target/ppc: Implement the VTB for HV access
[qemu/ar7.git] / hw / ppc / ppc.c
blobd8c402811fd75700699841a7e4b0ab7397ce72ec
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
44 #ifdef PPC_DEBUG_IRQ
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 # define LOG_IRQ(...) do { } while (0)
48 #endif
51 #ifdef PPC_DEBUG_TB
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 # define LOG_TB(...) do { } while (0)
55 #endif
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending;
65 bool locked = false;
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
69 locked = true;
70 qemu_mutex_lock_iothread();
73 old_pending = env->pending_interrupts;
75 if (level) {
76 env->pending_interrupts |= 1 << n_IRQ;
77 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78 } else {
79 env->pending_interrupts &= ~(1 << n_IRQ);
80 if (env->pending_interrupts == 0) {
81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
85 if (old_pending != env->pending_interrupts) {
86 kvmppc_set_interrupt(cpu, n_IRQ, level);
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__, env, n_IRQ, level,
92 env->pending_interrupts, CPU(cpu)->interrupt_request);
94 if (locked) {
95 qemu_mutex_unlock_iothread();
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
104 int cur_level;
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107 env, pin, level);
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111 CPUState *cs = CPU(cpu);
113 switch (pin) {
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__, level ? "start" : "stop");
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
123 case PPC6xx_INPUT_INT:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
126 __func__, level);
127 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128 break;
129 case PPC6xx_INPUT_SMI:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132 __func__, level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134 break;
135 case PPC6xx_INPUT_MCP:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
140 if (cur_level == 1 && level == 0) {
141 LOG_IRQ("%s: raise machine check state\n",
142 __func__);
143 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
145 break;
146 case PPC6xx_INPUT_CKSTP_IN:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
150 if (level) {
151 LOG_IRQ("%s: stop the CPU\n", __func__);
152 cs->halted = 1;
154 break;
155 case PPC6xx_INPUT_HRESET:
156 /* Level sensitive - active low */
157 if (level) {
158 LOG_IRQ("%s: reset the CPU\n", __func__);
159 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
161 break;
162 case PPC6xx_INPUT_SRESET:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164 __func__, level);
165 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166 break;
167 default:
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170 return;
172 if (level)
173 env->irq_input_state |= 1 << pin;
174 else
175 env->irq_input_state &= ~(1 << pin);
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
181 CPUPPCState *env = &cpu->env;
183 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184 PPC6xx_INPUT_NB);
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
191 PowerPCCPU *cpu = opaque;
192 CPUPPCState *env = &cpu->env;
193 int cur_level;
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196 env, pin, level);
197 cur_level = (env->irq_input_state >> pin) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200 CPUState *cs = CPU(cpu);
202 switch (pin) {
203 case PPC970_INPUT_INT:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
206 __func__, level);
207 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208 break;
209 case PPC970_INPUT_THINT:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212 level);
213 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
220 if (cur_level == 1 && level == 0) {
221 LOG_IRQ("%s: raise machine check state\n",
222 __func__);
223 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
225 break;
226 case PPC970_INPUT_CKSTP:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229 if (level) {
230 LOG_IRQ("%s: stop the CPU\n", __func__);
231 cs->halted = 1;
232 } else {
233 LOG_IRQ("%s: restart the CPU\n", __func__);
234 cs->halted = 0;
235 qemu_cpu_kick(cs);
237 break;
238 case PPC970_INPUT_HRESET:
239 /* Level sensitive - active low */
240 if (level) {
241 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
243 break;
244 case PPC970_INPUT_SRESET:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246 __func__, level);
247 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248 break;
249 case PPC970_INPUT_TBEN:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251 level);
252 /* XXX: TODO */
253 break;
254 default:
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257 return;
259 if (level)
260 env->irq_input_state |= 1 << pin;
261 else
262 env->irq_input_state &= ~(1 << pin);
266 void ppc970_irq_init(PowerPCCPU *cpu)
268 CPUPPCState *env = &cpu->env;
270 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271 PPC970_INPUT_NB);
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
277 PowerPCCPU *cpu = opaque;
