vfio: Change polarity of our no-mmap option
[qemu/ar7.git] / hw / vfio / pci.c
blob31d7b93c85d61796e3ac7bc358cf5cbc885cc61f
1 /*
2 * vfio based device assignment support
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include <linux/vfio.h>
22 #include <sys/ioctl.h>
23 #include <sys/mman.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
28 #include "config.h"
29 #include "exec/address-spaces.h"
30 #include "exec/memory.h"
31 #include "hw/pci/msi.h"
32 #include "hw/pci/msix.h"
33 #include "hw/pci/pci.h"
34 #include "qemu-common.h"
35 #include "qemu/error-report.h"
36 #include "qemu/event_notifier.h"
37 #include "qemu/queue.h"
38 #include "qemu/range.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/sysemu.h"
41 #include "trace.h"
42 #include "hw/vfio/vfio.h"
43 #include "hw/vfio/vfio-common.h"
45 struct VFIOPCIDevice;
47 typedef struct VFIOQuirk {
48 MemoryRegion mem;
49 struct VFIOPCIDevice *vdev;
50 QLIST_ENTRY(VFIOQuirk) next;
51 struct {
52 uint32_t base_offset:TARGET_PAGE_BITS;
53 uint32_t address_offset:TARGET_PAGE_BITS;
54 uint32_t address_size:3;
55 uint32_t bar:3;
57 uint32_t address_match;
58 uint32_t address_mask;
60 uint32_t address_val:TARGET_PAGE_BITS;
61 uint32_t data_offset:TARGET_PAGE_BITS;
62 uint32_t data_size:3;
64 uint8_t flags;
65 uint8_t read_flags;
66 uint8_t write_flags;
67 } data;
68 } VFIOQuirk;
70 typedef struct VFIOBAR {
71 VFIORegion region;
72 bool ioport;
73 bool mem64;
74 QLIST_HEAD(, VFIOQuirk) quirks;
75 } VFIOBAR;
77 typedef struct VFIOVGARegion {
78 MemoryRegion mem;
79 off_t offset;
80 int nr;
81 QLIST_HEAD(, VFIOQuirk) quirks;
82 } VFIOVGARegion;
84 typedef struct VFIOVGA {
85 off_t fd_offset;
86 int fd;
87 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS];
88 } VFIOVGA;
90 typedef struct VFIOINTx {
91 bool pending; /* interrupt pending */
92 bool kvm_accel; /* set when QEMU bypass through KVM enabled */
93 uint8_t pin; /* which pin to pull for qemu_set_irq */
94 EventNotifier interrupt; /* eventfd triggered on interrupt */
95 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
96 PCIINTxRoute route; /* routing info for QEMU bypass */
97 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
98 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
99 } VFIOINTx;
101 typedef struct VFIOMSIVector {
103 * Two interrupt paths are configured per vector. The first, is only used
104 * for interrupts injected via QEMU. This is typically the non-accel path,
105 * but may also be used when we want QEMU to handle masking and pending
106 * bits. The KVM path bypasses QEMU and is therefore higher performance,
107 * but requires masking at the device. virq is used to track the MSI route
108 * through KVM, thus kvm_interrupt is only available when virq is set to a
109 * valid (>= 0) value.
111 EventNotifier interrupt;
112 EventNotifier kvm_interrupt;
113 struct VFIOPCIDevice *vdev; /* back pointer to device */
114 int virq;
115 bool use;
116 } VFIOMSIVector;
118 enum {
119 VFIO_INT_NONE = 0,
120 VFIO_INT_INTx = 1,
121 VFIO_INT_MSI = 2,
122 VFIO_INT_MSIX = 3,
125 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
126 typedef struct VFIOMSIXInfo {
127 uint8_t table_bar;
128 uint8_t pba_bar;
129 uint16_t entries;
130 uint32_t table_offset;
131 uint32_t pba_offset;
132 MemoryRegion mmap_mem;
133 void *mmap;
134 } VFIOMSIXInfo;
136 typedef struct VFIOPCIDevice {
137 PCIDevice pdev;
138 VFIODevice vbasedev;
139 VFIOINTx intx;
140 unsigned int config_size;
141 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */
142 off_t config_offset; /* Offset of config space region within device fd */
143 unsigned int rom_size;
144 off_t rom_offset; /* Offset of ROM region within device fd */
145 void *rom;
146 int msi_cap_size;
147 VFIOMSIVector *msi_vectors;
148 VFIOMSIXInfo *msix;
149 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
150 int interrupt; /* Current interrupt type */
151 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
152 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */
153 PCIHostDeviceAddress host;
154 EventNotifier err_notifier;
155 EventNotifier req_notifier;
156 int (*resetfn)(struct VFIOPCIDevice *);
157 uint32_t features;
158 #define VFIO_FEATURE_ENABLE_VGA_BIT 0
159 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT)
160 #define VFIO_FEATURE_ENABLE_REQ_BIT 1
161 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT)
162 int32_t bootindex;
163 uint8_t pm_cap;
164 bool has_vga;
165 bool pci_aer;
166 bool req_enabled;
167 bool has_flr;
168 bool has_pm_reset;
169 bool rom_read_failed;
170 bool no_kvm_intx;
171 bool no_kvm_msi;
172 bool no_kvm_msix;
173 } VFIOPCIDevice;
175 typedef struct VFIORomBlacklistEntry {
176 uint16_t vendor_id;
177 uint16_t device_id;
178 } VFIORomBlacklistEntry;
181 * List of device ids/vendor ids for which to disable
182 * option rom loading. This avoids the guest hangs during rom
183 * execution as noticed with the BCM 57810 card for lack of a
184 * more better way to handle such issues.
185 * The user can still override by specifying a romfile or
186 * rombar=1.
187 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
188 * for an analysis of the 57810 card hang. When adding
189 * a new vendor id/device id combination below, please also add
190 * your card/environment details and information that could
191 * help in debugging to the bug tracking this issue
193 static const VFIORomBlacklistEntry romblacklist[] = {
194 /* Broadcom BCM 57810 */
195 { 0x14e4, 0x168e }
198 #define MSIX_CAP_LENGTH 12
200 static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
201 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
202 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
203 uint32_t val, int len);
204 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
207 * Disabling BAR mmaping can be slow, but toggling it around INTx can
208 * also be a huge overhead. We try to get the best of both worlds by
209 * waiting until an interrupt to disable mmaps (subsequent transitions
210 * to the same state are effectively no overhead). If the interrupt has
211 * been serviced and the time gap is long enough, we re-enable mmaps for
212 * performance. This works well for things like graphics cards, which
213 * may not use their interrupt at all and are penalized to an unusable
214 * level by read/write BAR traps. Other devices, like NICs, have more
215 * regular interrupts and see much better latency by staying in non-mmap
216 * mode. We therefore set the default mmap_timeout such that a ping
217 * is just enough to keep the mmap disabled. Users can experiment with
218 * other options with the x-intx-mmap-timeout-ms parameter (a value of
219 * zero disables the timer).
221 static void vfio_intx_mmap_enable(void *opaque)
223 VFIOPCIDevice *vdev = opaque;
225 if (vdev->intx.pending) {
226 timer_mod(vdev->intx.mmap_timer,
227 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
228 return;
231 vfio_mmap_set_enabled(vdev, true);
234 static void vfio_intx_interrupt(void *opaque)
236 VFIOPCIDevice *vdev = opaque;
238 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
239 return;
242 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
244 vdev->intx.pending = true;
245 pci_irq_assert(&vdev->pdev);
246 vfio_mmap_set_enabled(vdev, false);
247 if (vdev->intx.mmap_timeout) {
248 timer_mod(vdev->intx.mmap_timer,
249 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
253 static void vfio_intx_eoi(VFIODevice *vbasedev)
255 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
257 if (!vdev->intx.pending) {
258 return;
261 trace_vfio_intx_eoi(vbasedev->name);
263 vdev->intx.pending = false;
264 pci_irq_deassert(&vdev->pdev);
265 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
268 static void vfio_intx_enable_kvm(VFIOPCIDevice *vdev)
270 #ifdef CONFIG_KVM
271 struct kvm_irqfd irqfd = {
272 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
273 .gsi = vdev->intx.route.irq,
274 .flags = KVM_IRQFD_FLAG_RESAMPLE,
276 struct vfio_irq_set *irq_set;
277 int ret, argsz;
278 int32_t *pfd;
280 if (vdev->no_kvm_intx || !kvm_irqfds_enabled() ||
281 vdev->intx.route.mode != PCI_INTX_ENABLED ||
282 !kvm_resamplefds_enabled()) {
283 return;
286 /* Get to a known interrupt state */
287 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
288 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
289 vdev->intx.pending = false;
290 pci_irq_deassert(&vdev->pdev);
292 /* Get an eventfd for resample/unmask */
293 if (event_notifier_init(&vdev->intx.unmask, 0)) {
294 error_report("vfio: Error: event_notifier_init failed eoi");
295 goto fail;
298 /* KVM triggers it, VFIO listens for it */
299 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
301 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
302 error_report("vfio: Error: Failed to setup resample irqfd: %m");
303 goto fail_irqfd;
306 argsz = sizeof(*irq_set) + sizeof(*pfd);
308 irq_set = g_malloc0(argsz);
309 irq_set->argsz = argsz;
310 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
311 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
312 irq_set->start = 0;
313 irq_set->count = 1;
314 pfd = (int32_t *)&irq_set->data;
316 *pfd = irqfd.resamplefd;
318 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
319 g_free(irq_set);
320 if (ret) {
321 error_report("vfio: Error: Failed to setup INTx unmask fd: %m");
322 goto fail_vfio;
325 /* Let'em rip */
326 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
328 vdev->intx.kvm_accel = true;
330 trace_vfio_intx_enable_kvm(vdev->vbasedev.name);
332 return;
334 fail_vfio:
335 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
336 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
337 fail_irqfd:
338 event_notifier_cleanup(&vdev->intx.unmask);
339 fail:
340 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
341 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
342 #endif
345 static void vfio_intx_disable_kvm(VFIOPCIDevice *vdev)
347 #ifdef CONFIG_KVM
348 struct kvm_irqfd irqfd = {
349 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
350 .gsi = vdev->intx.route.irq,
351 .flags = KVM_IRQFD_FLAG_DEASSIGN,
354 if (!vdev->intx.kvm_accel) {
355 return;
359 * Get to a known state, hardware masked, QEMU ready to accept new
360 * interrupts, QEMU IRQ de-asserted.
362 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
363 vdev->intx.pending = false;
364 pci_irq_deassert(&vdev->pdev);
366 /* Tell KVM to stop listening for an INTx irqfd */
367 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
368 error_report("vfio: Error: Failed to disable INTx irqfd: %m");
371 /* We only need to close the eventfd for VFIO to cleanup the kernel side */
372 event_notifier_cleanup(&vdev->intx.unmask);
374 /* QEMU starts listening for interrupt events. */
375 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
377 vdev->intx.kvm_accel = false;
379 /* If we've missed an event, let it re-fire through QEMU */
380 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
382 trace_vfio_intx_disable_kvm(vdev->vbasedev.name);
383 #endif
386 static void vfio_intx_update(PCIDevice *pdev)
388 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
389 PCIINTxRoute route;
391 if (vdev->interrupt != VFIO_INT_INTx) {
392 return;
395 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
397 if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
398 return; /* Nothing changed */
401 trace_vfio_intx_update(vdev->vbasedev.name,
402 vdev->intx.route.irq, route.irq);
404 vfio_intx_disable_kvm(vdev);
406 vdev->intx.route = route;
408 if (route.mode != PCI_INTX_ENABLED) {
409 return;
412 vfio_intx_enable_kvm(vdev);
414 /* Re-enable the interrupt in cased we missed an EOI */
415 vfio_intx_eoi(&vdev->vbasedev);
418 static int vfio_intx_enable(VFIOPCIDevice *vdev)
420 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
421 int ret, argsz;
422 struct vfio_irq_set *irq_set;
423 int32_t *pfd;
425 if (!pin) {
426 return 0;
429 vfio_disable_interrupts(vdev);
431 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
432 pci_config_set_interrupt_pin(vdev->pdev.config, pin);
434 #ifdef CONFIG_KVM
436 * Only conditional to avoid generating error messages on platforms
437 * where we won't actually use the result anyway.
