2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_device_list(Object
*obj
, void *opaque
)
38 GSList
**list
= opaque
;
40 if (object_dynamic_cast(obj
, TYPE_NVDIMM
)) {
41 *list
= g_slist_append(*list
, DEVICE(obj
));
44 object_child_foreach(obj
, nvdimm_device_list
, opaque
);
49 * inquire NVDIMM devices and link them into the list which is
50 * returned to the caller.
52 * Note: it is the caller's responsibility to free the list to avoid
55 static GSList
*nvdimm_get_device_list(void)
59 object_child_foreach(qdev_get_machine(), nvdimm_device_list
, &list
);
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
69 * define Byte Addressable Persistent Memory (PM) Region according to
70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
72 static const uint8_t nvdimm_nfit_spa_uuid
[] =
73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74 0x18, 0xb7, 0x8c, 0xdb);
77 * NVDIMM Firmware Interface Table
80 * It provides information that allows OSPM to enumerate NVDIMM present in
81 * the platform and associate system physical address ranges created by the
84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
86 struct NvdimmNfitHeader
{
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader
;
93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94 * Interface Table (NFIT).
98 * System Physical Address Range Structure
100 * It describes the system physical address ranges occupied by NVDIMMs and
101 * the types of the regions.
103 struct NvdimmNfitSpa
{
109 uint32_t proximity_domain
;
110 uint8_t type_guid
[16];
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa
;
118 * Memory Device to System Physical Address Range Mapping Structure
120 * It enables identifying each NVDIMM region and the corresponding SPA
121 * describing the memory interleave
123 struct NvdimmNfitMemDev
{
126 uint32_t nfit_handle
;
132 uint64_t region_offset
;
134 uint16_t interleave_index
;
135 uint16_t interleave_ways
;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev
;
142 * NVDIMM Control Region Structure
144 * It describes the NVDIMM and if applicable, Block Control Window.
146 struct NvdimmNfitControlRegion
{
152 uint16_t revision_id
;
153 uint16_t sub_vendor_id
;
154 uint16_t sub_device_id
;
155 uint16_t sub_revision_id
;
157 uint32_t serial_number
;
163 uint64_t status_offset
;
164 uint64_t status_size
;
166 uint8_t reserved2
[6];
168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion
;
171 * Module serial number is a unique number for each device. We use the
172 * slot id of NVDIMM device to generate this number so that each device
173 * associates with a different number.
175 * 0x123456 is a magic number we arbitrarily chose.
177 static uint32_t nvdimm_slot_to_sn(int slot
)
179 return 0x123456 + slot
;
183 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
184 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
185 * by ACPI device _ADR method.
187 * We generate the handle with the slot id of NVDIMM device and reserve
188 * 0 for NVDIMM root device.
190 static uint32_t nvdimm_slot_to_handle(int slot
)
196 * index uniquely identifies the structure, 0 is reserved which indicates
197 * that the structure is not valid or the associated structure is not
200 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
201 * nfit_dc which are generated by the slot id of NVDIMM device.
203 static uint16_t nvdimm_slot_to_spa_index(int slot
)
205 return (slot
+ 1) << 1;
208 /* See the comments of nvdimm_slot_to_spa_index(). */
209 static uint32_t nvdimm_slot_to_dcr_index(int slot
)
211 return nvdimm_slot_to_spa_index(slot
) + 1;
214 static NVDIMMDevice
*nvdimm_get_device_by_handle(uint32_t handle
)
216 NVDIMMDevice
*nvdimm
= NULL
;
217 GSList
*list
, *device_list
= nvdimm_get_device_list();
219 for (list
= device_list
; list
; list
= list
->next
) {
220 NVDIMMDevice
*nvd
= list
->data
;
221 int slot
= object_property_get_int(OBJECT(nvd
), PC_DIMM_SLOT_PROP
,
224 if (nvdimm_slot_to_handle(slot
) == handle
) {
230 g_slist_free(device_list
);
234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
236 nvdimm_build_structure_spa(GArray
*structures
, DeviceState
*dev
)
238 NvdimmNfitSpa
*nfit_spa
;
239 uint64_t addr
= object_property_get_int(OBJECT(dev
), PC_DIMM_ADDR_PROP
,
241 uint64_t size
= object_property_get_int(OBJECT(dev
), PC_DIMM_SIZE_PROP
,
243 uint32_t node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
,
245 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
248 nfit_spa
= acpi_data_push(structures
, sizeof(*nfit_spa
));
250 nfit_spa
->type
= cpu_to_le16(0 /* System Physical Address Range
252 nfit_spa
->length
= cpu_to_le16(sizeof(*nfit_spa
));
253 nfit_spa
->spa_index
= cpu_to_le16(nvdimm_slot_to_spa_index(slot
));
256 * Control region is strict as all the device info, such as SN, index,
257 * is associated with slot id.