279 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280 &cpu->env, pin, level);
282 switch (pin) {
283 case POWER7_INPUT_INT:
284 /* Level sensitive - active high */
285 LOG_IRQ("%s: set the external IRQ state to %d\n",
286 __func__, level);
287 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288 break;
289 default:
290 /* Unknown pin - do nothing */
291 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292 return;
296 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
298 CPUPPCState *env = &cpu->env;
300 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
301 POWER7_INPUT_NB);
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque, int pin, int level)
307 PowerPCCPU *cpu = opaque;
309 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
310 &cpu->env, pin, level);
312 switch (pin) {
313 case POWER9_INPUT_INT:
314 /* Level sensitive - active high */
315 LOG_IRQ("%s: set the external IRQ state to %d\n",
316 __func__, level);
317 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
318 break;
319 case POWER9_INPUT_HINT:
320 /* Level sensitive - active high */
321 LOG_IRQ("%s: set the external IRQ state to %d\n",
322 __func__, level);
323 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
324 break;
325 default:
326 /* Unknown pin - do nothing */
327 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
328 return;
332 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
334 CPUPPCState *env = &cpu->env;
336 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
337 POWER9_INPUT_NB);
339 #endif /* defined(TARGET_PPC64) */
341 void ppc40x_core_reset(PowerPCCPU *cpu)
343 CPUPPCState *env = &cpu->env;
344 target_ulong dbsr;
346 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
347 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
348 dbsr = env->spr[SPR_40x_DBSR];
349 dbsr &= ~0x00000300;
350 dbsr |= 0x00000100;
351 env->spr[SPR_40x_DBSR] = dbsr;
354 void ppc40x_chip_reset(PowerPCCPU *cpu)
356 CPUPPCState *env = &cpu->env;
357 target_ulong dbsr;
359 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
360 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
361 /* XXX: TODO reset all internal peripherals */
362 dbsr = env->spr[SPR_40x_DBSR];
363 dbsr &= ~0x00000300;
364 dbsr |= 0x00000200;
365 env->spr[SPR_40x_DBSR] = dbsr;
368 void ppc40x_system_reset(PowerPCCPU *cpu)
370 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
374 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
376 PowerPCCPU *cpu = env_archcpu(env);
378 switch ((val >> 28) & 0x3) {
379 case 0x0:
380 /* No action */
381 break;
382 case 0x1:
383 /* Core reset */
384 ppc40x_core_reset(cpu);
385 break;
386 case 0x2:
387 /* Chip reset */
388 ppc40x_chip_reset(cpu);
389 break;
390 case 0x3:
391 /* System reset */
392 ppc40x_system_reset(cpu);
393 break;
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque, int pin, int level)
400 PowerPCCPU *cpu = opaque;
401 CPUPPCState *env = &cpu->env;
402 int cur_level;
404 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405 env, pin, level);
406 cur_level = (env->irq_input_state >> pin) & 1;
407 /* Don't generate spurious events */
408 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409 CPUState *cs = CPU(cpu);
411 switch (pin) {
412 case PPC40x_INPUT_RESET_SYS:
413 if (level) {
414 LOG_IRQ("%s: reset the PowerPC system\n",
415 __func__);
416 ppc40x_system_reset(cpu);
418 break;
419 case PPC40x_INPUT_RESET_CHIP:
420 if (level) {
421 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
422 ppc40x_chip_reset(cpu);
424 break;
425 case PPC40x_INPUT_RESET_CORE:
426 /* XXX: TODO: update DBSR[MRR] */
427 if (level) {
428 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
429 ppc40x_core_reset(cpu);
431 break;
432 case PPC40x_INPUT_CINT:
433 /* Level sensitive - active high */
434 LOG_IRQ("%s: set the critical IRQ state to %d\n",
435 __func__, level);
436 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
437 break;
438 case PPC40x_INPUT_INT:
439 /* Level sensitive - active high */
440 LOG_IRQ("%s: set the external IRQ state to %d\n",
441 __func__, level);
442 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
443 break;
444 case PPC40x_INPUT_HALT:
445 /* Level sensitive - active low */
446 if (level) {
447 LOG_IRQ("%s: stop the CPU\n", __func__);
448 cs->halted = 1;
449 } else {
450 LOG_IRQ("%s: restart the CPU\n", __func__);
451 cs->halted = 0;
452 qemu_cpu_kick(cs);
454 break;
455 case PPC40x_INPUT_DEBUG:
456 /* Level sensitive - active high */
457 LOG_IRQ("%s: set the debug pin state to %d\n",
458 __func__, level);
459 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
460 break;
461 default:
462 /* Unknown pin - do nothing */
463 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
464 return;
466 if (level)
467 env->irq_input_state |= 1 << pin;
468 else
469 env->irq_input_state &= ~(1 << pin);
473 void ppc40x_irq_init(PowerPCCPU *cpu)
475 CPUPPCState *env = &cpu->env;
477 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
478 cpu, PPC40x_INPUT_NB);
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque, int pin, int level)
