target/ppc: Work [S]PURR implementation and add HV support
[qemu/ar7.git] / hw / ppc / ppc.c
blob2856d694959bd853fab62a5d8b0098fa90bcbf0f
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
44 #ifdef PPC_DEBUG_IRQ
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 # define LOG_IRQ(...) do { } while (0)
48 #endif
51 #ifdef PPC_DEBUG_TB
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 # define LOG_TB(...) do { } while (0)
55 #endif
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending;
65 bool locked = false;
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
69 locked = true;
70 qemu_mutex_lock_iothread();
73 old_pending = env->pending_interrupts;
75 if (level) {
76 env->pending_interrupts |= 1 << n_IRQ;
77 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78 } else {
79 env->pending_interrupts &= ~(1 << n_IRQ);
80 if (env->pending_interrupts == 0) {
81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
85 if (old_pending != env->pending_interrupts) {
86 kvmppc_set_interrupt(cpu, n_IRQ, level);
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__, env, n_IRQ, level,
92 env->pending_interrupts, CPU(cpu)->interrupt_request);
94 if (locked) {
95 qemu_mutex_unlock_iothread();
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
104 int cur_level;
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107 env, pin, level);
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111 CPUState *cs = CPU(cpu);
113 switch (pin) {
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__, level ? "start" : "stop");
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
123 case PPC6xx_INPUT_INT:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
126 __func__, level);
127 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128 break;
129 case PPC6xx_INPUT_SMI:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132 __func__, level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134 break;
135 case PPC6xx_INPUT_MCP:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
140 if (cur_level == 1 && level == 0) {
141 LOG_IRQ("%s: raise machine check state\n",
142 __func__);
143 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
145 break;
146 case PPC6xx_INPUT_CKSTP_IN:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
150 if (level) {
151 LOG_IRQ("%s: stop the CPU\n", __func__);
152 cs->halted = 1;
154 break;
155 case PPC6xx_INPUT_HRESET:
156 /* Level sensitive - active low */
157 if (level) {
158 LOG_IRQ("%s: reset the CPU\n", __func__);
159 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
161 break;
162 case PPC6xx_INPUT_SRESET:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164 __func__, level);
165 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166 break;
167 default:
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170 return;
172 if (level)
173 env->irq_input_state |= 1 << pin;
174 else
175 env->irq_input_state &= ~(1 << pin);
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
181 CPUPPCState *env = &cpu->env;
183 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184 PPC6xx_INPUT_NB);
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
191 PowerPCCPU *cpu = opaque;
192 CPUPPCState *env = &cpu->env;
193 int cur_level;
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196 env, pin, level);
197 cur_level = (env->irq_input_state >> pin) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200 CPUState *cs = CPU(cpu);
202 switch (pin) {
203 case PPC970_INPUT_INT:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
206 __func__, level);
207 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208 break;
209 case PPC970_INPUT_THINT:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212 level);
213 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
220 if (cur_level == 1 && level == 0) {
221 LOG_IRQ("%s: raise machine check state\n",
222 __func__);
223 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
225 break;
226 case PPC970_INPUT_CKSTP:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229 if (level) {
230 LOG_IRQ("%s: stop the CPU\n", __func__);
231 cs->halted = 1;
232 } else {
233 LOG_IRQ("%s: restart the CPU\n", __func__);
234 cs->halted = 0;
235 qemu_cpu_kick(cs);
237 break;
238 case PPC970_INPUT_HRESET:
239 /* Level sensitive - active low */
240 if (level) {
241 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
243 break;
244 case PPC970_INPUT_SRESET:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246 __func__, level);
247 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248 break;
249 case PPC970_INPUT_TBEN:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251 level);
252 /* XXX: TODO */
253 break;
254 default:
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257 return;
259 if (level)
260 env->irq_input_state |= 1 << pin;
261 else
262 env->irq_input_state &= ~(1 << pin);
266 void ppc970_irq_init(PowerPCCPU *cpu)
268 CPUPPCState *env = &cpu->env;
270 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271 PPC970_INPUT_NB);
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
277 PowerPCCPU *cpu = opaque;
279 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280 &cpu->env, pin, level);
282 switch (pin) {
283 case POWER7_INPUT_INT:
284 /* Level sensitive - active high */
285 LOG_IRQ("%s: set the external IRQ state to %d\n",
286 __func__, level);
287 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288 break;
289 default:
290 /* Unknown pin - do nothing */
291 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292 return;
296 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
298 CPUPPCState *env = &cpu->env;
300 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
301 POWER7_INPUT_NB);
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque, int pin, int level)
307 PowerPCCPU *cpu = opaque;
309 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
310 &cpu->env, pin, level);
312 switch (pin) {