439 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
440 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
441 vdev->intx.pin);
443 #endif
445 ret = event_notifier_init(&vdev->intx.interrupt, 0);
446 if (ret) {
447 error_report("vfio: Error: event_notifier_init failed");
448 return ret;
451 argsz = sizeof(*irq_set) + sizeof(*pfd);
453 irq_set = g_malloc0(argsz);
454 irq_set->argsz = argsz;
455 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
456 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
457 irq_set->start = 0;
458 irq_set->count = 1;
459 pfd = (int32_t *)&irq_set->data;
461 *pfd = event_notifier_get_fd(&vdev->intx.interrupt);
462 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
464 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
465 g_free(irq_set);
466 if (ret) {
467 error_report("vfio: Error: Failed to setup INTx fd: %m");
468 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
469 event_notifier_cleanup(&vdev->intx.interrupt);
470 return -errno;
473 vfio_intx_enable_kvm(vdev);
475 vdev->interrupt = VFIO_INT_INTx;
477 trace_vfio_intx_enable(vdev->vbasedev.name);
479 return 0;
482 static void vfio_intx_disable(VFIOPCIDevice *vdev)
484 int fd;
486 timer_del(vdev->intx.mmap_timer);
487 vfio_intx_disable_kvm(vdev);
488 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
489 vdev->intx.pending = false;
490 pci_irq_deassert(&vdev->pdev);
491 vfio_mmap_set_enabled(vdev, true);
493 fd = event_notifier_get_fd(&vdev->intx.interrupt);
494 qemu_set_fd_handler(fd, NULL, NULL, vdev);
495 event_notifier_cleanup(&vdev->intx.interrupt);
497 vdev->interrupt = VFIO_INT_NONE;
499 trace_vfio_intx_disable(vdev->vbasedev.name);
503 * MSI/X
505 static void vfio_msi_interrupt(void *opaque)
507 VFIOMSIVector *vector = opaque;
508 VFIOPCIDevice *vdev = vector->vdev;
509 MSIMessage (*get_msg)(PCIDevice *dev, unsigned vector);
510 void (*notify)(PCIDevice *dev, unsigned vector);
511 MSIMessage msg;
512 int nr = vector - vdev->msi_vectors;
514 if (!event_notifier_test_and_clear(&vector->interrupt)) {
515 return;
518 if (vdev->interrupt == VFIO_INT_MSIX) {
519 get_msg = msix_get_message;
520 notify = msix_notify;
521 } else if (vdev->interrupt == VFIO_INT_MSI) {
522 get_msg = msi_get_message;
523 notify = msi_notify;
524 } else {
525 abort();
528 msg = get_msg(&vdev->pdev, nr);
529 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data);
530 notify(&vdev->pdev, nr);
533 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
535 struct vfio_irq_set *irq_set;
536 int ret = 0, i, argsz;
537 int32_t *fds;
539 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
541 irq_set = g_malloc0(argsz);
542 irq_set->argsz = argsz;
543 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
544 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
545 irq_set->start = 0;
546 irq_set->count = vdev->nr_vectors;
547 fds = (int32_t *)&irq_set->data;
549 for (i = 0; i < vdev->nr_vectors; i++) {
550 int fd = -1;
553 * MSI vs MSI-X - The guest has direct access to MSI mask and pending
554 * bits, therefore we always use the KVM signaling path when setup.
555 * MSI-X mask and pending bits are emulated, so we want to use the
556 * KVM signaling path only when configured and unmasked.
558 if (vdev->msi_vectors[i].use) {
559 if (vdev->msi_vectors[i].virq < 0 ||
560 (msix && msix_is_masked(&vdev->pdev, i))) {
561 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
562 } else {
563 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
567 fds[i] = fd;
570 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
572 g_free(irq_set);
574 return ret;
577 static void vfio_add_kvm_msi_virq(VFIOPCIDevice *vdev, VFIOMSIVector *vector,
578 MSIMessage *msg, bool msix)
580 int virq;
582 if ((msix && vdev->no_kvm_msix) || (!msix && vdev->no_kvm_msi) || !msg) {
583 return;
586 if (event_notifier_init(&vector->kvm_interrupt, 0)) {
587 return;
590 virq = kvm_irqchip_add_msi_route(kvm_state, *msg);
591 if (virq < 0) {
592 event_notifier_cleanup(&vector->kvm_interrupt);
593 return;
596 if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt,
597 NULL, virq) < 0) {
598 kvm_irqchip_release_virq(kvm_state, virq);
599 event_notifier_cleanup(&vector->kvm_interrupt);
600 return;
603 vector->virq = virq;
606 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
608 kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt,
609 vector->virq);
610 kvm_irqchip_release_virq(kvm_state, vector->virq);
611 vector->virq = -1;
612 event_notifier_cleanup(&vector->kvm_interrupt);
615 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg)
617 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg);
620 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
621 MSIMessage *msg, IOHandler *handler)
623 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
624 VFIOMSIVector *vector;
625 int ret;
627 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
629 vector = &vdev->msi_vectors[nr];
631 if (!vector->use) {
632 vector->vdev = vdev;
633 vector->virq = -1;
634 if (event_notifier_init(&vector->interrupt, 0)) {
635 error_report("vfio: Error: event_notifier_init failed");
637 vector->use = true;
638 msix_vector_use(pdev, nr);
641 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
642 handler, NULL, vector);
645 * Attempt to enable route through KVM irqchip,
646 * default to userspace handling if unavailable.
648 if (vector->virq >= 0) {
649 if (!msg) {
650 vfio_remove_kvm_msi_virq(vector);
651 } else {
652 vfio_update_kvm_msi_virq(vector, *msg);
654 } else {
655 vfio_add_kvm_msi_virq(vdev, vector, msg, true);
659 * We don't want to have the host allocate all possible MSI vectors
660 * for a device if they're not in use, so we shutdown and incrementally
661 * increase them as needed.
663 if (vdev->nr_vectors < nr + 1) {
664 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
665 vdev->nr_vectors = nr + 1;
666 ret = vfio_enable_vectors(vdev, true);
667 if (ret) {
668 error_report("vfio: failed to enable vectors, %d", ret);
670 } else {
671 int argsz;
672 struct vfio_irq_set *irq_set;
673 int32_t *pfd;
675 argsz = sizeof(*irq_set) + sizeof(*pfd);
677 irq_set = g_malloc0(argsz);
678 irq_set->argsz = argsz;
679 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
680 VFIO_IRQ_SET_ACTION_TRIGGER;
681 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
682 irq_set->start = nr;
683 irq_set->count = 1;
684 pfd = (int32_t *)&irq_set->data;
686 if (vector->virq >= 0) {
687 *pfd = event_notifier_get_fd(&vector->kvm_interrupt);
688 } else {
689 *pfd = event_notifier_get_fd(&vector->interrupt);
692 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
693 g_free(irq_set);
694 if (ret) {
695 error_report("vfio: failed to modify vector, %d", ret);
699 return 0;
702 static int vfio_msix_vector_use(PCIDevice *pdev,
703 unsigned int nr, MSIMessage msg)
705 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
708 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
710 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
711 VFIOMSIVector *vector = &vdev->msi_vectors[nr];
713 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
716 * There are still old guests that mask and unmask vectors on every
717 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
718 * the KVM setup in place, simply switch VFIO to use the non-bypass
719 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X
720 * core will mask the interrupt and set pending bits, allowing it to
721 * be re-asserted on unmask. Nothing to do if already using QEMU mode.
723 if (vector->virq >= 0) {
724 int argsz;
725 struct vfio_irq_set *irq_set;
726 int32_t *pfd;
728 argsz = sizeof(*irq_set) + sizeof(*pfd);
730 irq_set = g_malloc0(argsz);
731 irq_set->argsz = argsz;
732 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
733 VFIO_IRQ_SET_ACTION_TRIGGER;
734 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
735 irq_set->start = nr;
736 irq_set->count = 1;
737 pfd = (int32_t *)&irq_set->data;
739 *pfd = event_notifier_get_fd(&vector->interrupt);
741 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
743 g_free(irq_set);
747 static void vfio_msix_enable(VFIOPCIDevice *vdev)
749 vfio_disable_interrupts(vdev);
751 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
753 vdev->interrupt = VFIO_INT_MSIX;
756 * Some communication channels between VF & PF or PF & fw rely on the
757 * physical state of the device and expect that enabling MSI-X from the
758 * guest enables the same on the host. When our guest is Linux, the
759 * guest driver call to pci_enable_msix() sets the enabling bit in the
760 * MSI-X capability, but leaves the vector table masked. We therefore
761 * can't rely on a vector_use callback (from request_irq() in the guest)
762 * to switch the physical device into MSI-X mode because that may come a
763 * long time after pci_enable_msix(). This code enables vector 0 with
764 * triggering to userspace, then immediately release the vector, leaving
765 * the physical device with no vectors enabled, but MSI-X enabled, just
766 * like the guest view.
768 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
769 vfio_msix_vector_release(&vdev->pdev, 0);
771 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
772 vfio_msix_vector_release, NULL)) {
773 error_report("vfio: msix_set_vector_notifiers failed");
776 trace_vfio_msix_enable(vdev->vbasedev.name);
779 static void vfio_msi_enable(VFIOPCIDevice *vdev)
781 int ret, i;
783 vfio_disable_interrupts(vdev);
785 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
786 retry:
787 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
789 for (i = 0; i < vdev->nr_vectors; i++) {
790 VFIOMSIVector *vector = &vdev->msi_vectors[i];
791 MSIMessage msg = msi_get_message(&vdev->pdev, i);
793 vector->vdev = vdev;
794 vector->virq = -1;
795 vector->use = true;
797 if (event_notifier_init(&vector->interrupt, 0)) {
798 error_report("vfio: Error: event_notifier_init failed");
801 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
802 vfio_msi_interrupt, NULL, vector);
805 * Attempt to enable route through KVM irqchip,
806 * default to userspace handling if unavailable.
808 vfio_add_kvm_msi_virq(vdev, vector, &msg, false);
811 /* Set interrupt type prior to possible interrupts */
812 vdev->interrupt = VFIO_INT_MSI;
814 ret = vfio_enable_vectors(vdev, false);
815 if (ret) {
816 if (ret < 0) {
817 error_report("vfio: Error: Failed to setup MSI fds: %m");
818 } else if (ret != vdev->nr_vectors) {
819 error_report("vfio: Error: Failed to enable %d "
820 "MSI vectors, retry with %d", vdev->nr_vectors, ret);
823 for (i = 0; i < vdev->nr_vectors; i++) {
824 VFIOMSIVector *vector = &vdev->msi_vectors[i];
825 if (vector->virq >= 0) {
826 vfio_remove_kvm_msi_virq(vector);
828 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
829 NULL, NULL, NULL);
830 event_notifier_cleanup(&vector->interrupt);
833 g_free(vdev->msi_vectors);
835 if (ret > 0 && ret != vdev->nr_vectors) {
836 vdev->nr_vectors = ret;
837 goto retry;
839 vdev->nr_vectors = 0;
842 * Failing to setup MSI doesn't really fall within any specification.
843 * Let's try leaving interrupts disabled and hope the guest figures
844 * out to fall back to INTx for this device.
846 error_report("vfio: Error: Failed to enable MSI");
847 vdev->interrupt = VFIO_INT_NONE;
849 return;
852 trace_vfio_msi_enable(vdev->vbasedev.name, vdev->nr_vectors);
855 static void vfio_msi_disable_common(VFIOPCIDevice *vdev)
857 int i;
859 for (i = 0; i < vdev->nr_vectors; i++) {
860 VFIOMSIVector *vector = &vdev->msi_vectors[i];
861 if (vdev->msi_vectors[i].use) {
862 if (vector->virq >= 0) {
863 vfio_remove_kvm_msi_virq(vector);
865 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
866 NULL, NULL, NULL);
867 event_notifier_cleanup(&vector->interrupt);
871 g_free(vdev->msi_vectors);
872 vdev->msi_vectors = NULL;
873 vdev->nr_vectors = 0;
874 vdev->interrupt = VFIO_INT_NONE;
876 vfio_intx_enable(vdev);
879 static void vfio_msix_disable(VFIOPCIDevice *vdev)
881 int i;
883 msix_unset_vector_notifiers(&vdev->pdev);
886 * MSI-X will only release vectors if MSI-X is still enabled on the
887 * device, check through the rest and release it ourselves if necessary.