484 PowerPCCPU *cpu = opaque;
485 CPUPPCState *env = &cpu->env;
486 int cur_level;
488 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
489 env, pin, level);
490 cur_level = (env->irq_input_state >> pin) & 1;
491 /* Don't generate spurious events */
492 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
493 switch (pin) {
494 case PPCE500_INPUT_MCK:
495 if (level) {
496 LOG_IRQ("%s: reset the PowerPC system\n",
497 __func__);
498 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
500 break;
501 case PPCE500_INPUT_RESET_CORE:
502 if (level) {
503 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
504 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
506 break;
507 case PPCE500_INPUT_CINT:
508 /* Level sensitive - active high */
509 LOG_IRQ("%s: set the critical IRQ state to %d\n",
510 __func__, level);
511 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
512 break;
513 case PPCE500_INPUT_INT:
514 /* Level sensitive - active high */
515 LOG_IRQ("%s: set the core IRQ state to %d\n",
516 __func__, level);
517 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
518 break;
519 case PPCE500_INPUT_DEBUG:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the debug pin state to %d\n",
522 __func__, level);
523 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
524 break;
525 default:
526 /* Unknown pin - do nothing */
527 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
528 return;
530 if (level)
531 env->irq_input_state |= 1 << pin;
532 else
533 env->irq_input_state &= ~(1 << pin);
537 void ppce500_irq_init(PowerPCCPU *cpu)
539 CPUPPCState *env = &cpu->env;
541 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
542 cpu, PPCE500_INPUT_NB);
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled)
548 CPUState *cs;
550 CPU_FOREACH(cs) {
551 PowerPCCPU *cpu = POWERPC_CPU(cs);
553 cpu->env.mpic_proxy = enabled;
554 if (kvm_enabled()) {
555 kvmppc_set_mpic_proxy(cpu, enabled);
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
563 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
565 /* TB time in tb periods */
566 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
569 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
571 ppc_tb_t *tb_env = env->tb_env;
572 uint64_t tb;
574 if (kvm_enabled()) {
575 return env->spr[SPR_TBL];
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
581 return tb;
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t tb;
589 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592 return tb >> 32;
595 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
597 if (kvm_enabled()) {
598 return env->spr[SPR_TBU];
601 return _cpu_ppc_load_tbu(env);
604 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
605 int64_t *tb_offsetp, uint64_t value)
607 *tb_offsetp = value -
608 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
610 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
611 __func__, value, *tb_offsetp);
614 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
616 ppc_tb_t *tb_env = env->tb_env;
617 uint64_t tb;
619 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
620 tb &= 0xFFFFFFFF00000000ULL;
621 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
622 &tb_env->tb_offset, tb | (uint64_t)value);
625 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
627 ppc_tb_t *tb_env = env->tb_env;
628 uint64_t tb;
630 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631 tb &= 0x00000000FFFFFFFFULL;
632 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
636 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
638 _cpu_ppc_store_tbu(env, value);
641 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
643 ppc_tb_t *tb_env = env->tb_env;
644 uint64_t tb;
646 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
647 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
649 return tb;
652 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
654 ppc_tb_t *tb_env = env->tb_env;
655 uint64_t tb;
657 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660 return tb >> 32;
663 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
665 ppc_tb_t *tb_env = env->tb_env;
666 uint64_t tb;
668 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669 tb &= 0xFFFFFFFF00000000ULL;
670 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
671 &tb_env->atb_offset, tb | (uint64_t)value);
674 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
676 ppc_tb_t *tb_env = env->tb_env;
677 uint64_t tb;
679 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680 tb &= 0x00000000FFFFFFFFULL;
681 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
685 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
687 ppc_tb_t *tb_env = env->tb_env;
689 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
690 tb_env->vtb_offset);
693 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
695 ppc_tb_t *tb_env = env->tb_env;
697 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
698 &tb_env->vtb_offset, value);
701 static void cpu_ppc_tb_stop (CPUPPCState *env)
703 ppc_tb_t *tb_env = env->tb_env;
