spapr: Do not put empty properties for -kernel/-initrd/-append
[qemu/ar7.git] / hw / ppc / spapr.c
blobf1c57c21cce581203112a6faf671efe5ea10238c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "monitor/monitor.h"
86 #include <libfdt.h>
88 /* SLOF memory layout:
90 * SLOF raw image loaded at 0, copies its romfs right below the flat
91 * device-tree, then position SLOF itself 31M below that
93 * So we set FW_OVERHEAD to 40MB which should account for all of that
94 * and more
96 * We load our kernel at 4M, leaving space for SLOF initial image
98 #define FDT_MAX_SIZE 0x100000
99 #define RTAS_MAX_SIZE 0x10000
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF 128UL
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 int spapr_max_server_number(SpaprMachineState *spapr)
166 MachineState *ms = MACHINE(spapr);
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
202 return ret;
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
207 int index = spapr_get_vcpu_id(cpu);
208 uint32_t associativity[] = {cpu_to_be32(0x5),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(0x0),
212 cpu_to_be32(cpu->node_id),
213 cpu_to_be32(index)};
215 /* Advertise NUMA via ibm,associativity */
216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217 sizeof(associativity));
220 /* Populate the "ibm,pa-features" property */
221 static void spapr_populate_pa_features(SpaprMachineState *spapr,
222 PowerPCCPU *cpu,
223 void *fdt, int offset)
225 uint8_t pa_features_206[] = { 6, 0,
226 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
227 uint8_t pa_features_207[] = { 24, 0,
228 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
229 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
230 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
232 uint8_t pa_features_300[] = { 66, 0,
233 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
234 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
235 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
236 /* 6: DS207 */
237 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
238 /* 16: Vector */
239 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
240 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
242 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
244 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
245 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
246 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
248 /* 42: PM, 44: PC RA, 46: SC vec'd */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
250 /* 48: SIMD, 50: QP BFP, 52: String */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
252 /* 54: DecFP, 56: DecI, 58: SHA */
253 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
254 /* 60: NM atomic, 62: RNG */
255 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
257 uint8_t *pa_features = NULL;
258 size_t pa_size;
260 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
261 pa_features = pa_features_206;
262 pa_size = sizeof(pa_features_206);
264 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
265 pa_features = pa_features_207;
266 pa_size = sizeof(pa_features_207);
268 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
269 pa_features = pa_features_300;
270 pa_size = sizeof(pa_features_300);
272 if (!pa_features) {
273 return;
276 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
278 * Note: we keep CI large pages off by default because a 64K capable
279 * guest provisioned with large pages might otherwise try to map a qemu
280 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
281 * even if that qemu runs on a 4k host.
282 * We dd this bit back here if we are confident this is not an issue
284 pa_features[3] |= 0x20;
286 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
287 pa_features[24] |= 0x80; /* Transactional memory support */
289 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
290 /* Workaround for broken kernels that attempt (guest) radix
291 * mode when they can't handle it, if they see the radix bit set
292 * in pa-features. So hide it from them. */
293 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
296 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
299 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
301 MachineState *ms = MACHINE(spapr);
302 int ret = 0, offset, cpus_offset;
303 CPUState *cs;
304 char cpu_model[32];
305 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
307 CPU_FOREACH(cs) {
308 PowerPCCPU *cpu = POWERPC_CPU(cs);
309 DeviceClass *dc = DEVICE_GET_CLASS(cs);
310 int index = spapr_get_vcpu_id(cpu);
311 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
313 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
314 continue;
317 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
319 cpus_offset = fdt_path_offset(fdt, "/cpus");
320 if (cpus_offset < 0) {
321 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
322 if (cpus_offset < 0) {
323 return cpus_offset;
326 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
327 if (offset < 0) {
328 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
329 if (offset < 0) {
330 return offset;
334 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
335 pft_size_prop, sizeof(pft_size_prop));
336 if (ret < 0) {
337 return ret;
340 if (ms->numa_state->num_nodes > 1) {
341 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
342 if (ret < 0) {
343 return ret;
347 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
348 if (ret < 0) {
349 return ret;
352 spapr_populate_pa_features(spapr, cpu, fdt, offset);
354 return ret;
357 static hwaddr spapr_node0_size(MachineState *machine)
359 if (machine->numa_state->num_nodes) {
360 int i;
361 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
362 if (machine->numa_state->nodes[i].node_mem) {
363 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
364 machine->ram_size);
368 return machine->ram_size;
371 static void add_str(GString *s, const gchar *s1)
373 g_string_append_len(s, s1, strlen(s1) + 1);
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377 hwaddr size)
379 uint32_t associativity[] = {
380 cpu_to_be32(0x4), /* length */
381 cpu_to_be32(0x0), cpu_to_be32(0x0),
382 cpu_to_be32(0x0), cpu_to_be32(nodeid)
384 char mem_name[32];
385 uint64_t mem_reg_property[2];
386 int off;
388 mem_reg_property[0] = cpu_to_be64(start);
389 mem_reg_property[1] = cpu_to_be64(size);
391 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
392 off = fdt_add_subnode(fdt, 0, mem_name);
393 _FDT(off);
394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396 sizeof(mem_reg_property))));
397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398 sizeof(associativity))));
399 return off;
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
404 MachineState *machine = MACHINE(spapr);
405 hwaddr mem_start, node_size;
406 int i, nb_nodes = machine->numa_state->num_nodes;
407 NodeInfo *nodes = machine->numa_state->nodes;
408 NodeInfo ramnode;
410 /* No NUMA nodes, assume there is just one node with whole RAM */
411 if (!nb_nodes) {
412 nb_nodes = 1;
413 ramnode.node_mem = machine->ram_size;
414 nodes = &ramnode;
417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418 if (!nodes[i].node_mem) {
419 continue;
421 if (mem_start >= machine->ram_size) {
422 node_size = 0;
423 } else {
424 node_size = nodes[i].node_mem;
425 if (node_size > machine->ram_size - mem_start) {
426 node_size = machine->ram_size - mem_start;
429 if (!mem_start) {
430 /* spapr_machine_init() checks for rma_size <= node0_size
431 * already */
432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433 mem_start += spapr->rma_size;
434 node_size -= spapr->rma_size;
436 for ( ; node_size; ) {
437 hwaddr sizetmp = pow2floor(node_size);
439 /* mem_start != 0 here */
440 if (ctzl(mem_start) < ctzl(sizetmp)) {
441 sizetmp = 1ULL << ctzl(mem_start);
444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445 node_size -= sizetmp;
446 mem_start += sizetmp;
450 return 0;
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454 SpaprMachineState *spapr)
456 MachineState *ms = MACHINE(spapr);
457 PowerPCCPU *cpu = POWERPC_CPU(cs);
458 CPUPPCState *env = &cpu->env;
459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460 int index = spapr_get_vcpu_id(cpu);
461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462 0xffffffff, 0xffffffff};
463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464 : SPAPR_TIMEBASE_FREQ;
465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466 uint32_t page_sizes_prop[64];
467 size_t page_sizes_prop_size;
468 unsigned int smp_threads = ms->smp.threads;
469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472 SpaprDrc *drc;
473 int drc_index;
474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475 int i;
477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478 if (drc) {
479 drc_index = spapr_drc_index(drc);
480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488 env->dcache_line_size)));
489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490 env->dcache_line_size)));
491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492 env->icache_line_size)));
493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494 env->icache_line_size)));
496 if (pcc->l1_dcache_size) {
497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498 pcc->l1_dcache_size)));
499 } else {
500 warn_report("Unknown L1 dcache size for cpu");
502 if (pcc->l1_icache_size) {
503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504 pcc->l1_icache_size)));
505 } else {
506 warn_report("Unknown L1 icache size for cpu");
509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
516 if (env->spr_cb[SPR_PURR].oea_read) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
519 if (env->spr_cb[SPR_SPURR].oea_read) {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525 segs, sizeof(segs))));
528 /* Advertise VSX (vector extensions) if available
529 * 1 == VMX / Altivec available
530 * 2 == VSX available
532 * Only CPUs for which we create core types in spapr_cpu_core.c
533 * are possible, and all of those have VMX */
534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536 } else {
537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
540 /* Advertise DFP (Decimal Floating Point) if available
541 * 0 / no property == no DFP
542 * 1 == DFP available */
543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548 sizeof(page_sizes_prop));
549 if (page_sizes_prop_size) {
550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551 page_sizes_prop, page_sizes_prop_size)));
554 spapr_populate_pa_features(spapr, cpu, fdt, offset);
556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557 cs->cpu_index / vcpus_per_socket)));
559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560 pft_size_prop, sizeof(pft_size_prop))));
562 if (ms->numa_state->num_nodes > 1) {
563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
568 if (pcc->radix_page_info) {
569 for (i = 0; i < pcc->radix_page_info->count; i++) {
570 radix_AP_encodings[i] =
571 cpu_to_be32(pcc->radix_page_info->entries[i]);
573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574 radix_AP_encodings,
575 pcc->radix_page_info->count *
576 sizeof(radix_AP_encodings[0]))));
580 * We set this property to let the guest know that it can use the large
581 * decrementer and its width in bits.
583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585 pcc->lrg_decr_bits)));
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
590 CPUState **rev;
591 CPUState *cs;
592 int n_cpus;
593 int cpus_offset;
594 char *nodename;
595 int i;
597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598 _FDT(cpus_offset);
599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
603 * We walk the CPUs in reverse order to ensure that CPU DT nodes
604 * created by fdt_add_subnode() end up in the right order in FDT
605 * for the guest kernel the enumerate the CPUs correctly.
607 * The CPU list cannot be traversed in reverse order, so we need
608 * to do extra work.
610 n_cpus = 0;
611 rev = NULL;
612 CPU_FOREACH(cs) {
613 rev = g_renew(CPUState *, rev, n_cpus + 1);
614 rev[n_cpus++] = cs;
617 for (i = n_cpus - 1; i >= 0; i--) {
618 CPUState *cs = rev[i];
619 PowerPCCPU *cpu = POWERPC_CPU(cs);
620 int index = spapr_get_vcpu_id(cpu);
621 DeviceClass *dc = DEVICE_GET_CLASS(cs);
622 int offset;
624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625 continue;
628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630 g_free(nodename);
631 _FDT(offset);
632 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
635 g_free(rev);
638 static int spapr_rng_populate_dt(void *fdt)
640 int node;
641 int ret;
643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644 if (node <= 0) {
645 return -1;
647 ret = fdt_setprop_string(fdt, node, "device_type",
648 "ibm,platform-facilities");
649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
652 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653 if (node <= 0) {
654 return -1;
656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
658 return ret ? -1 : 0;
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
663 MemoryDeviceInfoList *info;
665 for (info = list; info; info = info->next) {
666 MemoryDeviceInfo *value = info->value;
668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
671 if (addr >= pcdimm_info->addr &&
672 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673 return pcdimm_info->node;
678 return -1;
681 struct sPAPRDrconfCellV2 {
682 uint32_t seq_lmbs;
683 uint64_t base_addr;
684 uint32_t drc_index;
685 uint32_t aa_index;
686 uint32_t flags;
687 } QEMU_PACKED;
689 typedef struct DrconfCellQueue {
690 struct sPAPRDrconfCellV2 cell;
691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696 uint32_t drc_index, uint32_t aa_index,
697 uint32_t flags)
699 DrconfCellQueue *elem;
701 elem = g_malloc0(sizeof(*elem));
702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703 elem->cell.base_addr = cpu_to_be64(base_addr);
704 elem->cell.drc_index = cpu_to_be32(drc_index);
705 elem->cell.aa_index = cpu_to_be32(aa_index);
706 elem->cell.flags = cpu_to_be32(flags);
708 return elem;
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713 int offset, MemoryDeviceInfoList *dimms)
715 MachineState *machine = MACHINE(spapr);
716 uint8_t *int_buf, *cur_index;
717 int ret;
718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719 uint64_t addr, cur_addr, size;
720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721 uint64_t mem_end = machine->device_memory->base +
722 memory_region_size(&machine->device_memory->mr);
723 uint32_t node, buf_len, nr_entries = 0;
724 SpaprDrc *drc;
725 DrconfCellQueue *elem, *next;
726 MemoryDeviceInfoList *info;
727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
730 /* Entry to cover RAM and the gap area */
731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732 SPAPR_LMB_FLAGS_RESERVED |
733 SPAPR_LMB_FLAGS_DRC_INVALID);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
737 cur_addr = machine->device_memory->base;
738 for (info = dimms; info; info = info->next) {
739 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
741 addr = di->addr;
742 size = di->size;
743 node = di->node;
745 /* Entry for hot-pluggable area */
746 if (cur_addr < addr) {
747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748 g_assert(drc);
749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750 cur_addr, spapr_drc_index(drc), -1, 0);
751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752 nr_entries++;
755 /* Entry for DIMM */
756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757 g_assert(drc);
758 elem = spapr_get_drconf_cell(size / lmb_size, addr,
759 spapr_drc_index(drc), node,
760 SPAPR_LMB_FLAGS_ASSIGNED);
761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762 nr_entries++;
763 cur_addr = addr + size;
766 /* Entry for remaining hotpluggable area */
767 if (cur_addr < mem_end) {
768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769 g_assert(drc);
770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771 cur_addr, spapr_drc_index(drc), -1, 0);
772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773 nr_entries++;
776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777 int_buf = cur_index = g_malloc0(buf_len);
778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779 cur_index += sizeof(nr_entries);
781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783 cur_index += sizeof(elem->cell);
784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785 g_free(elem);
788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789 g_free(int_buf);
790 if (ret < 0) {
791 return -1;
793 return 0;
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798 int offset, MemoryDeviceInfoList *dimms)
800 MachineState *machine = MACHINE(spapr);
801 int i, ret;
802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804 uint32_t nr_lmbs = (machine->device_memory->base +
805 memory_region_size(&machine->device_memory->mr)) /
806 lmb_size;
807 uint32_t *int_buf, *cur_index, buf_len;
810 * Allocate enough buffer size to fit in ibm,dynamic-memory
812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813 cur_index = int_buf = g_malloc0(buf_len);
814 int_buf[0] = cpu_to_be32(nr_lmbs);
815 cur_index++;
816 for (i = 0; i < nr_lmbs; i++) {
817 uint64_t addr = i * lmb_size;
818 uint32_t *dynamic_memory = cur_index;
820 if (i >= device_lmb_start) {
821 SpaprDrc *drc;
823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824 g_assert(drc);
826 dynamic_memory[0] = cpu_to_be32(addr >> 32);
827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831 if (memory_region_present(get_system_memory(), addr)) {
832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833 } else {
834 dynamic_memory[5] = cpu_to_be32(0);
836 } else {
838 * LMB information for RMA, boot time RAM and gap b/n RAM and
839 * device memory region -- all these are marked as reserved
840 * and as having no valid DRC.