889 for (i = 0; i < vdev->nr_vectors; i++) {
890 if (vdev->msi_vectors[i].use) {
891 vfio_msix_vector_release(&vdev->pdev, i);
892 msix_vector_unuse(&vdev->pdev, i);
896 if (vdev->nr_vectors) {
897 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
900 vfio_msi_disable_common(vdev);
902 trace_vfio_msix_disable(vdev->vbasedev.name);
905 static void vfio_msi_disable(VFIOPCIDevice *vdev)
907 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
908 vfio_msi_disable_common(vdev);
910 trace_vfio_msi_disable(vdev->vbasedev.name);
913 static void vfio_update_msi(VFIOPCIDevice *vdev)
915 int i;
917 for (i = 0; i < vdev->nr_vectors; i++) {
918 VFIOMSIVector *vector = &vdev->msi_vectors[i];
919 MSIMessage msg;
921 if (!vector->use || vector->virq < 0) {
922 continue;
925 msg = msi_get_message(&vdev->pdev, i);
926 vfio_update_kvm_msi_virq(vector, msg);
930 static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
932 struct vfio_region_info reg_info = {
933 .argsz = sizeof(reg_info),
934 .index = VFIO_PCI_ROM_REGION_INDEX
936 uint64_t size;
937 off_t off = 0;
938 ssize_t bytes;
940 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info)) {
941 error_report("vfio: Error getting ROM info: %m");
942 return;
945 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size,
946 (unsigned long)reg_info.offset,
947 (unsigned long)reg_info.flags);
949 vdev->rom_size = size = reg_info.size;
950 vdev->rom_offset = reg_info.offset;
952 if (!vdev->rom_size) {
953 vdev->rom_read_failed = true;
954 error_report("vfio-pci: Cannot read device rom at "
955 "%s", vdev->vbasedev.name);
956 error_printf("Device option ROM contents are probably invalid "
957 "(check dmesg).\nSkip option ROM probe with rombar=0, "
958 "or load from file with romfile=\n");
959 return;
962 vdev->rom = g_malloc(size);
963 memset(vdev->rom, 0xff, size);
965 while (size) {
966 bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
967 size, vdev->rom_offset + off);
968 if (bytes == 0) {
969 break;
970 } else if (bytes > 0) {
971 off += bytes;
972 size -= bytes;
973 } else {
974 if (errno == EINTR || errno == EAGAIN) {
975 continue;
977 error_report("vfio: Error reading device ROM: %m");
978 break;
983 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
985 VFIOPCIDevice *vdev = opaque;
986 union {
987 uint8_t byte;
988 uint16_t word;
989 uint32_t dword;
990 uint64_t qword;
991 } val;
992 uint64_t data = 0;
994 /* Load the ROM lazily when the guest tries to read it */
995 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
996 vfio_pci_load_rom(vdev);
999 memcpy(&val, vdev->rom + addr,
1000 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
1002 switch (size) {
1003 case 1:
1004 data = val.byte;
1005 break;
1006 case 2:
1007 data = le16_to_cpu(val.word);
1008 break;
1009 case 4:
1010 data = le32_to_cpu(val.dword);
1011 break;
1012 default:
1013 hw_error("vfio: unsupported read size, %d bytes\n", size);
1014 break;
1017 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
1019 return data;
1022 static void vfio_rom_write(void *opaque, hwaddr addr,
1023 uint64_t data, unsigned size)
1027 static const MemoryRegionOps vfio_rom_ops = {
1028 .read = vfio_rom_read,
1029 .write = vfio_rom_write,
1030 .endianness = DEVICE_LITTLE_ENDIAN,
1033 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
1035 PCIDevice *pdev = &vdev->pdev;
1036 uint16_t vendor_id, device_id;
1037 int count = 0;
1039 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
1040 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
1042 while (count < ARRAY_SIZE(romblacklist)) {
1043 if (romblacklist[count].vendor_id == vendor_id &&
1044 romblacklist[count].device_id == device_id) {
1045 return true;
1047 count++;
1050 return false;
1053 static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
1055 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
1056 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
1057 DeviceState *dev = DEVICE(vdev);
1058 char name[32];
1059 int fd = vdev->vbasedev.fd;
1061 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
1062 /* Since pci handles romfile, just print a message and return */
1063 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
1064 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1065 "is known to cause system instability issues during "
1066 "option rom execution. "
1067 "Proceeding anyway since user specified romfile\n",
1068 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1069 vdev->host.function);
1071 return;
1075 * Use the same size ROM BAR as the physical device. The contents
1076 * will get filled in later when the guest tries to read it.
1078 if (pread(fd, &orig, 4, offset) != 4 ||
1079 pwrite(fd, &size, 4, offset) != 4 ||
1080 pread(fd, &size, 4, offset) != 4 ||
1081 pwrite(fd, &orig, 4, offset) != 4) {
1082 error_report("%s(%04x:%02x:%02x.%x) failed: %m",
1083 __func__, vdev->host.domain, vdev->host.bus,
1084 vdev->host.slot, vdev->host.function);
1085 return;
1088 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
1090 if (!size) {
1091 return;
1094 if (vfio_blacklist_opt_rom(vdev)) {
1095 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
1096 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1097 "is known to cause system instability issues during "
1098 "option rom execution. "
1099 "Proceeding anyway since user specified non zero value for "
1100 "rombar\n",
1101 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1102 vdev->host.function);
1103 } else {
1104 error_printf("Warning : Rom loading for device at "
1105 "%04x:%02x:%02x.%x has been disabled due to "
1106 "system instability issues. "
1107 "Specify rombar=1 or romfile to force\n",
1108 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1109 vdev->host.function);
1110 return;
1114 trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
1116 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
1117 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1118 vdev->host.function);
1120 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
1121 &vfio_rom_ops, vdev, name, size);
1123 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
1124 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
1126 vdev->pdev.has_rom = true;
1127 vdev->rom_read_failed = false;
1130 static void vfio_vga_write(void *opaque, hwaddr addr,
1131 uint64_t data, unsigned size)
1133 VFIOVGARegion *region = opaque;
1134 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1135 union {
1136 uint8_t byte;
1137 uint16_t word;
1138 uint32_t dword;
1139 uint64_t qword;
1140 } buf;
1141 off_t offset = vga->fd_offset + region->offset + addr;
1143 switch (size) {
1144 case 1:
1145 buf.byte = data;
1146 break;
1147 case 2:
1148 buf.word = cpu_to_le16(data);
1149 break;
1150 case 4:
1151 buf.dword = cpu_to_le32(data);
1152 break;
1153 default:
1154 hw_error("vfio: unsupported write size, %d bytes", size);
1155 break;
1158 if (pwrite(vga->fd, &buf, size, offset) != size) {
1159 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
1160 __func__, region->offset + addr, data, size);
1163 trace_vfio_vga_write(region->offset + addr, data, size);
1166 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
1168 VFIOVGARegion *region = opaque;
1169 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1170 union {
1171 uint8_t byte;
1172 uint16_t word;
1173 uint32_t dword;
1174 uint64_t qword;
1175 } buf;
1176 uint64_t data = 0;
1177 off_t offset = vga->fd_offset + region->offset + addr;
1179 if (pread(vga->fd, &buf, size, offset) != size) {
1180 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
1181 __func__, region->offset + addr, size);
1182 return (uint64_t)-1;
1185 switch (size) {
1186 case 1:
1187 data = buf.byte;
1188 break;
1189 case 2:
1190 data = le16_to_cpu(buf.word);
1191 break;
1192 case 4:
1193 data = le32_to_cpu(buf.dword);
1194 break;
1195 default:
1196 hw_error("vfio: unsupported read size, %d bytes", size);
1197 break;
1200 trace_vfio_vga_read(region->offset + addr, size, data);
1202 return data;
1205 static const MemoryRegionOps vfio_vga_ops = {
1206 .read = vfio_vga_read,
1207 .write = vfio_vga_write,
1208 .endianness = DEVICE_LITTLE_ENDIAN,
1212 * Device specific quirks
1215 /* Is range1 fully contained within range2? */
1216 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
1217 uint64_t first2, uint64_t len2) {
1218 return (first1 >= first2 && first1 + len1 <= first2 + len2);
1221 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
1223 return (mask && (flags & mask) == mask);
1226 static uint64_t vfio_generic_window_quirk_read(void *opaque,
1227 hwaddr addr, unsigned size)
1229 VFIOQuirk *quirk = opaque;
1230 VFIOPCIDevice *vdev = quirk->vdev;
1231 uint64_t data;
1233 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1234 ranges_overlap(addr, size,
1235 quirk->data.data_offset, quirk->data.data_size)) {
1236 hwaddr offset = addr - quirk->data.data_offset;
1238 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1239 quirk->data.data_size)) {
1240 hw_error("%s: window data read not fully contained: %s",
1241 __func__, memory_region_name(&quirk->mem));
1244 data = vfio_pci_read_config(&vdev->pdev,
1245 quirk->data.address_val + offset, size);
1247 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem),
1248 vdev->vbasedev.name,
1249 quirk->data.bar,
1250 addr, size, data);
1251 } else {
1252 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1253 addr + quirk->data.base_offset, size);
1256 return data;
1259 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
1260 uint64_t data, unsigned size)
1262 VFIOQuirk *quirk = opaque;
1263 VFIOPCIDevice *vdev = quirk->vdev;
1265 if (ranges_overlap(addr, size,
1266 quirk->data.address_offset, quirk->data.address_size)) {
1268 if (addr != quirk->data.address_offset) {
1269 hw_error("%s: offset write into address window: %s",
1270 __func__, memory_region_name(&quirk->mem));
1273 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
1274 quirk->data.flags |= quirk->data.write_flags |
1275 quirk->data.read_flags;
1276 quirk->data.address_val = data & quirk->data.address_mask;
1277 } else {
1278 quirk->data.flags &= ~(quirk->data.write_flags |
1279 quirk->data.read_flags);
1283 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1284 ranges_overlap(addr, size,
1285 quirk->data.data_offset, quirk->data.data_size)) {
1286 hwaddr offset = addr - quirk->data.data_offset;
1288 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1289 quirk->data.data_size)) {
1290 hw_error("%s: window data write not fully contained: %s",
1291 __func__, memory_region_name(&quirk->mem));
1294 vfio_pci_write_config(&vdev->pdev,
1295 quirk->data.address_val + offset, data, size);
1296 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem),
1297 vdev->vbasedev.name,
1298 quirk->data.bar,
1299 addr, data, size);
1300 return;
1303 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1304 addr + quirk->data.base_offset, data, size);
1307 static const MemoryRegionOps vfio_generic_window_quirk = {
1308 .read = vfio_generic_window_quirk_read,
1309 .write = vfio_generic_window_quirk_write,
1310 .endianness = DEVICE_LITTLE_ENDIAN,
1313 static uint64_t vfio_generic_quirk_read(void *opaque,
1314 hwaddr addr, unsigned size)
1316 VFIOQuirk *quirk = opaque;
1317 VFIOPCIDevice *vdev = quirk->vdev;
1318 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1319 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1320 uint64_t data;
1322 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1323 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1324 if (!vfio_range_contained(addr, size, offset,
1325 quirk->data.address_mask + 1)) {
1326 hw_error("%s: read not fully contained: %s",
1327 __func__, memory_region_name(&quirk->mem));
1330 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
1332 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem),
1333 vdev->vbasedev.name, quirk->data.bar,
1334 addr + base, size, data);
1335 } else {
1336 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1337 addr + base, size);
1340 return data;
1343 static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
1344 uint64_t data, unsigned size)
1346 VFIOQuirk *quirk = opaque;
1347 VFIOPCIDevice *vdev = quirk->vdev;
1348 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1349 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1351 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1352 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1353 if (!vfio_range_contained(addr, size, offset,
1354 quirk->data.address_mask + 1)) {
1355 hw_error("%s: write not fully contained: %s",
1356 __func__, memory_region_name(&quirk->mem));
1359 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
1361 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem),
1362 vdev->vbasedev.name, quirk->data.bar,
1363 addr + base, data, size);
1364 } else {
1365 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1366 addr + base, data, size);
1370 static const MemoryRegionOps vfio_generic_quirk = {
1371 .read = vfio_generic_quirk_read,
1372 .write = vfio_generic_quirk_write,
1373 .endianness = DEVICE_LITTLE_ENDIAN,
1376 #define PCI_VENDOR_ID_ATI 0x1002
1379 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
1380 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
1381 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
1382 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
1383 * I/O port BAR address. Originally this was coded to return the virtual BAR
1384 * address only if the physical register read returns the actual BAR address,
1385 * but users have reported greater success if we return the virtual address
1386 * unconditionally.