704 uint64_t tb, atb, vmclk;
706 /* If the time base is already frozen, do nothing */
707 if (tb_env->tb_freq != 0) {
708 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
709 /* Get the time base */
710 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
711 /* Get the alternate time base */
712 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
713 /* Store the time base value (ie compute the current offset) */
714 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
715 /* Store the alternate time base value (compute the current offset) */
716 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
717 /* Set the time base frequency to zero */
718 tb_env->tb_freq = 0;
719 /* Now, the time bases are frozen to tb_offset / atb_offset value */
723 static void cpu_ppc_tb_start (CPUPPCState *env)
725 ppc_tb_t *tb_env = env->tb_env;
726 uint64_t tb, atb, vmclk;
728 /* If the time base is not frozen, do nothing */
729 if (tb_env->tb_freq == 0) {
730 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
731 /* Get the time base from tb_offset */
732 tb = tb_env->tb_offset;
733 /* Get the alternate time base from atb_offset */
734 atb = tb_env->atb_offset;
735 /* Restore the tb frequency from the decrementer frequency */
736 tb_env->tb_freq = tb_env->decr_freq;
737 /* Store the time base value */
738 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
739 /* Store the alternate time base value */
740 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
744 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
746 ppc_tb_t *tb_env = env->tb_env;
747 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
748 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
751 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
753 ppc_tb_t *tb_env = env->tb_env;
754 int64_t decr, diff;
756 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
757 if (diff >= 0) {
758 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
759 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
760 decr = 0;
761 } else {
762 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
764 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
766 return decr;
769 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
771 ppc_tb_t *tb_env = env->tb_env;
772 uint64_t decr;
774 if (kvm_enabled()) {
775 return env->spr[SPR_DECR];
778 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
781 * If large decrementer is enabled then the decrementer is signed extened
782 * to 64 bits, otherwise it is a 32 bit value.
784 if (env->spr[SPR_LPCR] & LPCR_LD) {
785 return decr;
787 return (uint32_t) decr;
790 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
792 PowerPCCPU *cpu = env_archcpu(env);
793 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
794 ppc_tb_t *tb_env = env->tb_env;
795 uint64_t hdecr;
797 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
800 * If we have a large decrementer (POWER9 or later) then hdecr is sign
801 * extended to 64 bits, otherwise it is 32 bits.
803 if (pcc->lrg_decr_bits > 32) {
804 return hdecr;
806 return (uint32_t) hdecr;
809 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
811 ppc_tb_t *tb_env = env->tb_env;
812 uint64_t diff;
814 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
816 return tb_env->purr_load +
817 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
820 /* When decrementer expires,
821 * all we need to do is generate or queue a CPU exception
823 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
825 /* Raise it */
826 LOG_TB("raise decrementer exception\n");
827 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
830 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
832 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
835 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
837 CPUPPCState *env = &cpu->env;
839 /* Raise it */
840 LOG_TB("raise hv decrementer exception\n");
842 /* The architecture specifies that we don't deliver HDEC
843 * interrupts in a PM state. Not only they don't cause a
844 * wakeup but they also get effectively discarded.
846 if (!env->resume_as_sreset) {
847 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
851 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
853 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
856 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
857 QEMUTimer *timer,
858 void (*raise_excp)(void *),
859 void (*lower_excp)(PowerPCCPU *),
860 target_ulong decr, target_ulong value,
861 int nr_bits)
863 CPUPPCState *env = &cpu->env;
864 ppc_tb_t *tb_env = env->tb_env;
865 uint64_t now, next;
866 bool negative;
868 /* Truncate value to decr_width and sign extend for simplicity */
869 value &= ((1ULL << nr_bits) - 1);
870 negative = !!(value & (1ULL << (nr_bits - 1)));
871 if (negative) {
872 value |= (0xFFFFFFFFULL << nr_bits);
875 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
876 decr, value);
878 if (kvm_enabled()) {
879 /* KVM handles decrementer exceptions, we don't need our own timer */
880 return;
884 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
885 * interrupt.