842 dynamic_memory[0] = cpu_to_be32(addr >> 32);
843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844 dynamic_memory[2] = cpu_to_be32(0);
845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846 dynamic_memory[4] = cpu_to_be32(-1);
847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848 SPAPR_LMB_FLAGS_DRC_INVALID);
851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854 g_free(int_buf);
855 if (ret < 0) {
856 return -1;
858 return 0;
862 * Adds ibm,dynamic-reconfiguration-memory node.
863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864 * of this device tree node.
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
868 MachineState *machine = MACHINE(spapr);
869 int nb_numa_nodes = machine->numa_state->num_nodes;
870 int ret, i, offset;
871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
873 uint32_t *int_buf, *cur_index, buf_len;
874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
875 MemoryDeviceInfoList *dimms = NULL;
878 * Don't create the node if there is no device memory
880 if (machine->ram_size == machine->maxram_size) {
881 return 0;
884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
887 sizeof(prop_lmb_size));
888 if (ret < 0) {
889 return ret;
892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
893 if (ret < 0) {
894 return ret;
897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
898 if (ret < 0) {
899 return ret;
902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
903 dimms = qmp_memory_device_list();
904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
906 } else {
907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
909 qapi_free_MemoryDeviceInfoList(dimms);
911 if (ret < 0) {
912 return ret;
915 /* ibm,associativity-lookup-arrays */
916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
917 cur_index = int_buf = g_malloc0(buf_len);
918 int_buf[0] = cpu_to_be32(nr_nodes);
919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
920 cur_index += 2;
921 for (i = 0; i < nr_nodes; i++) {
922 uint32_t associativity[] = {
923 cpu_to_be32(0x0),
924 cpu_to_be32(0x0),
925 cpu_to_be32(0x0),
926 cpu_to_be32(i)
928 memcpy(cur_index, associativity, sizeof(associativity));
929 cur_index += 4;
931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
932 (cur_index - int_buf) * sizeof(uint32_t));
933 g_free(int_buf);
935 return ret;
938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
939 SpaprOptionVector *ov5_updates)
941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942 int ret = 0, offset;
944 /* Generate ibm,dynamic-reconfiguration-memory node if required */
945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
946 g_assert(smc->dr_lmb_enabled);
947 ret = spapr_populate_drconf_memory(spapr, fdt);
948 if (ret) {
949 goto out;
953 offset = fdt_path_offset(fdt, "/chosen");
954 if (offset < 0) {
955 offset = fdt_add_subnode(fdt, 0, "chosen");
956 if (offset < 0) {
957 return offset;
960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
961 "ibm,architecture-vec-5");
963 out:
964 return ret;
967 static bool spapr_hotplugged_dev_before_cas(void)
969 Object *drc_container, *obj;
970 ObjectProperty *prop;
971 ObjectPropertyIterator iter;
973 drc_container = container_get(object_get_root(), "/dr-connector");
974 object_property_iter_init(&iter, drc_container);
975 while ((prop = object_property_iter_next(&iter))) {
976 if (!strstart(prop->type, "link<", NULL)) {
977 continue;
979 obj = object_property_get_link(drc_container, prop->name, NULL);
980 if (spapr_drc_needed(obj)) {
981 return true;
984 return false;
987 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
988 target_ulong addr, target_ulong size,
989 SpaprOptionVector *ov5_updates)
991 void *fdt, *fdt_skel;
992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
994 if (spapr_hotplugged_dev_before_cas()) {
995 return 1;
998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
999 error_report("SLOF provided an unexpected CAS buffer size "
1000 TARGET_FMT_lu " (min: %zu, max: %u)",
1001 size, sizeof(hdr), FW_MAX_SIZE);
1002 exit(EXIT_FAILURE);
1005 size -= sizeof(hdr);
1007 /* Create skeleton */
1008 fdt_skel = g_malloc0(size);
1009 _FDT((fdt_create(fdt_skel, size)));
1010 _FDT((fdt_finish_reservemap(fdt_skel)));
1011 _FDT((fdt_begin_node(fdt_skel, "")));
1012 _FDT((fdt_end_node(fdt_skel)));
1013 _FDT((fdt_finish(fdt_skel)));
1014 fdt = g_malloc0(size);
1015 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016 g_free(fdt_skel);
1018 /* Fixup cpu nodes */
1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1022 return -1;
1025 /* Pack resulting tree */
1026 _FDT((fdt_pack(fdt)));
1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1029 g_free(fdt);
1030 trace_spapr_cas_failed(size);
1031 return -1;
1034 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1035 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1036 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1037 g_free(fdt);
1039 return 0;
1042 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1044 MachineState *ms = MACHINE(spapr);
1045 int rtas;
1046 GString *hypertas = g_string_sized_new(256);
1047 GString *qemu_hypertas = g_string_sized_new(256);
1048 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1049 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1050 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1051 uint32_t lrdr_capacity[] = {
1052 cpu_to_be32(max_device_addr >> 32),
1053 cpu_to_be32(max_device_addr & 0xffffffff),
1054 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1055 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1057 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1058 uint32_t maxdomains[] = {
1059 cpu_to_be32(4),
1060 maxdomain,
1061 maxdomain,
1062 maxdomain,
1063 cpu_to_be32(spapr->gpu_numa_id),
1066 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1068 /* hypertas */
1069 add_str(hypertas, "hcall-pft");
1070 add_str(hypertas, "hcall-term");
1071 add_str(hypertas, "hcall-dabr");
1072 add_str(hypertas, "hcall-interrupt");
1073 add_str(hypertas, "hcall-tce");
1074 add_str(hypertas, "hcall-vio");
1075 add_str(hypertas, "hcall-splpar");
1076 add_str(hypertas, "hcall-join");
1077 add_str(hypertas, "hcall-bulk");
1078 add_str(hypertas, "hcall-set-mode");
1079 add_str(hypertas, "hcall-sprg0");
1080 add_str(hypertas, "hcall-copy");
1081 add_str(hypertas, "hcall-debug");
1082 add_str(hypertas, "hcall-vphn");
1083 add_str(qemu_hypertas, "hcall-memop1");
1085 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1086 add_str(hypertas, "hcall-multi-tce");
1089 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1090 add_str(hypertas, "hcall-hpt-resize");
1093 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1094 hypertas->str, hypertas->len));
1095 g_string_free(hypertas, TRUE);
1096 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1097 qemu_hypertas->str, qemu_hypertas->len));
1098 g_string_free(qemu_hypertas, TRUE);
1100 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1101 refpoints, sizeof(refpoints)));
1103 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1104 maxdomains, sizeof(maxdomains)));
1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1107 RTAS_ERROR_LOG_MAX));
1108 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1109 RTAS_EVENT_SCAN_RATE));
1111 g_assert(msi_nonbroken);
1112 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1115 * According to PAPR, rtas ibm,os-term does not guarantee a return
1116 * back to the guest cpu.
1118 * While an additional ibm,extended-os-term property indicates
1119 * that rtas call return will always occur. Set this property.
1121 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1123 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1124 lrdr_capacity, sizeof(lrdr_capacity)));
1126 spapr_dt_rtas_tokens(fdt, rtas);
1130 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1131 * and the XIVE features that the guest may request and thus the valid
1132 * values for bytes 23..26 of option vector 5:
1134 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1135 int chosen)
1137 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1139 char val[2 * 4] = {
1140 23, spapr->irq->ov5, /* Xive mode. */
1141 24, 0x00, /* Hash/Radix, filled in below. */
1142 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1143 26, 0x40, /* Radix options: GTSE == yes. */
1146 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1147 first_ppc_cpu->compat_pvr)) {
1149 * If we're in a pre POWER9 compat mode then the guest should
1150 * do hash and use the legacy interrupt mode
1152 val[1] = 0x00; /* XICS */
1153 val[3] = 0x00; /* Hash */
1154 } else if (kvm_enabled()) {
1155 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1156 val[3] = 0x80; /* OV5_MMU_BOTH */
1157 } else if (kvmppc_has_cap_mmu_radix()) {
1158 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1159 } else {
1160 val[3] = 0x00; /* Hash */
1162 } else {
1163 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1164 val[3] = 0xC0;
1166 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1167 val, sizeof(val)));
1170 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1172 MachineState *machine = MACHINE(spapr);
1173 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1174 int chosen;
1175 const char *boot_device = machine->boot_order;
1176 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1177 size_t cb = 0;
1178 char *bootlist = get_boot_devices_list(&cb);
1180 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1182 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1183 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1184 machine->kernel_cmdline));
1186 if (spapr->initrd_size) {
1187 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1188 spapr->initrd_base));
1189 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1190 spapr->initrd_base + spapr->initrd_size));
1193 if (spapr->kernel_size) {
1194 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1195 cpu_to_be64(spapr->kernel_size) };
1197 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1198 &kprop, sizeof(kprop)));
1199 if (spapr->kernel_le) {
1200 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1203 if (boot_menu) {
1204 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1206 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1207 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1208 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1210 if (cb && bootlist) {
1211 int i;
1213 for (i = 0; i < cb; i++) {
1214 if (bootlist[i] == '\n') {
1215 bootlist[i] = ' ';
1218 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1221 if (boot_device && strlen(boot_device)) {
1222 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1225 if (!spapr->has_graphics && stdout_path) {
1227 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1228 * kernel. New platforms should only use the "stdout-path" property. Set
1229 * the new property and continue using older property to remain
1230 * compatible with the existing firmware.
1232 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1233 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1236 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1237 if (smc->linux_pci_probe) {
1238 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1241 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1243 g_free(stdout_path);
1244 g_free(bootlist);
1247 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1249 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1250 * KVM to work under pHyp with some guest co-operation */
1251 int hypervisor;
1252 uint8_t hypercall[16];
1254 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1255 /* indicate KVM hypercall interface */
1256 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1257 if (kvmppc_has_cap_fixup_hcalls()) {
1259 * Older KVM versions with older guest kernels were broken
1260 * with the magic page, don't allow the guest to map it.
1262 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1263 sizeof(hypercall))) {
1264 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1265 hypercall, sizeof(hypercall)));
1270 static void *spapr_build_fdt(SpaprMachineState *spapr)
1272 MachineState *machine = MACHINE(spapr);
1273 MachineClass *mc = MACHINE_GET_CLASS(machine);
1274 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1275 int ret;
1276 void *fdt;
1277 SpaprPhbState *phb;
1278 char *buf;
1280 fdt = g_malloc0(FDT_MAX_SIZE);
1281 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1283 /* Root node */
1284 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1285 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1286 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1288 /* Guest UUID & Name*/
1289 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1290 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1291 if (qemu_uuid_set) {
1292 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1294 g_free(buf);
1296 if (qemu_get_vm_name()) {
1297 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1298 qemu_get_vm_name()));
1301 /* Host Model & Serial Number */
1302 if (spapr->host_model) {
1303 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1304 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1305 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1306 g_free(buf);
1309 if (spapr->host_serial) {
1310 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1311 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1312 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1313 g_free(buf);
1316 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1317 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1319 /* /interrupt controller */
1320 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1321 PHANDLE_INTC);
1323 ret = spapr_populate_memory(spapr, fdt);
1324 if (ret < 0) {
1325 error_report("couldn't setup memory nodes in fdt");
1326 exit(1);
1329 /* /vdevice */
1330 spapr_dt_vdevice(spapr->vio_bus, fdt);
1332 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1333 ret = spapr_rng_populate_dt(fdt);
1334 if (ret < 0) {
1335 error_report("could not set up rng device in the fdt");
1336 exit(1);
1340 QLIST_FOREACH(phb, &spapr->phbs, list) {
1341 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1342 if (ret < 0) {
1343 error_report("couldn't setup PCI devices in fdt");
1344 exit(1);
1348 /* cpus */
1349 spapr_populate_cpus_dt_node(fdt, spapr);
1351 if (smc->dr_lmb_enabled) {
1352 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1355 if (mc->has_hotpluggable_cpus) {
1356 int offset = fdt_path_offset(fdt, "/cpus");
1357 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1358 if (ret < 0) {
1359 error_report("Couldn't set up CPU DR device tree properties");
1360 exit(1);
1364 /* /event-sources */
1365 spapr_dt_events(spapr, fdt);
1367 /* /rtas */
1368 spapr_dt_rtas(spapr, fdt);
1370 /* /chosen */
1371 spapr_dt_chosen(spapr, fdt);
1373 /* /hypervisor */
1374 if (kvm_enabled()) {
1375 spapr_dt_hypervisor(spapr, fdt);
1378 /* Build memory reserve map */
1379 if (spapr->kernel_size) {
1380 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1382 if (spapr->initrd_size) {
1383 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1386 /* ibm,client-architecture-support updates */
1387 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1388 if (ret < 0) {
1389 error_report("couldn't setup CAS properties fdt");
1390 exit(1);
1393 if (smc->dr_phb_enabled) {
1394 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1395 if (ret < 0) {
1396 error_report("Couldn't set up PHB DR device tree properties");
1397 exit(1);
1401 return fdt;
1404 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1406 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1409 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1410 PowerPCCPU *cpu)
1412 CPUPPCState *env = &cpu->env;
1414 /* The TCG path should also be holding the BQL at this point */
1415 g_assert(qemu_mutex_iothread_locked());
1417 if (msr_pr) {
1418 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1419 env->gpr[3] = H_PRIVILEGE;
1420 } else {
1421 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1425 struct LPCRSyncState {
1426 target_ulong value;
1427 target_ulong mask;
1430 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1432 struct LPCRSyncState *s = arg.host_ptr;
1433 PowerPCCPU *cpu = POWERPC_CPU(cs);
1434 CPUPPCState *env = &cpu->env;
1435 target_ulong lpcr;
1437 cpu_synchronize_state(cs);
1438 lpcr = env->spr[SPR_LPCR];
1439 lpcr &= ~s->mask;
1440 lpcr |= s->value;
1441 ppc_store_lpcr(cpu, lpcr);
1444 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1446 CPUState *cs;
1447 struct LPCRSyncState s = {
1448 .value = value,
1449 .mask = mask
1451 CPU_FOREACH(cs) {
1452 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1456 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1458 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1460 /* Copy PATE1:GR into PATE0:HR */
1461 entry->dw0 = spapr->patb_entry & PATE0_HR;
1462 entry->dw1 = spapr->patb_entry;
1465 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1466 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1467 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1468 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1469 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1472 * Get the fd to access the kernel htab, re-opening it if necessary
1474 static int get_htab_fd(SpaprMachineState *spapr)
1476 Error *local_err = NULL;
1478 if (spapr->htab_fd >= 0) {
1479 return spapr->htab_fd;
1482 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1483 if (spapr->htab_fd < 0) {
1484 error_report_err(local_err);
1487 return spapr->htab_fd;
1490 void close_htab_fd(SpaprMachineState *spapr)
1492 if (spapr->htab_fd >= 0) {
1493 close(spapr->htab_fd);
1495 spapr->htab_fd = -1;
1498 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1500 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1502 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1505 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1507 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1509 assert(kvm_enabled());
1511 if (!spapr->htab) {
1512 return 0;
1515 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1518 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1519 hwaddr ptex, int n)
1521 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1522 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1524 if (!spapr->htab) {
1526 * HTAB is controlled by KVM. Fetch into temporary buffer
1528 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1529 kvmppc_read_hptes(hptes, ptex, n);
1530 return hptes;
1534 * HTAB is controlled by QEMU. Just point to the internally
1535 * accessible PTEG.