1388 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
1389 hwaddr addr, unsigned size)
1391 VFIOQuirk *quirk = opaque;
1392 VFIOPCIDevice *vdev = quirk->vdev;
1393 uint64_t data = vfio_pci_read_config(&vdev->pdev,
1394 PCI_BASE_ADDRESS_0 + (4 * 4) + 1,
1395 size);
1396 trace_vfio_ati_3c3_quirk_read(data);
1398 return data;
1401 static const MemoryRegionOps vfio_ati_3c3_quirk = {
1402 .read = vfio_ati_3c3_quirk_read,
1403 .endianness = DEVICE_LITTLE_ENDIAN,
1406 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
1408 PCIDevice *pdev = &vdev->pdev;
1409 VFIOQuirk *quirk;
1411 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1412 return;
1416 * As long as the BAR is >= 256 bytes it will be aligned such that the
1417 * lower byte is always zero. Filter out anything else, if it exists.
1419 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
1420 return;
1423 quirk = g_malloc0(sizeof(*quirk));
1424 quirk->vdev = vdev;
1426 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk,
1427 "vfio-ati-3c3-quirk", 1);
1428 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1429 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem);
1431 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1432 quirk, next);
1434 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name);
1438 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
1439 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
1440 * the MMIO space directly, but a window to this space is provided through
1441 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
1442 * data register. When the address is programmed to a range of 0x4000-0x4fff
1443 * PCI configuration space is available. Experimentation seems to indicate
1444 * that only read-only access is provided, but we drop writes when the window
1445 * is enabled to config space nonetheless.
1447 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
1449 PCIDevice *pdev = &vdev->pdev;
1450 VFIOQuirk *quirk;
1452 if (!vdev->has_vga || nr != 4 ||
1453 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1454 return;
1457 quirk = g_malloc0(sizeof(*quirk));
1458 quirk->vdev = vdev;
1459 quirk->data.address_size = 4;
1460 quirk->data.data_offset = 4;
1461 quirk->data.data_size = 4;
1462 quirk->data.address_match = 0x4000;
1463 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1464 quirk->data.bar = nr;
1465 quirk->data.read_flags = quirk->data.write_flags = 1;
1467 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1468 &vfio_generic_window_quirk, quirk,
1469 "vfio-ati-bar4-window-quirk", 8);
1470 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1471 quirk->data.base_offset, &quirk->mem, 1);
1473 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1475 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
1478 #define PCI_VENDOR_ID_REALTEK 0x10ec
1481 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1482 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1483 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1484 * when the "type" portion of the address register is set to 0x1. This appears
1485 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1486 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1487 * ignore because the MSI-X table should always be accessed as a dword (full
1488 * mask). Bits 0:11 is offset within the type.
1490 * Example trace:
1492 * Read from MSI-X table offset 0
1493 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1494 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1495 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1497 * Write 0xfee00000 to MSI-X table offset 0
1498 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1499 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1500 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1503 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque,
1504 hwaddr addr, unsigned size)
1506 VFIOQuirk *quirk = opaque;
1507 VFIOPCIDevice *vdev = quirk->vdev;
1508 uint64_t val = 0;
1510 if (!quirk->data.flags) { /* Non-MSI-X table access */
1511 return vfio_region_read(&vdev->bars[quirk->data.bar].region,
1512 addr + 0x70, size);
1515 switch (addr) {
1516 case 4: /* address */
1517 val = quirk->data.address_match ^ 0x80000000U; /* latch/complete */
1518 break;
1519 case 0: /* data */
1520 if ((vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1521 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio,
1522 (hwaddr)(quirk->data.address_match & 0xfff),
1523 &val, size, MEMTXATTRS_UNSPECIFIED);
1525 break;
1528 trace_vfio_rtl8168_quirk_read(vdev->vbasedev.name,
1529 addr ? "address" : "data", val);
1530 return val;
1533 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr,
1534 uint64_t data, unsigned size)
1536 VFIOQuirk *quirk = opaque;
1537 VFIOPCIDevice *vdev = quirk->vdev;
1539 switch (addr) {
1540 case 4: /* address */
1541 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1542 quirk->data.flags = 1; /* Activate reads */
1543 quirk->data.address_match = data;
1545 trace_vfio_rtl8168_quirk_write(vdev->vbasedev.name, data);
1547 if (data & 0x80000000U) { /* Do write */
1548 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1549 hwaddr offset = data & 0xfff;
1550 uint64_t val = quirk->data.address_mask;
1552 trace_vfio_rtl8168_quirk_msix(vdev->vbasedev.name,
1553 (uint16_t)offset, val);
1555 /* Write to the proper guest MSI-X table instead */
1556 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1557 offset, val, size,
1558 MEMTXATTRS_UNSPECIFIED);
1560 return; /* Do not write guest MSI-X data to hardware */
1562 } else {
1563 quirk->data.flags = 0; /* De-activate reads, non-MSI-X */
1565 break;
1566 case 0: /* data */
1567 quirk->data.address_mask = data;
1568 break;
1571 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1572 addr + 0x70, data, size);
1575 static const MemoryRegionOps vfio_rtl8168_window_quirk = {
1576 .read = vfio_rtl8168_window_quirk_read,
1577 .write = vfio_rtl8168_window_quirk_write,
1578 .valid = {
1579 .min_access_size = 4,
1580 .max_access_size = 4,
1581 .unaligned = false,
1583 .endianness = DEVICE_LITTLE_ENDIAN,
1586 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr)
1588 PCIDevice *pdev = &vdev->pdev;
1589 VFIOQuirk *quirk;
1591 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK ||
1592 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) {
1593 return;
1596 quirk = g_malloc0(sizeof(*quirk));
1597 quirk->vdev = vdev;
1598 quirk->data.bar = nr;
1600 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk,
1601 quirk, "vfio-rtl8168-window-quirk", 8);
1602 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1603 0x70, &quirk->mem, 1);
1605 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1607 trace_vfio_rtl8168_quirk_enable(vdev->vbasedev.name);
1611 * Trap the BAR2 MMIO window to config space as well.
1613 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
1615 PCIDevice *pdev = &vdev->pdev;
1616 VFIOQuirk *quirk;
1618 /* Only enable on newer devices where BAR2 is 64bit */
1619 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
1620 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1621 return;
1624 quirk = g_malloc0(sizeof(*quirk));
1625 quirk->vdev = vdev;
1626 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1627 quirk->data.address_match = 0x4000;
1628 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1629 quirk->data.bar = nr;
1631 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1632 "vfio-ati-bar2-4000-quirk",
1633 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1634 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1635 quirk->data.address_match & TARGET_PAGE_MASK,
1636 &quirk->mem, 1);
1638 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1640 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
1644 * Older ATI/AMD cards like the X550 have a similar window to that above.
1645 * I/O port BAR1 provides a window to a mirror of PCI config space located
1646 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
1647 * note it for future reference.
1650 #define PCI_VENDOR_ID_NVIDIA 0x10de
1653 * Nvidia has several different methods to get to config space, the
1654 * nouveu project has several of these documented here:
1655 * https://github.com/pathscale/envytools/tree/master/hwdocs
1657 * The first quirk is actually not documented in envytools and is found
1658 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
1659 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
1660 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
1661 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
1662 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
1663 * is written for a write to 0x3d4. The BAR0 offset is then accessible
1664 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
1665 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
1667 enum {
1668 NV_3D0_NONE = 0,
1669 NV_3D0_SELECT,
1670 NV_3D0_WINDOW,
1671 NV_3D0_READ,
1672 NV_3D0_WRITE,
1675 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
1676 hwaddr addr, unsigned size)
1678 VFIOQuirk *quirk = opaque;
1679 VFIOPCIDevice *vdev = quirk->vdev;
1680 PCIDevice *pdev = &vdev->pdev;
1681 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1682 addr + quirk->data.base_offset, size);
1684 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) {
1685 data = vfio_pci_read_config(pdev, quirk->data.address_val, size);
1686 trace_vfio_nvidia_3d0_quirk_read(size, data);
1689 quirk->data.flags = NV_3D0_NONE;
1691 return data;
1694 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
1695 uint64_t data, unsigned size)
1697 VFIOQuirk *quirk = opaque;
1698 VFIOPCIDevice *vdev = quirk->vdev;
1699 PCIDevice *pdev = &vdev->pdev;
1701 switch (quirk->data.flags) {
1702 case NV_3D0_NONE:
1703 if (addr == quirk->data.address_offset && data == 0x338) {
1704 quirk->data.flags = NV_3D0_SELECT;
1706 break;
1707 case NV_3D0_SELECT:
1708 quirk->data.flags = NV_3D0_NONE;
1709 if (addr == quirk->data.data_offset &&
1710 (data & ~quirk->data.address_mask) == quirk->data.address_match) {
1711 quirk->data.flags = NV_3D0_WINDOW;
1712 quirk->data.address_val = data & quirk->data.address_mask;
1714 break;
1715 case NV_3D0_WINDOW:
1716 quirk->data.flags = NV_3D0_NONE;
1717 if (addr == quirk->data.address_offset) {
1718 if (data == 0x538) {
1719 quirk->data.flags = NV_3D0_READ;
1720 } else if (data == 0x738) {
1721 quirk->data.flags = NV_3D0_WRITE;
1724 break;
1725 case NV_3D0_WRITE:
1726 quirk->data.flags = NV_3D0_NONE;
1727 if (addr == quirk->data.data_offset) {
1728 vfio_pci_write_config(pdev, quirk->data.address_val, data, size);
1729 trace_vfio_nvidia_3d0_quirk_write(data, size);
1730 return;
1732 break;
1735 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1736 addr + quirk->data.base_offset, data, size);
1739 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
1740 .read = vfio_nvidia_3d0_quirk_read,
1741 .write = vfio_nvidia_3d0_quirk_write,
1742 .endianness = DEVICE_LITTLE_ENDIAN,
1745 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
1747 PCIDevice *pdev = &vdev->pdev;
1748 VFIOQuirk *quirk;
1750 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA ||
1751 !vdev->bars[1].region.size) {
1752 return;
1755 quirk = g_malloc0(sizeof(*quirk));
1756 quirk->vdev = vdev;
1757 quirk->data.base_offset = 0x10;
1758 quirk->data.address_offset = 4;
1759 quirk->data.address_size = 2;
1760 quirk->data.address_match = 0x1800;
1761 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1762 quirk->data.data_offset = 0;
1763 quirk->data.data_size = 4;
1765 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk,
1766 quirk, "vfio-nvidia-3d0-quirk", 6);
1767 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1768 quirk->data.base_offset, &quirk->mem);
1770 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1771 quirk, next);
1773 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name);
1777 * The second quirk is documented in envytools. The I/O port BAR5 is just
1778 * a set of address/data ports to the MMIO BARs. The BAR we care about is
1779 * again BAR0. This backdoor is apparently a bit newer than the one above
1780 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
1781 * space, including extended space is available at the 4k @0x88000.
1783 enum {
1784 NV_BAR5_ADDRESS = 0x1,
1785 NV_BAR5_ENABLE = 0x2,
1786 NV_BAR5_MASTER = 0x4,
1787 NV_BAR5_VALID = 0x7,
1790 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
1791 uint64_t data, unsigned size)
1793 VFIOQuirk *quirk = opaque;
1795 switch (addr) {
1796 case 0x0:
1797 if (data & 0x1) {
1798 quirk->data.flags |= NV_BAR5_MASTER;
1799 } else {
1800 quirk->data.flags &= ~NV_BAR5_MASTER;
1802 break;
1803 case 0x4:
1804 if (data & 0x1) {
1805 quirk->data.flags |= NV_BAR5_ENABLE;
1806 } else {
1807 quirk->data.flags &= ~NV_BAR5_ENABLE;
1809 break;
1810 case 0x8:
1811 if (quirk->data.flags & NV_BAR5_MASTER) {
1812 if ((data & ~0xfff) == 0x88000) {
1813 quirk->data.flags |= NV_BAR5_ADDRESS;
1814 quirk->data.address_val = data & 0xfff;
1815 } else if ((data & ~0xff) == 0x1800) {
1816 quirk->data.flags |= NV_BAR5_ADDRESS;
1817 quirk->data.address_val = data & 0xff;
1818 } else {
1819 quirk->data.flags &= ~NV_BAR5_ADDRESS;
1822 break;
1825 vfio_generic_window_quirk_write(opaque, addr, data, size);
1828 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
1829 .read = vfio_generic_window_quirk_read,
1830 .write = vfio_nvidia_bar5_window_quirk_write,
1831 .valid.min_access_size = 4,
1832 .endianness = DEVICE_LITTLE_ENDIAN,
1835 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
1837 PCIDevice *pdev = &vdev->pdev;
1838 VFIOQuirk *quirk;
1840 if (!vdev->has_vga || nr != 5 ||
1841 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1842 return;
1845 quirk = g_malloc0(sizeof(*quirk));
1846 quirk->vdev = vdev;
1847 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID;
1848 quirk->data.address_offset = 0x8;
1849 quirk->data.address_size = 0; /* actually 4, but avoids generic code */
1850 quirk->data.data_offset = 0xc;
1851 quirk->data.data_size = 4;
1852 quirk->data.bar = nr;
1854 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1855 &vfio_nvidia_bar5_window_quirk, quirk,
1856 "vfio-nvidia-bar5-window-quirk", 16);
1857 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1858 0, &quirk->mem, 1);
1860 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1862 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
1865 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
1866 uint64_t data, unsigned size)
1868 VFIOQuirk *quirk = opaque;
1869 VFIOPCIDevice *vdev = quirk->vdev;
1870 PCIDevice *pdev = &vdev->pdev;
1871 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1873 vfio_generic_quirk_write(opaque, addr, data, size);
1876 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
1877 * MSI capability ID register. Both the ID and next register are
1878 * read-only, so we allow writes covering either of those to real hw.