887 * If we get a really small DEC value, we can assume that by the time we
888 * handled it we should inject an interrupt already.
890 * On MSB level based DEC implementations the MSB always means the interrupt
891 * is pending, so raise it on those.
893 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
894 * an edge interrupt, so raise it here too.
896 if ((value < 3) ||
897 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
898 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
899 && !(decr & (1ULL << (nr_bits - 1))))) {
900 (*raise_excp)(cpu);
901 return;
904 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
905 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
906 (*lower_excp)(cpu);
909 /* Calculate the next timer event */
910 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
911 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
912 *nextp = next;
914 /* Adjust timer */
915 timer_mod(timer, next);
918 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
919 target_ulong value, int nr_bits)
921 ppc_tb_t *tb_env = cpu->env.tb_env;
923 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
924 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
925 value, nr_bits);
928 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
930 PowerPCCPU *cpu = env_archcpu(env);
931 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
932 int nr_bits = 32;
934 if (env->spr[SPR_LPCR] & LPCR_LD) {
935 nr_bits = pcc->lrg_decr_bits;
938 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
941 static void cpu_ppc_decr_cb(void *opaque)
943 PowerPCCPU *cpu = opaque;
945 cpu_ppc_decr_excp(cpu);
948 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
949 target_ulong value, int nr_bits)
951 ppc_tb_t *tb_env = cpu->env.tb_env;
953 if (tb_env->hdecr_timer != NULL) {
954 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
955 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
956 hdecr, value, nr_bits);
960 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
962 PowerPCCPU *cpu = env_archcpu(env);
963 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
965 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
966 pcc->lrg_decr_bits);
969 static void cpu_ppc_hdecr_cb(void *opaque)
971 PowerPCCPU *cpu = opaque;
973 cpu_ppc_hdecr_excp(cpu);
976 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
978 ppc_tb_t *tb_env = cpu->env.tb_env;
980 tb_env->purr_load = value;
981 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
984 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
986 CPUPPCState *env = opaque;
987 PowerPCCPU *cpu = env_archcpu(env);
988 ppc_tb_t *tb_env = env->tb_env;
990 tb_env->tb_freq = freq;
991 tb_env->decr_freq = freq;
992 /* There is a bug in Linux 2.4 kernels:
993 * if a decrementer exception is pending when it enables msr_ee at startup,
994 * it's not ready to handle it...
996 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
997 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
998 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
1001 static void timebase_save(PPCTimebase *tb)
1003 uint64_t ticks = cpu_get_host_ticks();
1004 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1006 if (!first_ppc_cpu->env.tb_env) {
1007 error_report("No timebase object");
1008 return;
1011 /* not used anymore, we keep it for compatibility */
1012 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1014 * tb_offset is only expected to be changed by QEMU so
1015 * there is no need to update it from KVM here
1017 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1019 tb->runstate_paused = runstate_check(RUN_STATE_PAUSED);
1022 static void timebase_load(PPCTimebase *tb)
1024 CPUState *cpu;
1025 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1026 int64_t tb_off_adj, tb_off;
1027 unsigned long freq;
1029 if (!first_ppc_cpu->env.tb_env) {
1030 error_report("No timebase object");
1031 return;
1034 freq = first_ppc_cpu->env.tb_env->tb_freq;
1036 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1038 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1039 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1040 (tb_off_adj - tb_off) / freq);
1042 /* Set new offset to all CPUs */
1043 CPU_FOREACH(cpu) {
1044 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1045 pcpu->env.tb_env->tb_offset = tb_off_adj;
1046 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1050 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1051 RunState state)
1053 PPCTimebase *tb = opaque;
1055 if (running) {
1056 timebase_load(tb);
1057 } else {
1058 timebase_save(tb);
1063 * When migrating a running guest, read the clock just
1064 * before migration, so that the guest clock counts
1065 * during the events between:
1067 * * vm_stop()
1069 * * pre_save()
1071 * This reduces clock difference on migration from 5s
1072 * to 0.1s (when max_downtime == 5s), because sending the
1073 * final pages of memory (which happens between vm_stop()
1074 * and pre_save()) takes max_downtime.
