;
390 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
392 GHashTable
*blockmap
;
394 /* the RDMAContext for return path */
395 struct RDMAContext
*return_path
;
399 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
400 #define QIO_CHANNEL_RDMA(obj) \
401 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
403 typedef struct QIOChannelRDMA QIOChannelRDMA
;
406 struct QIOChannelRDMA
{
409 RDMAContext
*rdmaout
;
411 bool blocking
; /* XXX we don't actually honour this yet */
415 * Main structure for IB Send/Recv control messages.
416 * This gets prepended at the beginning of every Send/Recv.
418 typedef struct QEMU_PACKED
{
419 uint32_t len
; /* Total length of data portion */
420 uint32_t type
; /* which control command to perform */
421 uint32_t repeat
; /* number of commands in data portion of same type */
425 static void control_to_network(RDMAControlHeader
*control
)
427 control
->type
= htonl(control
->type
);
428 control
->len
= htonl(control
->len
);
429 control
->repeat
= htonl(control
->repeat
);
432 static void network_to_control(RDMAControlHeader
*control
)
434 control
->type
= ntohl(control
->type
);
435 control
->len
= ntohl(control
->len
);
436 control
->repeat
= ntohl(control
->repeat
);
440 * Register a single Chunk.
441 * Information sent by the source VM to inform the dest
442 * to register an single chunk of memory before we can perform
443 * the actual RDMA operation.
445 typedef struct QEMU_PACKED
{
447 uint64_t current_addr
; /* offset into the ram_addr_t space */
448 uint64_t chunk
; /* chunk to lookup if unregistering */
450 uint32_t current_index
; /* which ramblock the chunk belongs to */
452 uint64_t chunks
; /* how many sequential chunks to register */
455 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
457 RDMALocalBlock
*local_block
;
458 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
460 if (local_block
->is_ram_block
) {
462 * current_addr as passed in is an address in the local ram_addr_t
463 * space, we need to translate this for the destination
465 reg
->key
.current_addr
-= local_block
->offset
;
466 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
468 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
469 reg
->current_index
= htonl(reg
->current_index
);
470 reg
->chunks
= htonll(reg
->chunks
);
473 static void network_to_register(RDMARegister
*reg
)
475 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
476 reg
->current_index
= ntohl(reg
->current_index
);
477 reg
->chunks
= ntohll(reg
->chunks
);
480 typedef struct QEMU_PACKED
{
481 uint32_t value
; /* if zero, we will madvise() */
482 uint32_t block_idx
; /* which ram block index */
483 uint64_t offset
; /* Address in remote ram_addr_t space */
484 uint64_t length
; /* length of the chunk */
487 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
489 comp
->value
= htonl(comp
->value
);
491 * comp->offset as passed in is an address in the local ram_addr_t
492 * space, we need to translate this for the destination
494 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
495 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
496 comp
->block_idx
= htonl(comp
->block_idx
);
497 comp
->offset
= htonll(comp
->offset
);
498 comp
->length
= htonll(comp
->length
);
501 static void network_to_compress(RDMACompress
*comp
)
503 comp
->value
= ntohl(comp
->value
);
504 comp
->block_idx
= ntohl(comp
->block_idx
);
505 comp
->offset
= ntohll(comp
->offset
);
506 comp
->length
= ntohll(comp
->length
);
510 * The result of the dest's memory registration produces an "rkey"
511 * which the source VM must reference in order to perform
512 * the RDMA operation.
514 typedef struct QEMU_PACKED
{
518 } RDMARegisterResult
;
520 static void result_to_network(RDMARegisterResult
*result
)
522 result
->rkey
= htonl(result
->rkey
);
523 result
->host_addr
= htonll(result
->host_addr
);
526 static void network_to_result(RDMARegisterResult
*result
)
528 result
->rkey
= ntohl(result
->rkey
);
529 result
->host_addr
= ntohll(result
->host_addr
);
532 const char *print_wrid(int wrid
);
533 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
534 uint8_t *data
, RDMAControlHeader
*resp
,
536 int (*callback
)(RDMAContext
*rdma
));
538 static inline uint64_t ram_chunk_index(const uint8_t *start
,
541 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
544 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
547 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
548 (i
<< RDMA_REG_CHUNK_SHIFT
));
551 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
554 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
555 (1UL << RDMA_REG_CHUNK_SHIFT
);
557 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
558 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
564 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
566 ram_addr_t block_offset
, uint64_t length
)
568 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
569 RDMALocalBlock
*block
;
570 RDMALocalBlock
*old
= local
->block
;
572 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
574 if (local
->nb_blocks
) {
577 if (rdma
->blockmap
) {
578 for (x
= 0; x
< local
->nb_blocks
; x
++) {
579 g_hash_table_remove(rdma
->blockmap
,
580 (void *)(uintptr_t)old
[x
].offset
);
581 g_hash_table_insert(rdma
->blockmap
,
582 (void *)(uintptr_t)old
[x
].offset
,
586 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
590 block
= &local
->block
[local
->nb_blocks
];
592 block
->block_name
= g_strdup(block_name
);
593 block
->local_host_addr
= host_addr
;
594 block
->offset
= block_offset
;
595 block
->length
= length
;
596 block
->index
= local
->nb_blocks
;
597 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
598 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
599 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
600 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
601 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
602 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
603 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
605 block
->is_ram_block
= local
->init
? false : true;
607 if (rdma
->blockmap
) {
608 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
611 trace_rdma_add_block(block_name
, local
->nb_blocks
,
612 (uintptr_t) block
->local_host_addr
,
613 block
->offset
, block
->length
,
614 (uintptr_t) (block
->local_host_addr
+ block
->length
),
615 BITS_TO_LONGS(block
->nb_chunks
) *
616 sizeof(unsigned long) * 8,
625 * Memory regions need to be registered with the device and queue pairs setup
626 * in advanced before the migration starts. This tells us where the RAM blocks
627 * are so that we can register them individually.
629 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
631 const char *block_name
= qemu_ram_get_idstr(rb
);
632 void *host_addr
= qemu_ram_get_host_addr(rb
);
633 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
634 ram_addr_t length
= qemu_ram_get_used_length(rb
);
635 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
639 * Identify the RAMBlocks and their quantity. They will be references to
640 * identify chunk boundaries inside each RAMBlock and also be referenced
641 * during dynamic page registration.
643 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
645 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
648 assert(rdma
->blockmap
== NULL
);
649 memset(local
, 0, sizeof *local
);
650 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
654 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
655 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
656 rdma
->local_ram_blocks
.nb_blocks
);
662 * Note: If used outside of cleanup, the caller must ensure that the destination
663 * block structures are also updated
665 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
667 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
668 RDMALocalBlock
*old
= local
->block
;
671 if (rdma
->blockmap
) {
672 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
677 for (j
= 0; j
< block
->nb_chunks
; j
++) {
678 if (!block
->pmr
[j
]) {
681 ibv_dereg_mr(block
->pmr
[j
]);
682 rdma
->total_registrations
--;
689 ibv_dereg_mr(block
->mr
);
690 rdma
->total_registrations
--;
694 g_free(block
->transit_bitmap
);
695 block
->transit_bitmap
= NULL
;
697 g_free(block
->unregister_bitmap
);
698 block
->unregister_bitmap
= NULL
;
700 g_free(block
->remote_keys
);
701 block
->remote_keys
= NULL
;
703 g_free(block
->block_name
);
704 block
->block_name
= NULL
;
706 if (rdma
->blockmap
) {
707 for (x
= 0; x
< local
->nb_blocks
; x
++) {
708 g_hash_table_remove(rdma
->blockmap
,
709 (void *)(uintptr_t)old
[x
].offset
);
713 if (local
->nb_blocks
> 1) {
715 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
718 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
721 if (block
->index
< (local
->nb_blocks
- 1)) {
722 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
723 sizeof(RDMALocalBlock
) *
724 (local
->nb_blocks
- (block
->index
+ 1)));
725 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
726 local
->block
[x
].index
--;
730 assert(block
== local
->block
);
734 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
735 block
->offset
, block
->length
,
736 (uintptr_t)(block
->local_host_addr
+ block
->length
),
737 BITS_TO_LONGS(block
->nb_chunks
) *
738 sizeof(unsigned long) * 8, block
->nb_chunks
);
744 if (local
->nb_blocks
&& rdma
->blockmap
) {
745 for (x
= 0; x
< local
->nb_blocks
; x
++) {
746 g_hash_table_insert(rdma
->blockmap
,
747 (void *)(uintptr_t)local
->block
[x
].offset
,
756 * Put in the log file which RDMA device was opened and the details
757 * associated with that device.
759 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
761 struct ibv_port_attr port
;
763 if (ibv_query_port(verbs
, 1, &port
)) {
764 error_report("Failed to query port information");
768 printf("%s RDMA Device opened: kernel name %s "
769 "uverbs device name %s, "
770 "infiniband_verbs class device path %s, "
771 "infiniband class device path %s, "
772 "transport: (%d) %s\n",
775 verbs
->device
->dev_name
,
776 verbs
->device
->dev_path
,
777 verbs
->device
->ibdev_path
,
779 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
780 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
781 ? "Ethernet" : "Unknown"));
785 * Put in the log file the RDMA gid addressing information,
786 * useful for folks who have trouble understanding the
787 * RDMA device hierarchy in the kernel.
789 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
793 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
794 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
795 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
799 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
800 * We will try the next addrinfo struct, and fail if there are
801 * no other valid addresses to bind against.