1537 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1540 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1541 const ppc_hash_pte64_t *hptes,
1542 hwaddr ptex, int n)
1544 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1546 if (!spapr->htab) {
1547 g_free((void *)hptes);
1550 /* Nothing to do for qemu managed HPT */
1553 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1554 uint64_t pte0, uint64_t pte1)
1556 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1557 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1559 if (!spapr->htab) {
1560 kvmppc_write_hpte(ptex, pte0, pte1);
1561 } else {
1562 if (pte0 & HPTE64_V_VALID) {
1563 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1565 * When setting valid, we write PTE1 first. This ensures
1566 * proper synchronization with the reading code in
1567 * ppc_hash64_pteg_search()
1569 smp_wmb();
1570 stq_p(spapr->htab + offset, pte0);
1571 } else {
1572 stq_p(spapr->htab + offset, pte0);
1574 * When clearing it we set PTE0 first. This ensures proper
1575 * synchronization with the reading code in
1576 * ppc_hash64_pteg_search()
1578 smp_wmb();
1579 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1584 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1585 uint64_t pte1)
1587 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1588 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1590 if (!spapr->htab) {
1591 /* There should always be a hash table when this is called */
1592 error_report("spapr_hpte_set_c called with no hash table !");
1593 return;
1596 /* The HW performs a non-atomic byte update */
1597 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1600 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1601 uint64_t pte1)
1603 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1604 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1606 if (!spapr->htab) {
1607 /* There should always be a hash table when this is called */
1608 error_report("spapr_hpte_set_r called with no hash table !");
1609 return;
1612 /* The HW performs a non-atomic byte update */
1613 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1616 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1618 int shift;
1620 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1621 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1622 * that's much more than is needed for Linux guests */
1623 shift = ctz64(pow2ceil(ramsize)) - 7;
1624 shift = MAX(shift, 18); /* Minimum architected size */
1625 shift = MIN(shift, 46); /* Maximum architected size */
1626 return shift;
1629 void spapr_free_hpt(SpaprMachineState *spapr)
1631 g_free(spapr->htab);
1632 spapr->htab = NULL;
1633 spapr->htab_shift = 0;
1634 close_htab_fd(spapr);
1637 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1638 Error **errp)
1640 long rc;
1642 /* Clean up any HPT info from a previous boot */
1643 spapr_free_hpt(spapr);
1645 rc = kvmppc_reset_htab(shift);
1646 if (rc < 0) {
1647 /* kernel-side HPT needed, but couldn't allocate one */
1648 error_setg_errno(errp, errno,
1649 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1650 shift);
1651 /* This is almost certainly fatal, but if the caller really
1652 * wants to carry on with shift == 0, it's welcome to try */
1653 } else if (rc > 0) {
1654 /* kernel-side HPT allocated */
1655 if (rc != shift) {
1656 error_setg(errp,
1657 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1658 shift, rc);
1661 spapr->htab_shift = shift;
1662 spapr->htab = NULL;
1663 } else {
1664 /* kernel-side HPT not needed, allocate in userspace instead */
1665 size_t size = 1ULL << shift;
1666 int i;
1668 spapr->htab = qemu_memalign(size, size);
1669 if (!spapr->htab) {
1670 error_setg_errno(errp, errno,
1671 "Could not allocate HPT of order %d", shift);
1672 return;
1675 memset(spapr->htab, 0, size);
1676 spapr->htab_shift = shift;
1678 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1679 DIRTY_HPTE(HPTE(spapr->htab, i));
1682 /* We're setting up a hash table, so that means we're not radix */
1683 spapr->patb_entry = 0;
1684 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1687 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1689 int hpt_shift;
1691 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1692 || (spapr->cas_reboot
1693 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1694 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1695 } else {
1696 uint64_t current_ram_size;
1698 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1699 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1701 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1703 if (spapr->vrma_adjust) {
1704 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1705 spapr->htab_shift);
1709 static int spapr_reset_drcs(Object *child, void *opaque)
1711 SpaprDrc *drc =
1712 (SpaprDrc *) object_dynamic_cast(child,
1713 TYPE_SPAPR_DR_CONNECTOR);
1715 if (drc) {
1716 spapr_drc_reset(drc);
1719 return 0;
1722 static void spapr_machine_reset(MachineState *machine)
1724 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1725 PowerPCCPU *first_ppc_cpu;
1726 uint32_t rtas_limit;
1727 hwaddr rtas_addr, fdt_addr;
1728 void *fdt;
1729 int rc;
1731 spapr_caps_apply(spapr);
1733 first_ppc_cpu = POWERPC_CPU(first_cpu);
1734 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1735 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1736 spapr->max_compat_pvr)) {
1738 * If using KVM with radix mode available, VCPUs can be started
1739 * without a HPT because KVM will start them in radix mode.
1740 * Set the GR bit in PATE so that we know there is no HPT.
1742 spapr->patb_entry = PATE1_GR;
1743 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1744 } else {
1745 spapr_setup_hpt_and_vrma(spapr);
1748 qemu_devices_reset();
1751 * If this reset wasn't generated by CAS, we should reset our
1752 * negotiated options and start from scratch
1754 if (!spapr->cas_reboot) {
1755 spapr_ovec_cleanup(spapr->ov5_cas);
1756 spapr->ov5_cas = spapr_ovec_new();
1758 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1762 * This is fixing some of the default configuration of the XIVE
1763 * devices. To be called after the reset of the machine devices.
1765 spapr_irq_reset(spapr, &error_fatal);
1768 * There is no CAS under qtest. Simulate one to please the code that
1769 * depends on spapr->ov5_cas. This is especially needed to test device
1770 * unplug, so we do that before resetting the DRCs.
1772 if (qtest_enabled()) {
1773 spapr_ovec_cleanup(spapr->ov5_cas);
1774 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1777 /* DRC reset may cause a device to be unplugged. This will cause troubles
1778 * if this device is used by another device (eg, a running vhost backend
1779 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1780 * situations, we reset DRCs after all devices have been reset.
1782 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1784 spapr_clear_pending_events(spapr);
1787 * We place the device tree and RTAS just below either the top of the RMA,
1788 * or just below 2GB, whichever is lower, so that it can be
1789 * processed with 32-bit real mode code if necessary
1791 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1792 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1793 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1795 fdt = spapr_build_fdt(spapr);
1797 spapr_load_rtas(spapr, fdt, rtas_addr);
1799 rc = fdt_pack(fdt);
1801 /* Should only fail if we've built a corrupted tree */
1802 assert(rc == 0);
1804 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1805 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1806 fdt_totalsize(fdt), FDT_MAX_SIZE);
1807 exit(1);
1810 /* Load the fdt */
1811 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1812 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1813 g_free(spapr->fdt_blob);
1814 spapr->fdt_size = fdt_totalsize(fdt);
1815 spapr->fdt_initial_size = spapr->fdt_size;
1816 spapr->fdt_blob = fdt;
1818 /* Set up the entry state */
1819 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1820 first_ppc_cpu->env.gpr[5] = 0;
1822 spapr->cas_reboot = false;
1825 static void spapr_create_nvram(SpaprMachineState *spapr)
1827 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1828 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1830 if (dinfo) {
1831 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1832 &error_fatal);
1835 qdev_init_nofail(dev);
1837 spapr->nvram = (struct SpaprNvram *)dev;
1840 static void spapr_rtc_create(SpaprMachineState *spapr)
1842 object_initialize_child(OBJECT(spapr), "rtc",
1843 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1844 &error_fatal, NULL);
1845 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1846 &error_fatal);
1847 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1848 "date", &error_fatal);
1851 /* Returns whether we want to use VGA or not */
1852 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1854 switch (vga_interface_type) {
1855 case VGA_NONE:
1856 return false;
1857 case VGA_DEVICE:
1858 return true;
1859 case VGA_STD:
1860 case VGA_VIRTIO:
1861 case VGA_CIRRUS:
1862 return pci_vga_init(pci_bus) != NULL;
1863 default:
1864 error_setg(errp,
1865 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1866 return false;
1870 static int spapr_pre_load(void *opaque)
1872 int rc;
1874 rc = spapr_caps_pre_load(opaque);
1875 if (rc) {
1876 return rc;
1879 return 0;
1882 static int spapr_post_load(void *opaque, int version_id)
1884 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1885 int err = 0;
1887 err = spapr_caps_post_migration(spapr);
1888 if (err) {
1889 return err;
1893 * In earlier versions, there was no separate qdev for the PAPR
1894 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1895 * So when migrating from those versions, poke the incoming offset
1896 * value into the RTC device
1898 if (version_id < 3) {
1899 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1900 if (err) {
1901 return err;
1905 if (kvm_enabled() && spapr->patb_entry) {
1906 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1907 bool radix = !!(spapr->patb_entry & PATE1_GR);
1908 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1911 * Update LPCR:HR and UPRT as they may not be set properly in
1912 * the stream
1914 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1915 LPCR_HR | LPCR_UPRT);
1917 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1918 if (err) {
1919 error_report("Process table config unsupported by the host");
1920 return -EINVAL;
1924 err = spapr_irq_post_load(spapr, version_id);
1925 if (err) {
1926 return err;
1929 return err;
1932 static int spapr_pre_save(void *opaque)
1934 int rc;
1936 rc = spapr_caps_pre_save(opaque);
1937 if (rc) {
1938 return rc;
1941 return 0;
1944 static bool version_before_3(void *opaque, int version_id)
1946 return version_id < 3;
1949 static bool spapr_pending_events_needed(void *opaque)
1951 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1952 return !QTAILQ_EMPTY(&spapr->pending_events);
1955 static const VMStateDescription vmstate_spapr_event_entry = {
1956 .name = "spapr_event_log_entry",
1957 .version_id = 1,
1958 .minimum_version_id = 1,
1959 .fields = (VMStateField[]) {
1960 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1961 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1962 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1963 NULL, extended_length),
1964 VMSTATE_END_OF_LIST()
1968 static const VMStateDescription vmstate_spapr_pending_events = {
1969 .name = "spapr_pending_events",
1970 .version_id = 1,
1971 .minimum_version_id = 1,
1972 .needed = spapr_pending_events_needed,
1973 .fields = (VMStateField[]) {
1974 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1975 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1976 VMSTATE_END_OF_LIST()
1980 static bool spapr_ov5_cas_needed(void *opaque)
1982 SpaprMachineState *spapr = opaque;
1983 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1984 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1985 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1986 bool cas_needed;
1988 /* Prior to the introduction of SpaprOptionVector, we had two option
1989 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1990 * Both of these options encode machine topology into the device-tree
1991 * in such a way that the now-booted OS should still be able to interact
1992 * appropriately with QEMU regardless of what options were actually
1993 * negotiatied on the source side.
1995 * As such, we can avoid migrating the CAS-negotiated options if these
1996 * are the only options available on the current machine/platform.
1997 * Since these are the only options available for pseries-2.7 and
1998 * earlier, this allows us to maintain old->new/new->old migration
1999 * compatibility.
2001 * For QEMU 2.8+, there are additional CAS-negotiatable options available
2002 * via default pseries-2.8 machines and explicit command-line parameters.