259 nfit_spa
->flags
= cpu_to_le16(1 /* Control region is strictly for
260 management during hot add/online
262 2 /* Data in Proximity Domain field is
266 nfit_spa
->proximity_domain
= cpu_to_le32(node
);
267 /* the region reported as PMEM. */
268 memcpy(nfit_spa
->type_guid
, nvdimm_nfit_spa_uuid
,
269 sizeof(nvdimm_nfit_spa_uuid
));
271 nfit_spa
->spa_base
= cpu_to_le64(addr
);
272 nfit_spa
->spa_length
= cpu_to_le64(size
);
274 /* It is the PMEM and can be cached as writeback. */
275 nfit_spa
->mem_attr
= cpu_to_le64(0x8ULL
/* EFI_MEMORY_WB */ |
276 0x8000ULL
/* EFI_MEMORY_NV */);
280 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
284 nvdimm_build_structure_memdev(GArray
*structures
, DeviceState
*dev
)
286 NvdimmNfitMemDev
*nfit_memdev
;
287 uint64_t size
= object_property_get_int(OBJECT(dev
), PC_DIMM_SIZE_PROP
,
289 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
291 uint32_t handle
= nvdimm_slot_to_handle(slot
);
293 nfit_memdev
= acpi_data_push(structures
, sizeof(*nfit_memdev
));
295 nfit_memdev
->type
= cpu_to_le16(1 /* Memory Device to System Address
296 Range Map Structure*/);
297 nfit_memdev
->length
= cpu_to_le16(sizeof(*nfit_memdev
));
298 nfit_memdev
->nfit_handle
= cpu_to_le32(handle
);
301 * associate memory device with System Physical Address Range
304 nfit_memdev
->spa_index
= cpu_to_le16(nvdimm_slot_to_spa_index(slot
));
305 /* associate memory device with Control Region Structure. */
306 nfit_memdev
->dcr_index
= cpu_to_le16(nvdimm_slot_to_dcr_index(slot
));
308 /* The memory region on the device. */
309 nfit_memdev
->region_len
= cpu_to_le64(size
);
310 /* The device address starts from 0. */
311 nfit_memdev
->region_dpa
= cpu_to_le64(0);
313 /* Only one interleave for PMEM. */
314 nfit_memdev
->interleave_ways
= cpu_to_le16(1);
318 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
320 static void nvdimm_build_structure_dcr(GArray
*structures
, DeviceState
*dev
)
322 NvdimmNfitControlRegion
*nfit_dcr
;
323 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
325 uint32_t sn
= nvdimm_slot_to_sn(slot
);
327 nfit_dcr
= acpi_data_push(structures
, sizeof(*nfit_dcr
));
329 nfit_dcr
->type
= cpu_to_le16(4 /* NVDIMM Control Region Structure */);
330 nfit_dcr
->length
= cpu_to_le16(sizeof(*nfit_dcr
));
331 nfit_dcr
->dcr_index
= cpu_to_le16(nvdimm_slot_to_dcr_index(slot
));
334 nfit_dcr
->vendor_id
= cpu_to_le16(0x8086);
335 nfit_dcr
->device_id
= cpu_to_le16(1);
337 /* The _DSM method is following Intel's DSM specification. */
338 nfit_dcr
->revision_id
= cpu_to_le16(1 /* Current Revision supported
339 in ACPI 6.0 is 1. */);
340 nfit_dcr
->serial_number
= cpu_to_le32(sn
);
341 nfit_dcr
->fic
= cpu_to_le16(0x201 /* Format Interface Code. See Chapter
342 2: NVDIMM Device Specific Method
343 (DSM) in DSM Spec Rev1.*/);
346 static GArray
*nvdimm_build_device_structure(void)
348 GSList
*device_list
= nvdimm_get_device_list();
349 GArray
*structures
= g_array_new(false, true /* clear */, 1);
351 for (; device_list
; device_list
= device_list
->next
) {
352 DeviceState
*dev
= device_list
->data
;
354 /* build System Physical Address Range Structure. */
355 nvdimm_build_structure_spa(structures
, dev
);
358 * build Memory Device to System Physical Address Range Mapping
361 nvdimm_build_structure_memdev(structures
, dev
);
363 /* build NVDIMM Control Region Structure. */
364 nvdimm_build_structure_dcr(structures
, dev
);
366 g_slist_free(device_list
);
371 static void nvdimm_init_fit_buffer(NvdimmFitBuffer
*fit_buf
)
373 fit_buf
->fit
= g_array_new(false, true /* clear */, 1);
376 static void nvdimm_build_fit_buffer(NvdimmFitBuffer
*fit_buf
)
378 g_array_free(fit_buf
->fit
, true);
379 fit_buf
->fit
= nvdimm_build_device_structure();
380 fit_buf
->dirty
= true;
383 void nvdimm_plug(AcpiNVDIMMState
*state
)
385 nvdimm_build_fit_buffer(&state
->fit_buf
);
388 static void nvdimm_build_nfit(AcpiNVDIMMState
*state
, GArray
*table_offsets
,
389 GArray
*table_data
, BIOSLinker
*linker
)
391 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
394 acpi_add_table(table_offsets
, table_data
);
397 header
= table_data
->len
;
398 acpi_data_push(table_data
, sizeof(NvdimmNfitHeader
));
399 /* NVDIMM device structures. */
400 g_array_append_vals(table_data
, fit_buf
->fit
->data
, fit_buf
->fit
->len
);
402 build_header(linker
, table_data
,
403 (void *)(table_data
->data
+ header
), "NFIT",
404 sizeof(NvdimmNfitHeader
) + fit_buf
->fit
->len
, 1, NULL
, NULL
);
407 #define NVDIMM_DSM_MEMORY_SIZE 4096
413 /* the remaining size in the page is used by arg3. */
418 typedef struct NvdimmDsmIn NvdimmDsmIn
;
419 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn
) != NVDIMM_DSM_MEMORY_SIZE
);
421 struct NvdimmDsmOut
{
422 /* the size of buffer filled by QEMU. */
426 typedef struct NvdimmDsmOut NvdimmDsmOut
;
427 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut
) != NVDIMM_DSM_MEMORY_SIZE
);
429 struct NvdimmDsmFunc0Out
{
430 /* the size of buffer filled by QEMU. */
432 uint32_t supported_func
;
434 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out
;
436 struct NvdimmDsmFuncNoPayloadOut
{
437 /* the size of buffer filled by QEMU. */
439 uint32_t func_ret_status
;
441 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut
;
443 struct NvdimmFuncGetLabelSizeOut
{
444 /* the size of buffer filled by QEMU. */
446 uint32_t func_ret_status
; /* return status code. */
447 uint32_t label_size
; /* the size of label data area. */
449 * Maximum size of the namespace label data length supported by
450 * the platform in Get/Set Namespace Label Data functions.