1076 static int timebase_pre_save(void *opaque)
1078 PPCTimebase *tb = opaque;
1080 /* guest_timebase won't be overridden in case of paused guest */
1081 if (!tb->runstate_paused) {
1082 timebase_save(tb);
1085 return 0;
1088 const VMStateDescription vmstate_ppc_timebase = {
1089 .name = "timebase",
1090 .version_id = 1,
1091 .minimum_version_id = 1,
1092 .minimum_version_id_old = 1,
1093 .pre_save = timebase_pre_save,
1094 .fields = (VMStateField []) {
1095 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1096 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1097 VMSTATE_END_OF_LIST()
1101 /* Set up (once) timebase frequency (in Hz) */
1102 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1104 PowerPCCPU *cpu = env_archcpu(env);
1105 ppc_tb_t *tb_env;
1107 tb_env = g_malloc0(sizeof(ppc_tb_t));
1108 env->tb_env = tb_env;
1109 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1110 if (is_book3s_arch2x(env)) {
1111 /* All Book3S 64bit CPUs implement level based DEC logic */
1112 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1114 /* Create new timer */
1115 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1116 if (env->has_hv_mode) {
1117 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1118 cpu);
1119 } else {
1120 tb_env->hdecr_timer = NULL;
1122 cpu_ppc_set_tb_clk(env, freq);
1124 return &cpu_ppc_set_tb_clk;
1127 /* Specific helpers for POWER & PowerPC 601 RTC */
1128 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1130 _cpu_ppc_store_tbu(env, value);
1133 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1135 return _cpu_ppc_load_tbu(env);
1138 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1140 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1143 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1145 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1148 /*****************************************************************************/
1149 /* PowerPC 40x timers */
1151 /* PIT, FIT & WDT */
1152 typedef struct ppc40x_timer_t ppc40x_timer_t;
1153 struct ppc40x_timer_t {
1154 uint64_t pit_reload; /* PIT auto-reload value */
1155 uint64_t fit_next; /* Tick for next FIT interrupt */
1156 QEMUTimer *fit_timer;
1157 uint64_t wdt_next; /* Tick for next WDT interrupt */
1158 QEMUTimer *wdt_timer;
1160 /* 405 have the PIT, 440 have a DECR. */
1161 unsigned int decr_excp;
1164 /* Fixed interval timer */
1165 static void cpu_4xx_fit_cb (void *opaque)
1167 PowerPCCPU *cpu;
1168 CPUPPCState *env;
1169 ppc_tb_t *tb_env;
1170 ppc40x_timer_t *ppc40x_timer;
1171 uint64_t now, next;
1173 env = opaque;
1174 cpu = env_archcpu(env);
1175 tb_env = env->tb_env;
1176 ppc40x_timer = tb_env->opaque;
1177 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1178 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1179 case 0:
1180 next = 1 << 9;
1181 break;
1182 case 1:
1183 next = 1 << 13;
1184 break;
1185 case 2:
1186 next = 1 << 17;
1187 break;
1188 case 3:
1189 next = 1 << 21;
1190 break;
1191 default:
1192 /* Cannot occur, but makes gcc happy */
1193 return;
1195 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1196 if (next == now)
1197 next++;
1198 timer_mod(ppc40x_timer->fit_timer, next);
1199 env->spr[SPR_40x_TSR] |= 1 << 26;
1200 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1201 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1203 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1204 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1205 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1208 /* Programmable interval timer */
1209 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1211 ppc40x_timer_t *ppc40x_timer;
1212 uint64_t now, next;
1214 ppc40x_timer = tb_env->opaque;
1215 if (ppc40x_timer->pit_reload <= 1 ||
1216 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1217 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1218 /* Stop PIT */