2003 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2004 * of the actual CAS-negotiated values to continue working properly. For
2005 * example, availability of memory unplug depends on knowing whether
2006 * OV5_HP_EVT was negotiated via CAS.
2008 * Thus, for any cases where the set of available CAS-negotiatable
2009 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2010 * include the CAS-negotiated options in the migration stream, unless
2011 * if they affect boot time behaviour only.
2013 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2014 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2015 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2017 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2018 * the mask itself since in the future it's possible "legacy" bits may be
2019 * removed via machine options, which could generate a false positive
2020 * that breaks migration.
2022 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2023 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2025 spapr_ovec_cleanup(ov5_mask);
2026 spapr_ovec_cleanup(ov5_legacy);
2027 spapr_ovec_cleanup(ov5_removed);
2029 return cas_needed;
2032 static const VMStateDescription vmstate_spapr_ov5_cas = {
2033 .name = "spapr_option_vector_ov5_cas",
2034 .version_id = 1,
2035 .minimum_version_id = 1,
2036 .needed = spapr_ov5_cas_needed,
2037 .fields = (VMStateField[]) {
2038 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2039 vmstate_spapr_ovec, SpaprOptionVector),
2040 VMSTATE_END_OF_LIST()
2044 static bool spapr_patb_entry_needed(void *opaque)
2046 SpaprMachineState *spapr = opaque;
2048 return !!spapr->patb_entry;
2051 static const VMStateDescription vmstate_spapr_patb_entry = {
2052 .name = "spapr_patb_entry",
2053 .version_id = 1,
2054 .minimum_version_id = 1,
2055 .needed = spapr_patb_entry_needed,
2056 .fields = (VMStateField[]) {
2057 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2058 VMSTATE_END_OF_LIST()
2062 static bool spapr_irq_map_needed(void *opaque)
2064 SpaprMachineState *spapr = opaque;
2066 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2069 static const VMStateDescription vmstate_spapr_irq_map = {
2070 .name = "spapr_irq_map",
2071 .version_id = 1,
2072 .minimum_version_id = 1,
2073 .needed = spapr_irq_map_needed,
2074 .fields = (VMStateField[]) {
2075 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2076 VMSTATE_END_OF_LIST()
2080 static bool spapr_dtb_needed(void *opaque)
2082 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2084 return smc->update_dt_enabled;
2087 static int spapr_dtb_pre_load(void *opaque)
2089 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2091 g_free(spapr->fdt_blob);
2092 spapr->fdt_blob = NULL;
2093 spapr->fdt_size = 0;
2095 return 0;
2098 static const VMStateDescription vmstate_spapr_dtb = {
2099 .name = "spapr_dtb",
2100 .version_id = 1,
2101 .minimum_version_id = 1,
2102 .needed = spapr_dtb_needed,
2103 .pre_load = spapr_dtb_pre_load,
2104 .fields = (VMStateField[]) {
2105 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2106 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2107 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2108 fdt_size),
2109 VMSTATE_END_OF_LIST()
2113 static const VMStateDescription vmstate_spapr = {
2114 .name = "spapr",
2115 .version_id = 3,
2116 .minimum_version_id = 1,
2117 .pre_load = spapr_pre_load,
2118 .post_load = spapr_post_load,
2119 .pre_save = spapr_pre_save,
2120 .fields = (VMStateField[]) {
2121 /* used to be @next_irq */
2122 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2124 /* RTC offset */
2125 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2127 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2128 VMSTATE_END_OF_LIST()
2130 .subsections = (const VMStateDescription*[]) {
2131 &vmstate_spapr_ov5_cas,
2132 &vmstate_spapr_patb_entry,
2133 &vmstate_spapr_pending_events,
2134 &vmstate_spapr_cap_htm,
2135 &vmstate_spapr_cap_vsx,
2136 &vmstate_spapr_cap_dfp,
2137 &vmstate_spapr_cap_cfpc,
2138 &vmstate_spapr_cap_sbbc,
2139 &vmstate_spapr_cap_ibs,
2140 &vmstate_spapr_cap_hpt_maxpagesize,
2141 &vmstate_spapr_irq_map,
2142 &vmstate_spapr_cap_nested_kvm_hv,
2143 &vmstate_spapr_dtb,
2144 &vmstate_spapr_cap_large_decr,
2145 &vmstate_spapr_cap_ccf_assist,
2146 NULL
2150 static int htab_save_setup(QEMUFile *f, void *opaque)
2152 SpaprMachineState *spapr = opaque;
2154 /* "Iteration" header */
2155 if (!spapr->htab_shift) {
2156 qemu_put_be32(f, -1);
2157 } else {
2158 qemu_put_be32(f, spapr->htab_shift);
2161 if (spapr->htab) {
2162 spapr->htab_save_index = 0;
2163 spapr->htab_first_pass = true;
2164 } else {
2165 if (spapr->htab_shift) {
2166 assert(kvm_enabled());
2171 return 0;
2174 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2175 int chunkstart, int n_valid, int n_invalid)
2177 qemu_put_be32(f, chunkstart);
2178 qemu_put_be16(f, n_valid);
2179 qemu_put_be16(f, n_invalid);
2180 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2181 HASH_PTE_SIZE_64 * n_valid);
2184 static void htab_save_end_marker(QEMUFile *f)
2186 qemu_put_be32(f, 0);
2187 qemu_put_be16(f, 0);
2188 qemu_put_be16(f, 0);
2191 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2192 int64_t max_ns)
2194 bool has_timeout = max_ns != -1;
2195 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2196 int index = spapr->htab_save_index;
2197 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2199 assert(spapr->htab_first_pass);
2201 do {
2202 int chunkstart;
2204 /* Consume invalid HPTEs */
2205 while ((index < htabslots)
2206 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2207 CLEAN_HPTE(HPTE(spapr->htab, index));
2208 index++;
2211 /* Consume valid HPTEs */
2212 chunkstart = index;
2213 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2214 && HPTE_VALID(HPTE(spapr->htab, index))) {
2215 CLEAN_HPTE(HPTE(spapr->htab, index));
2216 index++;
2219 if (index > chunkstart) {
2220 int n_valid = index - chunkstart;
2222 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2224 if (has_timeout &&
2225 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2226 break;
2229 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2231 if (index >= htabslots) {
2232 assert(index == htabslots);
2233 index = 0;
2234 spapr->htab_first_pass = false;
2236 spapr->htab_save_index = index;
2239 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2240 int64_t max_ns)
2242 bool final = max_ns < 0;
2243 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2244 int examined = 0, sent = 0;
2245 int index = spapr->htab_save_index;
2246 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2248 assert(!spapr->htab_first_pass);
2250 do {
2251 int chunkstart, invalidstart;
2253 /* Consume non-dirty HPTEs */
2254 while ((index < htabslots)
2255 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2256 index++;
2257 examined++;
2260 chunkstart = index;
2261 /* Consume valid dirty HPTEs */
2262 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2263 && HPTE_DIRTY(HPTE(spapr->htab, index))
2264 && HPTE_VALID(HPTE(spapr->htab, index))) {
2265 CLEAN_HPTE(HPTE(spapr->htab, index));
2266 index++;
2267 examined++;
2270 invalidstart = index;
2271 /* Consume invalid dirty HPTEs */
2272 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2273 && HPTE_DIRTY(HPTE(spapr->htab, index))
2274 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2275 CLEAN_HPTE(HPTE(spapr->htab, index));
2276 index++;
2277 examined++;
2280 if (index > chunkstart) {
2281 int n_valid = invalidstart - chunkstart;
2282 int n_invalid = index - invalidstart;
2284 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2285 sent += index - chunkstart;
2287 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2288 break;
2292 if (examined >= htabslots) {
2293 break;
2296 if (index >= htabslots) {
2297 assert(index == htabslots);
2298 index = 0;
2300 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2302 if (index >= htabslots) {
2303 assert(index == htabslots);
2304 index = 0;
2307 spapr->htab_save_index = index;
2309 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2312 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2313 #define MAX_KVM_BUF_SIZE 2048
2315 static int htab_save_iterate(QEMUFile *f, void *opaque)
2317 SpaprMachineState *spapr = opaque;
2318 int fd;
2319 int rc = 0;
2321 /* Iteration header */
2322 if (!spapr->htab_shift) {
2323 qemu_put_be32(f, -1);
2324 return 1;
2325 } else {
2326 qemu_put_be32(f, 0);
2329 if (!spapr->htab) {
2330 assert(kvm_enabled());
2332 fd = get_htab_fd(spapr);
2333 if (fd < 0) {
2334 return fd;
2337 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2338 if (rc < 0) {
2339 return rc;
2341 } else if (spapr->htab_first_pass) {
2342 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2343 } else {
2344 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2347 htab_save_end_marker(f);
2349 return rc;
2352 static int htab_save_complete(QEMUFile *f, void *opaque)
2354 SpaprMachineState *spapr = opaque;
2355 int fd;
2357 /* Iteration header */
2358 if (!spapr->htab_shift) {
2359 qemu_put_be32(f, -1);
2360 return 0;
2361 } else {
2362 qemu_put_be32(f, 0);
2365 if (!spapr->htab) {
2366 int rc;
2368 assert(kvm_enabled());
2370 fd = get_htab_fd(spapr);
2371 if (fd < 0) {
2372 return fd;
2375 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2376 if (rc < 0) {
2377 return rc;
2379 } else {
2380 if (spapr->htab_first_pass) {
2381 htab_save_first_pass(f, spapr, -1);
2383 htab_save_later_pass(f, spapr, -1);
2386 /* End marker */
2387 htab_save_end_marker(f);
2389 return 0;
2392 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2394 SpaprMachineState *spapr = opaque;
2395 uint32_t section_hdr;
2396 int fd = -1;
2397 Error *local_err = NULL;
2399 if (version_id < 1 || version_id > 1) {
2400 error_report("htab_load() bad version");
2401 return -EINVAL;
2404 section_hdr = qemu_get_be32(f);
2406 if (section_hdr == -1) {
2407 spapr_free_hpt(spapr);
2408 return 0;
2411 if (section_hdr) {
2412 /* First section gives the htab size */
2413 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2414 if (local_err) {
2415 error_report_err(local_err);
2416 return -EINVAL;
2418 return 0;
2421 if (!spapr->htab) {
2422 assert(kvm_enabled());
2424 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2425 if (fd < 0) {
2426 error_report_err(local_err);
2427 return fd;
2431 while (true) {
2432 uint32_t index;
2433 uint16_t n_valid, n_invalid;
2435 index = qemu_get_be32(f);
2436 n_valid = qemu_get_be16(f);
2437 n_invalid = qemu_get_be16(f);
2439 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2440 /* End of Stream */
2441 break;
2444 if ((index + n_valid + n_invalid) >
2445 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2446 /* Bad index in stream */
2447 error_report(
2448 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2449 index, n_valid, n_invalid, spapr->htab_shift);
2450 return -EINVAL;
2453 if (spapr->htab) {
2454 if (n_valid) {
2455 qemu_get_buffer(f, HPTE(spapr->htab, index),
2456 HASH_PTE_SIZE_64 * n_valid);
2458 if (n_invalid) {
2459 memset(HPTE(spapr->htab, index + n_valid), 0,
2460 HASH_PTE_SIZE_64 * n_invalid);
2462 } else {
2463 int rc;
2465 assert(fd >= 0);
2467 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2468 if (rc < 0) {
2469 return rc;
2474 if (!spapr->htab) {
2475 assert(fd >= 0);
2476 close(fd);
2479 return 0;
2482 static void htab_save_cleanup(void *opaque)
2484 SpaprMachineState *spapr = opaque;
2486 close_htab_fd(spapr);
2489 static SaveVMHandlers savevm_htab_handlers = {
2490 .save_setup = htab_save_setup,
2491 .save_live_iterate = htab_save_iterate,
2492 .save_live_complete_precopy = htab_save_complete,
2493 .save_cleanup = htab_save_cleanup,
2494 .load_state = htab_load,
2497 static void spapr_boot_set(void *opaque, const char *boot_device,
2498 Error **errp)
2500 MachineState *machine = MACHINE(opaque);
2501 machine->boot_order = g_strdup(boot_device);
2504 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2506 MachineState *machine = MACHINE(spapr);
2507 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2508 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2509 int i;
2511 for (i = 0; i < nr_lmbs; i++) {
2512 uint64_t addr;
2514 addr = i * lmb_size + machine->device_memory->base;
2515 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2516 addr / lmb_size);
2521 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2522 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2523 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2525 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2527 int i;
2529 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2530 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2531 " is not aligned to %" PRIu64 " MiB",
2532 machine->ram_size,
2533 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2534 return;
2537 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2538 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2539 " is not aligned to %" PRIu64 " MiB",
2540 machine->ram_size,
2541 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2542 return;
2545 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2546 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2547 error_setg(errp,
2548 "Node %d memory size 0x%" PRIx64
2549 " is not aligned to %" PRIu64 " MiB",
2550 i, machine->numa_state->nodes[i].node_mem,
2551 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2552 return;
2557 /* find cpu slot in machine->possible_cpus by core_id */
2558 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2560 int index = id / ms->smp.threads;
2562 if (index >= ms->possible_cpus->len) {
2563 return NULL;
2565 if (idx) {
2566 *idx = index;
2568 return &ms->possible_cpus->cpus[index];
2571 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2573 MachineState *ms = MACHINE(spapr);
2574 Error *local_err = NULL;
2575 bool vsmt_user = !!spapr->vsmt;
2576 int kvm_smt = kvmppc_smt_threads();
2577 int ret;
2578 unsigned int smp_threads = ms->smp.threads;
2580 if (!kvm_enabled() && (smp_threads > 1)) {
2581 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2582 "on a pseries machine");
2583 goto out;
2585 if (!is_power_of_2(smp_threads)) {
2586 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2587 "machine because it must be a power of 2", smp_threads);
2588 goto out;
2591 /* Detemine the VSMT mode to use: */
2592 if (vsmt_user) {
2593 if (spapr->vsmt < smp_threads) {
2594 error_setg(&local_err, "Cannot support VSMT mode %d"
2595 " because it must be >= threads/core (%d)",
2596 spapr->vsmt, smp_threads);
2597 goto out;
2599 /* In this case, spapr->vsmt has been set by the command line */
2600 } else {
2602 * Default VSMT value is tricky, because we need it to be as
2603 * consistent as possible (for migration), but this requires
2604 * changing it for at least some existing cases. We pick 8 as
2605 * the value that we'd get with KVM on POWER8, the
2606 * overwhelmingly common case in production systems.