454 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut
;
455 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut
) > NVDIMM_DSM_MEMORY_SIZE
);
457 struct NvdimmFuncGetLabelDataIn
{
458 uint32_t offset
; /* the offset in the namespace label data area. */
459 uint32_t length
; /* the size of data is to be read via the function. */
461 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn
;
462 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn
) +
463 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
465 struct NvdimmFuncGetLabelDataOut
{
466 /* the size of buffer filled by QEMU. */
468 uint32_t func_ret_status
; /* return status code. */
469 uint8_t out_buf
[0]; /* the data got via Get Namesapce Label function. */
471 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut
;
472 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut
) > NVDIMM_DSM_MEMORY_SIZE
);
474 struct NvdimmFuncSetLabelDataIn
{
475 uint32_t offset
; /* the offset in the namespace label data area. */
476 uint32_t length
; /* the size of data is to be written via the function. */
477 uint8_t in_buf
[0]; /* the data written to label data area. */
479 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn
;
480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn
) +
481 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
483 struct NvdimmFuncReadFITIn
{
484 uint32_t offset
; /* the offset into FIT buffer. */
486 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn
;
487 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn
) +
488 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
490 struct NvdimmFuncReadFITOut
{
491 /* the size of buffer filled by QEMU. */
493 uint32_t func_ret_status
; /* return status code. */
494 uint8_t fit
[0]; /* the FIT data. */
496 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut
;
497 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut
) > NVDIMM_DSM_MEMORY_SIZE
);
500 nvdimm_dsm_function0(uint32_t supported_func
, hwaddr dsm_mem_addr
)
502 NvdimmDsmFunc0Out func0
= {
503 .len
= cpu_to_le32(sizeof(func0
)),
504 .supported_func
= cpu_to_le32(supported_func
),
506 cpu_physical_memory_write(dsm_mem_addr
, &func0
, sizeof(func0
));
510 nvdimm_dsm_no_payload(uint32_t func_ret_status
, hwaddr dsm_mem_addr
)
512 NvdimmDsmFuncNoPayloadOut out
= {
513 .len
= cpu_to_le32(sizeof(out
)),
514 .func_ret_status
= cpu_to_le32(func_ret_status
),
516 cpu_physical_memory_write(dsm_mem_addr
, &out
, sizeof(out
));
519 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
520 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
521 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
522 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
523 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
525 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
527 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
528 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState
*state
, NvdimmDsmIn
*in
,
531 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
532 NvdimmFuncReadFITIn
*read_fit
;
533 NvdimmFuncReadFITOut
*read_fit_out
;
535 uint32_t read_len
= 0, func_ret_status
;
538 read_fit
= (NvdimmFuncReadFITIn
*)in
->arg3
;
539 le32_to_cpus(&read_fit
->offset
);
543 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
544 read_fit
->offset
, fit
->len
, fit_buf
->dirty
? "Yes" : "No");
546 if (read_fit
->offset
> fit
->len
) {
547 func_ret_status
= NVDIMM_DSM_RET_STATUS_INVALID
;
551 /* It is the first time to read FIT. */
552 if (!read_fit
->offset
) {
553 fit_buf
->dirty
= false;
554 } else if (fit_buf
->dirty
) { /* FIT has been changed during RFIT. */
555 func_ret_status
= NVDIMM_DSM_RET_STATUS_FIT_CHANGED
;
559 func_ret_status
= NVDIMM_DSM_RET_STATUS_SUCCESS
;
560 read_len
= MIN(fit
->len
- read_fit
->offset
,
561 NVDIMM_DSM_MEMORY_SIZE
- sizeof(NvdimmFuncReadFITOut
));
564 size
= sizeof(NvdimmFuncReadFITOut
) + read_len
;
565 read_fit_out
= g_malloc(size
);
567 read_fit_out
->len
= cpu_to_le32(size
);
568 read_fit_out
->func_ret_status
= cpu_to_le32(func_ret_status
);
569 memcpy(read_fit_out
->fit
, fit
->data
+ read_fit
->offset
, read_len
);
571 cpu_physical_memory_write(dsm_mem_addr
, read_fit_out
, size
);
573 g_free(read_fit_out
);
577 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState
*state
,
578 NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
580 switch (in
->function
) {
582 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr
);
584 case 0x1 /* Read FIT */:
585 nvdimm_dsm_func_read_fit(state
, in
, dsm_mem_addr
);
589 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
592 static void nvdimm_dsm_root(NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
595 * function 0 is called to inquire which functions are supported by
599 nvdimm_dsm_function0(0 /* No function supported other than
600 function 0 */, dsm_mem_addr
);
604 /* No function except function 0 is supported yet. */
605 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
609 * the max transfer size is the max size transferred by both a
610 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
613 static uint32_t nvdimm_get_max_xfer_label_size(void)
615 uint32_t max_get_size
, max_set_size
, dsm_memory_size
;
617 dsm_memory_size
= NVDIMM_DSM_MEMORY_SIZE
;
620 * the max data ACPI can read one time which is transferred by
621 * the response of 'Get Namespace Label Data' function.