803 * If user is listening on '[::]', then we will not have a opened a device
804 * yet and have no way of verifying if the device is RoCE or not.
806 * In this case, the source VM will throw an error for ALL types of
807 * connections (both IPv4 and IPv6) if the destination machine does not have
808 * a regular infiniband network available for use.
810 * The only way to guarantee that an error is thrown for broken kernels is
811 * for the management software to choose a *specific* interface at bind time
812 * and validate what time of hardware it is.
814 * Unfortunately, this puts the user in a fix:
816 * If the source VM connects with an IPv4 address without knowing that the
817 * destination has bound to '[::]' the migration will unconditionally fail
818 * unless the management software is explicitly listening on the IPv4
819 * address while using a RoCE-based device.
821 * If the source VM connects with an IPv6 address, then we're OK because we can
822 * throw an error on the source (and similarly on the destination).
824 * But in mixed environments, this will be broken for a while until it is fixed
827 * We do provide a *tiny* bit of help in this function: We can list all of the
828 * devices in the system and check to see if all the devices are RoCE or
831 * If we detect that we have a *pure* RoCE environment, then we can safely
832 * thrown an error even if the management software has specified '[::]' as the
835 * However, if there is are multiple hetergeneous devices, then we cannot make
836 * this assumption and the user just has to be sure they know what they are
839 * Patches are being reviewed on linux-rdma.
841 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
843 /* This bug only exists in linux, to our knowledge. */
845 struct ibv_port_attr port_attr
;
848 * Verbs are only NULL if management has bound to '[::]'.
850 * Let's iterate through all the devices and see if there any pure IB
851 * devices (non-ethernet).
853 * If not, then we can safely proceed with the migration.
854 * Otherwise, there are no guarantees until the bug is fixed in linux.
858 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
859 bool roce_found
= false;
860 bool ib_found
= false;
862 for (x
= 0; x
< num_devices
; x
++) {
863 verbs
= ibv_open_device(dev_list
[x
]);
865 if (errno
== EPERM
) {
872 if (ibv_query_port(verbs
, 1, &port_attr
)) {
873 ibv_close_device(verbs
);
874 ERROR(errp
, "Could not query initial IB port");
878 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
880 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
884 ibv_close_device(verbs
);
890 fprintf(stderr
, "WARN: migrations may fail:"
891 " IPv6 over RoCE / iWARP in linux"
892 " is broken. But since you appear to have a"
893 " mixed RoCE / IB environment, be sure to only"
894 " migrate over the IB fabric until the kernel "
895 " fixes the bug.\n");
897 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
898 " and your management software has specified '[::]'"
899 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
908 * If we have a verbs context, that means that some other than '[::]' was
909 * used by the management software for binding. In which case we can
910 * actually warn the user about a potentially broken kernel.
913 /* IB ports start with 1, not 0 */
914 if (ibv_query_port(verbs
, 1, &port_attr
)) {
915 ERROR(errp
, "Could not query initial IB port");
919 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
920 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
921 "(but patches on linux-rdma in progress)");
931 * Figure out which RDMA device corresponds to the requested IP hostname
932 * Also create the initial connection manager identifiers for opening
935 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
938 struct rdma_addrinfo
*res
;
940 struct rdma_cm_event
*cm_event
;
941 char ip
[40] = "unknown";
942 struct rdma_addrinfo
*e
;
944 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
945 ERROR(errp
, "RDMA hostname has not been set");
949 /* create CM channel */
950 rdma
->channel
= rdma_create_event_channel();
951 if (!rdma
->channel
) {
952 ERROR(errp
, "could not create CM channel");
957 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
959 ERROR(errp
, "could not create channel id");
960 goto err_resolve_create_id
;
963 snprintf(port_str
, 16, "%d", rdma
->port
);
966 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
968 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
969 goto err_resolve_get_addr
;
972 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
973 inet_ntop(e
->ai_family
,
974 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
975 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
977 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
978 RDMA_RESOLVE_TIMEOUT_MS
);
980 if (e
->ai_family
== AF_INET6
) {
981 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
990 ERROR(errp
, "could not resolve address %s", rdma
->host
);
991 goto err_resolve_get_addr
;
994 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
996 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
998 ERROR(errp
, "could not perform event_addr_resolved");
999 goto err_resolve_get_addr
;
1002 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1003 ERROR(errp
, "result not equal to event_addr_resolved %s",
1004 rdma_event_str(cm_event
->event
));
1005 perror("rdma_resolve_addr");
1006 rdma_ack_cm_event(cm_event
);
1008 goto err_resolve_get_addr
;
1010 rdma_ack_cm_event(cm_event
);
1013 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1015 ERROR(errp
, "could not resolve rdma route");
1016 goto err_resolve_get_addr
;
1019 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1021 ERROR(errp
, "could not perform event_route_resolved");
1022 goto err_resolve_get_addr
;
1024 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1025 ERROR(errp
, "result not equal to event_route_resolved: %s",
1026 rdma_event_str(cm_event
->event
));
1027 rdma_ack_cm_event(cm_event
);
1029 goto err_resolve_get_addr
;
1031 rdma_ack_cm_event(cm_event
);
1032 rdma
->verbs
= rdma
->cm_id
->verbs
;
1033 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1034 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1037 err_resolve_get_addr
:
1038 rdma_destroy_id(rdma
->cm_id
);
1040 err_resolve_create_id
:
1041 rdma_destroy_event_channel(rdma
->channel
);
1042 rdma
->channel
= NULL
;
1047 * Create protection domain and completion queues
1049 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1052 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1054 error_report("failed to allocate protection domain");
1058 /* create completion channel */
1059 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1060 if (!rdma
->comp_channel
) {
1061 error_report("failed to allocate completion channel");
1062 goto err_alloc_pd_cq
;
1066 * Completion queue can be filled by both read and write work requests,
1067 * so must reflect the sum of both possible queue sizes.
1069 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1070 NULL
, rdma
->comp_channel
, 0);
1072 error_report("failed to allocate completion queue");
1073 goto err_alloc_pd_cq
;
1080 ibv_dealloc_pd(rdma
->pd
);
1082 if (rdma
->comp_channel
) {
1083 ibv_destroy_comp_channel(rdma
->comp_channel
);
1086 rdma
->comp_channel
= NULL
;
1092 * Create queue pairs.
1094 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1096 struct ibv_qp_init_attr attr
= { 0 };
1099 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1100 attr
.cap
.max_recv_wr
= 3;
1101 attr
.cap
.max_send_sge
= 1;
1102 attr
.cap
.max_recv_sge
= 1;
1103 attr
.send_cq
= rdma
->cq
;
1104 attr
.recv_cq
= rdma
->cq
;
1105 attr
.qp_type
= IBV_QPT_RC
;
1107 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1112 rdma
->qp
= rdma
->cm_id
->qp
;
1116 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1119 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1121 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1122 local
->block
[i
].mr
=
1123 ibv_reg_mr(rdma
->pd
,
1124 local
->block
[i
].local_host_addr
,
1125 local
->block
[i
].length
,
1126 IBV_ACCESS_LOCAL_WRITE
|
1127 IBV_ACCESS_REMOTE_WRITE
1129 if (!local
->block
[i
].mr
) {
1130 perror("Failed to register local dest ram block!\n");
1133 rdma
->total_registrations
++;
1136 if (i
>= local
->nb_blocks
) {
1140 for (i
--; i
>= 0; i
--) {
1141 ibv_dereg_mr(local
->block
[i
].mr
);
1142 rdma
->total_registrations
--;
1150 * Find the ram block that corresponds to the page requested to be
1151 * transmitted by QEMU.
1153 * Once the block is found, also identify which 'chunk' within that
1154 * block that the page belongs to.
1156 * This search cannot fail or the migration will fail.
1158 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1159 uintptr_t block_offset
,
1162 uint64_t *block_index
,
1163 uint64_t *chunk_index
)
1165 uint64_t current_addr
= block_offset
+ offset
;
1166 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1167 (void *) block_offset
);
1169 assert(current_addr
>= block
->offset
);
1170 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1172 *block_index
= block
->index
;
1173 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1174 block
->local_host_addr
+ (current_addr
- block
->offset
));
1180 * Register a chunk with IB. If the chunk was already registered
1181 * previously, then skip.
1183 * Also return the keys associated with the registration needed
1184 * to perform the actual RDMA operation.
1186 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1187 RDMALocalBlock
*block
, uintptr_t host_addr
,
1188 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1189 uint8_t *chunk_start
, uint8_t *chunk_end
)
1193 *lkey
= block
->mr
->lkey
;
1196 *rkey
= block
->mr
->rkey
;
1201 /* allocate memory to store chunk MRs */
1203 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1207 * If 'rkey', then we're the destination, so grant access to the source.