1879 * NB - only fixed for the 0x88000 MMIO window.
1881 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
1882 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
1883 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1884 addr + base, data, size);
1888 static const MemoryRegionOps vfio_nvidia_88000_quirk = {
1889 .read = vfio_generic_quirk_read,
1890 .write = vfio_nvidia_88000_quirk_write,
1891 .endianness = DEVICE_LITTLE_ENDIAN,
1895 * Finally, BAR0 itself. We want to redirect any accesses to either
1896 * 0x1800 or 0x88000 through the PCI config space access functions.
1898 * NB - quirk at a page granularity or else they don't seem to work when
1899 * BARs are mmap'd
1901 * Here's offset 0x88000...
1903 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
1905 PCIDevice *pdev = &vdev->pdev;
1906 VFIOQuirk *quirk;
1907 uint16_t vendor, class;
1909 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
1910 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
1912 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
1913 class != PCI_CLASS_DISPLAY_VGA) {
1914 return;
1917 quirk = g_malloc0(sizeof(*quirk));
1918 quirk->vdev = vdev;
1919 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1920 quirk->data.address_match = 0x88000;
1921 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1922 quirk->data.bar = nr;
1924 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
1925 quirk, "vfio-nvidia-bar0-88000-quirk",
1926 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1927 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1928 quirk->data.address_match & TARGET_PAGE_MASK,
1929 &quirk->mem, 1);
1931 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1933 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
1937 * And here's the same for BAR0 offset 0x1800...
1939 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
1941 PCIDevice *pdev = &vdev->pdev;
1942 VFIOQuirk *quirk;
1944 if (!vdev->has_vga || nr != 0 ||
1945 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1946 return;
1949 /* Log the chipset ID */
1950 trace_vfio_probe_nvidia_bar0_1800_quirk_id(
1951 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
1952 & 0xff);
1954 quirk = g_malloc0(sizeof(*quirk));
1955 quirk->vdev = vdev;
1956 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1957 quirk->data.address_match = 0x1800;
1958 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1959 quirk->data.bar = nr;
1961 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1962 "vfio-nvidia-bar0-1800-quirk",
1963 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1964 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1965 quirk->data.address_match & TARGET_PAGE_MASK,
1966 &quirk->mem, 1);
1968 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1970 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
1974 * TODO - Some Nvidia devices provide config access to their companion HDA
1975 * device and even to their parent bridge via these config space mirrors.
1976 * Add quirks for those regions.
1980 * Common quirk probe entry points.
1982 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1984 vfio_vga_probe_ati_3c3_quirk(vdev);
1985 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1988 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
1990 VFIOQuirk *quirk;
1991 int i;
1993 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
1994 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) {
1995 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem);
2000 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev)
2002 int i;
2004 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2005 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
2006 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
2007 object_unparent(OBJECT(&quirk->mem));
2008 QLIST_REMOVE(quirk, next);
2009 g_free(quirk);
2014 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
2016 vfio_probe_ati_bar4_window_quirk(vdev, nr);
2017 vfio_probe_ati_bar2_4000_quirk(vdev, nr);
2018 vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
2019 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
2020 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
2021 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr);
2024 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
2026 VFIOBAR *bar = &vdev->bars[nr];
2027 VFIOQuirk *quirk;
2029 QLIST_FOREACH(quirk, &bar->quirks, next) {
2030 memory_region_del_subregion(&bar->region.mem, &quirk->mem);
2034 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr)
2036 VFIOBAR *bar = &vdev->bars[nr];
2038 while (!QLIST_EMPTY(&bar->quirks)) {
2039 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
2040 object_unparent(OBJECT(&quirk->mem));
2041 QLIST_REMOVE(quirk, next);
2042 g_free(quirk);
2047 * PCI config space
2049 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
2051 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2052 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
2054 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
2055 emu_bits = le32_to_cpu(emu_bits);
2057 if (emu_bits) {
2058 emu_val = pci_default_read_config(pdev, addr, len);
2061 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
2062 ssize_t ret;
2064 ret = pread(vdev->vbasedev.fd, &phys_val, len,
2065 vdev->config_offset + addr);
2066 if (ret != len) {
2067 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m",
2068 __func__, vdev->host.domain, vdev->host.bus,
2069 vdev->host.slot, vdev->host.function, addr, len);
2070 return -errno;
2072 phys_val = le32_to_cpu(phys_val);
2075 val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
2077 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
2079 return val;
2082 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
2083 uint32_t val, int len)
2085 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2086 uint32_t val_le = cpu_to_le32(val);
2088 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
2090 /* Write everything to VFIO, let it filter out what we can't write */
2091 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
2092 != len) {
2093 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m",
2094 __func__, vdev->host.domain, vdev->host.bus,
2095 vdev->host.slot, vdev->host.function, addr, val, len);
2098 /* MSI/MSI-X Enabling/Disabling */
2099 if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
2100 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
2101 int is_enabled, was_enabled = msi_enabled(pdev);
2103 pci_default_write_config(pdev, addr, val, len);
2105 is_enabled = msi_enabled(pdev);
2107 if (!was_enabled) {
2108 if (is_enabled) {
2109 vfio_msi_enable(vdev);
2111 } else {
2112 if (!is_enabled) {
2113 vfio_msi_disable(vdev);
2114 } else {
2115 vfio_update_msi(vdev);
2118 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
2119 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
2120 int is_enabled, was_enabled = msix_enabled(pdev);
2122 pci_default_write_config(pdev, addr, val, len);
2124 is_enabled = msix_enabled(pdev);
2126 if (!was_enabled && is_enabled) {
2127 vfio_msix_enable(vdev);
2128 } else if (was_enabled && !is_enabled) {
2129 vfio_msix_disable(vdev);
2131 } else {
2132 /* Write everything to QEMU to keep emulated bits correct */
2133 pci_default_write_config(pdev, addr, val, len);
2138 * Interrupt setup
2140 static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
2143 * More complicated than it looks. Disabling MSI/X transitions the
2144 * device to INTx mode (if supported). Therefore we need to first
2145 * disable MSI/X and then cleanup by disabling INTx.
2147 if (vdev->interrupt == VFIO_INT_MSIX) {
2148 vfio_msix_disable(vdev);
2149 } else if (vdev->interrupt == VFIO_INT_MSI) {
2150 vfio_msi_disable(vdev);
2153 if (vdev->interrupt == VFIO_INT_INTx) {
2154 vfio_intx_disable(vdev);
2158 static int vfio_msi_setup(VFIOPCIDevice *vdev, int pos)
2160 uint16_t ctrl;
2161 bool msi_64bit, msi_maskbit;
2162 int ret, entries;
2164 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
2165 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2166 return -errno;
2168 ctrl = le16_to_cpu(ctrl);
2170 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
2171 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
2172 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
2174 trace_vfio_msi_setup(vdev->vbasedev.name, pos);
2176 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
2177 if (ret < 0) {
2178 if (ret == -ENOTSUP) {
2179 return 0;
2181 error_report("vfio: msi_init failed");
2182 return ret;
2184 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
2186 return 0;
2190 * We don't have any control over how pci_add_capability() inserts
2191 * capabilities into the chain. In order to setup MSI-X we need a
2192 * MemoryRegion for the BAR. In order to setup the BAR and not
2193 * attempt to mmap the MSI-X table area, which VFIO won't allow, we
2194 * need to first look for where the MSI-X table lives. So we
2195 * unfortunately split MSI-X setup across two functions.
2197 static int vfio_msix_early_setup(VFIOPCIDevice *vdev)
2199 uint8_t pos;
2200 uint16_t ctrl;
2201 uint32_t table, pba;
2202 int fd = vdev->vbasedev.fd;
2203 VFIOMSIXInfo *msix;
2205 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
2206 if (!pos) {
2207 return 0;
2210 if (pread(fd, &ctrl, sizeof(ctrl),
2211 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2212 return -errno;
2215 if (pread(fd, &table, sizeof(table),
2216 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
2217 return -errno;
2220 if (pread(fd, &pba, sizeof(pba),
2221 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
2222 return -errno;
2225 ctrl = le16_to_cpu(ctrl);
2226 table = le32_to_cpu(table);
2227 pba = le32_to_cpu(pba);
2229 msix = g_malloc0(sizeof(*msix));
2230 msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
2231 msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
2232 msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
2233 msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
2234 msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
2237 * Test the size of the pba_offset variable and catch if it extends outside
2238 * of the specified BAR. If it is the case, we need to apply a hardware
2239 * specific quirk if the device is known or we have a broken configuration.
2241 if (msix->pba_offset >= vdev->bars[msix->pba_bar].region.size) {
2242 PCIDevice *pdev = &vdev->pdev;
2243 uint16_t vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
2244 uint16_t device = pci_get_word(pdev->config + PCI_DEVICE_ID);
2247 * Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5
2248 * adapters. The T5 hardware returns an incorrect value of 0x8000 for
2249 * the VF PBA offset while the BAR itself is only 8k. The correct value
2250 * is 0x1000, so we hard code that here.
2252 if (vendor == PCI_VENDOR_ID_CHELSIO && (device & 0xff00) == 0x5800) {
2253 msix->pba_offset = 0x1000;
2254 } else {
2255 error_report("vfio: Hardware reports invalid configuration, "
2256 "MSIX PBA outside of specified BAR");
2257 g_free(msix);
2258 return -EINVAL;
2262 trace_vfio_msix_early_setup(vdev->vbasedev.name, pos, msix->table_bar,
2263 msix->table_offset, msix->entries);
2264 vdev->msix = msix;
2266 return 0;
2269 static int vfio_msix_setup(VFIOPCIDevice *vdev, int pos)
2271 int ret;
2273 ret = msix_init(&vdev->pdev, vdev->msix->entries,
2274 &vdev->bars[vdev->msix->table_bar].region.mem,
2275 vdev->msix->table_bar, vdev->msix->table_offset,
2276 &vdev->bars[vdev->msix->pba_bar].region.mem,
2277 vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
2278 if (ret < 0) {
2279 if (ret == -ENOTSUP) {
2280 return 0;
2282 error_report("vfio: msix_init failed");
2283 return ret;
2286 return 0;
2289 static void vfio_teardown_msi(VFIOPCIDevice *vdev)
2291 msi_uninit(&vdev->pdev);
2293 if (vdev->msix) {
2294 msix_uninit(&vdev->pdev,
2295 &vdev->bars[vdev->msix->table_bar].region.mem,
2296 &vdev->bars[vdev->msix->pba_bar].region.mem);
2301 * Resource setup
2303 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
2305 int i;
2307 for (i = 0; i < PCI_ROM_SLOT; i++) {
2308 VFIOBAR *bar = &vdev->bars[i];
2310 if (!bar->region.size) {
2311 continue;
2314 memory_region_set_enabled(&bar->region.mmap_mem, enabled);
2315 if (vdev->msix && vdev->msix->table_bar == i) {
2316 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
2321 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr)
2323 VFIOBAR *bar = &vdev->bars[nr];
2325 if (!bar->region.size) {
2326 return;
2329 vfio_bar_quirk_teardown(vdev, nr);
2331 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem);
2333 if (vdev->msix && vdev->msix->table_bar == nr) {
2334 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem);
2338 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr)
2340 VFIOBAR *bar = &vdev->bars[nr];
2342 if (!bar->region.size) {
2343 return;
2346 vfio_bar_quirk_free(vdev, nr);
2348 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem));
2350 if (vdev->msix && vdev->msix->table_bar == nr) {
2351 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
2355 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr)
2357 VFIOBAR *bar = &vdev->bars[nr];
2358 uint64_t size = bar->region.size;
2359 char name[64];
2360 uint32_t pci_bar;
2361 uint8_t type;
2362 int ret;
2364 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */
2365 if (!size) {
2366 return;
2369 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
2370 vdev->host.domain, vdev->host.bus, vdev->host.slot,
2371 vdev->host.function, nr);
2373 /* Determine what type of BAR this is for registration */
2374 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
2375 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
2376 if (ret != sizeof(pci_bar)) {
2377 error_report("vfio: Failed to read BAR %d (%m)", nr);
2378 return;
2381 pci_bar = le32_to_cpu(pci_bar);
2382 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
2383 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
2384 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
2385 ~PCI_BASE_ADDRESS_MEM_MASK);
2387 /* A "slow" read/write mapping underlies all BARs */
2388 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops,
2389 bar, name, size);
2390 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem);
2393 * We can't mmap areas overlapping the MSIX vector table, so we
2394 * potentially insert a direct-mapped subregion before and after it.