623 max_get_size
= dsm_memory_size
- sizeof(NvdimmFuncGetLabelDataOut
);
626 * the max data ACPI can write one time which is transferred by
627 * 'Set Namespace Label Data' function.
629 max_set_size
= dsm_memory_size
- offsetof(NvdimmDsmIn
, arg3
) -
630 sizeof(NvdimmFuncSetLabelDataIn
);
632 return MIN(max_get_size
, max_set_size
);
636 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
638 * It gets the size of Namespace Label data area and the max data size
639 * that Get/Set Namespace Label Data functions can transfer.
641 static void nvdimm_dsm_label_size(NVDIMMDevice
*nvdimm
, hwaddr dsm_mem_addr
)
643 NvdimmFuncGetLabelSizeOut label_size_out
= {
644 .len
= cpu_to_le32(sizeof(label_size_out
)),
646 uint32_t label_size
, mxfer
;
648 label_size
= nvdimm
->label_size
;
649 mxfer
= nvdimm_get_max_xfer_label_size();
651 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size
, mxfer
);
653 label_size_out
.func_ret_status
= cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS
);
654 label_size_out
.label_size
= cpu_to_le32(label_size
);
655 label_size_out
.max_xfer
= cpu_to_le32(mxfer
);
657 cpu_physical_memory_write(dsm_mem_addr
, &label_size_out
,
658 sizeof(label_size_out
));
661 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice
*nvdimm
,
662 uint32_t offset
, uint32_t length
)
664 uint32_t ret
= NVDIMM_DSM_RET_STATUS_INVALID
;
666 if (offset
+ length
< offset
) {
667 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset
,
672 if (nvdimm
->label_size
< offset
+ length
) {
673 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64
").\n",
674 offset
+ length
, nvdimm
->label_size
);
678 if (length
> nvdimm_get_max_xfer_label_size()) {
679 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
680 length
, nvdimm_get_max_xfer_label_size());
684 return NVDIMM_DSM_RET_STATUS_SUCCESS
;
688 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
690 static void nvdimm_dsm_get_label_data(NVDIMMDevice
*nvdimm
, NvdimmDsmIn
*in
,
693 NVDIMMClass
*nvc
= NVDIMM_GET_CLASS(nvdimm
);
694 NvdimmFuncGetLabelDataIn
*get_label_data
;
695 NvdimmFuncGetLabelDataOut
*get_label_data_out
;
699 get_label_data
= (NvdimmFuncGetLabelDataIn
*)in
->arg3
;
700 le32_to_cpus(&get_label_data
->offset
);
701 le32_to_cpus(&get_label_data
->length
);
703 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
704 get_label_data
->offset
, get_label_data
->length
);
706 status
= nvdimm_rw_label_data_check(nvdimm
, get_label_data
->offset
,
707 get_label_data
->length
);
708 if (status
!= NVDIMM_DSM_RET_STATUS_SUCCESS
) {
709 nvdimm_dsm_no_payload(status
, dsm_mem_addr
);
713 size
= sizeof(*get_label_data_out
) + get_label_data
->length
;
714 assert(size
<= NVDIMM_DSM_MEMORY_SIZE
);
715 get_label_data_out
= g_malloc(size
);
717 get_label_data_out
->len
= cpu_to_le32(size
);
718 get_label_data_out
->func_ret_status
=
719 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS
);
720 nvc
->read_label_data(nvdimm
, get_label_data_out
->out_buf
,
721 get_label_data
->length
, get_label_data
->offset
);
723 cpu_physical_memory_write(dsm_mem_addr
, get_label_data_out
, size
);
724 g_free(get_label_data_out
);
728 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
730 static void nvdimm_dsm_set_label_data(NVDIMMDevice
*nvdimm
, NvdimmDsmIn
*in
,
733 NVDIMMClass
*nvc
= NVDIMM_GET_CLASS(nvdimm
);
734 NvdimmFuncSetLabelDataIn
*set_label_data
;
737 set_label_data
= (NvdimmFuncSetLabelDataIn
*)in
->arg3
;
739 le32_to_cpus(&set_label_data
->offset
);
740 le32_to_cpus(&set_label_data
->length
);
742 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
743 set_label_data
->offset
, set_label_data
->length
);
745 status
= nvdimm_rw_label_data_check(nvdimm
, set_label_data
->offset
,
746 set_label_data
->length
);
747 if (status
!= NVDIMM_DSM_RET_STATUS_SUCCESS
) {
748 nvdimm_dsm_no_payload(status
, dsm_mem_addr
);
752 assert(offsetof(NvdimmDsmIn
, arg3
) + sizeof(*set_label_data
) +
753 set_label_data
->length
<= NVDIMM_DSM_MEMORY_SIZE
);
755 nvc
->write_label_data(nvdimm
, set_label_data
->in_buf
,
756 set_label_data
->length
, set_label_data
->offset
);
757 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS
, dsm_mem_addr
);
760 static void nvdimm_dsm_device(NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
762 NVDIMMDevice
*nvdimm
= nvdimm_get_device_by_handle(in
->handle
);
764 /* See the comments in nvdimm_dsm_root(). */
766 uint32_t supported_func
= 0;
768 if (nvdimm
&& nvdimm
->label_size
) {
769 supported_func
|= 0x1 /* Bit 0 indicates whether there is
770 support for any functions other
771 than function 0. */ |
772 1 << 4 /* Get Namespace Label Size */ |