1209 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1211 if (!block
->pmr
[chunk
]) {
1212 uint64_t len
= chunk_end
- chunk_start
;
1214 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1216 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1218 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1219 IBV_ACCESS_REMOTE_WRITE
) : 0));
1221 if (!block
->pmr
[chunk
]) {
1222 perror("Failed to register chunk!");
1223 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1224 " start %" PRIuPTR
" end %" PRIuPTR
1226 " local %" PRIuPTR
" registrations: %d\n",
1227 block
->index
, chunk
, (uintptr_t)chunk_start
,
1228 (uintptr_t)chunk_end
, host_addr
,
1229 (uintptr_t)block
->local_host_addr
,
1230 rdma
->total_registrations
);
1233 rdma
->total_registrations
++;
1237 *lkey
= block
->pmr
[chunk
]->lkey
;
1240 *rkey
= block
->pmr
[chunk
]->rkey
;
1246 * Register (at connection time) the memory used for control
1249 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1251 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1252 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1253 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1254 if (rdma
->wr_data
[idx
].control_mr
) {
1255 rdma
->total_registrations
++;
1258 error_report("qemu_rdma_reg_control failed");
1262 const char *print_wrid(int wrid
)
1264 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1265 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1267 return wrid_desc
[wrid
];
1271 * RDMA requires memory registration (mlock/pinning), but this is not good for
1274 * In preparation for the future where LRU information or workload-specific
1275 * writable writable working set memory access behavior is available to QEMU
1276 * it would be nice to have in place the ability to UN-register/UN-pin
1277 * particular memory regions from the RDMA hardware when it is determine that
1278 * those regions of memory will likely not be accessed again in the near future.
1280 * While we do not yet have such information right now, the following
1281 * compile-time option allows us to perform a non-optimized version of this
1284 * By uncommenting this option, you will cause *all* RDMA transfers to be
1285 * unregistered immediately after the transfer completes on both sides of the
1286 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1288 * This will have a terrible impact on migration performance, so until future
1289 * workload information or LRU information is available, do not attempt to use
1290 * this feature except for basic testing.
1292 //#define RDMA_UNREGISTRATION_EXAMPLE
1295 * Perform a non-optimized memory unregistration after every transfer
1296 * for demonstration purposes, only if pin-all is not requested.
1298 * Potential optimizations:
1299 * 1. Start a new thread to run this function continuously
1301 - and for receipt of unregister messages
1303 * 3. Use workload hints.
1305 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1307 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1309 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1311 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1313 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1314 RDMALocalBlock
*block
=
1315 &(rdma
->local_ram_blocks
.block
[index
]);
1316 RDMARegister reg
= { .current_index
= index
};
1317 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1319 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1320 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1324 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1325 rdma
->unregister_current
);
1327 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1328 rdma
->unregister_current
++;
1330 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1331 rdma
->unregister_current
= 0;
1336 * Unregistration is speculative (because migration is single-threaded
1337 * and we cannot break the protocol's inifinband message ordering).
1338 * Thus, if the memory is currently being used for transmission,
1339 * then abort the attempt to unregister and try again
1340 * later the next time a completion is received for this memory.
1342 clear_bit(chunk
, block
->unregister_bitmap
);
1344 if (test_bit(chunk
, block
->transit_bitmap
)) {
1345 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1349 trace_qemu_rdma_unregister_waiting_send(chunk
);
1351 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1352 block
->pmr
[chunk
] = NULL
;
1353 block
->remote_keys
[chunk
] = 0;
1356 perror("unregistration chunk failed");
1359 rdma
->total_registrations
--;
1361 reg
.key
.chunk
= chunk
;
1362 register_to_network(rdma
, ®
);
1363 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1369 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1375 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1378 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1380 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1381 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1387 * Set bit for unregistration in the next iteration.
1388 * We cannot transmit right here, but will unpin later.
1390 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1391 uint64_t chunk
, uint64_t wr_id
)
1393 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1394 error_report("rdma migration: queue is full");
1396 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1398 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1399 trace_qemu_rdma_signal_unregister_append(chunk
,
1400 rdma
->unregister_next
);
1402 rdma
->unregistrations
[rdma
->unregister_next
++] =
1403 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1405 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1406 rdma
->unregister_next
= 0;
1409 trace_qemu_rdma_signal_unregister_already(chunk
);
1415 * Consult the connection manager to see a work request
1416 * (of any kind) has completed.
1417 * Return the work request ID that completed.
1419 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1426 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1429 *wr_id_out
= RDMA_WRID_NONE
;
1434 error_report("ibv_poll_cq return %d", ret
);
1438 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1440 if (wc
.status
!= IBV_WC_SUCCESS
) {
1441 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1442 wc
.status
, ibv_wc_status_str(wc
.status
));
1443 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1448 if (rdma
->control_ready_expected
&&
1449 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1450 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1451 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1452 rdma
->control_ready_expected
= 0;
1455 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1457 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1459 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1460 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1462 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1463 index
, chunk
, block
->local_host_addr
,
1464 (void *)(uintptr_t)block
->remote_host_addr
);
1466 clear_bit(chunk
, block
->transit_bitmap
);
1468 if (rdma
->nb_sent
> 0) {
1472 if (!rdma
->pin_all
) {
1474 * FYI: If one wanted to signal a specific chunk to be unregistered
1475 * using LRU or workload-specific information, this is the function
1476 * you would call to do so. That chunk would then get asynchronously
1477 * unregistered later.
1479 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1480 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1484 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1487 *wr_id_out
= wc
.wr_id
;
1489 *byte_len
= wc
.byte_len
;
1495 /* Wait for activity on the completion channel.
1496 * Returns 0 on success, none-0 on error.
1498 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
)
1500 struct rdma_cm_event
*cm_event
;
1504 * Coroutine doesn't start until migration_fd_process_incoming()
1505 * so don't yield unless we know we're running inside of a coroutine.
1507 if (rdma
->migration_started_on_destination
&&
1508 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1509 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1511 /* This is the source side, we're in a separate thread
1512 * or destination prior to migration_fd_process_incoming()
1513 * after postcopy, the destination also in a seprate thread.
1514 * we can't yield; so we have to poll the fd.
1515 * But we need to be able to handle 'cancel' or an error
1516 * without hanging forever.
1518 while (!rdma
->error_state
&& !rdma
->received_error
) {
1520 pfds
[0].fd
= rdma
->comp_channel
->fd
;
1521 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1522 pfds
[0].revents
= 0;
1524 pfds
[1].fd
= rdma
->channel
->fd
;
1525 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1526 pfds
[1].revents
= 0;
1528 /* 0.1s timeout, should be fine for a 'cancel' */
1529 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1531 case 1: /* fd active */
1532 if (pfds
[0].revents
) {
1536 if (pfds
[1].revents
) {
1537 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1539 rdma_ack_cm_event(cm_event
);
1542 error_report("receive cm event while wait comp channel,"
1543 "cm event is %d", cm_event
->event
);
1544 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1545 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1551 case 0: /* Timeout, go around again */
1554 default: /* Error of some type -
1555 * I don't trust errno from qemu_poll_ns
1557 error_report("%s: poll failed", __func__
);
1561 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1562 /* Bail out and let the cancellation happen */
1568 if (rdma
->received_error
) {
1571 return rdma
->error_state
;
1575 * Block until the next work request has completed.
1577 * First poll to see if a work request has already completed,
1580 * If we encounter completed work requests for IDs other than
1581 * the one we're interested in, then that's generally an error.
1583 * The only exception is actual RDMA Write completions. These
1584 * completions only need to be recorded, but do not actually
1585 * need further processing.
1587 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1590 int num_cq_events
= 0, ret
= 0;
1593 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1595 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1599 while (wr_id
!= wrid_requested
) {
1600 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1605 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1607 if (wr_id
== RDMA_WRID_NONE
) {
1610 if (wr_id
!= wrid_requested
) {
1611 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1612 wrid_requested
, print_wrid(wr_id
), wr_id
);
1616 if (wr_id
== wrid_requested
) {
1621 ret
= qemu_rdma_wait_comp_channel(rdma
);
1623 goto err_block_for_wrid
;
1626 ret
= ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
);
1628 perror("ibv_get_cq_event");
1629 goto err_block_for_wrid
;
1634 ret
= -ibv_req_notify_cq(cq
, 0);
1636 goto err_block_for_wrid
;
1639 while (wr_id
!= wrid_requested
) {
1640 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1642 goto err_block_for_wrid
;
1645 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1647 if (wr_id
== RDMA_WRID_NONE
) {
1650 if (wr_id
!= wrid_requested
) {
1651 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1652 wrid_requested
, print_wrid(wr_id
), wr_id
);
1656 if (wr_id
== wrid_requested
) {
1657 goto success_block_for_wrid
;
1661 success_block_for_wrid
:
1662 if (num_cq_events
) {
1663 ibv_ack_cq_events(cq
, num_cq_events
);
1668 if (num_cq_events
) {
1669 ibv_ack_cq_events(cq
, num_cq_events
);
1672 rdma
->error_state
= ret
;
1677 * Post a SEND message work request for the control channel
1678 * containing some data and block until the post completes.
1680 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1681 RDMAControlHeader
*head
)
1684 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1685 struct ibv_send_wr
*bad_wr
;
1686 struct ibv_sge sge
= {
1687 .addr
= (uintptr_t)(wr
->control
),
1688 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1689 .lkey
= wr
->control_mr
->lkey
,
1691 struct ibv_send_wr send_wr
= {
1692 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1693 .opcode
= IBV_WR_SEND
,
1694 .send_flags
= IBV_SEND_SIGNALED
,
1699 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1702 * We don't actually need to do a memcpy() in here if we used
1703 * the "sge" properly, but since we're only sending control messages
1704 * (not RAM in a performance-critical path), then its OK for now.
1706 * The copy makes the RDMAControlHeader simpler to manipulate
1707 * for the time being.
1709 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1710 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1711 control_to_network((void *) wr
->control
);
1714 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1718 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1721 error_report("Failed to use post IB SEND for control");
1725 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1727 error_report("rdma migration: send polling control error");
1734 * Post a RECV work request in anticipation of some future receipt
1735 * of data on the control channel.