2608 spapr->vsmt = MAX(8, smp_threads);
2611 /* KVM: If necessary, set the SMT mode: */
2612 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2613 ret = kvmppc_set_smt_threads(spapr->vsmt);
2614 if (ret) {
2615 /* Looks like KVM isn't able to change VSMT mode */
2616 error_setg(&local_err,
2617 "Failed to set KVM's VSMT mode to %d (errno %d)",
2618 spapr->vsmt, ret);
2619 /* We can live with that if the default one is big enough
2620 * for the number of threads, and a submultiple of the one
2621 * we want. In this case we'll waste some vcpu ids, but
2622 * behaviour will be correct */
2623 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2624 warn_report_err(local_err);
2625 local_err = NULL;
2626 goto out;
2627 } else {
2628 if (!vsmt_user) {
2629 error_append_hint(&local_err,
2630 "On PPC, a VM with %d threads/core"
2631 " on a host with %d threads/core"
2632 " requires the use of VSMT mode %d.\n",
2633 smp_threads, kvm_smt, spapr->vsmt);
2635 kvmppc_hint_smt_possible(&local_err);
2636 goto out;
2640 /* else TCG: nothing to do currently */
2641 out:
2642 error_propagate(errp, local_err);
2645 static void spapr_init_cpus(SpaprMachineState *spapr)
2647 MachineState *machine = MACHINE(spapr);
2648 MachineClass *mc = MACHINE_GET_CLASS(machine);
2649 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2650 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2651 const CPUArchIdList *possible_cpus;
2652 unsigned int smp_cpus = machine->smp.cpus;
2653 unsigned int smp_threads = machine->smp.threads;
2654 unsigned int max_cpus = machine->smp.max_cpus;
2655 int boot_cores_nr = smp_cpus / smp_threads;
2656 int i;
2658 possible_cpus = mc->possible_cpu_arch_ids(machine);
2659 if (mc->has_hotpluggable_cpus) {
2660 if (smp_cpus % smp_threads) {
2661 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2662 smp_cpus, smp_threads);
2663 exit(1);
2665 if (max_cpus % smp_threads) {
2666 error_report("max_cpus (%u) must be multiple of threads (%u)",
2667 max_cpus, smp_threads);
2668 exit(1);
2670 } else {
2671 if (max_cpus != smp_cpus) {
2672 error_report("This machine version does not support CPU hotplug");
2673 exit(1);
2675 boot_cores_nr = possible_cpus->len;
2678 if (smc->pre_2_10_has_unused_icps) {
2679 int i;
2681 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2682 /* Dummy entries get deregistered when real ICPState objects
2683 * are registered during CPU core hotplug.
2685 pre_2_10_vmstate_register_dummy_icp(i);
2689 for (i = 0; i < possible_cpus->len; i++) {
2690 int core_id = i * smp_threads;
2692 if (mc->has_hotpluggable_cpus) {
2693 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2694 spapr_vcpu_id(spapr, core_id));
2697 if (i < boot_cores_nr) {
2698 Object *core = object_new(type);
2699 int nr_threads = smp_threads;
2701 /* Handle the partially filled core for older machine types */
2702 if ((i + 1) * smp_threads >= smp_cpus) {
2703 nr_threads = smp_cpus - i * smp_threads;
2706 object_property_set_int(core, nr_threads, "nr-threads",
2707 &error_fatal);
2708 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2709 &error_fatal);
2710 object_property_set_bool(core, true, "realized", &error_fatal);
2712 object_unref(core);
2717 static PCIHostState *spapr_create_default_phb(void)
2719 DeviceState *dev;
2721 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2722 qdev_prop_set_uint32(dev, "index", 0);
2723 qdev_init_nofail(dev);
2725 return PCI_HOST_BRIDGE(dev);
2728 /* pSeries LPAR / sPAPR hardware init */
2729 static void spapr_machine_init(MachineState *machine)
2731 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2732 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2733 const char *kernel_filename = machine->kernel_filename;
2734 const char *initrd_filename = machine->initrd_filename;
2735 PCIHostState *phb;
2736 int i;
2737 MemoryRegion *sysmem = get_system_memory();
2738 MemoryRegion *ram = g_new(MemoryRegion, 1);
2739 hwaddr node0_size = spapr_node0_size(machine);
2740 long load_limit, fw_size;
2741 char *filename;
2742 Error *resize_hpt_err = NULL;
2744 msi_nonbroken = true;
2746 QLIST_INIT(&spapr->phbs);
2747 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2749 /* Determine capabilities to run with */
2750 spapr_caps_init(spapr);
2752 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2753 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2755 * If the user explicitly requested a mode we should either
2756 * supply it, or fail completely (which we do below). But if
2757 * it's not set explicitly, we reset our mode to something
2758 * that works
2760 if (resize_hpt_err) {
2761 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2762 error_free(resize_hpt_err);
2763 resize_hpt_err = NULL;
2764 } else {
2765 spapr->resize_hpt = smc->resize_hpt_default;
2769 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2771 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2773 * User requested HPT resize, but this host can't supply it. Bail out
2775 error_report_err(resize_hpt_err);
2776 exit(1);
2779 spapr->rma_size = node0_size;
2781 /* With KVM, we don't actually know whether KVM supports an
2782 * unbounded RMA (PR KVM) or is limited by the hash table size
2783 * (HV KVM using VRMA), so we always assume the latter
2785 * In that case, we also limit the initial allocations for RTAS
2786 * etc... to 256M since we have no way to know what the VRMA size
2787 * is going to be as it depends on the size of the hash table
2788 * which isn't determined yet.
2790 if (kvm_enabled()) {
2791 spapr->vrma_adjust = 1;
2792 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2795 /* Actually we don't support unbounded RMA anymore since we added
2796 * proper emulation of HV mode. The max we can get is 16G which
2797 * also happens to be what we configure for PAPR mode so make sure
2798 * we don't do anything bigger than that
2800 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2802 if (spapr->rma_size > node0_size) {
2803 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2804 spapr->rma_size);
2805 exit(1);
2808 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2809 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2812 * VSMT must be set in order to be able to compute VCPU ids, ie to
2813 * call spapr_max_server_number() or spapr_vcpu_id().
2815 spapr_set_vsmt_mode(spapr, &error_fatal);
2817 /* Set up Interrupt Controller before we create the VCPUs */
2818 spapr_irq_init(spapr, &error_fatal);
2820 /* Set up containers for ibm,client-architecture-support negotiated options
2822 spapr->ov5 = spapr_ovec_new();
2823 spapr->ov5_cas = spapr_ovec_new();
2825 if (smc->dr_lmb_enabled) {
2826 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2827 spapr_validate_node_memory(machine, &error_fatal);
2830 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2832 /* advertise support for dedicated HP event source to guests */
2833 if (spapr->use_hotplug_event_source) {
2834 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2837 /* advertise support for HPT resizing */
2838 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2839 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2842 /* advertise support for ibm,dyamic-memory-v2 */
2843 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2845 /* advertise XIVE on POWER9 machines */
2846 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2847 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2850 /* init CPUs */
2851 spapr_init_cpus(spapr);
2854 * check we don't have a memory-less/cpu-less NUMA node
2855 * Firmware relies on the existing memory/cpu topology to provide the
2856 * NUMA topology to the kernel.
2857 * And the linux kernel needs to know the NUMA topology at start
2858 * to be able to hotplug CPUs later.
2860 if (machine->numa_state->num_nodes) {
2861 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2862 /* check for memory-less node */
2863 if (machine->numa_state->nodes[i].node_mem == 0) {
2864 CPUState *cs;
2865 int found = 0;
2866 /* check for cpu-less node */
2867 CPU_FOREACH(cs) {
2868 PowerPCCPU *cpu = POWERPC_CPU(cs);
2869 if (cpu->node_id == i) {
2870 found = 1;
2871 break;
2874 /* memory-less and cpu-less node */
2875 if (!found) {
2876 error_report(
2877 "Memory-less/cpu-less nodes are not supported (node %d)",
2879 exit(1);
2887 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2888 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2889 * called from vPHB reset handler so we initialize the counter here.
2890 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2891 * must be equally distant from any other node.
2892 * The final value of spapr->gpu_numa_id is going to be written to
2893 * max-associativity-domains in spapr_build_fdt().
2895 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2897 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2898 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2899 spapr->max_compat_pvr)) {
2900 /* KVM and TCG always allow GTSE with radix... */
2901 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2903 /* ... but not with hash (currently). */
2905 if (kvm_enabled()) {
2906 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2907 kvmppc_enable_logical_ci_hcalls();
2908 kvmppc_enable_set_mode_hcall();
2910 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2911 kvmppc_enable_clear_ref_mod_hcalls();
2913 /* Enable H_PAGE_INIT */
2914 kvmppc_enable_h_page_init();
2917 /* allocate RAM */
2918 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2919 machine->ram_size);
2920 memory_region_add_subregion(sysmem, 0, ram);
2922 /* always allocate the device memory information */
2923 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2925 /* initialize hotplug memory address space */
2926 if (machine->ram_size < machine->maxram_size) {
2927 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2929 * Limit the number of hotpluggable memory slots to half the number
2930 * slots that KVM supports, leaving the other half for PCI and other
2931 * devices. However ensure that number of slots doesn't drop below 32.
2933 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2934 SPAPR_MAX_RAM_SLOTS;
2936 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2937 max_memslots = SPAPR_MAX_RAM_SLOTS;
2939 if (machine->ram_slots > max_memslots) {
2940 error_report("Specified number of memory slots %"
2941 PRIu64" exceeds max supported %d",
2942 machine->ram_slots, max_memslots);
2943 exit(1);
2946 machine->device_memory->base = ROUND_UP(machine->ram_size,
2947 SPAPR_DEVICE_MEM_ALIGN);
2948 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2949 "device-memory", device_mem_size);
2950 memory_region_add_subregion(sysmem, machine->device_memory->base,
2951 &machine->device_memory->mr);
2954 if (smc->dr_lmb_enabled) {
2955 spapr_create_lmb_dr_connectors(spapr);
2958 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2959 if (!filename) {
2960 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2961 exit(1);
2963 spapr->rtas_size = get_image_size(filename);
2964 if (spapr->rtas_size < 0) {
2965 error_report("Could not get size of LPAR rtas '%s'", filename);
2966 exit(1);
2968 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2969 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2970 error_report("Could not load LPAR rtas '%s'", filename);
2971 exit(1);
2973 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2974 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2975 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2976 exit(1);
2978 g_free(filename);
2980 /* Set up RTAS event infrastructure */
2981 spapr_events_init(spapr);
2983 /* Set up the RTC RTAS interfaces */
2984 spapr_rtc_create(spapr);
2986 /* Set up VIO bus */
2987 spapr->vio_bus = spapr_vio_bus_init();
2989 for (i = 0; i < serial_max_hds(); i++) {
2990 if (serial_hd(i)) {
2991 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2995 /* We always have at least the nvram device on VIO */
2996 spapr_create_nvram(spapr);
2999 * Setup hotplug / dynamic-reconfiguration connectors. top-level
3000 * connectors (described in root DT node's "ibm,drc-types" property)
3001 * are pre-initialized here. additional child connectors (such as
3002 * connectors for a PHBs PCI slots) are added as needed during their
3003 * parent's realization.
3005 if (smc->dr_phb_enabled) {
3006 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3007 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3011 /* Set up PCI */
3012 spapr_pci_rtas_init();
3014 phb = spapr_create_default_phb();
3016 for (i = 0; i < nb_nics; i++) {
3017 NICInfo *nd = &nd_table[i];
3019 if (!nd->model) {
3020 nd->model = g_strdup("spapr-vlan");
3023 if (g_str_equal(nd->model, "spapr-vlan") ||
3024 g_str_equal(nd->model, "ibmveth")) {
3025 spapr_vlan_create(spapr->vio_bus, nd);
3026 } else {
3027 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
3031 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3032 spapr_vscsi_create(spapr->vio_bus);
3035 /* Graphics */
3036 if (spapr_vga_init(phb->bus, &error_fatal)) {
3037 spapr->has_graphics = true;
3038 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3041 if (machine->usb) {
3042 if (smc->use_ohci_by_default) {
3043 pci_create_simple(phb->bus, -1, "pci-ohci");
3044 } else {
3045 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3048 if (spapr->has_graphics) {
3049 USBBus *usb_bus = usb_bus_find(-1);
3051 usb_create_simple(usb_bus, "usb-kbd");
3052 usb_create_simple(usb_bus, "usb-mouse");
3056 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3057 error_report(
3058 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3059 MIN_RMA_SLOF);
3060 exit(1);
3063 if (kernel_filename) {
3064 uint64_t lowaddr = 0;
3066 spapr->kernel_size = load_elf(kernel_filename, NULL,
3067 translate_kernel_address, NULL,
3068 NULL, &lowaddr, NULL, 1,
3069 PPC_ELF_MACHINE, 0, 0);
3070 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3071 spapr->kernel_size = load_elf(kernel_filename, NULL,
3072 translate_kernel_address, NULL, NULL,
3073 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3074 0, 0);
3075 spapr->kernel_le = spapr->kernel_size > 0;
3077 if (spapr->kernel_size < 0) {
3078 error_report("error loading %s: %s", kernel_filename,
3079 load_elf_strerror(spapr->kernel_size));
3080 exit(1);
3083 /* load initrd */
3084 if (initrd_filename) {
3085 /* Try to locate the initrd in the gap between the kernel
3086 * and the firmware. Add a bit of space just in case
3088 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3089 + 0x1ffff) & ~0xffff;
3090 spapr->initrd_size = load_image_targphys(initrd_filename,
3091 spapr->initrd_base,
3092 load_limit
3093 - spapr->initrd_base);
3094 if (spapr->initrd_size < 0) {
3095 error_report("could not load initial ram disk '%s'",
3096 initrd_filename);
3097 exit(1);
3102 if (bios_name == NULL) {
3103 bios_name = FW_FILE_NAME;
3105 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3106 if (!filename) {
3107 error_report("Could not find LPAR firmware '%s'", bios_name);
3108 exit(1);
3110 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3111 if (fw_size <= 0) {
3112 error_report("Could not load LPAR firmware '%s'", filename);
3113 exit(1);
3115 g_free(filename);
3117 /* FIXME: Should register things through the MachineState's qdev
3118 * interface, this is a legacy from the sPAPREnvironment structure
3119 * which predated MachineState but had a similar function */
3120 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3121 register_savevm_live("spapr/htab", -1, 1,
3122 &savevm_htab_handlers, spapr);
3124 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3125 &error_fatal);
3127 qemu_register_boot_set(spapr_boot_set, spapr);
3130 * Nothing needs to be done to resume a suspended guest because
3131 * suspending does not change the machine state, so no need for
3132 * a ->wakeup method.