2396 if (vdev->msix && vdev->msix->table_bar == nr) {
2397 size = vdev->msix->table_offset & qemu_real_host_page_mask;
2400 strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
2401 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2402 &bar->region.mmap_mem, &bar->region.mmap,
2403 size, 0, name)) {
2404 error_report("%s unsupported. Performance may be slow", name);
2407 if (vdev->msix && vdev->msix->table_bar == nr) {
2408 uint64_t start;
2410 start = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset +
2411 (vdev->msix->entries *
2412 PCI_MSIX_ENTRY_SIZE));
2414 size = start < bar->region.size ? bar->region.size - start : 0;
2415 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
2416 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */
2417 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2418 &vdev->msix->mmap_mem,
2419 &vdev->msix->mmap, size, start, name)) {
2420 error_report("%s unsupported. Performance may be slow", name);
2424 vfio_bar_quirk_setup(vdev, nr);
2427 static void vfio_map_bars(VFIOPCIDevice *vdev)
2429 int i;
2431 for (i = 0; i < PCI_ROM_SLOT; i++) {
2432 vfio_map_bar(vdev, i);
2435 if (vdev->has_vga) {
2436 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2437 OBJECT(vdev), &vfio_vga_ops,
2438 &vdev->vga.region[QEMU_PCI_VGA_MEM],
2439 "vfio-vga-mmio@0xa0000",
2440 QEMU_PCI_VGA_MEM_SIZE);
2441 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2442 OBJECT(vdev), &vfio_vga_ops,
2443 &vdev->vga.region[QEMU_PCI_VGA_IO_LO],
2444 "vfio-vga-io@0x3b0",
2445 QEMU_PCI_VGA_IO_LO_SIZE);
2446 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
2447 OBJECT(vdev), &vfio_vga_ops,
2448 &vdev->vga.region[QEMU_PCI_VGA_IO_HI],
2449 "vfio-vga-io@0x3c0",
2450 QEMU_PCI_VGA_IO_HI_SIZE);
2452 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2453 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2454 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem);
2455 vfio_vga_quirk_setup(vdev);
2459 static void vfio_unregister_bars(VFIOPCIDevice *vdev)
2461 int i;
2463 for (i = 0; i < PCI_ROM_SLOT; i++) {
2464 vfio_unregister_bar(vdev, i);
2467 if (vdev->has_vga) {
2468 vfio_vga_quirk_teardown(vdev);
2469 pci_unregister_vga(&vdev->pdev);
2473 static void vfio_unmap_bars(VFIOPCIDevice *vdev)
2475 int i;
2477 for (i = 0; i < PCI_ROM_SLOT; i++) {
2478 vfio_unmap_bar(vdev, i);
2481 if (vdev->has_vga) {
2482 vfio_vga_quirk_free(vdev);
2487 * General setup
2489 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
2491 uint8_t tmp, next = 0xff;
2493 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
2494 tmp = pdev->config[tmp + 1]) {
2495 if (tmp > pos && tmp < next) {
2496 next = tmp;
2500 return next - pos;
2503 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
2505 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
2508 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
2509 uint16_t val, uint16_t mask)
2511 vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
2512 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
2513 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
2516 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
2518 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
2521 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
2522 uint32_t val, uint32_t mask)
2524 vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
2525 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
2526 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
2529 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size)
2531 uint16_t flags;
2532 uint8_t type;
2534 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
2535 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
2537 if (type != PCI_EXP_TYPE_ENDPOINT &&
2538 type != PCI_EXP_TYPE_LEG_END &&
2539 type != PCI_EXP_TYPE_RC_END) {
2541 error_report("vfio: Assignment of PCIe type 0x%x "
2542 "devices is not currently supported", type);
2543 return -EINVAL;
2546 if (!pci_bus_is_express(vdev->pdev.bus)) {
2548 * Use express capability as-is on PCI bus. It doesn't make much
2549 * sense to even expose, but some drivers (ex. tg3) depend on it
2550 * and guests don't seem to be particular about it. We'll need
2551 * to revist this or force express devices to express buses if we
2552 * ever expose an IOMMU to the guest.
2554 } else if (pci_bus_is_root(vdev->pdev.bus)) {
2556 * On a Root Complex bus Endpoints become Root Complex Integrated
2557 * Endpoints, which changes the type and clears the LNK & LNK2 fields.
2559 if (type == PCI_EXP_TYPE_ENDPOINT) {
2560 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2561 PCI_EXP_TYPE_RC_END << 4,
2562 PCI_EXP_FLAGS_TYPE);
2564 /* Link Capabilities, Status, and Control goes away */
2565 if (size > PCI_EXP_LNKCTL) {
2566 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
2567 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2568 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
2570 #ifndef PCI_EXP_LNKCAP2
2571 #define PCI_EXP_LNKCAP2 44
2572 #endif
2573 #ifndef PCI_EXP_LNKSTA2
2574 #define PCI_EXP_LNKSTA2 50
2575 #endif
2576 /* Link 2 Capabilities, Status, and Control goes away */
2577 if (size > PCI_EXP_LNKCAP2) {
2578 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
2579 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
2580 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
2584 } else if (type == PCI_EXP_TYPE_LEG_END) {
2586 * Legacy endpoints don't belong on the root complex. Windows
2587 * seems to be happier with devices if we skip the capability.
2589 return 0;
2592 } else {
2594 * Convert Root Complex Integrated Endpoints to regular endpoints.
2595 * These devices don't support LNK/LNK2 capabilities, so make them up.
2597 if (type == PCI_EXP_TYPE_RC_END) {
2598 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2599 PCI_EXP_TYPE_ENDPOINT << 4,
2600 PCI_EXP_FLAGS_TYPE);
2601 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
2602 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
2603 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2606 /* Mark the Link Status bits as emulated to allow virtual negotiation */
2607 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
2608 pci_get_word(vdev->pdev.config + pos +
2609 PCI_EXP_LNKSTA),
2610 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
2613 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
2614 if (pos >= 0) {
2615 vdev->pdev.exp.exp_cap = pos;
2618 return pos;
2621 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
2623 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
2625 if (cap & PCI_EXP_DEVCAP_FLR) {
2626 trace_vfio_check_pcie_flr(vdev->vbasedev.name);
2627 vdev->has_flr = true;
2631 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
2633 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
2635 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
2636 trace_vfio_check_pm_reset(vdev->vbasedev.name);
2637 vdev->has_pm_reset = true;
2641 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
2643 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
2645 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
2646 trace_vfio_check_af_flr(vdev->vbasedev.name);
2647 vdev->has_flr = true;
2651 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos)
2653 PCIDevice *pdev = &vdev->pdev;
2654 uint8_t cap_id, next, size;
2655 int ret;
2657 cap_id = pdev->config[pos];
2658 next = pdev->config[pos + 1];
2661 * If it becomes important to configure capabilities to their actual
2662 * size, use this as the default when it's something we don't recognize.
2663 * Since QEMU doesn't actually handle many of the config accesses,
2664 * exact size doesn't seem worthwhile.
2666 size = vfio_std_cap_max_size(pdev, pos);
2669 * pci_add_capability always inserts the new capability at the head
2670 * of the chain. Therefore to end up with a chain that matches the
2671 * physical device, we insert from the end by making this recursive.
2672 * This is also why we pre-caclulate size above as cached config space
2673 * will be changed as we unwind the stack.
2675 if (next) {
2676 ret = vfio_add_std_cap(vdev, next);
2677 if (ret) {
2678 return ret;
2680 } else {
2681 /* Begin the rebuild, use QEMU emulated list bits */
2682 pdev->config[PCI_CAPABILITY_LIST] = 0;
2683 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
2684 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
2687 /* Use emulated next pointer to allow dropping caps */
2688 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff);
2690 switch (cap_id) {
2691 case PCI_CAP_ID_MSI:
2692 ret = vfio_msi_setup(vdev, pos);
2693 break;
2694 case PCI_CAP_ID_EXP:
2695 vfio_check_pcie_flr(vdev, pos);
2696 ret = vfio_setup_pcie_cap(vdev, pos, size);
2697 break;
2698 case PCI_CAP_ID_MSIX:
2699 ret = vfio_msix_setup(vdev, pos);
2700 break;
2701 case PCI_CAP_ID_PM:
2702 vfio_check_pm_reset(vdev, pos);
2703 vdev->pm_cap = pos;
2704 ret = pci_add_capability(pdev, cap_id, pos, size);
2705 break;
2706 case PCI_CAP_ID_AF:
2707 vfio_check_af_flr(vdev, pos);
2708 ret = pci_add_capability(pdev, cap_id, pos, size);
2709 break;
2710 default:
2711 ret = pci_add_capability(pdev, cap_id, pos, size);
2712 break;
2715 if (ret < 0) {
2716 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
2717 "0x%x[0x%x]@0x%x: %d", vdev->host.domain,
2718 vdev->host.bus, vdev->host.slot, vdev->host.function,
2719 cap_id, size, pos, ret);
2720 return ret;
2723 return 0;
2726 static int vfio_add_capabilities(VFIOPCIDevice *vdev)
2728 PCIDevice *pdev = &vdev->pdev;
2730 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
2731 !pdev->config[PCI_CAPABILITY_LIST]) {
2732 return 0; /* Nothing to add */
2735 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
2738 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
2740 PCIDevice *pdev = &vdev->pdev;
2741 uint16_t cmd;
2743 vfio_disable_interrupts(vdev);
2745 /* Make sure the device is in D0 */
2746 if (vdev->pm_cap) {
2747 uint16_t pmcsr;
2748 uint8_t state;
2750 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2751 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2752 if (state) {
2753 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2754 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
2755 /* vfio handles the necessary delay here */
2756 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2757 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2758 if (state) {
2759 error_report("vfio: Unable to power on device, stuck in D%d",
2760 state);
2766 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
2767 * Also put INTx Disable in known state.