773 1 << 5 /* Get Namespace Label Data */ |
774 1 << 6 /* Set Namespace Label Data */;
776 nvdimm_dsm_function0(supported_func
, dsm_mem_addr
);
781 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV
,
786 /* Encode DSM function according to DSM Spec Rev1. */
787 switch (in
->function
) {
788 case 4 /* Get Namespace Label Size */:
789 if (nvdimm
->label_size
) {
790 nvdimm_dsm_label_size(nvdimm
, dsm_mem_addr
);
794 case 5 /* Get Namespace Label Data */:
795 if (nvdimm
->label_size
) {
796 nvdimm_dsm_get_label_data(nvdimm
, in
, dsm_mem_addr
);
800 case 0x6 /* Set Namespace Label Data */:
801 if (nvdimm
->label_size
) {
802 nvdimm_dsm_set_label_data(nvdimm
, in
, dsm_mem_addr
);
808 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
812 nvdimm_dsm_read(void *opaque
, hwaddr addr
, unsigned size
)
814 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
819 nvdimm_dsm_write(void *opaque
, hwaddr addr
, uint64_t val
, unsigned size
)
821 AcpiNVDIMMState
*state
= opaque
;
823 hwaddr dsm_mem_addr
= val
;
825 nvdimm_debug("dsm memory address %#" HWADDR_PRIx
".\n", dsm_mem_addr
);
828 * The DSM memory is mapped to guest address space so an evil guest
829 * can change its content while we are doing DSM emulation. Avoid
830 * this by copying DSM memory to QEMU local memory.
832 in
= g_new(NvdimmDsmIn
, 1);
833 cpu_physical_memory_read(dsm_mem_addr
, in
, sizeof(*in
));
835 le32_to_cpus(&in
->revision
);
836 le32_to_cpus(&in
->function
);
837 le32_to_cpus(&in
->handle
);
839 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in
->revision
,
840 in
->handle
, in
->function
);
842 if (in
->revision
!= 0x1 /* Currently we only support DSM Spec Rev1. */) {
843 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
845 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
849 if (in
->handle
== NVDIMM_QEMU_RSVD_HANDLE_ROOT
) {
850 nvdimm_dsm_handle_reserved_root_method(state
, in
, dsm_mem_addr
);
854 /* Handle 0 is reserved for NVDIMM Root Device. */
856 nvdimm_dsm_root(in
, dsm_mem_addr
);
860 nvdimm_dsm_device(in
, dsm_mem_addr
);
866 static const MemoryRegionOps nvdimm_dsm_ops
= {
867 .read
= nvdimm_dsm_read
,
868 .write
= nvdimm_dsm_write
,
869 .endianness
= DEVICE_LITTLE_ENDIAN
,
871 .min_access_size
= 4,
872 .max_access_size
= 4,
876 void nvdimm_acpi_plug_cb(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
878 if (dev
->hotplugged
) {
879 acpi_send_event(DEVICE(hotplug_dev
), ACPI_NVDIMM_HOTPLUG_STATUS
);
883 void nvdimm_init_acpi_state(AcpiNVDIMMState
*state
, MemoryRegion
*io
,
884 FWCfgState
*fw_cfg
, Object
*owner
)
886 memory_region_init_io(&state
->io_mr
, owner
, &nvdimm_dsm_ops
, state
,
887 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN
);
888 memory_region_add_subregion(io
, NVDIMM_ACPI_IO_BASE
, &state
->io_mr
);
890 state
->dsm_mem
= g_array_new(false, true /* clear */, 1);
891 acpi_data_push(state
->dsm_mem
, sizeof(NvdimmDsmIn
));
892 fw_cfg_add_file(fw_cfg
, NVDIMM_DSM_MEM_FILE
, state
->dsm_mem
->data
,
893 state
->dsm_mem
->len
);
895 nvdimm_init_fit_buffer(&state
->fit_buf
);
898 #define NVDIMM_COMMON_DSM "NCAL"
899 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
901 #define NVDIMM_DSM_MEMORY "NRAM"
902 #define NVDIMM_DSM_IOPORT "NPIO"
904 #define NVDIMM_DSM_NOTIFY "NTFI"
905 #define NVDIMM_DSM_HANDLE "HDLE"
906 #define NVDIMM_DSM_REVISION "REVS"
907 #define NVDIMM_DSM_FUNCTION "FUNC"
908 #define NVDIMM_DSM_ARG3 "FARG"
910 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
911 #define NVDIMM_DSM_OUT_BUF "ODAT"
913 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
915 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
917 static void nvdimm_build_common_dsm(Aml
*dev
)
919 Aml
*method
, *ifctx
, *function
, *handle
, *uuid
, *dsm_mem
, *elsectx2
;
920 Aml
*elsectx
, *unsupport
, *unpatched
, *expected_uuid
, *uuid_invalid
;
921 Aml
*pckg
, *pckg_index
, *pckg_buf
, *field
, *dsm_out_buf
, *dsm_out_buf_size
;
922 uint8_t byte_list
[1];
924 method
= aml_method(NVDIMM_COMMON_DSM
, 5, AML_SERIALIZED
);
926 function
= aml_arg(2);
928 dsm_mem
= aml_local(6);
929 dsm_out_buf
= aml_local(7);
931 aml_append(method
, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR
), dsm_mem
));
933 /* map DSM memory and IO into ACPI namespace. */
934 aml_append(method
, aml_operation_region(NVDIMM_DSM_IOPORT
, AML_SYSTEM_IO
,
935 aml_int(NVDIMM_ACPI_IO_BASE
), NVDIMM_ACPI_IO_LEN
));
936 aml_append(method
, aml_operation_region(NVDIMM_DSM_MEMORY
,
937 AML_SYSTEM_MEMORY
, dsm_mem
, sizeof(NvdimmDsmIn
)));
941 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
942 * emulate the access.