3134 qemu_register_wakeup_support();
3136 if (kvm_enabled()) {
3137 /* to stop and start vmclock */
3138 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3139 &spapr->tb);
3141 kvmppc_spapr_enable_inkernel_multitce();
3145 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3147 if (!vm_type) {
3148 return 0;
3151 if (!strcmp(vm_type, "HV")) {
3152 return 1;
3155 if (!strcmp(vm_type, "PR")) {
3156 return 2;
3159 error_report("Unknown kvm-type specified '%s'", vm_type);
3160 exit(1);
3164 * Implementation of an interface to adjust firmware path
3165 * for the bootindex property handling.
3167 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3168 DeviceState *dev)
3170 #define CAST(type, obj, name) \
3171 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3172 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3173 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3174 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3176 if (d) {
3177 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3178 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3179 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3181 if (spapr) {
3183 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3184 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3185 * 0x8000 | (target << 8) | (bus << 5) | lun
3186 * (see the "Logical unit addressing format" table in SAM5)
3188 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3189 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3190 (uint64_t)id << 48);
3191 } else if (virtio) {
3193 * We use SRP luns of the form 01000000 | (target << 8) | lun
3194 * in the top 32 bits of the 64-bit LUN
3195 * Note: the quote above is from SLOF and it is wrong,
3196 * the actual binding is:
3197 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3199 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3200 if (d->lun >= 256) {
3201 /* Use the LUN "flat space addressing method" */
3202 id |= 0x4000;
3204 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3205 (uint64_t)id << 32);
3206 } else if (usb) {
3208 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3209 * in the top 32 bits of the 64-bit LUN
3211 unsigned usb_port = atoi(usb->port->path);
3212 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3213 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3214 (uint64_t)id << 32);
3219 * SLOF probes the USB devices, and if it recognizes that the device is a
3220 * storage device, it changes its name to "storage" instead of "usb-host",
3221 * and additionally adds a child node for the SCSI LUN, so the correct
3222 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3224 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3225 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3226 if (usb_host_dev_is_scsi_storage(usbdev)) {
3227 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3231 if (phb) {
3232 /* Replace "pci" with "pci@800000020000000" */
3233 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3236 if (vsc) {
3237 /* Same logic as virtio above */
3238 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3239 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3242 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3243 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3244 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3245 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3248 return NULL;
3251 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3255 return g_strdup(spapr->kvm_type);
3258 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3260 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262 g_free(spapr->kvm_type);
3263 spapr->kvm_type = g_strdup(value);
3266 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3268 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3270 return spapr->use_hotplug_event_source;
3273 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3274 Error **errp)
3276 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3278 spapr->use_hotplug_event_source = value;
3281 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3283 return true;
3286 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290 switch (spapr->resize_hpt) {
3291 case SPAPR_RESIZE_HPT_DEFAULT:
3292 return g_strdup("default");
3293 case SPAPR_RESIZE_HPT_DISABLED:
3294 return g_strdup("disabled");
3295 case SPAPR_RESIZE_HPT_ENABLED:
3296 return g_strdup("enabled");
3297 case SPAPR_RESIZE_HPT_REQUIRED:
3298 return g_strdup("required");
3300 g_assert_not_reached();
3303 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3305 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307 if (strcmp(value, "default") == 0) {
3308 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3309 } else if (strcmp(value, "disabled") == 0) {
3310 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3311 } else if (strcmp(value, "enabled") == 0) {
3312 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3313 } else if (strcmp(value, "required") == 0) {
3314 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3315 } else {
3316 error_setg(errp, "Bad value for \"resize-hpt\" property");
3320 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3321 void *opaque, Error **errp)
3323 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3326 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3327 void *opaque, Error **errp)
3329 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3332 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3336 if (spapr->irq == &spapr_irq_xics_legacy) {
3337 return g_strdup("legacy");
3338 } else if (spapr->irq == &spapr_irq_xics) {
3339 return g_strdup("xics");
3340 } else if (spapr->irq == &spapr_irq_xive) {
3341 return g_strdup("xive");
3342 } else if (spapr->irq == &spapr_irq_dual) {
3343 return g_strdup("dual");
3345 g_assert_not_reached();
3348 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3353 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3354 return;
3357 /* The legacy IRQ backend can not be set */
3358 if (strcmp(value, "xics") == 0) {
3359 spapr->irq = &spapr_irq_xics;
3360 } else if (strcmp(value, "xive") == 0) {
3361 spapr->irq = &spapr_irq_xive;
3362 } else if (strcmp(value, "dual") == 0) {
3363 spapr->irq = &spapr_irq_dual;
3364 } else {
3365 error_setg(errp, "Bad value for \"ic-mode\" property");
3369 static char *spapr_get_host_model(Object *obj, Error **errp)
3371 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3373 return g_strdup(spapr->host_model);
3376 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3378 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3380 g_free(spapr->host_model);
3381 spapr->host_model = g_strdup(value);
3384 static char *spapr_get_host_serial(Object *obj, Error **errp)
3386 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3388 return g_strdup(spapr->host_serial);
3391 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3393 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3395 g_free(spapr->host_serial);
3396 spapr->host_serial = g_strdup(value);
3399 static void spapr_instance_init(Object *obj)
3401 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3402 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3404 spapr->htab_fd = -1;
3405 spapr->use_hotplug_event_source = true;
3406 object_property_add_str(obj, "kvm-type",
3407 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3408 object_property_set_description(obj, "kvm-type",
3409 "Specifies the KVM virtualization mode (HV, PR)",
3410 NULL);
3411 object_property_add_bool(obj, "modern-hotplug-events",
3412 spapr_get_modern_hotplug_events,
3413 spapr_set_modern_hotplug_events,
3414 NULL);
3415 object_property_set_description(obj, "modern-hotplug-events",
3416 "Use dedicated hotplug event mechanism in"
3417 " place of standard EPOW events when possible"
3418 " (required for memory hot-unplug support)",
3419 NULL);
3420 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3421 "Maximum permitted CPU compatibility mode",
3422 &error_fatal);
3424 object_property_add_str(obj, "resize-hpt",
3425 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3426 object_property_set_description(obj, "resize-hpt",
3427 "Resizing of the Hash Page Table (enabled, disabled, required)",
3428 NULL);
3429 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3430 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3431 object_property_set_description(obj, "vsmt",
3432 "Virtual SMT: KVM behaves as if this were"
3433 " the host's SMT mode", &error_abort);
3434 object_property_add_bool(obj, "vfio-no-msix-emulation",
3435 spapr_get_msix_emulation, NULL, NULL);
3437 /* The machine class defines the default interrupt controller mode */
3438 spapr->irq = smc->irq;
3439 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3440 spapr_set_ic_mode, NULL);
3441 object_property_set_description(obj, "ic-mode",
3442 "Specifies the interrupt controller mode (xics, xive, dual)",
3443 NULL);
3445 object_property_add_str(obj, "host-model",
3446 spapr_get_host_model, spapr_set_host_model,
3447 &error_abort);
3448 object_property_set_description(obj, "host-model",
3449 "Host model to advertise in guest device tree", &error_abort);
3450 object_property_add_str(obj, "host-serial",
3451 spapr_get_host_serial, spapr_set_host_serial,
3452 &error_abort);
3453 object_property_set_description(obj, "host-serial",
3454 "Host serial number to advertise in guest device tree", &error_abort);
3457 static void spapr_machine_finalizefn(Object *obj)
3459 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3461 g_free(spapr->kvm_type);
3464 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3466 cpu_synchronize_state(cs);
3467 ppc_cpu_do_system_reset(cs);
3470 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3472 CPUState *cs;
3474 CPU_FOREACH(cs) {
3475 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3479 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3480 void *fdt, int *fdt_start_offset, Error **errp)
3482 uint64_t addr;
3483 uint32_t node;
3485 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3486 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3487 &error_abort);
3488 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3489 SPAPR_MEMORY_BLOCK_SIZE);
3490 return 0;
3493 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3494 bool dedicated_hp_event_source, Error **errp)
3496 SpaprDrc *drc;
3497 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3498 int i;
3499 uint64_t addr = addr_start;
3500 bool hotplugged = spapr_drc_hotplugged(dev);
3501 Error *local_err = NULL;
3503 for (i = 0; i < nr_lmbs; i++) {
3504 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3505 addr / SPAPR_MEMORY_BLOCK_SIZE);
3506 g_assert(drc);
3508 spapr_drc_attach(drc, dev, &local_err);
3509 if (local_err) {
3510 while (addr > addr_start) {
3511 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3513 addr / SPAPR_MEMORY_BLOCK_SIZE);
3514 spapr_drc_detach(drc);
3516 error_propagate(errp, local_err);
3517 return;
3519 if (!hotplugged) {
3520 spapr_drc_reset(drc);
3522 addr += SPAPR_MEMORY_BLOCK_SIZE;
3524 /* send hotplug notification to the
3525 * guest only in case of hotplugged memory
3527 if (hotplugged) {
3528 if (dedicated_hp_event_source) {
3529 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3530 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3531 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3532 nr_lmbs,
3533 spapr_drc_index(drc));
3534 } else {
3535 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3536 nr_lmbs);
3541 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3542 Error **errp)
3544 Error *local_err = NULL;
3545 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3546 PCDIMMDevice *dimm = PC_DIMM(dev);
3547 uint64_t size, addr;
3549 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3551 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3552 if (local_err) {
3553 goto out;
3556 addr = object_property_get_uint(OBJECT(dimm),
3557 PC_DIMM_ADDR_PROP, &local_err);
3558 if (local_err) {
3559 goto out_unplug;
3562 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3563 &local_err);
3564 if (local_err) {
3565 goto out_unplug;
3568 return;
3570 out_unplug:
3571 pc_dimm_unplug(dimm, MACHINE(ms));
3572 out:
3573 error_propagate(errp, local_err);
3576 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3577 Error **errp)
3579 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3580 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3581 PCDIMMDevice *dimm = PC_DIMM(dev);
3582 Error *local_err = NULL;
3583 uint64_t size;
3584 Object *memdev;
3585 hwaddr pagesize;
3587 if (!smc->dr_lmb_enabled) {
3588 error_setg(errp, "Memory hotplug not supported for this machine");
3589 return;
3592 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3593 if (local_err) {
3594 error_propagate(errp, local_err);
3595 return;
3598 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3599 error_setg(errp, "Hotplugged memory size must be a multiple of "
3600 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3601 return;
3604 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3605 &error_abort);
3606 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3607 spapr_check_pagesize(spapr, pagesize, &local_err);
3608 if (local_err) {
3609 error_propagate(errp, local_err);
3610 return;
3613 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3616 struct SpaprDimmState {
3617 PCDIMMDevice *dimm;
3618 uint32_t nr_lmbs;
3619 QTAILQ_ENTRY(SpaprDimmState) next;
3622 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3623 PCDIMMDevice *dimm)
3625 SpaprDimmState *dimm_state = NULL;
3627 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3628 if (dimm_state->dimm == dimm) {
3629 break;
3632 return dimm_state;
3635 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3636 uint32_t nr_lmbs,
3637 PCDIMMDevice *dimm)
3639 SpaprDimmState *ds = NULL;
3642 * If this request is for a DIMM whose removal had failed earlier
3643 * (due to guest's refusal to remove the LMBs), we would have this
3644 * dimm already in the pending_dimm_unplugs list. In that
3645 * case don't add again.
3647 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3648 if (!ds) {
3649 ds = g_malloc0(sizeof(SpaprDimmState));
3650 ds->nr_lmbs = nr_lmbs;
3651 ds->dimm = dimm;
3652 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3654 return ds;
3657 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3658 SpaprDimmState *dimm_state)
3660 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3661 g_free(dimm_state);
3664 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3665 PCDIMMDevice *dimm)
3667 SpaprDrc *drc;
3668 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3669 &error_abort);
3670 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3671 uint32_t avail_lmbs = 0;
3672 uint64_t addr_start, addr;
3673 int i;
3675 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3676 &error_abort);
3678 addr = addr_start;
3679 for (i = 0; i < nr_lmbs; i++) {
3680 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3681 addr / SPAPR_MEMORY_BLOCK_SIZE);
3682 g_assert(drc);
3683 if (drc->dev) {
3684 avail_lmbs++;
3686 addr += SPAPR_MEMORY_BLOCK_SIZE;
3689 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3692 /* Callback to be called during DRC release. */
3693 void spapr_lmb_release(DeviceState *dev)
3695 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3696 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3697 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3699 /* This information will get lost if a migration occurs
3700 * during the unplug process. In this case recover it. */
3701 if (ds == NULL) {
3702 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3703 g_assert(ds);
3704 /* The DRC being examined by the caller at least must be counted */
3705 g_assert(ds->nr_lmbs);
3708 if (--ds->nr_lmbs) {
3709 return;
3713 * Now that all the LMBs have been removed by the guest, call the
3714 * unplug handler chain. This can never fail.