1219 LOG_TB("%s: stop PIT\n", __func__);
1220 timer_del(tb_env->decr_timer);
1221 } else {
1222 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1223 __func__, ppc40x_timer->pit_reload);
1224 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1225 next = now + muldiv64(ppc40x_timer->pit_reload,
1226 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1227 if (is_excp)
1228 next += tb_env->decr_next - now;
1229 if (next == now)
1230 next++;
1231 timer_mod(tb_env->decr_timer, next);
1232 tb_env->decr_next = next;
1236 static void cpu_4xx_pit_cb (void *opaque)
1238 PowerPCCPU *cpu;
1239 CPUPPCState *env;
1240 ppc_tb_t *tb_env;
1241 ppc40x_timer_t *ppc40x_timer;
1243 env = opaque;
1244 cpu = env_archcpu(env);
1245 tb_env = env->tb_env;
1246 ppc40x_timer = tb_env->opaque;
1247 env->spr[SPR_40x_TSR] |= 1 << 27;
1248 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1249 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1251 start_stop_pit(env, tb_env, 1);
1252 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1253 "%016" PRIx64 "\n", __func__,
1254 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1255 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1256 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1257 ppc40x_timer->pit_reload);
1260 /* Watchdog timer */
1261 static void cpu_4xx_wdt_cb (void *opaque)
1263 PowerPCCPU *cpu;
1264 CPUPPCState *env;
1265 ppc_tb_t *tb_env;
1266 ppc40x_timer_t *ppc40x_timer;
1267 uint64_t now, next;
1269 env = opaque;
1270 cpu = env_archcpu(env);
1271 tb_env = env->tb_env;
1272 ppc40x_timer = tb_env->opaque;
1273 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1274 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1275 case 0:
1276 next = 1 << 17;
1277 break;
1278 case 1:
1279 next = 1 << 21;
1280 break;
1281 case 2:
1282 next = 1 << 25;
1283 break;
1284 case 3:
1285 next = 1 << 29;
1286 break;
1287 default:
1288 /* Cannot occur, but makes gcc happy */
1289 return;
1291 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1292 if (next == now)
1293 next++;
1294 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1295 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1296 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1297 case 0x0:
1298 case 0x1:
1299 timer_mod(ppc40x_timer->wdt_timer, next);
1300 ppc40x_timer->wdt_next = next;
1301 env->spr[SPR_40x_TSR] |= 1U << 31;
1302 break;
1303 case 0x2:
1304 timer_mod(ppc40x_timer->wdt_timer, next);
1305 ppc40x_timer->wdt_next = next;
1306 env->spr[SPR_40x_TSR] |= 1 << 30;
1307 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1308 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1310 break;
1311 case 0x3:
1312 env->spr[SPR_40x_TSR] &= ~0x30000000;
1313 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1314 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1315 case 0x0:
1316 /* No reset */
1317 break;
1318 case 0x1: /* Core reset */
1319 ppc40x_core_reset(cpu);
1320 break;
1321 case 0x2: /* Chip reset */
1322 ppc40x_chip_reset(cpu);
1323 break;
1324 case 0x3: /* System reset */
1325 ppc40x_system_reset(cpu);
1326 break;
1331 void store_40x_pit (CPUPPCState *env, target_ulong val)
1333 ppc_tb_t *tb_env;
1334 ppc40x_timer_t *ppc40x_timer;
1336 tb_env = env->tb_env;
1337 ppc40x_timer = tb_env->opaque;
1338 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1339 ppc40x_timer->pit_reload = val;
1340 start_stop_pit(env, tb_env, 0);
1343 target_ulong load_40x_pit (CPUPPCState *env)
1345 return cpu_ppc_load_decr(env);
1348 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1350 CPUPPCState *env = opaque;
1351 ppc_tb_t *tb_env = env->tb_env;
1353 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1354 freq);
1355 tb_env->tb_freq = freq;
1356 tb_env->decr_freq = freq;
1357 /* XXX: we should also update all timers */
1360 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1361 unsigned int decr_excp)