944 * It is the IO port so that accessing them will cause VM-exit, the
945 * control will be transferred to QEMU.
947 field
= aml_field(NVDIMM_DSM_IOPORT
, AML_DWORD_ACC
, AML_NOLOCK
,
949 aml_append(field
, aml_named_field(NVDIMM_DSM_NOTIFY
,
950 sizeof(uint32_t) * BITS_PER_BYTE
));
951 aml_append(method
, field
);
955 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
956 * happens on NVDIMM Root Device.
957 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
958 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
959 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
960 * containing function-specific arguments.
962 * They are RAM mapping on host so that these accesses never cause
965 field
= aml_field(NVDIMM_DSM_MEMORY
, AML_DWORD_ACC
, AML_NOLOCK
,
967 aml_append(field
, aml_named_field(NVDIMM_DSM_HANDLE
,
968 sizeof(typeof_field(NvdimmDsmIn
, handle
)) * BITS_PER_BYTE
));
969 aml_append(field
, aml_named_field(NVDIMM_DSM_REVISION
,
970 sizeof(typeof_field(NvdimmDsmIn
, revision
)) * BITS_PER_BYTE
));
971 aml_append(field
, aml_named_field(NVDIMM_DSM_FUNCTION
,
972 sizeof(typeof_field(NvdimmDsmIn
, function
)) * BITS_PER_BYTE
));
973 aml_append(field
, aml_named_field(NVDIMM_DSM_ARG3
,
974 (sizeof(NvdimmDsmIn
) - offsetof(NvdimmDsmIn
, arg3
)) * BITS_PER_BYTE
));
975 aml_append(method
, field
);
979 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
980 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
982 * Since the page is reused by both input and out, the input data
983 * will be lost after storing new result into ODAT so we should fetch
984 * all the input data before writing the result.
986 field
= aml_field(NVDIMM_DSM_MEMORY
, AML_DWORD_ACC
, AML_NOLOCK
,
988 aml_append(field
, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE
,
989 sizeof(typeof_field(NvdimmDsmOut
, len
)) * BITS_PER_BYTE
));
990 aml_append(field
, aml_named_field(NVDIMM_DSM_OUT_BUF
,
991 (sizeof(NvdimmDsmOut
) - offsetof(NvdimmDsmOut
, data
)) * BITS_PER_BYTE
));
992 aml_append(method
, field
);
995 * do not support any method if DSM memory address has not been
998 unpatched
= aml_equal(dsm_mem
, aml_int(0x0));
1000 expected_uuid
= aml_local(0);
1002 ifctx
= aml_if(aml_equal(handle
, aml_int(0x0)));
1003 aml_append(ifctx
, aml_store(
1004 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1005 /* UUID for NVDIMM Root Device */, expected_uuid
));
1006 aml_append(method
, ifctx
);
1007 elsectx
= aml_else();
1008 ifctx
= aml_if(aml_equal(handle
, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT
)));
1009 aml_append(ifctx
, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1010 /* UUID for QEMU internal use */), expected_uuid
));
1011 aml_append(elsectx
, ifctx
);
1012 elsectx2
= aml_else();
1013 aml_append(elsectx2
, aml_store(
1014 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1015 /* UUID for NVDIMM Devices */, expected_uuid
));
1016 aml_append(elsectx
, elsectx2
);
1017 aml_append(method
, elsectx
);
1019 uuid_invalid
= aml_lnot(aml_equal(uuid
, expected_uuid
));
1021 unsupport
= aml_if(aml_or(unpatched
, uuid_invalid
, NULL
));
1024 * function 0 is called to inquire what functions are supported by
1027 ifctx
= aml_if(aml_equal(function
, aml_int(0)));
1028 byte_list
[0] = 0 /* No function Supported */;
1029 aml_append(ifctx
, aml_return(aml_buffer(1, byte_list
)));
1030 aml_append(unsupport
, ifctx
);
1032 /* No function is supported yet. */
1033 byte_list
[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT
;
1034 aml_append(unsupport
, aml_return(aml_buffer(1, byte_list
)));
1035 aml_append(method
, unsupport
);
1038 * The HDLE indicates the DSM function is issued from which device,
1039 * it reserves 0 for root device and is the handle for NVDIMM devices.