313 case POWER9_INPUT_INT:
314 /* Level sensitive - active high */
315 LOG_IRQ("%s: set the external IRQ state to %d\n",
316 __func__, level);
317 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
318 break;
319 case POWER9_INPUT_HINT:
320 /* Level sensitive - active high */
321 LOG_IRQ("%s: set the external IRQ state to %d\n",
322 __func__, level);
323 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
324 break;
325 default:
326 /* Unknown pin - do nothing */
327 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
328 return;
332 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
334 CPUPPCState *env = &cpu->env;
336 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
337 POWER9_INPUT_NB);
339 #endif /* defined(TARGET_PPC64) */
341 void ppc40x_core_reset(PowerPCCPU *cpu)
343 CPUPPCState *env = &cpu->env;
344 target_ulong dbsr;
346 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
347 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
348 dbsr = env->spr[SPR_40x_DBSR];
349 dbsr &= ~0x00000300;
350 dbsr |= 0x00000100;
351 env->spr[SPR_40x_DBSR] = dbsr;
354 void ppc40x_chip_reset(PowerPCCPU *cpu)
356 CPUPPCState *env = &cpu->env;
357 target_ulong dbsr;
359 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
360 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
361 /* XXX: TODO reset all internal peripherals */
362 dbsr = env->spr[SPR_40x_DBSR];
363 dbsr &= ~0x00000300;
364 dbsr |= 0x00000200;
365 env->spr[SPR_40x_DBSR] = dbsr;
368 void ppc40x_system_reset(PowerPCCPU *cpu)
370 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
374 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
376 PowerPCCPU *cpu = env_archcpu(env);
378 switch ((val >> 28) & 0x3) {
379 case 0x0:
380 /* No action */
381 break;
382 case 0x1:
383 /* Core reset */
384 ppc40x_core_reset(cpu);
385 break;
386 case 0x2:
387 /* Chip reset */
388 ppc40x_chip_reset(cpu);
389 break;
390 case 0x3:
391 /* System reset */
392 ppc40x_system_reset(cpu);
393 break;
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque, int pin, int level)
400 PowerPCCPU *cpu = opaque;
401 CPUPPCState *env = &cpu->env;
402 int cur_level;
404 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405 env, pin, level);
406 cur_level = (env->irq_input_state >> pin) & 1;
407 /* Don't generate spurious events */
408 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409 CPUState *cs = CPU(cpu);
411 switch (pin) {
412 case PPC40x_INPUT_RESET_SYS:
413 if (level) {
414 LOG_IRQ("%s: reset the PowerPC system\n",
415 __func__);
416 ppc40x_system_reset(cpu);
418 break;
419 case PPC40x_INPUT_RESET_CHIP:
420 if (level) {
421 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
422 ppc40x_chip_reset(cpu);
424 break;
425 case PPC40x_INPUT_RESET_CORE:
426 /* XXX: TODO: update DBSR[MRR] */
427 if (level) {
428 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
429 ppc40x_core_reset(cpu);
431 break;
432 case PPC40x_INPUT_CINT:
433 /* Level sensitive - active high */
434 LOG_IRQ("%s: set the critical IRQ state to %d\n",
435 __func__, level);
436 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
437 break;
438 case PPC40x_INPUT_INT:
439 /* Level sensitive - active high */
440 LOG_IRQ("%s: set the external IRQ state to %d\n",
441 __func__, level);
442 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
443 break;
444 case PPC40x_INPUT_HALT:
445 /* Level sensitive - active low */
446 if (level) {
447 LOG_IRQ("%s: stop the CPU\n", __func__);
448 cs->halted = 1;
449 } else {
450 LOG_IRQ("%s: restart the CPU\n", __func__);
451 cs->halted = 0;
452 qemu_cpu_kick(cs);
454 break;
455 case PPC40x_INPUT_DEBUG:
456 /* Level sensitive - active high */
457 LOG_IRQ("%s: set the debug pin state to %d\n",
458 __func__, level);
459 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
460 break;
461 default:
462 /* Unknown pin - do nothing */
463 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
464 return;
466 if (level)
467 env->irq_input_state |= 1 << pin;
468 else
469 env->irq_input_state &= ~(1 << pin);
473 void ppc40x_irq_init(PowerPCCPU *cpu)
475 CPUPPCState *env = &cpu->env;
477 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
478 cpu, PPC40x_INPUT_NB);
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque, int pin, int level)
484 PowerPCCPU *cpu = opaque;
485 CPUPPCState *env = &cpu->env;
486 int cur_level;
488 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
489 env, pin, level);
490 cur_level = (env->irq_input_state >> pin) & 1;
491 /* Don't generate spurious events */
492 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
493 switch (pin) {
494 case PPCE500_INPUT_MCK:
495 if (level) {
496 LOG_IRQ("%s: reset the PowerPC system\n",
497 __func__);
498 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
500 break;
501 case PPCE500_INPUT_RESET_CORE:
502 if (level) {
503 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
504 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
506 break;
507 case PPCE500_INPUT_CINT:
508 /* Level sensitive - active high */
509 LOG_IRQ("%s: set the critical IRQ state to %d\n",
510 __func__, level);
511 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
512 break;
513 case PPCE500_INPUT_INT:
514 /* Level sensitive - active high */
515 LOG_IRQ("%s: set the core IRQ state to %d\n",
516 __func__, level);
517 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
518 break;
519 case PPCE500_INPUT_DEBUG:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the debug pin state to %d\n",
522 __func__, level);
523 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
524 break;
525 default:
526 /* Unknown pin - do nothing */
527 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
528 return;
530 if (level)
531 env->irq_input_state |= 1 << pin;
532 else
533 env->irq_input_state &= ~(1 << pin);
537 void ppce500_irq_init(PowerPCCPU *cpu)
539 CPUPPCState *env = &cpu->env;
541 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