1737 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1739 struct ibv_recv_wr
*bad_wr
;
1740 struct ibv_sge sge
= {
1741 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1742 .length
= RDMA_CONTROL_MAX_BUFFER
,
1743 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1746 struct ibv_recv_wr recv_wr
= {
1747 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1753 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1761 * Block and wait for a RECV control channel message to arrive.
1763 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1764 RDMAControlHeader
*head
, int expecting
, int idx
)
1767 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1771 error_report("rdma migration: recv polling control error!");
1775 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1776 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1778 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1780 if (expecting
== RDMA_CONTROL_NONE
) {
1781 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1783 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1784 error_report("Was expecting a %s (%d) control message"
1785 ", but got: %s (%d), length: %d",
1786 control_desc(expecting
), expecting
,
1787 control_desc(head
->type
), head
->type
, head
->len
);
1788 if (head
->type
== RDMA_CONTROL_ERROR
) {
1789 rdma
->received_error
= true;
1793 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1794 error_report("too long length: %d", head
->len
);
1797 if (sizeof(*head
) + head
->len
!= byte_len
) {
1798 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1806 * When a RECV work request has completed, the work request's
1807 * buffer is pointed at the header.
1809 * This will advance the pointer to the data portion
1810 * of the control message of the work request's buffer that
1811 * was populated after the work request finished.
1813 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1814 RDMAControlHeader
*head
)
1816 rdma
->wr_data
[idx
].control_len
= head
->len
;
1817 rdma
->wr_data
[idx
].control_curr
=
1818 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1822 * This is an 'atomic' high-level operation to deliver a single, unified
1823 * control-channel message.
1825 * Additionally, if the user is expecting some kind of reply to this message,
1826 * they can request a 'resp' response message be filled in by posting an
1827 * additional work request on behalf of the user and waiting for an additional
1830 * The extra (optional) response is used during registration to us from having
1831 * to perform an *additional* exchange of message just to provide a response by
1832 * instead piggy-backing on the acknowledgement.
1834 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1835 uint8_t *data
, RDMAControlHeader
*resp
,
1837 int (*callback
)(RDMAContext
*rdma
))
1842 * Wait until the dest is ready before attempting to deliver the message
1843 * by waiting for a READY message.
1845 if (rdma
->control_ready_expected
) {
1846 RDMAControlHeader resp
;
1847 ret
= qemu_rdma_exchange_get_response(rdma
,
1848 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1855 * If the user is expecting a response, post a WR in anticipation of it.
1858 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1860 error_report("rdma migration: error posting"
1861 " extra control recv for anticipated result!");
1867 * Post a WR to replace the one we just consumed for the READY message.
1869 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1871 error_report("rdma migration: error posting first control recv!");
1876 * Deliver the control message that was requested.
1878 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1881 error_report("Failed to send control buffer!");
1886 * If we're expecting a response, block and wait for it.
1890 trace_qemu_rdma_exchange_send_issue_callback();
1891 ret
= callback(rdma
);
1897 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1898 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1899 resp
->type
, RDMA_WRID_DATA
);
1905 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1907 *resp_idx
= RDMA_WRID_DATA
;
1909 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1912 rdma
->control_ready_expected
= 1;
1918 * This is an 'atomic' high-level operation to receive a single, unified
1919 * control-channel message.
1921 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1924 RDMAControlHeader ready
= {
1926 .type
= RDMA_CONTROL_READY
,
1932 * Inform the source that we're ready to receive a message.
1934 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1937 error_report("Failed to send control buffer!");
1942 * Block and wait for the message.
1944 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1945 expecting
, RDMA_WRID_READY
);
1951 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1954 * Post a new RECV work request to replace the one we just consumed.
1956 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1958 error_report("rdma migration: error posting second control recv!");
1966 * Write an actual chunk of memory using RDMA.
1968 * If we're using dynamic registration on the dest-side, we have to
1969 * send a registration command first.
1971 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1972 int current_index
, uint64_t current_addr
,
1976 struct ibv_send_wr send_wr
= { 0 };
1977 struct ibv_send_wr
*bad_wr
;
1978 int reg_result_idx
, ret
, count
= 0;
1979 uint64_t chunk
, chunks
;
1980 uint8_t *chunk_start
, *chunk_end
;
1981 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1983 RDMARegisterResult
*reg_result
;
1984 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1985 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1986 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1991 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
1992 (current_addr
- block
->offset
));
1993 sge
.length
= length
;
1995 chunk
= ram_chunk_index(block
->local_host_addr
,
1996 (uint8_t *)(uintptr_t)sge
.addr
);
1997 chunk_start
= ram_chunk_start(block
, chunk
);
1999 if (block
->is_ram_block
) {
2000 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2002 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2006 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2008 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2013 trace_qemu_rdma_write_one_top(chunks
+ 1,
2015 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2017 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2019 if (!rdma
->pin_all
) {
2020 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2021 qemu_rdma_unregister_waiting(rdma
);
2025 while (test_bit(chunk
, block
->transit_bitmap
)) {
2027 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2028 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2030 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2033 error_report("Failed to Wait for previous write to complete "
2034 "block %d chunk %" PRIu64
2035 " current %" PRIu64
" len %" PRIu64
" %d",
2036 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2041 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2042 if (!block
->remote_keys
[chunk
]) {
2044 * This chunk has not yet been registered, so first check to see
2045 * if the entire chunk is zero. If so, tell the other size to
2046 * memset() + madvise() the entire chunk without RDMA.
2049 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2050 RDMACompress comp
= {
2051 .offset
= current_addr
,
2053 .block_idx
= current_index
,
2057 head
.len
= sizeof(comp
);
2058 head
.type
= RDMA_CONTROL_COMPRESS
;
2060 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2061 current_index
, current_addr
);
2063 compress_to_network(rdma
, &comp
);
2064 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2065 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2071 acct_update_position(f
, sge
.length
, true);
2077 * Otherwise, tell other side to register.
2079 reg
.current_index
= current_index
;
2080 if (block
->is_ram_block
) {
2081 reg
.key
.current_addr
= current_addr
;
2083 reg
.key
.chunk
= chunk
;
2085 reg
.chunks
= chunks
;
2087 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2090 register_to_network(rdma
, ®
);
2091 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2092 &resp
, ®_result_idx
, NULL
);
2097 /* try to overlap this single registration with the one we sent. */
2098 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2099 &sge
.lkey
, NULL
, chunk
,
2100 chunk_start
, chunk_end
)) {
2101 error_report("cannot get lkey");
2105 reg_result
= (RDMARegisterResult
*)
2106 rdma
->wr_data
[reg_result_idx
].control_curr
;
2108 network_to_result(reg_result
);
2110 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2111 reg_result
->rkey
, chunk
);
2113 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2114 block
->remote_host_addr
= reg_result
->host_addr
;
2116 /* already registered before */
2117 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2118 &sge
.lkey
, NULL
, chunk
,
2119 chunk_start
, chunk_end
)) {
2120 error_report("cannot get lkey!");
2125 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2127 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2129 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2130 &sge
.lkey
, NULL
, chunk
,
2131 chunk_start
, chunk_end
)) {
2132 error_report("cannot get lkey!");
2138 * Encode the ram block index and chunk within this wrid.
2139 * We will use this information at the time of completion
2140 * to figure out which bitmap to check against and then which
2141 * chunk in the bitmap to look for.
2143 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2144 current_index
, chunk
);
2146 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2147 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2148 send_wr
.sg_list
= &sge
;
2149 send_wr
.num_sge
= 1;
2150 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2151 (current_addr
- block
->offset
);
2153 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2157 * ibv_post_send() does not return negative error numbers,
2158 * per the specification they are positive - no idea why.
2160 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2162 if (ret
== ENOMEM
) {
2163 trace_qemu_rdma_write_one_queue_full();
2164 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2166 error_report("rdma migration: failed to make "
2167 "room in full send queue! %d", ret
);
2173 } else if (ret
> 0) {
2174 perror("rdma migration: post rdma write failed");
2178 set_bit(chunk
, block
->transit_bitmap
);
2179 acct_update_position(f
, sge
.length
, false);
2180 rdma
->total_writes
++;
2186 * Push out any unwritten RDMA operations.
2188 * We support sending out multiple chunks at the same time.
2189 * Not all of them need to get signaled in the completion queue.
2191 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2195 if (!rdma
->current_length
) {
2199 ret
= qemu_rdma_write_one(f
, rdma
,
2200 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2208 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2211 rdma
->current_length
= 0;
2212 rdma
->current_addr
= 0;
2217 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2218 uint64_t offset
, uint64_t len
)
2220 RDMALocalBlock
*block
;
2224 if (rdma
->current_index
< 0) {
2228 if (rdma
->current_chunk
< 0) {
2232 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2233 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2234 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2236 if (rdma
->current_length
== 0) {
2241 * Only merge into chunk sequentially.
2243 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2247 if (offset
< block
->offset
) {
2251 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2255 if ((host_addr
+ len
) > chunk_end
) {
2263 * We're not actually writing here, but doing three things:
2265 * 1. Identify the chunk the buffer belongs to.
2266 * 2. If the chunk is full or the buffer doesn't belong to the current
2267 * chunk, then start a new chunk and flush() the old chunk.
2268 * 3. To keep the hardware busy, we also group chunks into batches
2269 * and only require that a batch gets acknowledged in the completion
2270 * qeueue instead of each individual chunk.