2769 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
2770 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
2771 PCI_COMMAND_INTX_DISABLE);
2772 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
2775 static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
2777 vfio_intx_enable(vdev);
2780 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1,
2781 PCIHostDeviceAddress *host2)
2783 return (host1->domain == host2->domain && host1->bus == host2->bus &&
2784 host1->slot == host2->slot && host1->function == host2->function);
2787 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
2789 VFIOGroup *group;
2790 struct vfio_pci_hot_reset_info *info;
2791 struct vfio_pci_dependent_device *devices;
2792 struct vfio_pci_hot_reset *reset;
2793 int32_t *fds;
2794 int ret, i, count;
2795 bool multi = false;
2797 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
2799 vfio_pci_pre_reset(vdev);
2800 vdev->vbasedev.needs_reset = false;
2802 info = g_malloc0(sizeof(*info));
2803 info->argsz = sizeof(*info);
2805 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2806 if (ret && errno != ENOSPC) {
2807 ret = -errno;
2808 if (!vdev->has_pm_reset) {
2809 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, "
2810 "no available reset mechanism.", vdev->host.domain,
2811 vdev->host.bus, vdev->host.slot, vdev->host.function);
2813 goto out_single;
2816 count = info->count;
2817 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
2818 info->argsz = sizeof(*info) + (count * sizeof(*devices));
2819 devices = &info->devices[0];
2821 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2822 if (ret) {
2823 ret = -errno;
2824 error_report("vfio: hot reset info failed: %m");
2825 goto out_single;
2828 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
2830 /* Verify that we have all the groups required */
2831 for (i = 0; i < info->count; i++) {
2832 PCIHostDeviceAddress host;
2833 VFIOPCIDevice *tmp;
2834 VFIODevice *vbasedev_iter;
2836 host.domain = devices[i].segment;
2837 host.bus = devices[i].bus;
2838 host.slot = PCI_SLOT(devices[i].devfn);
2839 host.function = PCI_FUNC(devices[i].devfn);
2841 trace_vfio_pci_hot_reset_dep_devices(host.domain,
2842 host.bus, host.slot, host.function, devices[i].group_id);
2844 if (vfio_pci_host_match(&host, &vdev->host)) {
2845 continue;
2848 QLIST_FOREACH(group, &vfio_group_list, next) {
2849 if (group->groupid == devices[i].group_id) {
2850 break;
2854 if (!group) {
2855 if (!vdev->has_pm_reset) {
2856 error_report("vfio: Cannot reset device %s, "
2857 "depends on group %d which is not owned.",
2858 vdev->vbasedev.name, devices[i].group_id);
2860 ret = -EPERM;
2861 goto out;
2864 /* Prep dependent devices for reset and clear our marker. */
2865 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2866 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2867 continue;
2869 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2870 if (vfio_pci_host_match(&host, &tmp->host)) {
2871 if (single) {
2872 ret = -EINVAL;
2873 goto out_single;
2875 vfio_pci_pre_reset(tmp);
2876 tmp->vbasedev.needs_reset = false;
2877 multi = true;
2878 break;
2883 if (!single && !multi) {
2884 ret = -EINVAL;
2885 goto out_single;
2888 /* Determine how many group fds need to be passed */
2889 count = 0;
2890 QLIST_FOREACH(group, &vfio_group_list, next) {
2891 for (i = 0; i < info->count; i++) {
2892 if (group->groupid == devices[i].group_id) {
2893 count++;
2894 break;
2899 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
2900 reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
2901 fds = &reset->group_fds[0];
2903 /* Fill in group fds */
2904 QLIST_FOREACH(group, &vfio_group_list, next) {
2905 for (i = 0; i < info->count; i++) {
2906 if (group->groupid == devices[i].group_id) {
2907 fds[reset->count++] = group->fd;
2908 break;
2913 /* Bus reset! */
2914 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
2915 g_free(reset);
2917 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
2918 ret ? "%m" : "Success");
2920 out:
2921 /* Re-enable INTx on affected devices */
2922 for (i = 0; i < info->count; i++) {
2923 PCIHostDeviceAddress host;
2924 VFIOPCIDevice *tmp;
2925 VFIODevice *vbasedev_iter;
2927 host.domain = devices[i].segment;
2928 host.bus = devices[i].bus;
2929 host.slot = PCI_SLOT(devices[i].devfn);
2930 host.function = PCI_FUNC(devices[i].devfn);
2932 if (vfio_pci_host_match(&host, &vdev->host)) {
2933 continue;
2936 QLIST_FOREACH(group, &vfio_group_list, next) {
2937 if (group->groupid == devices[i].group_id) {
2938 break;
2942 if (!group) {
2943 break;
2946 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2947 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2948 continue;
2950 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2951 if (vfio_pci_host_match(&host, &tmp->host)) {
2952 vfio_pci_post_reset(tmp);
2953 break;
2957 out_single:
2958 vfio_pci_post_reset(vdev);
2959 g_free(info);
2961 return ret;
2965 * We want to differentiate hot reset of mulitple in-use devices vs hot reset
2966 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case
2967 * of doing hot resets when there is only a single device per bus. The in-use
2968 * here refers to how many VFIODevices are affected. A hot reset that affects
2969 * multiple devices, but only a single in-use device, means that we can call
2970 * it from our bus ->reset() callback since the extent is effectively a single
2971 * device. This allows us to make use of it in the hotplug path. When there
2972 * are multiple in-use devices, we can only trigger the hot reset during a
2973 * system reset and thus from our reset handler. We separate _one vs _multi
2974 * here so that we don't overlap and do a double reset on the system reset
2975 * path where both our reset handler and ->reset() callback are used. Calling
2976 * _one() will only do a hot reset for the one in-use devices case, calling
2977 * _multi() will do nothing if a _one() would have been sufficient.
2979 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
2981 return vfio_pci_hot_reset(vdev, true);
2984 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
2986 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2987 return vfio_pci_hot_reset(vdev, false);
2990 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
2992 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2993 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
2994 vbasedev->needs_reset = true;
2998 static VFIODeviceOps vfio_pci_ops = {
2999 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
3000 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
3001 .vfio_eoi = vfio_intx_eoi,
3004 static int vfio_populate_device(VFIOPCIDevice *vdev)
3006 VFIODevice *vbasedev = &vdev->vbasedev;
3007 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
3008 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
3009 int i, ret = -1;
3011 /* Sanity check device */
3012 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
3013 error_report("vfio: Um, this isn't a PCI device");
3014 goto error;
3017 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
3018 error_report("vfio: unexpected number of io regions %u",
3019 vbasedev->num_regions);
3020 goto error;
3023 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
3024 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs);
3025 goto error;
3028 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
3029 reg_info.index = i;
3031 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3032 if (ret) {
3033 error_report("vfio: Error getting region %d info: %m", i);
3034 goto error;
3037 trace_vfio_populate_device_region(vbasedev->name, i,
3038 (unsigned long)reg_info.size,
3039 (unsigned long)reg_info.offset,
3040 (unsigned long)reg_info.flags);
3042 vdev->bars[i].region.vbasedev = vbasedev;
3043 vdev->bars[i].region.flags = reg_info.flags;
3044 vdev->bars[i].region.size = reg_info.size;
3045 vdev->bars[i].region.fd_offset = reg_info.offset;
3046 vdev->bars[i].region.nr = i;
3047 QLIST_INIT(&vdev->bars[i].quirks);
3050 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
3052 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3053 if (ret) {
3054 error_report("vfio: Error getting config info: %m");
3055 goto error;
3058 trace_vfio_populate_device_config(vdev->vbasedev.name,
3059 (unsigned long)reg_info.size,
3060 (unsigned long)reg_info.offset,
3061 (unsigned long)reg_info.flags);
3063 vdev->config_size = reg_info.size;
3064 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
3065 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
3067 vdev->config_offset = reg_info.offset;
3069 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) &&
3070 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) {
3071 struct vfio_region_info vga_info = {
3072 .argsz = sizeof(vga_info),
3073 .index = VFIO_PCI_VGA_REGION_INDEX,
3076 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info);
3077 if (ret) {
3078 error_report(
3079 "vfio: Device does not support requested feature x-vga");
3080 goto error;
3083 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) ||
3084 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) ||
3085 vga_info.size < 0xbffff + 1) {
3086 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx",
3087 (unsigned long)vga_info.flags,
3088 (unsigned long)vga_info.size);
3089 goto error;
3092 vdev->vga.fd_offset = vga_info.offset;
3093 vdev->vga.fd = vdev->vbasedev.fd;
3095 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
3096 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
3097 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks);
3099 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
3100 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
3101 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks);
3103 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
3104 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
3105 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks);
3107 vdev->has_vga = true;
3110 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
3112 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
3113 if (ret) {
3114 /* This can fail for an old kernel or legacy PCI dev */
3115 trace_vfio_populate_device_get_irq_info_failure();
3116 ret = 0;
3117 } else if (irq_info.count == 1) {
3118 vdev->pci_aer = true;
3119 } else {
3120 error_report("vfio: %s "
3121 "Could not enable error recovery for the device",
3122 vbasedev->name);
3125 error:
3126 return ret;
3129 static void vfio_put_device(VFIOPCIDevice *vdev)
3131 g_free(vdev->vbasedev.name);
3132 if (vdev->msix) {
3133 object_unparent(OBJECT(&vdev->msix->mmap_mem));
3134 g_free(vdev->msix);
3135 vdev->msix = NULL;
3137 vfio_put_base_device(&vdev->vbasedev);
3140 static void vfio_err_notifier_handler(void *opaque)
3142 VFIOPCIDevice *vdev = opaque;
3144 if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
3145 return;
3149 * TBD. Retrieve the error details and decide what action
3150 * needs to be taken. One of the actions could be to pass
3151 * the error to the guest and have the guest driver recover
3152 * from the error. This requires that PCIe capabilities be
3153 * exposed to the guest. For now, we just terminate the
3154 * guest to contain the error.
3157 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. "
3158 "Please collect any data possible and then kill the guest",
3159 __func__, vdev->host.domain, vdev->host.bus,
3160 vdev->host.slot, vdev->host.function);
3162 vm_stop(RUN_STATE_INTERNAL_ERROR);
3166 * Registers error notifier for devices supporting error recovery.
3167 * If we encounter a failure in this function, we report an error
3168 * and continue after disabling error recovery support for the
3169 * device.
3171 static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
3173 int ret;
3174 int argsz;
3175 struct vfio_irq_set *irq_set;
3176 int32_t *pfd;
3178 if (!vdev->pci_aer) {
3179 return;
3182 if (event_notifier_init(&vdev->err_notifier, 0)) {
3183 error_report("vfio: Unable to init event notifier for error detection");
3184 vdev->pci_aer = false;
3185 return;
3188 argsz = sizeof(*irq_set) + sizeof(*pfd);
3190 irq_set = g_malloc0(argsz);
3191 irq_set->argsz = argsz;
3192 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3193 VFIO_IRQ_SET_ACTION_TRIGGER;
3194 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3195 irq_set->start = 0;
3196 irq_set->count = 1;
3197 pfd = (int32_t *)&irq_set->data;
3199 *pfd = event_notifier_get_fd(&vdev->err_notifier);
3200 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
3202 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3203 if (ret) {
3204 error_report("vfio: Failed to set up error notification");
3205 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3206 event_notifier_cleanup(&vdev->err_notifier);
3207 vdev->pci_aer = false;
3209 g_free(irq_set);
3212 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
3214 int argsz;
3215 struct vfio_irq_set *irq_set;
3216 int32_t *pfd;
3217 int ret;
3219 if (!vdev->pci_aer) {
3220 return;
3223 argsz = sizeof(*irq_set) + sizeof(*pfd);
3225 irq_set = g_malloc0(argsz);
3226 irq_set->argsz = argsz;
3227 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3228 VFIO_IRQ_SET_ACTION_TRIGGER;
3229 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3230 irq_set->start = 0;
3231 irq_set->count = 1;
3232 pfd = (int32_t *)&irq_set->data;
3233 *pfd = -1;
3235 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3236 if (ret) {
3237 error_report("vfio: Failed to de-assign error fd: %m");
3239 g_free(irq_set);
3240 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
3241 NULL, NULL, vdev);
3242 event_notifier_cleanup(&vdev->err_notifier);
3245 static void vfio_req_notifier_handler(void *opaque)
3247 VFIOPCIDevice *vdev = opaque;
3249 if (!event_notifier_test_and_clear(&vdev->req_notifier)) {
3250 return;
3253 qdev_unplug(&vdev->pdev.qdev, NULL);
3256 static void vfio_register_req_notifier(VFIOPCIDevice *vdev)
3258 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info),
3259 .index = VFIO_PCI_REQ_IRQ_INDEX };
3260 int argsz;
3261 struct vfio_irq_set *irq_set;
3262 int32_t *pfd;
3264 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) {
3265 return;
3268 if (ioctl(vdev->vbasedev.fd,
3269 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) {
3270 return;
3273 if (event_notifier_init(&vdev->req_notifier, 0)) {
3274 error_report("vfio: Unable to init event notifier for device request");
3275 return;
3278 argsz = sizeof(*irq_set) + sizeof(*pfd);
3280 irq_set = g_malloc0(argsz);
3281 irq_set->argsz = argsz;
3282 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3283 VFIO_IRQ_SET_ACTION_TRIGGER;
3284 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3285 irq_set->start = 0;
3286 irq_set->count = 1;
3287 pfd = (int32_t *)&irq_set->data;
3289 *pfd = event_notifier_get_fd(&vdev->req_notifier);
3290 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev);
3292 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3293 error_report("vfio: Failed to set up device request notification");
3294 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3295 event_notifier_cleanup(&vdev->req_notifier);
3296 } else {
3297 vdev->req_enabled = true;
3300 g_free(irq_set);
3303 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev)
3305 int argsz;
3306 struct vfio_irq_set *irq_set;
3307 int32_t *pfd;
3309 if (!vdev->req_enabled) {
3310 return;
3313 argsz = sizeof(*irq_set) + sizeof(*pfd);
3315 irq_set = g_malloc0(argsz);
3316 irq_set->argsz = argsz;
3317 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3318 VFIO_IRQ_SET_ACTION_TRIGGER;
3319 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3320 irq_set->start = 0;
3321 irq_set->count = 1;
3322 pfd = (int32_t *)&irq_set->data;
3323 *pfd = -1;
3325 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3326 error_report("vfio: Failed to de-assign device request fd: %m");
3328 g_free(irq_set);
3329 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier),
3330 NULL, NULL, vdev);
3331 event_notifier_cleanup(&vdev->req_notifier);
3333 vdev->req_enabled = false;
3337 * AMD Radeon PCI config reset, based on Linux:
3338 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
3339 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
3340 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
3341 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
3342 * IDs: include/drm/drm_pciids.h
3343 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
3345 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
3346 * hardware that should be fixed on future ASICs. The symptom of this is that
3347 * once the accerlated driver loads, Windows guests will bsod on subsequent
3348 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
3349 * work around this, we do an AMD specific PCI config reset, followed by an SMC
3350 * reset. The PCI config reset only works if SMC firmware is running, so we
3351 * have a dependency on the state of the device as to whether this reset will
3352 * be effective. There are still cases where we won't be able to kick the
3353 * device into working, but this greatly improves the usability overall. The
3354 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
3355 * poking is largely ASIC specific.