542 cpu, PPCE500_INPUT_NB);
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled)
548 CPUState *cs;
550 CPU_FOREACH(cs) {
551 PowerPCCPU *cpu = POWERPC_CPU(cs);
553 cpu->env.mpic_proxy = enabled;
554 if (kvm_enabled()) {
555 kvmppc_set_mpic_proxy(cpu, enabled);
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
563 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
565 /* TB time in tb periods */
566 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
569 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
571 ppc_tb_t *tb_env = env->tb_env;
572 uint64_t tb;
574 if (kvm_enabled()) {
575 return env->spr[SPR_TBL];
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
581 return tb;
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t tb;
589 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592 return tb >> 32;
595 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
597 if (kvm_enabled()) {
598 return env->spr[SPR_TBU];
601 return _cpu_ppc_load_tbu(env);
604 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
605 int64_t *tb_offsetp, uint64_t value)
607 *tb_offsetp = value -
608 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
610 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
611 __func__, value, *tb_offsetp);
614 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
616 ppc_tb_t *tb_env = env->tb_env;
617 uint64_t tb;
619 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
620 tb &= 0xFFFFFFFF00000000ULL;
621 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
622 &tb_env->tb_offset, tb | (uint64_t)value);
625 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
627 ppc_tb_t *tb_env = env->tb_env;
628 uint64_t tb;
630 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631 tb &= 0x00000000FFFFFFFFULL;
632 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
636 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
638 _cpu_ppc_store_tbu(env, value);
641 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
643 ppc_tb_t *tb_env = env->tb_env;
644 uint64_t tb;
646 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
647 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
649 return tb;
652 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
654 ppc_tb_t *tb_env = env->tb_env;
655 uint64_t tb;
657 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660 return tb >> 32;
663 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
665 ppc_tb_t *tb_env = env->tb_env;
666 uint64_t tb;
668 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669 tb &= 0xFFFFFFFF00000000ULL;
670 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
671 &tb_env->atb_offset, tb | (uint64_t)value);
674 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
676 ppc_tb_t *tb_env = env->tb_env;
677 uint64_t tb;
679 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680 tb &= 0x00000000FFFFFFFFULL;
681 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
685 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
687 ppc_tb_t *tb_env = env->tb_env;
689 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
690 tb_env->vtb_offset);
693 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
695 ppc_tb_t *tb_env = env->tb_env;
697 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
698 &tb_env->vtb_offset, value);
701 static void cpu_ppc_tb_stop (CPUPPCState *env)
703 ppc_tb_t *tb_env = env->tb_env;
704 uint64_t tb, atb, vmclk;
706 /* If the time base is already frozen, do nothing */
707 if (tb_env->tb_freq != 0) {
708 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
709 /* Get the time base */
710 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
711 /* Get the alternate time base */
712 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
713 /* Store the time base value (ie compute the current offset) */
714 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
715 /* Store the alternate time base value (compute the current offset) */
716 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
717 /* Set the time base frequency to zero */
718 tb_env->tb_freq = 0;
719 /* Now, the time bases are frozen to tb_offset / atb_offset value */
723 static void cpu_ppc_tb_start (CPUPPCState *env)
725 ppc_tb_t *tb_env = env->tb_env;
726 uint64_t tb, atb, vmclk;
728 /* If the time base is not frozen, do nothing */
729 if (tb_env->tb_freq == 0) {
730 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
731 /* Get the time base from tb_offset */
732 tb = tb_env->tb_offset;
733 /* Get the alternate time base from atb_offset */
734 atb = tb_env->atb_offset;
735 /* Restore the tb frequency from the decrementer frequency */
736 tb_env->tb_freq = tb_env->decr_freq;
737 /* Store the time base value */
738 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
739 /* Store the alternate time base value */
740 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
744 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
746 ppc_tb_t *tb_env = env->tb_env;
747 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
748 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
751 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
753 ppc_tb_t *tb_env = env->tb_env;
754 int64_t decr, diff;
756 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
757 if (diff >= 0) {
758 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
759 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
760 decr = 0;
761 } else {
762 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
764 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
766 return decr;
769 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
771 ppc_tb_t *tb_env = env->tb_env;
772 uint64_t decr;
774 if (kvm_enabled()) {
775 return env->spr[SPR_DECR];
778 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
781 * If large decrementer is enabled then the decrementer is signed extened
782 * to 64 bits, otherwise it is a 32 bit value.