3716 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3717 object_unparent(OBJECT(dev));
3720 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3722 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3723 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3725 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3726 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3727 spapr_pending_dimm_unplugs_remove(spapr, ds);
3730 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3731 DeviceState *dev, Error **errp)
3733 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3734 Error *local_err = NULL;
3735 PCDIMMDevice *dimm = PC_DIMM(dev);
3736 uint32_t nr_lmbs;
3737 uint64_t size, addr_start, addr;
3738 int i;
3739 SpaprDrc *drc;
3741 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3742 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3744 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3745 &local_err);
3746 if (local_err) {
3747 goto out;
3751 * An existing pending dimm state for this DIMM means that there is an
3752 * unplug operation in progress, waiting for the spapr_lmb_release
3753 * callback to complete the job (BQL can't cover that far). In this case,
3754 * bail out to avoid detaching DRCs that were already released.
3756 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3757 error_setg(&local_err,
3758 "Memory unplug already in progress for device %s",
3759 dev->id);
3760 goto out;
3763 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3765 addr = addr_start;
3766 for (i = 0; i < nr_lmbs; i++) {
3767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3768 addr / SPAPR_MEMORY_BLOCK_SIZE);
3769 g_assert(drc);
3771 spapr_drc_detach(drc);
3772 addr += SPAPR_MEMORY_BLOCK_SIZE;
3775 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3776 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3777 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3778 nr_lmbs, spapr_drc_index(drc));
3779 out:
3780 error_propagate(errp, local_err);
3783 /* Callback to be called during DRC release. */
3784 void spapr_core_release(DeviceState *dev)
3786 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3788 /* Call the unplug handler chain. This can never fail. */
3789 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3790 object_unparent(OBJECT(dev));
3793 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3795 MachineState *ms = MACHINE(hotplug_dev);
3796 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3797 CPUCore *cc = CPU_CORE(dev);
3798 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3800 if (smc->pre_2_10_has_unused_icps) {
3801 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3802 int i;
3804 for (i = 0; i < cc->nr_threads; i++) {
3805 CPUState *cs = CPU(sc->threads[i]);
3807 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3811 assert(core_slot);
3812 core_slot->cpu = NULL;
3813 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3816 static
3817 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3818 Error **errp)
3820 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3821 int index;
3822 SpaprDrc *drc;
3823 CPUCore *cc = CPU_CORE(dev);
3825 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3826 error_setg(errp, "Unable to find CPU core with core-id: %d",
3827 cc->core_id);
3828 return;
3830 if (index == 0) {
3831 error_setg(errp, "Boot CPU core may not be unplugged");
3832 return;
3835 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3836 spapr_vcpu_id(spapr, cc->core_id));
3837 g_assert(drc);
3839 spapr_drc_detach(drc);
3841 spapr_hotplug_req_remove_by_index(drc);
3844 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3845 void *fdt, int *fdt_start_offset, Error **errp)
3847 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3848 CPUState *cs = CPU(core->threads[0]);
3849 PowerPCCPU *cpu = POWERPC_CPU(cs);
3850 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3851 int id = spapr_get_vcpu_id(cpu);
3852 char *nodename;
3853 int offset;
3855 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3856 offset = fdt_add_subnode(fdt, 0, nodename);
3857 g_free(nodename);
3859 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3861 *fdt_start_offset = offset;
3862 return 0;
3865 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3866 Error **errp)
3868 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3869 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3870 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3871 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3872 CPUCore *cc = CPU_CORE(dev);
3873 CPUState *cs;
3874 SpaprDrc *drc;
3875 Error *local_err = NULL;
3876 CPUArchId *core_slot;
3877 int index;
3878 bool hotplugged = spapr_drc_hotplugged(dev);
3879 int i;
3881 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3882 if (!core_slot) {
3883 error_setg(errp, "Unable to find CPU core with core-id: %d",
3884 cc->core_id);
3885 return;
3887 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3888 spapr_vcpu_id(spapr, cc->core_id));
3890 g_assert(drc || !mc->has_hotpluggable_cpus);
3892 if (drc) {
3893 spapr_drc_attach(drc, dev, &local_err);
3894 if (local_err) {
3895 error_propagate(errp, local_err);
3896 return;
3899 if (hotplugged) {
3901 * Send hotplug notification interrupt to the guest only
3902 * in case of hotplugged CPUs.
3904 spapr_hotplug_req_add_by_index(drc);
3905 } else {
3906 spapr_drc_reset(drc);
3910 core_slot->cpu = OBJECT(dev);
3912 if (smc->pre_2_10_has_unused_icps) {
3913 for (i = 0; i < cc->nr_threads; i++) {
3914 cs = CPU(core->threads[i]);
3915 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3920 * Set compatibility mode to match the boot CPU, which was either set
3921 * by the machine reset code or by CAS.
3923 if (hotplugged) {
3924 for (i = 0; i < cc->nr_threads; i++) {
3925 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3926 &local_err);
3927 if (local_err) {
3928 error_propagate(errp, local_err);
3929 return;
3935 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3936 Error **errp)
3938 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3939 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3940 Error *local_err = NULL;
3941 CPUCore *cc = CPU_CORE(dev);
3942 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3943 const char *type = object_get_typename(OBJECT(dev));
3944 CPUArchId *core_slot;
3945 int index;
3946 unsigned int smp_threads = machine->smp.threads;
3948 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3949 error_setg(&local_err, "CPU hotplug not supported for this machine");
3950 goto out;
3953 if (strcmp(base_core_type, type)) {
3954 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3955 goto out;
3958 if (cc->core_id % smp_threads) {
3959 error_setg(&local_err, "invalid core id %d", cc->core_id);
3960 goto out;
3964 * In general we should have homogeneous threads-per-core, but old
3965 * (pre hotplug support) machine types allow the last core to have
3966 * reduced threads as a compatibility hack for when we allowed
3967 * total vcpus not a multiple of threads-per-core.
3969 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3970 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3971 cc->nr_threads, smp_threads);
3972 goto out;
3975 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3976 if (!core_slot) {
3977 error_setg(&local_err, "core id %d out of range", cc->core_id);
3978 goto out;
3981 if (core_slot->cpu) {
3982 error_setg(&local_err, "core %d already populated", cc->core_id);
3983 goto out;
3986 numa_cpu_pre_plug(core_slot, dev, &local_err);
3988 out:
3989 error_propagate(errp, local_err);
3992 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3993 void *fdt, int *fdt_start_offset, Error **errp)
3995 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3996 int intc_phandle;
3998 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3999 if (intc_phandle <= 0) {
4000 return -1;
4003 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
4004 fdt_start_offset)) {
4005 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4006 return -1;
4009 /* generally SLOF creates these, for hotplug it's up to QEMU */
4010 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4012 return 0;
4015 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4016 Error **errp)
4018 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4019 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4020 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4021 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4023 if (dev->hotplugged && !smc->dr_phb_enabled) {
4024 error_setg(errp, "PHB hotplug not supported for this machine");
4025 return;
4028 if (sphb->index == (uint32_t)-1) {
4029 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4030 return;
4034 * This will check that sphb->index doesn't exceed the maximum number of
4035 * PHBs for the current machine type.
4037 smc->phb_placement(spapr, sphb->index,
4038 &sphb->buid, &sphb->io_win_addr,
4039 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4040 windows_supported, sphb->dma_liobn,
4041 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4042 errp);
4045 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4046 Error **errp)
4048 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4049 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4050 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4051 SpaprDrc *drc;
4052 bool hotplugged = spapr_drc_hotplugged(dev);
4053 Error *local_err = NULL;
4055 if (!smc->dr_phb_enabled) {
4056 return;
4059 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4060 /* hotplug hooks should check it's enabled before getting this far */
4061 assert(drc);
4063 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4064 if (local_err) {
4065 error_propagate(errp, local_err);
4066 return;
4069 if (hotplugged) {
4070 spapr_hotplug_req_add_by_index(drc);
4071 } else {
4072 spapr_drc_reset(drc);
4076 void spapr_phb_release(DeviceState *dev)
4078 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4080 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4081 object_unparent(OBJECT(dev));
4084 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4086 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4089 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4090 DeviceState *dev, Error **errp)
4092 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4093 SpaprDrc *drc;
4095 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4096 assert(drc);
4098 if (!spapr_drc_unplug_requested(drc)) {
4099 spapr_drc_detach(drc);
4100 spapr_hotplug_req_remove_by_index(drc);
4104 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4105 Error **errp)
4107 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4108 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4110 if (spapr->tpm_proxy != NULL) {
4111 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4112 return;
4115 spapr->tpm_proxy = tpm_proxy;
4118 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4120 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4122 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4123 object_unparent(OBJECT(dev));
4124 spapr->tpm_proxy = NULL;
4127 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4128 DeviceState *dev, Error **errp)
4130 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4131 spapr_memory_plug(hotplug_dev, dev, errp);
4132 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4133 spapr_core_plug(hotplug_dev, dev, errp);
4134 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4135 spapr_phb_plug(hotplug_dev, dev, errp);
4136 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4137 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4141 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4142 DeviceState *dev, Error **errp)
4144 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4145 spapr_memory_unplug(hotplug_dev, dev);
4146 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4147 spapr_core_unplug(hotplug_dev, dev);
4148 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4149 spapr_phb_unplug(hotplug_dev, dev);
4150 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4151 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4155 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4156 DeviceState *dev, Error **errp)
4158 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4159 MachineClass *mc = MACHINE_GET_CLASS(sms);
4160 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4162 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4163 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4164 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4165 } else {
4166 /* NOTE: this means there is a window after guest reset, prior to
4167 * CAS negotiation, where unplug requests will fail due to the
4168 * capability not being detected yet. This is a bit different than
4169 * the case with PCI unplug, where the events will be queued and
4170 * eventually handled by the guest after boot
4172 error_setg(errp, "Memory hot unplug not supported for this guest");
4174 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4175 if (!mc->has_hotpluggable_cpus) {
4176 error_setg(errp, "CPU hot unplug not supported on this machine");
4177 return;
4179 spapr_core_unplug_request(hotplug_dev, dev, errp);
4180 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4181 if (!smc->dr_phb_enabled) {
4182 error_setg(errp, "PHB hot unplug not supported on this machine");
4183 return;
4185 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4186 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4187 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4191 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4192 DeviceState *dev, Error **errp)
4194 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4195 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4196 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4197 spapr_core_pre_plug(hotplug_dev, dev, errp);
4198 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4199 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4203 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4204 DeviceState *dev)
4206 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4207 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4208 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4209 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4210 return HOTPLUG_HANDLER(machine);
4212 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4213 PCIDevice *pcidev = PCI_DEVICE(dev);
4214 PCIBus *root = pci_device_root_bus(pcidev);
4215 SpaprPhbState *phb =
4216 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4217 TYPE_SPAPR_PCI_HOST_BRIDGE);
4219 if (phb) {
4220 return HOTPLUG_HANDLER(phb);
4223 return NULL;
4226 static CpuInstanceProperties
4227 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4229 CPUArchId *core_slot;
4230 MachineClass *mc = MACHINE_GET_CLASS(machine);
4232 /* make sure possible_cpu are intialized */
4233 mc->possible_cpu_arch_ids(machine);
4234 /* get CPU core slot containing thread that matches cpu_index */
4235 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4236 assert(core_slot);
4237 return core_slot->props;
4240 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4242 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4245 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4247 int i;
4248 unsigned int smp_threads = machine->smp.threads;
4249 unsigned int smp_cpus = machine->smp.cpus;
4250 const char *core_type;
4251 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4252 MachineClass *mc = MACHINE_GET_CLASS(machine);
4254 if (!mc->has_hotpluggable_cpus) {
4255 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4257 if (machine->possible_cpus) {
4258 assert(machine->possible_cpus->len == spapr_max_cores);
4259 return machine->possible_cpus;
4262 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4263 if (!core_type) {
4264 error_report("Unable to find sPAPR CPU Core definition");
4265 exit(1);
4268 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4269 sizeof(CPUArchId) * spapr_max_cores);
4270 machine->possible_cpus->len = spapr_max_cores;
4271 for (i = 0; i < machine->possible_cpus->len; i++) {
4272 int core_id = i * smp_threads;
4274 machine->possible_cpus->cpus[i].type = core_type;
4275 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4276 machine->possible_cpus->cpus[i].arch_id = core_id;
4277 machine->possible_cpus->cpus[i].props.has_core_id = true;
4278 machine->possible_cpus->cpus[i].props.core_id = core_id;
4280 return machine->possible_cpus;
4283 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4284 uint64_t *buid, hwaddr *pio,
4285 hwaddr *mmio32, hwaddr *mmio64,
4286 unsigned n_dma, uint32_t *liobns,
4287 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4290 * New-style PHB window placement.
4292 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4293 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4294 * windows.
4296 * Some guest kernels can't work with MMIO windows above 1<<46
4297 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4299 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4300 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4301 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4302 * 1TiB 64-bit MMIO windows for each PHB.