3357 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
3359 uint32_t clk, pc_c;
3362 * Registers 200h and 204h are index and data registers for accessing
3363 * indirect configuration registers within the device.
3365 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
3366 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3367 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
3368 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3370 return (!(clk & 1) && (0x20100 <= pc_c));
3374 * The scope of a config reset is controlled by a mode bit in the misc register
3375 * and a fuse, exposed as a bit in another register. The fuse is the default
3376 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
3377 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
3378 * the fuse. A truth table therefore tells us that if misc == fuse, we need
3379 * to flip the value of the bit in the misc register.
3381 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
3383 uint32_t misc, fuse;
3384 bool a, b;
3386 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
3387 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3388 b = fuse & 64;
3390 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
3391 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3392 a = misc & 2;
3394 if (a == b) {
3395 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
3396 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
3400 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
3402 PCIDevice *pdev = &vdev->pdev;
3403 int i, ret = 0;
3404 uint32_t data;
3406 /* Defer to a kernel implemented reset */
3407 if (vdev->vbasedev.reset_works) {
3408 return -ENODEV;
3411 /* Enable only memory BAR access */
3412 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
3414 /* Reset only works if SMC firmware is loaded and running */
3415 if (!vfio_radeon_smc_is_running(vdev)) {
3416 ret = -EINVAL;
3417 goto out;
3420 /* Make sure only the GFX function is reset */
3421 vfio_radeon_set_gfx_only_reset(vdev);
3423 /* AMD PCI config reset */
3424 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
3425 usleep(100);
3427 /* Read back the memory size to make sure we're out of reset */
3428 for (i = 0; i < 100000; i++) {
3429 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
3430 break;
3432 usleep(1);
3435 /* Reset SMC */
3436 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
3437 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3438 data |= 1;
3439 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
3441 /* Disable SMC clock */
3442 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
3443 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3444 data |= 1;
3445 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
3447 out:
3448 /* Restore PCI command register */
3449 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
3451 return ret;
3454 static void vfio_setup_resetfn(VFIOPCIDevice *vdev)
3456 PCIDevice *pdev = &vdev->pdev;
3457 uint16_t vendor, device;
3459 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
3460 device = pci_get_word(pdev->config + PCI_DEVICE_ID);
3462 switch (vendor) {
3463 case 0x1002:
3464 switch (device) {
3465 /* Bonaire */
3466 case 0x6649: /* Bonaire [FirePro W5100] */
3467 case 0x6650:
3468 case 0x6651:
3469 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
3470 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
3471 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
3472 /* Hawaii */
3473 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
3474 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
3475 case 0x67A2:
3476 case 0x67A8:
3477 case 0x67A9:
3478 case 0x67AA:
3479 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
3480 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
3481 case 0x67B8:
3482 case 0x67B9:
3483 case 0x67BA:
3484 case 0x67BE:
3485 vdev->resetfn = vfio_radeon_reset;
3486 break;
3488 break;
3492 static int vfio_initfn(PCIDevice *pdev)
3494 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3495 VFIODevice *vbasedev_iter;
3496 VFIOGroup *group;
3497 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
3498 ssize_t len;
3499 struct stat st;
3500 int groupid;
3501 int ret;
3503 /* Check that the host device exists */
3504 snprintf(path, sizeof(path),
3505 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
3506 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3507 vdev->host.function);
3508 if (stat(path, &st) < 0) {
3509 error_report("vfio: error: no such host device: %s", path);
3510 return -errno;
3513 vdev->vbasedev.ops = &vfio_pci_ops;
3515 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
3516 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x",
3517 vdev->host.domain, vdev->host.bus,
3518 vdev->host.slot, vdev->host.function);
3520 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
3522 len = readlink(path, iommu_group_path, sizeof(path));
3523 if (len <= 0 || len >= sizeof(path)) {
3524 error_report("vfio: error no iommu_group for device");
3525 return len < 0 ? -errno : -ENAMETOOLONG;
3528 iommu_group_path[len] = 0;
3529 group_name = basename(iommu_group_path);
3531 if (sscanf(group_name, "%d", &groupid) != 1) {
3532 error_report("vfio: error reading %s: %m", path);
3533 return -errno;
3536 trace_vfio_initfn(vdev->vbasedev.name, groupid);
3538 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev));
3539 if (!group) {
3540 error_report("vfio: failed to get group %d", groupid);
3541 return -ENOENT;
3544 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
3545 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3546 vdev->host.function);
3548 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
3549 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
3550 error_report("vfio: error: device %s is already attached", path);
3551 vfio_put_group(group);
3552 return -EBUSY;
3556 ret = vfio_get_device(group, path, &vdev->vbasedev);
3557 if (ret) {
3558 error_report("vfio: failed to get device %s", path);
3559 vfio_put_group(group);
3560 return ret;
3563 ret = vfio_populate_device(vdev);
3564 if (ret) {
3565 return ret;
3568 /* Get a copy of config space */
3569 ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
3570 MIN(pci_config_size(&vdev->pdev), vdev->config_size),
3571 vdev->config_offset);
3572 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
3573 ret = ret < 0 ? -errno : -EFAULT;
3574 error_report("vfio: Failed to read device config space");
3575 return ret;
3578 /* vfio emulates a lot for us, but some bits need extra love */
3579 vdev->emulated_config_bits = g_malloc0(vdev->config_size);
3581 /* QEMU can choose to expose the ROM or not */
3582 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
3584 /* QEMU can change multi-function devices to single function, or reverse */
3585 vdev->emulated_config_bits[PCI_HEADER_TYPE] =
3586 PCI_HEADER_TYPE_MULTI_FUNCTION;
3588 /* Restore or clear multifunction, this is always controlled by QEMU */
3589 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
3590 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
3591 } else {
3592 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
3596 * Clear host resource mapping info. If we choose not to register a
3597 * BAR, such as might be the case with the option ROM, we can get
3598 * confusing, unwritable, residual addresses from the host here.
3600 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
3601 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
3603 vfio_pci_size_rom(vdev);
3605 ret = vfio_msix_early_setup(vdev);
3606 if (ret) {
3607 return ret;
3610 vfio_map_bars(vdev);
3612 ret = vfio_add_capabilities(vdev);
3613 if (ret) {
3614 goto out_teardown;
3617 /* QEMU emulates all of MSI & MSIX */
3618 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
3619 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
3620 MSIX_CAP_LENGTH);
3623 if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
3624 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
3625 vdev->msi_cap_size);
3628 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
3629 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3630 vfio_intx_mmap_enable, vdev);
3631 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_intx_update);
3632 ret = vfio_intx_enable(vdev);
3633 if (ret) {
3634 goto out_teardown;
3638 vfio_register_err_notifier(vdev);
3639 vfio_register_req_notifier(vdev);
3640 vfio_setup_resetfn(vdev);
3642 return 0;
3644 out_teardown:
3645 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3646 vfio_teardown_msi(vdev);
3647 vfio_unregister_bars(vdev);
3648 return ret;
3651 static void vfio_instance_finalize(Object *obj)
3653 PCIDevice *pci_dev = PCI_DEVICE(obj);
3654 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev);
3655 VFIOGroup *group = vdev->vbasedev.group;
3657 vfio_unmap_bars(vdev);
3658 g_free(vdev->emulated_config_bits);
3659 g_free(vdev->rom);
3660 vfio_put_device(vdev);
3661 vfio_put_group(group);
3664 static void vfio_exitfn(PCIDevice *pdev)
3666 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3668 vfio_unregister_req_notifier(vdev);
3669 vfio_unregister_err_notifier(vdev);
3670 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3671 vfio_disable_interrupts(vdev);
3672 if (vdev->intx.mmap_timer) {
3673 timer_free(vdev->intx.mmap_timer);
3675 vfio_teardown_msi(vdev);
3676 vfio_unregister_bars(vdev);
3679 static void vfio_pci_reset(DeviceState *dev)
3681 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
3682 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3684 trace_vfio_pci_reset(vdev->vbasedev.name);
3686 vfio_pci_pre_reset(vdev);
3688 if (vdev->resetfn && !vdev->resetfn(vdev)) {
3689 goto post_reset;
3692 if (vdev->vbasedev.reset_works &&
3693 (vdev->has_flr || !vdev->has_pm_reset) &&
3694 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3695 trace_vfio_pci_reset_flr(vdev->vbasedev.name);
3696 goto post_reset;
3699 /* See if we can do our own bus reset */
3700 if (!vfio_pci_hot_reset_one(vdev)) {
3701 goto post_reset;
3704 /* If nothing else works and the device supports PM reset, use it */
3705 if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
3706 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3707 trace_vfio_pci_reset_pm(vdev->vbasedev.name);
3708 goto post_reset;
3711 post_reset:
3712 vfio_pci_post_reset(vdev);
3715 static void vfio_instance_init(Object *obj)
3717 PCIDevice *pci_dev = PCI_DEVICE(obj);
3718 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
3720 device_add_bootindex_property(obj, &vdev->bootindex,
3721 "bootindex", NULL,
3722 &pci_dev->qdev, NULL);
3725 static Property vfio_pci_dev_properties[] = {
3726 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
3727 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
3728 intx.mmap_timeout, 1100),
3729 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
3730 VFIO_FEATURE_ENABLE_VGA_BIT, false),
3731 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features,
3732 VFIO_FEATURE_ENABLE_REQ_BIT, true),
3733 DEFINE_PROP_BOOL("x-no-mmap", VFIOPCIDevice, vbasedev.no_mmap, false),
3734 DEFINE_PROP_BOOL("x-no-kvm-intx", VFIOPCIDevice, no_kvm_intx, false),
3735 DEFINE_PROP_BOOL("x-no-kvm-msi", VFIOPCIDevice, no_kvm_msi, false),
3736 DEFINE_PROP_BOOL("x-no-kvm-msix", VFIOPCIDevice, no_kvm_msix, false),
3738 * TODO - support passed fds... is this necessary?
3739 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
3740 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
3742 DEFINE_PROP_END_OF_LIST(),
3745 static const VMStateDescription vfio_pci_vmstate = {
3746 .name = "vfio-pci",
3747 .unmigratable = 1,
3750 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
3752 DeviceClass *dc = DEVICE_CLASS(klass);
3753 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
3755 dc->reset = vfio_pci_reset;
3756 dc->props = vfio_pci_dev_properties;
3757 dc->vmsd = &vfio_pci_vmstate;
3758 dc->desc = "VFIO-based PCI device assignment";
3759 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3760 pdc->init = vfio_initfn;
3761 pdc->exit = vfio_exitfn;
3762 pdc->config_read = vfio_pci_read_config;
3763 pdc->config_write = vfio_pci_write_config;
3764 pdc->is_express = 1; /* We might be */
3767 static const TypeInfo vfio_pci_dev_info = {
3768 .name = "vfio-pci",
3769 .parent = TYPE_PCI_DEVICE,
3770 .instance_size = sizeof(VFIOPCIDevice),
3771 .class_init = vfio_pci_dev_class_init,
3772 .instance_init = vfio_instance_init,
3773 .instance_finalize = vfio_instance_finalize,
3776 static void register_vfio_pci_dev_type(void)
3778 type_register_static(&vfio_pci_dev_info);
3781 type_init(register_vfio_pci_dev_type)