1040 * See the comments in nvdimm_slot_to_handle().
1042 aml_append(method
, aml_store(handle
, aml_name(NVDIMM_DSM_HANDLE
)));
1043 aml_append(method
, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION
)));
1044 aml_append(method
, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION
)));
1047 * The fourth parameter (Arg3) of _DSM is a package which contains
1048 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1049 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1053 ifctx
= aml_if(aml_and(aml_equal(aml_object_type(pckg
),
1054 aml_int(4 /* Package */)) /* It is a Package? */,
1055 aml_equal(aml_sizeof(pckg
), aml_int(1)) /* 1 element? */,
1058 pckg_index
= aml_local(2);
1059 pckg_buf
= aml_local(3);
1060 aml_append(ifctx
, aml_store(aml_index(pckg
, aml_int(0)), pckg_index
));
1061 aml_append(ifctx
, aml_store(aml_derefof(pckg_index
), pckg_buf
));
1062 aml_append(ifctx
, aml_store(pckg_buf
, aml_name(NVDIMM_DSM_ARG3
)));
1063 aml_append(method
, ifctx
);
1066 * tell QEMU about the real address of DSM memory, then QEMU
1067 * gets the control and fills the result in DSM memory.
1069 aml_append(method
, aml_store(dsm_mem
, aml_name(NVDIMM_DSM_NOTIFY
)));
1071 dsm_out_buf_size
= aml_local(1);
1072 /* RLEN is not included in the payload returned to guest. */
1073 aml_append(method
, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE
),
1074 aml_int(4), dsm_out_buf_size
));
1075 aml_append(method
, aml_store(aml_shiftleft(dsm_out_buf_size
, aml_int(3)),
1077 aml_append(method
, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF
),
1078 aml_int(0), dsm_out_buf_size
, "OBUF"));
1079 aml_append(method
, aml_concatenate(aml_buffer(0, NULL
), aml_name("OBUF"),
1081 aml_append(method
, aml_return(dsm_out_buf
));
1082 aml_append(dev
, method
);
1085 static void nvdimm_build_device_dsm(Aml
*dev
, uint32_t handle
)
1089 method
= aml_method("_DSM", 4, AML_NOTSERIALIZED
);
1090 aml_append(method
, aml_return(aml_call5(NVDIMM_COMMON_DSM
, aml_arg(0),
1091 aml_arg(1), aml_arg(2), aml_arg(3),
1093 aml_append(dev
, method
);
1096 static void nvdimm_build_fit(Aml
*dev
)
1098 Aml
*method
, *pkg
, *buf
, *buf_size
, *offset
, *call_result
;
1099 Aml
*whilectx
, *ifcond
, *ifctx
, *elsectx
, *fit
;
1102 buf_size
= aml_local(1);
1105 aml_append(dev
, aml_name_decl(NVDIMM_DSM_RFIT_STATUS
, aml_int(0)));
1107 /* build helper function, RFIT. */
1108 method
= aml_method("RFIT", 1, AML_SERIALIZED
);
1109 aml_append(method
, aml_name_decl("OFST", aml_int(0)));
1111 /* prepare input package. */
1112 pkg
= aml_package(1);
1113 aml_append(method
, aml_store(aml_arg(0), aml_name("OFST")));
1114 aml_append(pkg
, aml_name("OFST"));
1116 /* call Read_FIT function. */
1117 call_result
= aml_call5(NVDIMM_COMMON_DSM
,
1118 aml_touuid(NVDIMM_QEMU_RSVD_UUID
),
1119 aml_int(1) /* Revision 1 */,
1120 aml_int(0x1) /* Read FIT */,
1121 pkg
, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT
));
1122 aml_append(method
, aml_store(call_result
, buf
));
1124 /* handle _DSM result. */
1125 aml_append(method
, aml_create_dword_field(buf
,
1126 aml_int(0) /* offset at byte 0 */, "STAU"));
1128 aml_append(method
, aml_store(aml_name("STAU"),
1129 aml_name(NVDIMM_DSM_RFIT_STATUS
)));
1131 /* if something is wrong during _DSM. */
1132 ifcond
= aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS
),
1134 ifctx
= aml_if(aml_lnot(ifcond
));
1135 aml_append(ifctx
, aml_return(aml_buffer(0, NULL
)));
1136 aml_append(method
, ifctx
);
1138 aml_append(method
, aml_store(aml_sizeof(buf
), buf_size
));
1139 aml_append(method
, aml_subtract(buf_size
,
1140 aml_int(4) /* the size of "STAU" */,
1143 /* if we read the end of fit. */
1144 ifctx
= aml_if(aml_equal(buf_size
, aml_int(0)));
1145 aml_append(ifctx
, aml_return(aml_buffer(0, NULL
)));
1146 aml_append(method
, ifctx
);
1148 aml_append(method
, aml_create_field(buf
,
1149 aml_int(4 * BITS_PER_BYTE
), /* offset at byte 4.*/
1150 aml_shiftleft(buf_size
, aml_int(3)), "BUFF"));
1151 aml_append(method
, aml_return(aml_name("BUFF")));
1152 aml_append(dev
, method
);
1155 method
= aml_method("_FIT", 0, AML_SERIALIZED
);
1156 offset
= aml_local(3);
1158 aml_append(method