2272 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2273 uint64_t block_offset
, uint64_t offset
,
2276 uint64_t current_addr
= block_offset
+ offset
;
2277 uint64_t index
= rdma
->current_index
;
2278 uint64_t chunk
= rdma
->current_chunk
;
2281 /* If we cannot merge it, we flush the current buffer first. */
2282 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2283 ret
= qemu_rdma_write_flush(f
, rdma
);
2287 rdma
->current_length
= 0;
2288 rdma
->current_addr
= current_addr
;
2290 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2291 offset
, len
, &index
, &chunk
);
2293 error_report("ram block search failed");
2296 rdma
->current_index
= index
;
2297 rdma
->current_chunk
= chunk
;
2301 rdma
->current_length
+= len
;
2303 /* flush it if buffer is too large */
2304 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2305 return qemu_rdma_write_flush(f
, rdma
);
2311 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2315 if (rdma
->cm_id
&& rdma
->connected
) {
2316 if ((rdma
->error_state
||
2317 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2318 !rdma
->received_error
) {
2319 RDMAControlHeader head
= { .len
= 0,
2320 .type
= RDMA_CONTROL_ERROR
,
2323 error_report("Early error. Sending error.");
2324 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2327 rdma_disconnect(rdma
->cm_id
);
2328 trace_qemu_rdma_cleanup_disconnect();
2329 rdma
->connected
= false;
2332 if (rdma
->channel
) {
2333 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2335 g_free(rdma
->dest_blocks
);
2336 rdma
->dest_blocks
= NULL
;
2338 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2339 if (rdma
->wr_data
[idx
].control_mr
) {
2340 rdma
->total_registrations
--;
2341 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2343 rdma
->wr_data
[idx
].control_mr
= NULL
;
2346 if (rdma
->local_ram_blocks
.block
) {
2347 while (rdma
->local_ram_blocks
.nb_blocks
) {
2348 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2353 rdma_destroy_qp(rdma
->cm_id
);
2357 ibv_destroy_cq(rdma
->cq
);
2360 if (rdma
->comp_channel
) {
2361 ibv_destroy_comp_channel(rdma
->comp_channel
);
2362 rdma
->comp_channel
= NULL
;
2365 ibv_dealloc_pd(rdma
->pd
);
2369 rdma_destroy_id(rdma
->cm_id
);
2373 /* the destination side, listen_id and channel is shared */
2374 if (rdma
->listen_id
) {
2375 if (!rdma
->is_return_path
) {
2376 rdma_destroy_id(rdma
->listen_id
);
2378 rdma
->listen_id
= NULL
;
2380 if (rdma
->channel
) {
2381 if (!rdma
->is_return_path
) {
2382 rdma_destroy_event_channel(rdma
->channel
);
2384 rdma
->channel
= NULL
;
2388 if (rdma
->channel
) {
2389 rdma_destroy_event_channel(rdma
->channel
);
2390 rdma
->channel
= NULL
;
2397 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2400 Error
*local_err
= NULL
, **temp
= &local_err
;
2403 * Will be validated against destination's actual capabilities
2404 * after the connect() completes.
2406 rdma
->pin_all
= pin_all
;
2408 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2410 goto err_rdma_source_init
;
2413 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2415 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2416 " limits may be too low. Please check $ ulimit -a # and "
2417 "search for 'ulimit -l' in the output");
2418 goto err_rdma_source_init
;
2421 ret
= qemu_rdma_alloc_qp(rdma
);
2423 ERROR(temp
, "rdma migration: error allocating qp!");
2424 goto err_rdma_source_init
;
2427 ret
= qemu_rdma_init_ram_blocks(rdma
);
2429 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2430 goto err_rdma_source_init
;
2433 /* Build the hash that maps from offset to RAMBlock */
2434 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2435 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2436 g_hash_table_insert(rdma
->blockmap
,
2437 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2438 &rdma
->local_ram_blocks
.block
[idx
]);
2441 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2442 ret
= qemu_rdma_reg_control(rdma
, idx
);
2444 ERROR(temp
, "rdma migration: error registering %d control!",
2446 goto err_rdma_source_init
;
2452 err_rdma_source_init
:
2453 error_propagate(errp
, local_err
);
2454 qemu_rdma_cleanup(rdma
);
2458 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2460 RDMACapabilities cap
= {
2461 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2464 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2466 .private_data
= &cap
,
2467 .private_data_len
= sizeof(cap
),
2469 struct rdma_cm_event
*cm_event
;
2473 * Only negotiate the capability with destination if the user
2474 * on the source first requested the capability.
2476 if (rdma
->pin_all
) {
2477 trace_qemu_rdma_connect_pin_all_requested();
2478 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2481 caps_to_network(&cap
);
2483 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2485 ERROR(errp
, "posting second control recv");
2486 goto err_rdma_source_connect
;
2489 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2491 perror("rdma_connect");
2492 ERROR(errp
, "connecting to destination!");
2493 goto err_rdma_source_connect
;
2496 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2498 perror("rdma_get_cm_event after rdma_connect");
2499 ERROR(errp
, "connecting to destination!");
2500 rdma_ack_cm_event(cm_event
);
2501 goto err_rdma_source_connect
;
2504 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2505 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2506 ERROR(errp
, "connecting to destination!");
2507 rdma_ack_cm_event(cm_event
);
2508 goto err_rdma_source_connect
;
2510 rdma
->connected
= true;
2512 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2513 network_to_caps(&cap
);
2516 * Verify that the *requested* capabilities are supported by the destination
2517 * and disable them otherwise.
2519 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2520 ERROR(errp
, "Server cannot support pinning all memory. "
2521 "Will register memory dynamically.");
2522 rdma
->pin_all
= false;
2525 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2527 rdma_ack_cm_event(cm_event
);
2529 rdma
->control_ready_expected
= 1;
2533 err_rdma_source_connect
:
2534 qemu_rdma_cleanup(rdma
);
2538 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2541 struct rdma_cm_id
*listen_id
;
2542 char ip
[40] = "unknown";
2543 struct rdma_addrinfo
*res
, *e
;
2546 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2547 rdma
->wr_data
[idx
].control_len
= 0;
2548 rdma
->wr_data
[idx
].control_curr
= NULL
;
2551 if (!rdma
->host
|| !rdma
->host
[0]) {
2552 ERROR(errp
, "RDMA host is not set!");
2553 rdma
->error_state
= -EINVAL
;
2556 /* create CM channel */
2557 rdma
->channel
= rdma_create_event_channel();
2558 if (!rdma
->channel
) {
2559 ERROR(errp
, "could not create rdma event channel");
2560 rdma
->error_state
= -EINVAL
;
2565 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2567 ERROR(errp
, "could not create cm_id!");
2568 goto err_dest_init_create_listen_id
;
2571 snprintf(port_str
, 16, "%d", rdma
->port
);
2572 port_str
[15] = '\0';
2574 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2576 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2577 goto err_dest_init_bind_addr
;
2580 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2581 inet_ntop(e
->ai_family
,
2582 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2583 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2584 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2588 if (e
->ai_family
== AF_INET6
) {
2589 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2598 ERROR(errp
, "Error: could not rdma_bind_addr!");
2599 goto err_dest_init_bind_addr
;
2602 rdma
->listen_id
= listen_id
;
2603 qemu_rdma_dump_gid("dest_init", listen_id
);
2606 err_dest_init_bind_addr
:
2607 rdma_destroy_id(listen_id
);
2608 err_dest_init_create_listen_id
:
2609 rdma_destroy_event_channel(rdma
->channel
);
2610 rdma
->channel
= NULL
;
2611 rdma
->error_state
= ret
;
2616 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2621 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2622 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2623 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2626 /*the CM channel and CM id is shared*/
2627 rdma_return_path
->channel
= rdma
->channel
;
2628 rdma_return_path
->listen_id
= rdma
->listen_id
;
2630 rdma
->return_path
= rdma_return_path
;
2631 rdma_return_path
->return_path
= rdma
;
2632 rdma_return_path
->is_return_path
= true;
2635 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2637 RDMAContext
*rdma
= NULL
;
2638 InetSocketAddress
*addr
;
2641 rdma
= g_new0(RDMAContext
, 1);
2642 rdma
->current_index
= -1;
2643 rdma
->current_chunk
= -1;
2645 addr
= g_new(InetSocketAddress
, 1);
2646 if (!inet_parse(addr
, host_port
, NULL
)) {
2647 rdma
->port
= atoi(addr
->port
);
2648 rdma
->host
= g_strdup(addr
->host
);
2650 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2655 qapi_free_InetSocketAddress(addr
);
2662 * QEMUFile interface to the control channel.
2663 * SEND messages for control only.
2664 * VM's ram is handled with regular RDMA messages.
2666 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2667 const struct iovec
*iov
,
2673 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2674 QEMUFile
*f
= rioc
->file
;
2681 RCU_READ_LOCK_GUARD();
2682 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
2688 CHECK_ERROR_STATE();
2691 * Push out any writes that
2692 * we're queued up for VM's ram.
2694 ret
= qemu_rdma_write_flush(f
, rdma
);
2696 rdma
->error_state
= ret
;
2700 for (i
= 0; i
< niov
; i
++) {
2701 size_t remaining
= iov
[i
].iov_len
;
2702 uint8_t * data
= (void *)iov
[i
].iov_base
;
2704 RDMAControlHeader head
;
2706 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2710 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2712 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2715 rdma
->error_state
= ret
;
2727 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2728 size_t size
, int idx
)
2732 if (rdma
->wr_data
[idx
].control_len
) {
2733 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2735 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2736 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2737 rdma
->wr_data
[idx
].control_curr
+= len
;
2738 rdma
->wr_data
[idx
].control_len
-= len
;
2745 * QEMUFile interface to the control channel.