4304 const uint64_t base_buid = 0x800000020000000ULL;
4305 int i;
4307 /* Sanity check natural alignments */
4308 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4309 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4310 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4311 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4312 /* Sanity check bounds */
4313 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4314 SPAPR_PCI_MEM32_WIN_SIZE);
4315 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4316 SPAPR_PCI_MEM64_WIN_SIZE);
4318 if (index >= SPAPR_MAX_PHBS) {
4319 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4320 SPAPR_MAX_PHBS - 1);
4321 return;
4324 *buid = base_buid + index;
4325 for (i = 0; i < n_dma; ++i) {
4326 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4329 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4330 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4331 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4333 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4334 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4337 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4339 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4341 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4344 static void spapr_ics_resend(XICSFabric *dev)
4346 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4348 ics_resend(spapr->ics);
4351 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4353 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4355 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4358 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4359 Monitor *mon)
4361 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4363 spapr->irq->print_info(spapr, mon);
4364 monitor_printf(mon, "irqchip: %s\n",
4365 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4368 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4370 return cpu->vcpu_id;
4373 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4375 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4376 MachineState *ms = MACHINE(spapr);
4377 int vcpu_id;
4379 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4381 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4382 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4383 error_append_hint(errp, "Adjust the number of cpus to %d "
4384 "or try to raise the number of threads per core\n",
4385 vcpu_id * ms->smp.threads / spapr->vsmt);
4386 return;
4389 cpu->vcpu_id = vcpu_id;
4392 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4394 CPUState *cs;
4396 CPU_FOREACH(cs) {
4397 PowerPCCPU *cpu = POWERPC_CPU(cs);
4399 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4400 return cpu;
4404 return NULL;
4407 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4409 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4411 /* These are only called by TCG, KVM maintains dispatch state */
4413 spapr_cpu->prod = false;
4414 if (spapr_cpu->vpa_addr) {
4415 CPUState *cs = CPU(cpu);
4416 uint32_t dispatch;
4418 dispatch = ldl_be_phys(cs->as,
4419 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4420 dispatch++;
4421 if ((dispatch & 1) != 0) {
4422 qemu_log_mask(LOG_GUEST_ERROR,
4423 "VPA: incorrect dispatch counter value for "
4424 "dispatched partition %u, correcting.\n", dispatch);
4425 dispatch++;
4427 stl_be_phys(cs->as,
4428 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4432 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4434 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4436 if (spapr_cpu->vpa_addr) {
4437 CPUState *cs = CPU(cpu);
4438 uint32_t dispatch;
4440 dispatch = ldl_be_phys(cs->as,
4441 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4442 dispatch++;
4443 if ((dispatch & 1) != 1) {
4444 qemu_log_mask(LOG_GUEST_ERROR,
4445 "VPA: incorrect dispatch counter value for "
4446 "preempted partition %u, correcting.\n", dispatch);
4447 dispatch++;
4449 stl_be_phys(cs->as,
4450 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4454 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4456 MachineClass *mc = MACHINE_CLASS(oc);
4457 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4458 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4459 NMIClass *nc = NMI_CLASS(oc);
4460 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4461 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4462 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4463 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4465 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4466 mc->ignore_boot_device_suffixes = true;
4469 * We set up the default / latest behaviour here. The class_init
4470 * functions for the specific versioned machine types can override
4471 * these details for backwards compatibility
4473 mc->init = spapr_machine_init;
4474 mc->reset = spapr_machine_reset;
4475 mc->block_default_type = IF_SCSI;
4476 mc->max_cpus = 1024;
4477 mc->no_parallel = 1;
4478 mc->default_boot_order = "";
4479 mc->default_ram_size = 512 * MiB;
4480 mc->default_display = "std";
4481 mc->kvm_type = spapr_kvm_type;
4482 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4483 mc->pci_allow_0_address = true;
4484 assert(!mc->get_hotplug_handler);
4485 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4486 hc->pre_plug = spapr_machine_device_pre_plug;
4487 hc->plug = spapr_machine_device_plug;
4488 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4489 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4490 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4491 hc->unplug_request = spapr_machine_device_unplug_request;
4492 hc->unplug = spapr_machine_device_unplug;
4494 smc->dr_lmb_enabled = true;
4495 smc->update_dt_enabled = true;
4496 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4497 mc->has_hotpluggable_cpus = true;
4498 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4499 fwc->get_dev_path = spapr_get_fw_dev_path;
4500 nc->nmi_monitor_handler = spapr_nmi;
4501 smc->phb_placement = spapr_phb_placement;
4502 vhc->hypercall = emulate_spapr_hypercall;
4503 vhc->hpt_mask = spapr_hpt_mask;
4504 vhc->map_hptes = spapr_map_hptes;
4505 vhc->unmap_hptes = spapr_unmap_hptes;
4506 vhc->hpte_set_c = spapr_hpte_set_c;
4507 vhc->hpte_set_r = spapr_hpte_set_r;
4508 vhc->get_pate = spapr_get_pate;
4509 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4510 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4511 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4512 xic->ics_get = spapr_ics_get;
4513 xic->ics_resend = spapr_ics_resend;
4514 xic->icp_get = spapr_icp_get;
4515 ispc->print_info = spapr_pic_print_info;
4516 /* Force NUMA node memory size to be a multiple of
4517 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4518 * in which LMBs are represented and hot-added
4520 mc->numa_mem_align_shift = 28;
4521 mc->numa_mem_supported = true;
4523 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4524 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4525 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4526 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4527 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4528 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4529 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4530 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4531 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4532 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4533 spapr_caps_add_properties(smc, &error_abort);
4534 smc->irq = &spapr_irq_dual;
4535 smc->dr_phb_enabled = true;
4536 smc->linux_pci_probe = true;
4539 static const TypeInfo spapr_machine_info = {
4540 .name = TYPE_SPAPR_MACHINE,
4541 .parent = TYPE_MACHINE,
4542 .abstract = true,
4543 .instance_size = sizeof(SpaprMachineState),
4544 .instance_init = spapr_instance_init,
4545 .instance_finalize = spapr_machine_finalizefn,
4546 .class_size = sizeof(SpaprMachineClass),
4547 .class_init = spapr_machine_class_init,
4548 .interfaces = (InterfaceInfo[]) {
4549 { TYPE_FW_PATH_PROVIDER },
4550 { TYPE_NMI },
4551 { TYPE_HOTPLUG_HANDLER },
4552 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4553 { TYPE_XICS_FABRIC },
4554 { TYPE_INTERRUPT_STATS_PROVIDER },
4559 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4560 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4561 void *data) \
4563 MachineClass *mc = MACHINE_CLASS(oc); \
4564 spapr_machine_##suffix##_class_options(mc); \
4565 if (latest) { \
4566 mc->alias = "pseries"; \
4567 mc->is_default = 1; \
4570 static const TypeInfo spapr_machine_##suffix##_info = { \
4571 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4572 .parent = TYPE_SPAPR_MACHINE, \
4573 .class_init = spapr_machine_##suffix##_class_init, \
4574 }; \
4575 static void spapr_machine_register_##suffix(void) \
4577 type_register(&spapr_machine_##suffix##_info); \
4579 type_init(spapr_machine_register_##suffix)
4582 * pseries-4.2
4584 static void spapr_machine_4_2_class_options(MachineClass *mc)
4586 /* Defaults for the latest behaviour inherited from the base class */
4589 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4592 * pseries-4.1
4594 static void spapr_machine_4_1_class_options(MachineClass *mc)
4596 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4597 static GlobalProperty compat[] = {
4598 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4599 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4602 spapr_machine_4_2_class_options(mc);
4603 smc->linux_pci_probe = false;
4604 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4605 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4608 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4611 * pseries-4.0
4613 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4614 uint64_t *buid, hwaddr *pio,
4615 hwaddr *mmio32, hwaddr *mmio64,
4616 unsigned n_dma, uint32_t *liobns,
4617 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4619 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4620 nv2gpa, nv2atsd, errp);
4621 *nv2gpa = 0;
4622 *nv2atsd = 0;
4625 static void spapr_machine_4_0_class_options(MachineClass *mc)
4627 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4629 spapr_machine_4_1_class_options(mc);
4630 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4631 smc->phb_placement = phb_placement_4_0;
4632 smc->irq = &spapr_irq_xics;
4633 smc->pre_4_1_migration = true;
4636 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4639 * pseries-3.1
4641 static void spapr_machine_3_1_class_options(MachineClass *mc)
4643 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4645 spapr_machine_4_0_class_options(mc);
4646 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4648 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4649 smc->update_dt_enabled = false;
4650 smc->dr_phb_enabled = false;
4651 smc->broken_host_serial_model = true;
4652 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4653 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4654 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4655 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4658 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4661 * pseries-3.0
4664 static void spapr_machine_3_0_class_options(MachineClass *mc)
4666 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668 spapr_machine_3_1_class_options(mc);
4669 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4671 smc->legacy_irq_allocation = true;
4672 smc->irq = &spapr_irq_xics_legacy;
4675 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4678 * pseries-2.12
4680 static void spapr_machine_2_12_class_options(MachineClass *mc)
4682 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683 static GlobalProperty compat[] = {
4684 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4685 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4688 spapr_machine_3_0_class_options(mc);
4689 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4690 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4692 /* We depend on kvm_enabled() to choose a default value for the
4693 * hpt-max-page-size capability. Of course we can't do it here
4694 * because this is too early and the HW accelerator isn't initialzed
4695 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4697 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4700 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4702 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4704 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4706 spapr_machine_2_12_class_options(mc);
4707 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4708 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4709 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4712 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4715 * pseries-2.11
4718 static void spapr_machine_2_11_class_options(MachineClass *mc)
4720 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4722 spapr_machine_2_12_class_options(mc);
4723 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4724 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4727 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4730 * pseries-2.10
4733 static void spapr_machine_2_10_class_options(MachineClass *mc)
4735 spapr_machine_2_11_class_options(mc);
4736 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4739 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4742 * pseries-2.9
4745 static void spapr_machine_2_9_class_options(MachineClass *mc)
4747 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4748 static GlobalProperty compat[] = {
4749 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4752 spapr_machine_2_10_class_options(mc);
4753 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4754 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4755 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4756 smc->pre_2_10_has_unused_icps = true;
4757 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4760 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4763 * pseries-2.8
4766 static void spapr_machine_2_8_class_options(MachineClass *mc)
4768 static GlobalProperty compat[] = {
4769 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4772 spapr_machine_2_9_class_options(mc);
4773 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4774 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4775 mc->numa_mem_align_shift = 23;
4778 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4781 * pseries-2.7
4784 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4785 uint64_t *buid, hwaddr *pio,
4786 hwaddr *mmio32, hwaddr *mmio64,
4787 unsigned n_dma, uint32_t *liobns,
4788 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4790 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4791 const uint64_t base_buid = 0x800000020000000ULL;
4792 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4793 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4794 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4795 const uint32_t max_index = 255;
4796 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4798 uint64_t ram_top = MACHINE(spapr)->ram_size;
4799 hwaddr phb0_base, phb_base;
4800 int i;
4802 /* Do we have device memory? */
4803 if (MACHINE(spapr)->maxram_size > ram_top) {
4804 /* Can't just use maxram_size, because there may be an
4805 * alignment gap between normal and device memory regions
4807 ram_top = MACHINE(spapr)->device_memory->base +
4808 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4811 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4813 if (index > max_index) {
4814 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4815 max_index);
4816 return;
4819 *buid = base_buid + index;
4820 for (i = 0; i < n_dma; ++i) {
4821 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4824 phb_base = phb0_base + index * phb_spacing;
4825 *pio = phb_base + pio_offset;
4826 *mmio32 = phb_base + mmio_offset;
4828 * We don't set the 64-bit MMIO window, relying on the PHB's
4829 * fallback behaviour of automatically splitting a large "32-bit"
4830 * window into contiguous 32-bit and 64-bit windows
4833 *nv2gpa = 0;
4834 *nv2atsd = 0;
4837 static void spapr_machine_2_7_class_options(MachineClass *mc)
4839 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4840 static GlobalProperty compat[] = {
4841 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4842 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4843 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4844 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4847 spapr_machine_2_8_class_options(mc);
4848 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4849 mc->default_machine_opts = "modern-hotplug-events=off";
4850 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4851 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4852 smc->phb_placement = phb_placement_2_7;
4855 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4858 * pseries-2.6
4861 static void spapr_machine_2_6_class_options(MachineClass *mc)
4863 static GlobalProperty compat[] = {
4864 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4867 spapr_machine_2_7_class_options(mc);
4868 mc->has_hotpluggable_cpus = false;
4869 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4870 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4873 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4876 * pseries-2.5
4879 static void spapr_machine_2_5_class_options(MachineClass *mc)
4881 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4882 static GlobalProperty compat[] = {
4883 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4886 spapr_machine_2_6_class_options(mc);
4887 smc->use_ohci_by_default = true;
4888 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4889 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4892 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4895 * pseries-2.4
4898 static void spapr_machine_2_4_class_options(MachineClass *mc)
4900 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4902 spapr_machine_2_5_class_options(mc);
4903 smc->dr_lmb_enabled = false;
4904 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4907 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4910 * pseries-2.3
4913 static void spapr_machine_2_3_class_options(MachineClass *mc)
4915 static GlobalProperty compat[] = {
4916 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4918 spapr_machine_2_4_class_options(mc);
4919 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4920 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4922 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4925 * pseries-2.2
4928 static void spapr_machine_2_2_class_options(MachineClass *mc)
4930 static GlobalProperty compat[] = {
4931 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4934 spapr_machine_2_3_class_options(mc);
4935 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4936 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4937 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4939 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4942 * pseries-2.1
4945 static void spapr_machine_2_1_class_options(MachineClass *mc)
4947 spapr_machine_2_2_class_options(mc);
4948 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4950 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4952 static void spapr_machine_register_types(void)
4954 type_register_static(&spapr_machine_info);
4957 type_init(spapr_machine_register_types)