, aml_store(aml_buffer(0, NULL
), fit
));
1159 aml_append(method
, aml_store(aml_int(0), offset
));
1161 whilectx
= aml_while(aml_int(1));
1162 aml_append(whilectx
, aml_store(aml_call1("RFIT", offset
), buf
));
1163 aml_append(whilectx
, aml_store(aml_sizeof(buf
), buf_size
));
1166 * if fit buffer was changed during RFIT, read from the beginning
1169 ifctx
= aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS
),
1170 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED
)));
1171 aml_append(ifctx
, aml_store(aml_buffer(0, NULL
), fit
));
1172 aml_append(ifctx
, aml_store(aml_int(0), offset
));
1173 aml_append(whilectx
, ifctx
);
1175 elsectx
= aml_else();
1177 /* finish fit read if no data is read out. */
1178 ifctx
= aml_if(aml_equal(buf_size
, aml_int(0)));
1179 aml_append(ifctx
, aml_return(fit
));
1180 aml_append(elsectx
, ifctx
);
1182 /* update the offset. */
1183 aml_append(elsectx
, aml_add(offset
, buf_size
, offset
));
1184 /* append the data we read out to the fit buffer. */
1185 aml_append(elsectx
, aml_concatenate(fit
, buf
, fit
));
1186 aml_append(whilectx
, elsectx
);
1187 aml_append(method
, whilectx
);
1189 aml_append(dev
, method
);
1192 static void nvdimm_build_nvdimm_devices(Aml
*root_dev
, uint32_t ram_slots
)
1196 for (slot
= 0; slot
< ram_slots
; slot
++) {
1197 uint32_t handle
= nvdimm_slot_to_handle(slot
);
1200 nvdimm_dev
= aml_device("NV%02X", slot
);
1203 * ACPI 6.0: 9.20 NVDIMM Devices:
1205 * _ADR object that is used to supply OSPM with unique address
1206 * of the NVDIMM device. This is done by returning the NFIT Device
1207 * handle that is used to identify the associated entries in ACPI
1208 * table NFIT or _FIT.
1210 aml_append(nvdimm_dev
, aml_name_decl("_ADR", aml_int(handle
)));
1212 nvdimm_build_device_dsm(nvdimm_dev
, handle
);
1213 aml_append(root_dev
, nvdimm_dev
);
1217 static void nvdimm_build_ssdt(GArray
*table_offsets
, GArray
*table_data
,
1218 BIOSLinker
*linker
, GArray
*dsm_dma_arrea
,
1221 Aml
*ssdt
, *sb_scope
, *dev
;
1222 int mem_addr_offset
, nvdimm_ssdt
;
1224 acpi_add_table(table_offsets
, table_data
);
1226 ssdt
= init_aml_allocator();
1227 acpi_data_push(ssdt
->buf
, sizeof(AcpiTableHeader
));
1229 sb_scope
= aml_scope("\\_SB");
1231 dev
= aml_device("NVDR");
1234 * ACPI 6.0: 9.20 NVDIMM Devices:
1236 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1237 * NVDIMM interface device. Platform firmware is required to contain one
1238 * such device in _SB scope if NVDIMMs support is exposed by platform to
1240 * For each NVDIMM present or intended to be supported by platform,
1241 * platform firmware also exposes an ACPI Namespace Device under the
1244 aml_append(dev
, aml_name_decl("_HID", aml_string("ACPI0012")));
1246 nvdimm_build_common_dsm(dev
);
1248 /* 0 is reserved for root device. */
1249 nvdimm_build_device_dsm(dev
, 0);
1250 nvdimm_build_fit(dev
);
1252 nvdimm_build_nvdimm_devices(dev
, ram_slots
);
1254 aml_append(sb_scope
, dev
);
1255 aml_append(ssdt
, sb_scope
);
1257 nvdimm_ssdt
= table_data
->len
;
1259 /* copy AML table into ACPI tables blob and patch header there */
1260 g_array_append_vals(table_data
, ssdt
->buf
->data
, ssdt
->buf
->len
);
1261 mem_addr_offset
= build_append_named_dword(table_data
,
1262 NVDIMM_ACPI_MEM_ADDR
);
1264 bios_linker_loader_alloc(linker
,
1265 NVDIMM_DSM_MEM_FILE
, dsm_dma_arrea
,
1266 sizeof(NvdimmDsmIn
), false /* high memory */);
1267 bios_linker_loader_add_pointer(linker
,
1268 ACPI_BUILD_TABLE_FILE
, mem_addr_offset
, sizeof(uint32_t),
1269 NVDIMM_DSM_MEM_FILE
, 0);
1270 build_header(linker
, table_data
,
1271 (void *)(table_data
->data
+ nvdimm_ssdt
),
1272 "SSDT", table_data
->len
- nvdimm_ssdt
, 1, NULL
, "NVDIMM");
1273 free_aml_allocator();
1276 void nvdimm_build_acpi(GArray
*table_offsets
, GArray
*table_data
,
1277 BIOSLinker
*linker
, AcpiNVDIMMState
*state
,
1280 GSList
*device_list
;
1282 /* no nvdimm device can be plugged. */
1287 nvdimm_build_ssdt(table_offsets
, table_data
, linker
, state
->dsm_mem
,
1290 device_list
= nvdimm_get_device_list();
1291 /* no NVDIMM device is plugged. */
1296 nvdimm_build_nfit(state
, table_offsets
, table_data
, linker
);
1297 g_slist_free(device_list
);