2746 * RDMA links don't use bytestreams, so we have to
2747 * return bytes to QEMUFile opportunistically.
2749 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2750 const struct iovec
*iov
,
2756 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2758 RDMAControlHeader head
;
2763 RCU_READ_LOCK_GUARD();
2764 rdma
= atomic_rcu_read(&rioc
->rdmain
);
2770 CHECK_ERROR_STATE();
2772 for (i
= 0; i
< niov
; i
++) {
2773 size_t want
= iov
[i
].iov_len
;
2774 uint8_t *data
= (void *)iov
[i
].iov_base
;
2777 * First, we hold on to the last SEND message we
2778 * were given and dish out the bytes until we run
2781 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2784 /* Got what we needed, so go to next iovec */
2789 /* If we got any data so far, then don't wait
2790 * for more, just return what we have */
2796 /* We've got nothing at all, so lets wait for
2799 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2802 rdma
->error_state
= ret
;
2807 * SEND was received with new bytes, now try again.
2809 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2813 /* Still didn't get enough, so lets just return */
2816 return QIO_CHANNEL_ERR_BLOCK
;
2826 * Block until all the outstanding chunks have been delivered by the hardware.
2828 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2832 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2836 while (rdma
->nb_sent
) {
2837 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2839 error_report("rdma migration: complete polling error!");
2844 qemu_rdma_unregister_waiting(rdma
);
2850 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2854 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2855 /* XXX we should make readv/writev actually honour this :-) */
2856 rioc
->blocking
= blocking
;
2861 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2862 struct QIOChannelRDMASource
{
2864 QIOChannelRDMA
*rioc
;
2865 GIOCondition condition
;
2869 qio_channel_rdma_source_prepare(GSource
*source
,
2872 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2874 GIOCondition cond
= 0;
2877 RCU_READ_LOCK_GUARD();
2878 if (rsource
->condition
== G_IO_IN
) {
2879 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmain
);
2881 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmaout
);
2885 error_report("RDMAContext is NULL when prepare Gsource");
2889 if (rdma
->wr_data
[0].control_len
) {
2894 return cond
& rsource
->condition
;
2898 qio_channel_rdma_source_check(GSource
*source
)
2900 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2902 GIOCondition cond
= 0;
2904 RCU_READ_LOCK_GUARD();
2905 if (rsource
->condition
== G_IO_IN
) {
2906 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmain
);
2908 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmaout
);
2912 error_report("RDMAContext is NULL when check Gsource");
2916 if (rdma
->wr_data
[0].control_len
) {
2921 return cond
& rsource
->condition
;
2925 qio_channel_rdma_source_dispatch(GSource
*source
,
2926 GSourceFunc callback
,
2929 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
2930 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2932 GIOCondition cond
= 0;
2934 RCU_READ_LOCK_GUARD();
2935 if (rsource
->condition
== G_IO_IN
) {
2936 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmain
);
2938 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmaout
);
2942 error_report("RDMAContext is NULL when dispatch Gsource");
2946 if (rdma
->wr_data
[0].control_len
) {
2951 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
2952 (cond
& rsource
->condition
),
2957 qio_channel_rdma_source_finalize(GSource
*source
)
2959 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
2961 object_unref(OBJECT(ssource
->rioc
));
2964 GSourceFuncs qio_channel_rdma_source_funcs
= {
2965 qio_channel_rdma_source_prepare
,
2966 qio_channel_rdma_source_check
,
2967 qio_channel_rdma_source_dispatch
,
2968 qio_channel_rdma_source_finalize
2971 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
2972 GIOCondition condition
)
2974 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2975 QIOChannelRDMASource
*ssource
;
2978 source
= g_source_new(&qio_channel_rdma_source_funcs
,
2979 sizeof(QIOChannelRDMASource
));
2980 ssource
= (QIOChannelRDMASource
*)source
;
2982 ssource
->rioc
= rioc
;
2983 object_ref(OBJECT(rioc
));
2985 ssource
->condition
= condition
;
2990 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
2993 IOHandler
*io_write
,
2996 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2998 aio_set_fd_handler(ctx
, rioc
->rdmain
->comp_channel
->fd
,
2999 false, io_read
, io_write
, NULL
, opaque
);
3001 aio_set_fd_handler(ctx
, rioc
->rdmaout
->comp_channel
->fd
,
3002 false, io_read
, io_write
, NULL
, opaque
);
3006 struct rdma_close_rcu
{
3007 struct rcu_head rcu
;
3008 RDMAContext
*rdmain
;
3009 RDMAContext
*rdmaout
;
3012 /* callback from qio_channel_rdma_close via call_rcu */
3013 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3016 qemu_rdma_cleanup(rcu
->rdmain
);
3020 qemu_rdma_cleanup(rcu
->rdmaout
);
3023 g_free(rcu
->rdmain
);
3024 g_free(rcu
->rdmaout
);
3028 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3031 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3032 RDMAContext
*rdmain
, *rdmaout
;
3033 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3035 trace_qemu_rdma_close();
3037 rdmain
= rioc
->rdmain
;
3039 atomic_rcu_set(&rioc
->rdmain
, NULL
);
3042 rdmaout
= rioc
->rdmaout
;
3044 atomic_rcu_set(&rioc
->rdmaout
, NULL
);
3047 rcu
->rdmain
= rdmain
;
3048 rcu
->rdmaout
= rdmaout
;
3049 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3055 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3056 QIOChannelShutdown how
,
3059 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3060 RDMAContext
*rdmain
, *rdmaout
;
3062 RCU_READ_LOCK_GUARD();
3064 rdmain
= atomic_rcu_read(&rioc
->rdmain
);
3065 rdmaout
= atomic_rcu_read(&rioc
->rdmain
);
3068 case QIO_CHANNEL_SHUTDOWN_READ
:
3070 rdmain
->error_state
= -1;
3073 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3075 rdmaout
->error_state
= -1;
3078 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3081 rdmain
->error_state
= -1;
3084 rdmaout
->error_state
= -1;
3095 * This means that 'block_offset' is a full virtual address that does not
3096 * belong to a RAMBlock of the virtual machine and instead
3097 * represents a private malloc'd memory area that the caller wishes to
3101 * Offset is an offset to be added to block_offset and used
3102 * to also lookup the corresponding RAMBlock.
3105 * Initiate an transfer this size.
3108 * A 'hint' or 'advice' that means that we wish to speculatively
3109 * and asynchronously unregister this memory. In this case, there is no
3110 * guarantee that the unregister will actually happen, for example,
3111 * if the memory is being actively transmitted. Additionally, the memory
3112 * may be re-registered at any future time if a write within the same
3113 * chunk was requested again, even if you attempted to unregister it
3116 * @size < 0 : TODO, not yet supported
3117 * Unregister the memory NOW. This means that the caller does not
3118 * expect there to be any future RDMA transfers and we just want to clean
3119 * things up. This is used in case the upper layer owns the memory and
3120 * cannot wait for qemu_fclose() to occur.
3122 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3123 * sent. Usually, this will not be more than a few bytes of
3124 * the protocol because most transfers are sent asynchronously.
3126 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
3127 ram_addr_t block_offset
, ram_addr_t offset
,
3128 size_t size
, uint64_t *bytes_sent
)
3130 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3134 RCU_READ_LOCK_GUARD();
3135 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
3141 CHECK_ERROR_STATE();
3143 if (migration_in_postcopy()) {
3144 return RAM_SAVE_CONTROL_NOT_SUPP
;
3151 * Add this page to the current 'chunk'. If the chunk
3152 * is full, or the page doen't belong to the current chunk,
3153 * an actual RDMA write will occur and a new chunk will be formed.
3155 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
3157 error_report("rdma migration: write error! %d", ret
);
3162 * We always return 1 bytes because the RDMA
3163 * protocol is completely asynchronous. We do not yet know
3164 * whether an identified chunk is zero or not because we're
3165 * waiting for other pages to potentially be merged with
3166 * the current chunk. So, we have to call qemu_update_position()
3167 * later on when the actual write occurs.
3173 uint64_t index
, chunk
;
3175 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3177 ret = qemu_rdma_drain_cq(f, rdma);
3179 fprintf(stderr, "rdma: failed to synchronously drain"
3180 " completion queue before unregistration.\n");
3186 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
3187 offset
, size
, &index
, &chunk
);
3190 error_report("ram block search failed");
3194 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
3197 * TODO: Synchronous, guaranteed unregistration (should not occur during
3198 * fast-path). Otherwise, unregisters will process on the next call to
3199 * qemu_rdma_drain_cq()
3201 qemu_rdma_unregister_waiting(rdma);
3207 * Drain the Completion Queue if possible, but do not block,
3210 * If nothing to poll, the end of the iteration will do this
3211 * again to make sure we don't overflow the request queue.