1363 ppc_tb_t *tb_env;
1364 ppc40x_timer_t *ppc40x_timer;
1366 tb_env = g_malloc0(sizeof(ppc_tb_t));
1367 env->tb_env = tb_env;
1368 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1369 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1370 tb_env->tb_freq = freq;
1371 tb_env->decr_freq = freq;
1372 tb_env->opaque = ppc40x_timer;
1373 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1374 if (ppc40x_timer != NULL) {
1375 /* We use decr timer for PIT */
1376 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1377 ppc40x_timer->fit_timer =
1378 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1379 ppc40x_timer->wdt_timer =
1380 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1381 ppc40x_timer->decr_excp = decr_excp;
1384 return &ppc_40x_set_tb_clk;
1387 /*****************************************************************************/
1388 /* Embedded PowerPC Device Control Registers */
1389 typedef struct ppc_dcrn_t ppc_dcrn_t;
1390 struct ppc_dcrn_t {
1391 dcr_read_cb dcr_read;
1392 dcr_write_cb dcr_write;
1393 void *opaque;
1396 /* XXX: on 460, DCR addresses are 32 bits wide,
1397 * using DCRIPR to get the 22 upper bits of the DCR address
1399 #define DCRN_NB 1024
1400 struct ppc_dcr_t {
1401 ppc_dcrn_t dcrn[DCRN_NB];
1402 int (*read_error)(int dcrn);
1403 int (*write_error)(int dcrn);
1406 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1408 ppc_dcrn_t *dcr;
1410 if (dcrn < 0 || dcrn >= DCRN_NB)
1411 goto error;
1412 dcr = &dcr_env->dcrn[dcrn];
1413 if (dcr->dcr_read == NULL)
1414 goto error;
1415 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1417 return 0;
1419 error:
1420 if (dcr_env->read_error != NULL)
1421 return (*dcr_env->read_error)(dcrn);
1423 return -1;
1426 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1428 ppc_dcrn_t *dcr;
1430 if (dcrn < 0 || dcrn >= DCRN_NB)
1431 goto error;
1432 dcr = &dcr_env->dcrn[dcrn];
1433 if (dcr->dcr_write == NULL)
1434 goto error;
1435 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1437 return 0;
1439 error:
1440 if (dcr_env->write_error != NULL)
1441 return (*dcr_env->write_error)(dcrn);
1443 return -1;
1446 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1447 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1449 ppc_dcr_t *dcr_env;
1450 ppc_dcrn_t *dcr;
1452 dcr_env = env->dcr_env;
1453 if (dcr_env == NULL)
1454 return -1;
1455 if (dcrn < 0 || dcrn >= DCRN_NB)
1456 return -1;
1457 dcr = &dcr_env->dcrn[dcrn];
1458 if (dcr->opaque != NULL ||
1459 dcr->dcr_read != NULL ||
1460 dcr->dcr_write != NULL)
1461 return -1;
1462 dcr->opaque = opaque;
1463 dcr->dcr_read = dcr_read;
1464 dcr->dcr_write = dcr_write;
1466 return 0;
1469 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1470 int (*write_error)(int dcrn))
1472 ppc_dcr_t *dcr_env;
1474 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1475 dcr_env->read_error = read_error;
1476 dcr_env->write_error = write_error;
1477 env->dcr_env = dcr_env;
1479 return 0;
1482 /*****************************************************************************/
1483 /* Debug port */
1484 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1486 addr &= 0xF;
1487 switch (addr) {
1488 case 0:
1489 printf("%c", val);
1490 break;
1491 case 1:
1492 printf("\n");
1493 fflush(stdout);
1494 break;
1495 case 2:
1496 printf("Set loglevel to %04" PRIx32 "\n", val);
1497 qemu_set_log(val | 0x100);
1498 break;
1502 int ppc_cpu_pir(PowerPCCPU *cpu)
1504 CPUPPCState *env = &cpu->env;
1505 return env->spr_cb[SPR_PIR].default_value;
1508 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1510 CPUState *cs;
1512 CPU_FOREACH(cs) {
1513 PowerPCCPU *cpu = POWERPC_CPU(cs);
1515 if (ppc_cpu_pir(cpu) == pir) {
1516 return cpu;
1520 return NULL;
1523 void ppc_irq_reset(PowerPCCPU *cpu)
1525 CPUPPCState *env = &cpu->env;
1527 env->irq_input_state = 0;
1528 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);