3214 uint64_t wr_id
, wr_id_in
;
3215 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
3217 error_report("rdma migration: polling error! %d", ret
);
3221 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3223 if (wr_id
== RDMA_WRID_NONE
) {
3228 return RAM_SAVE_CONTROL_DELAYED
;
3230 rdma
->error_state
= ret
;
3234 static void rdma_accept_incoming_migration(void *opaque
);
3236 static void rdma_cm_poll_handler(void *opaque
)
3238 RDMAContext
*rdma
= opaque
;
3240 struct rdma_cm_event
*cm_event
;
3241 MigrationIncomingState
*mis
= migration_incoming_get_current();
3243 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3245 error_report("get_cm_event failed %d", errno
);
3248 rdma_ack_cm_event(cm_event
);
3250 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3251 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3252 if (!rdma
->error_state
&&
3253 migration_incoming_get_current()->state
!=
3254 MIGRATION_STATUS_COMPLETED
) {
3255 error_report("receive cm event, cm event is %d", cm_event
->event
);
3256 rdma
->error_state
= -EPIPE
;
3257 if (rdma
->return_path
) {
3258 rdma
->return_path
->error_state
= -EPIPE
;
3262 if (mis
->migration_incoming_co
) {
3263 qemu_coroutine_enter(mis
->migration_incoming_co
);
3269 static int qemu_rdma_accept(RDMAContext
*rdma
)
3271 RDMACapabilities cap
;
3272 struct rdma_conn_param conn_param
= {
3273 .responder_resources
= 2,
3274 .private_data
= &cap
,
3275 .private_data_len
= sizeof(cap
),
3277 struct rdma_cm_event
*cm_event
;
3278 struct ibv_context
*verbs
;
3282 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3284 goto err_rdma_dest_wait
;
3287 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3288 rdma_ack_cm_event(cm_event
);
3289 goto err_rdma_dest_wait
;
3292 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3294 network_to_caps(&cap
);
3296 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3297 error_report("Unknown source RDMA version: %d, bailing...",
3299 rdma_ack_cm_event(cm_event
);
3300 goto err_rdma_dest_wait
;
3304 * Respond with only the capabilities this version of QEMU knows about.
3306 cap
.flags
&= known_capabilities
;
3309 * Enable the ones that we do know about.
3310 * Add other checks here as new ones are introduced.
3312 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3313 rdma
->pin_all
= true;
3316 rdma
->cm_id
= cm_event
->id
;
3317 verbs
= cm_event
->id
->verbs
;
3319 rdma_ack_cm_event(cm_event
);
3321 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3323 caps_to_network(&cap
);
3325 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3328 rdma
->verbs
= verbs
;
3329 } else if (rdma
->verbs
!= verbs
) {
3330 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3332 goto err_rdma_dest_wait
;
3335 qemu_rdma_dump_id("dest_init", verbs
);
3337 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3339 error_report("rdma migration: error allocating pd and cq!");
3340 goto err_rdma_dest_wait
;
3343 ret
= qemu_rdma_alloc_qp(rdma
);
3345 error_report("rdma migration: error allocating qp!");
3346 goto err_rdma_dest_wait
;
3349 ret
= qemu_rdma_init_ram_blocks(rdma
);
3351 error_report("rdma migration: error initializing ram blocks!");
3352 goto err_rdma_dest_wait
;
3355 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3356 ret
= qemu_rdma_reg_control(rdma
, idx
);
3358 error_report("rdma: error registering %d control", idx
);
3359 goto err_rdma_dest_wait
;
3363 /* Accept the second connection request for return path */
3364 if (migrate_postcopy() && !rdma
->is_return_path
) {
3365 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3367 (void *)(intptr_t)rdma
->return_path
);
3369 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3373 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3375 error_report("rdma_accept returns %d", ret
);
3376 goto err_rdma_dest_wait
;
3379 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3381 error_report("rdma_accept get_cm_event failed %d", ret
);
3382 goto err_rdma_dest_wait
;
3385 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3386 error_report("rdma_accept not event established");
3387 rdma_ack_cm_event(cm_event
);
3388 goto err_rdma_dest_wait
;
3391 rdma_ack_cm_event(cm_event
);
3392 rdma
->connected
= true;
3394 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3396 error_report("rdma migration: error posting second control recv");
3397 goto err_rdma_dest_wait
;
3400 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3405 rdma
->error_state
= ret
;
3406 qemu_rdma_cleanup(rdma
);
3410 static int dest_ram_sort_func(const void *a
, const void *b
)
3412 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3413 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3415 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3419 * During each iteration of the migration, we listen for instructions
3420 * by the source VM to perform dynamic page registrations before they
3421 * can perform RDMA operations.
3423 * We respond with the 'rkey'.
3425 * Keep doing this until the source tells us to stop.
3427 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3429 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3430 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3433 RDMAControlHeader unreg_resp
= { .len
= 0,
3434 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3437 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3439 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3441 RDMALocalBlocks
*local
;
3442 RDMAControlHeader head
;
3443 RDMARegister
*reg
, *registers
;
3445 RDMARegisterResult
*reg_result
;
3446 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3447 RDMALocalBlock
*block
;
3454 RCU_READ_LOCK_GUARD();
3455 rdma
= atomic_rcu_read(&rioc
->rdmain
);
3461 CHECK_ERROR_STATE();
3463 local
= &rdma
->local_ram_blocks
;
3465 trace_qemu_rdma_registration_handle_wait();
3467 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3473 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3474 error_report("rdma: Too many requests in this message (%d)."
3475 "Bailing.", head
.repeat
);
3480 switch (head
.type
) {
3481 case RDMA_CONTROL_COMPRESS
:
3482 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3483 network_to_compress(comp
);
3485 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3488 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3489 error_report("rdma: 'compress' bad block index %u (vs %d)",
3490 (unsigned int)comp
->block_idx
,
3491 rdma
->local_ram_blocks
.nb_blocks
);
3495 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3497 host_addr
= block
->local_host_addr
+
3498 (comp
->offset
- block
->offset
);
3500 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3503 case RDMA_CONTROL_REGISTER_FINISHED
:
3504 trace_qemu_rdma_registration_handle_finished();
3507 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3508 trace_qemu_rdma_registration_handle_ram_blocks();
3510 /* Sort our local RAM Block list so it's the same as the source,
3511 * we can do this since we've filled in a src_index in the list
3512 * as we received the RAMBlock list earlier.
3514 qsort(rdma
->local_ram_blocks
.block
,
3515 rdma
->local_ram_blocks
.nb_blocks
,
3516 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3517 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3518 local
->block
[i
].index
= i
;
3521 if (rdma
->pin_all
) {
3522 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3524 error_report("rdma migration: error dest "
3525 "registering ram blocks");
3531 * Dest uses this to prepare to transmit the RAMBlock descriptions
3532 * to the source VM after connection setup.
3533 * Both sides use the "remote" structure to communicate and update
3534 * their "local" descriptions with what was sent.
3536 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3537 rdma
->dest_blocks
[i
].remote_host_addr
=
3538 (uintptr_t)(local
->block
[i
].local_host_addr
);
3540 if (rdma
->pin_all
) {
3541 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3544 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3545 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3547 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3548 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3549 local
->block
[i
].block_name
,
3550 local
->block
[i
].offset
,
3551 local
->block
[i
].length
,
3552 local
->block
[i
].local_host_addr
,
3553 local
->block
[i
].src_index
);
3556 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3557 * sizeof(RDMADestBlock
);
3560 ret
= qemu_rdma_post_send_control(rdma
,
3561 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3564 error_report("rdma migration: error sending remote info");
3569 case RDMA_CONTROL_REGISTER_REQUEST
:
3570 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3572 reg_resp
.repeat
= head
.repeat
;
3573 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3575 for (count
= 0; count
< head
.repeat
; count
++) {
3577 uint8_t *chunk_start
, *chunk_end
;
3579 reg
= ®isters
[count
];
3580 network_to_register(reg
);
3582 reg_result
= &results
[count
];
3584 trace_qemu_rdma_registration_handle_register_loop(count
,
3585 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3587 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3588 error_report("rdma: 'register' bad block index %u (vs %d)",
3589 (unsigned int)reg
->current_index
,
3590 rdma
->local_ram_blocks
.nb_blocks
);
3594 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3595 if (block
->is_ram_block
) {
3596 if (block
->offset
> reg
->key
.current_addr
) {
3597 error_report("rdma: bad register address for block %s"
3598 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3599 block
->block_name
, block
->offset
,
3600 reg
->key
.current_addr
);
3604 host_addr
= (block
->local_host_addr
+
3605 (reg
->key
.current_addr
- block
->offset
));
3606 chunk
= ram_chunk_index(block
->local_host_addr
,
3607 (uint8_t *) host_addr
);
3609 chunk
= reg
->key
.chunk
;
3610 host_addr
= block
->local_host_addr
+
3611 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3612 /* Check for particularly bad chunk value */
3613 if (host_addr
< (void *)block
->local_host_addr
) {
3614 error_report("rdma: bad chunk for block %s"
3616 block
->block_name
, reg
->key
.chunk
);
3621 chunk_start
= ram_chunk_start(block
, chunk
);
3622 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3623 /* avoid "-Waddress-of-packed-member" warning */
3624 uint32_t tmp_rkey
= 0;
3625 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3626 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3627 chunk
, chunk_start
, chunk_end
)) {
3628 error_report("cannot get rkey");
3632 reg_result
->rkey
= tmp_rkey
;
3634 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3636 trace_qemu_rdma_registration_handle_register_rkey(
3639 result_to_network(reg_result
);
3642 ret
= qemu_rdma_post_send_control(rdma
,
3643 (uint8_t *) results
, ®_resp
);
3646 error_report("Failed to send control buffer");
3650 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3651 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3652 unreg_resp
.repeat
= head
.repeat
;
3653 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3655 for (count
= 0; count
< head
.repeat
; count
++) {
3656 reg
= ®isters
[count
];
3657 network_to_register(reg
);
3659 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3660 reg
->current_index
, reg
->key
.chunk
);
3662 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3664 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3665 block
->pmr
[reg
->key
.chunk
] = NULL
;
3668 perror("rdma unregistration chunk failed");
3673 rdma
->total_registrations
--;
3675 trace_qemu_rdma_registration_handle_unregister_success(
3679 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3682 error_report("Failed to send control buffer");
3686 case RDMA_CONTROL_REGISTER_RESULT
:
3687 error_report("Invalid RESULT message at dest.");
3691 error_report("Unknown control message %s", control_desc(head
.type
));
3698 rdma
->error_state
= ret
;
3704 * Called via a ram_control_load_hook during the initial RAM load section which
3705 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3707 * We've already built our local RAMBlock list, but not yet sent the list to
3711 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3717 RCU_READ_LOCK_GUARD();
3718 rdma
= atomic_rcu_read(&rioc
->rdmain
);
3724 /* Find the matching RAMBlock in our local list */
3725 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3726 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3733 error_report("RAMBlock '%s' not found on destination", name
);
3737 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3738 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3739 rdma
->next_src_index
++;
3744 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3747 case RAM_CONTROL_BLOCK_REG
:
3748 return rdma_block_notification_handle(opaque
, data
);
3750 case RAM_CONTROL_HOOK
:
3751 return qemu_rdma_registration_handle(f
, opaque
);
3754 /* Shouldn't be called with any other values */
3759 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3760 uint64_t flags
, void *data
)
3762 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3765 RCU_READ_LOCK_GUARD();
3766 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
3771 CHECK_ERROR_STATE();
3773 if (migration_in_postcopy()) {
3777 trace_qemu_rdma_registration_start(flags
);
3778 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3785 * Inform dest that dynamic registrations are done for now.
3786 * First, flush writes, if any.
3788 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3789 uint64_t flags
, void *data
)
3791 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3793 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3796 RCU_READ_LOCK_GUARD();
3797 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
3802 CHECK_ERROR_STATE();
3804 if (migration_in_postcopy()) {
3809 ret
= qemu_rdma_drain_cq(f
, rdma
);
3815 if (flags
== RAM_CONTROL_SETUP
) {
3816 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3817 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3818 int reg_result_idx
, i
, nb_dest_blocks
;
3820 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3821 trace_qemu_rdma_registration_stop_ram();
3824 * Make sure that we parallelize the pinning on both sides.
3825 * For very large guests, doing this serially takes a really
3826 * long time, so we have to 'interleave' the pinning locally
3827 * with the control messages by performing the pinning on this
3828 * side before we receive the control response from the other
3829 * side that the pinning has completed.
3831 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3832 ®_result_idx
, rdma
->pin_all
?
3833 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3835 fprintf(stderr
, "receiving remote info!");
3839 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3842 * The protocol uses two different sets of rkeys (mutually exclusive):
3843 * 1. One key to represent the virtual address of the entire ram block.
3844 * (dynamic chunk registration disabled - pin everything with one rkey.)
3845 * 2. One to represent individual chunks within a ram block.
3846 * (dynamic chunk registration enabled - pin individual chunks.)
3848 * Once the capability is successfully negotiated, the destination transmits
3849 * the keys to use (or sends them later) including the virtual addresses
3850 * and then propagates the remote ram block descriptions to his local copy.
3853 if (local
->nb_blocks
!= nb_dest_blocks
) {
3854 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3855 "Your QEMU command line parameters are probably "
3856 "not identical on both the source and destination.",
3857 local
->nb_blocks
, nb_dest_blocks
);
3858 rdma
->error_state
= -EINVAL
;
3862 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3863 memcpy(rdma
->dest_blocks
,
3864 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3865 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3866 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3868 /* We require that the blocks are in the same order */
3869 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3870 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
3871 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3872 local
->block
[i
].length
,
3873 rdma
->dest_blocks
[i
].length
);
3874 rdma
->error_state
= -EINVAL
;
3877 local
->block
[i
].remote_host_addr
=
3878 rdma
->dest_blocks
[i
].remote_host_addr
;
3879 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3883 trace_qemu_rdma_registration_stop(flags
);
3885 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3886 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3894 rdma
->error_state
= ret
;
3898 static const QEMUFileHooks rdma_read_hooks
= {
3899 .hook_ram_load
= rdma_load_hook
,
3902 static const QEMUFileHooks rdma_write_hooks
= {
3903 .before_ram_iterate
= qemu_rdma_registration_start
,
3904 .after_ram_iterate
= qemu_rdma_registration_stop
,
3905 .save_page
= qemu_rdma_save_page
,
3909 static void qio_channel_rdma_finalize(Object
*obj
)
3911 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3913 qemu_rdma_cleanup(rioc
->rdmain
);
3914 g_free(rioc
->rdmain
);
3915 rioc
->rdmain
= NULL
;
3917 if (rioc
->rdmaout
) {
3918 qemu_rdma_cleanup(rioc
->rdmaout
);
3919 g_free(rioc
->rdmaout
);
3920 rioc
->rdmaout
= NULL
;
3924 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3925 void *class_data G_GNUC_UNUSED
)
3927 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3929 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3930 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3931 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3932 ioc_klass
->io_close
= qio_channel_rdma_close
;
3933 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3934 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
3935 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
3938 static const TypeInfo qio_channel_rdma_info
= {
3939 .parent
= TYPE_QIO_CHANNEL
,
3940 .name
= TYPE_QIO_CHANNEL_RDMA
,
3941 .instance_size
= sizeof(QIOChannelRDMA
),
3942 .instance_finalize
= qio_channel_rdma_finalize
,
3943 .class_init
= qio_channel_rdma_class_init
,
3946 static void qio_channel_rdma_register_types(void)
3948 type_register_static(&qio_channel_rdma_info
);
3951 type_init(qio_channel_rdma_register_types
);
3953 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3955 QIOChannelRDMA
*rioc
;
3957 if (qemu_file_mode_is_not_valid(mode
)) {
3961 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
3963 if (mode
[0] == 'w') {
3964 rioc
->file
= qemu_fopen_channel_output(QIO_CHANNEL(rioc
));
3965 rioc
->rdmaout
= rdma
;
3966 rioc
->rdmain
= rdma
->return_path
;
3967 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
3969 rioc
->file
= qemu_fopen_channel_input(QIO_CHANNEL(rioc
));
3970 rioc
->rdmain
= rdma
;
3971 rioc
->rdmaout
= rdma
->return_path
;
3972 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
3978 static void rdma_accept_incoming_migration(void *opaque
)
3980 RDMAContext
*rdma
= opaque
;
3983 Error
*local_err
= NULL
;
3985 trace_qemu_rdma_accept_incoming_migration();
3986 ret
= qemu_rdma_accept(rdma
);
3989 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
3993 trace_qemu_rdma_accept_incoming_migration_accepted();
3995 if (rdma
->is_return_path
) {
3999 f
= qemu_fopen_rdma(rdma
, "rb");
4001 fprintf(stderr
, "RDMA ERROR: could not qemu_fopen_rdma\n");
4002 qemu_rdma_cleanup(rdma
);
4006 rdma
->migration_started_on_destination
= 1;
4007 migration_fd_process_incoming(f
, &local_err
);
4009 error_reportf_err(local_err
, "RDMA ERROR:");
4013 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4016 RDMAContext
*rdma
, *rdma_return_path
= NULL
;
4017 Error
*local_err
= NULL
;
4019 trace_rdma_start_incoming_migration();
4021 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4022 if (ram_block_discard_is_required()) {
4023 error_setg(errp
, "RDMA: cannot disable RAM discard");
4027 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
4032 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
4038 trace_rdma_start_incoming_migration_after_dest_init();
4040 ret
= rdma_listen(rdma
->listen_id
, 5);
4043 ERROR(errp
, "listening on socket!");
4047 trace_rdma_start_incoming_migration_after_rdma_listen();
4049 /* initialize the RDMAContext for return path */
4050 if (migrate_postcopy()) {
4051 rdma_return_path
= qemu_rdma_data_init(host_port
, &local_err
);
4053 if (rdma_return_path
== NULL
) {
4057 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
4060 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4061 NULL
, (void *)(intptr_t)rdma
);
4064 error_propagate(errp
, local_err
);
4069 g_free(rdma_return_path
);
4072 void rdma_start_outgoing_migration(void *opaque
,
4073 const char *host_port
, Error
**errp
)
4075 MigrationState
*s
= opaque
;
4076 RDMAContext
*rdma_return_path
= NULL
;
4080 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4081 if (ram_block_discard_is_required()) {
4082 error_setg(errp
, "RDMA: cannot disable RAM discard");
4086 rdma
= qemu_rdma_data_init(host_port
, errp
);
4091 ret
= qemu_rdma_source_init(rdma
,
4092 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4098 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4099 ret
= qemu_rdma_connect(rdma
, errp
);
4105 /* RDMA postcopy need a seprate queue pair for return path */
4106 if (migrate_postcopy()) {
4107 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4109 if (rdma_return_path
== NULL
) {
4110 goto return_path_err
;
4113 ret
= qemu_rdma_source_init(rdma_return_path
,
4114 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4117 goto return_path_err
;
4120 ret
= qemu_rdma_connect(rdma_return_path
, errp
);
4123 goto return_path_err
;
4126 rdma
->return_path
= rdma_return_path
;
4127 rdma_return_path
->return_path
= rdma
;
4128 rdma_return_path
->is_return_path
= true;
4131 trace_rdma_start_outgoing_migration_after_rdma_connect();
4133 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
4134 migrate_fd_connect(s
, NULL
);
4137 qemu_rdma_cleanup(rdma
);
4140 g_free(rdma_return_path
);