784 if (env->spr[SPR_LPCR] & LPCR_LD) {
785 return decr;
787 return (uint32_t) decr;
790 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
792 PowerPCCPU *cpu = env_archcpu(env);
793 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
794 ppc_tb_t *tb_env = env->tb_env;
795 uint64_t hdecr;
797 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
800 * If we have a large decrementer (POWER9 or later) then hdecr is sign
801 * extended to 64 bits, otherwise it is 32 bits.
803 if (pcc->lrg_decr_bits > 32) {
804 return hdecr;
806 return (uint32_t) hdecr;
809 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
811 ppc_tb_t *tb_env = env->tb_env;
813 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
814 tb_env->purr_offset);
817 /* When decrementer expires,
818 * all we need to do is generate or queue a CPU exception
820 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
822 /* Raise it */
823 LOG_TB("raise decrementer exception\n");
824 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
827 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
829 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
832 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
834 CPUPPCState *env = &cpu->env;
836 /* Raise it */
837 LOG_TB("raise hv decrementer exception\n");
839 /* The architecture specifies that we don't deliver HDEC
840 * interrupts in a PM state. Not only they don't cause a
841 * wakeup but they also get effectively discarded.
843 if (!env->resume_as_sreset) {
844 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
848 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
850 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
853 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
854 QEMUTimer *timer,
855 void (*raise_excp)(void *),
856 void (*lower_excp)(PowerPCCPU *),
857 target_ulong decr, target_ulong value,
858 int nr_bits)
860 CPUPPCState *env = &cpu->env;
861 ppc_tb_t *tb_env = env->tb_env;
862 uint64_t now, next;
863 bool negative;
865 /* Truncate value to decr_width and sign extend for simplicity */
866 value &= ((1ULL << nr_bits) - 1);
867 negative = !!(value & (1ULL << (nr_bits - 1)));
868 if (negative) {
869 value |= (0xFFFFFFFFULL << nr_bits);
872 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
873 decr, value);
875 if (kvm_enabled()) {
876 /* KVM handles decrementer exceptions, we don't need our own timer */
877 return;
881 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
882 * interrupt.
884 * If we get a really small DEC value, we can assume that by the time we
885 * handled it we should inject an interrupt already.
887 * On MSB level based DEC implementations the MSB always means the interrupt
888 * is pending, so raise it on those.
890 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
891 * an edge interrupt, so raise it here too.
893 if ((value < 3) ||
894 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
895 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
896 && !(decr & (1ULL << (nr_bits - 1))))) {
897 (*raise_excp)(cpu);
898 return;
901 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
902 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
903 (*lower_excp)(cpu);
906 /* Calculate the next timer event */
907 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
908 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
909 *nextp = next;
911 /* Adjust timer */
912 timer_mod(timer, next);
915 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
916 target_ulong value, int nr_bits)
918 ppc_tb_t *tb_env = cpu->env.tb_env;
920 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
921 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
922 value, nr_bits);
925 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
927 PowerPCCPU *cpu = env_archcpu(env);
928 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
929 int nr_bits = 32;
931 if (env->spr[SPR_LPCR] & LPCR_LD) {
932 nr_bits = pcc->lrg_decr_bits;
935 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
938 static void cpu_ppc_decr_cb(void *opaque)
940 PowerPCCPU *cpu = opaque;
942 cpu_ppc_decr_excp(cpu);
945 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
946 target_ulong value, int nr_bits)
948 ppc_tb_t *tb_env = cpu->env.tb_env;
950 if (tb_env->hdecr_timer != NULL) {
951 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
952 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
953 hdecr, value, nr_bits);
957 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
959 PowerPCCPU *cpu = env_archcpu(env);
960 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
962 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
963 pcc->lrg_decr_bits);
966 static void cpu_ppc_hdecr_cb(void *opaque)
968 PowerPCCPU *cpu = opaque;
970 cpu_ppc_hdecr_excp(cpu);
973 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
975 ppc_tb_t *tb_env = env->tb_env;
977 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
978 &tb_env->purr_offset, value);
981 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
983 CPUPPCState *env = opaque;
984 PowerPCCPU *cpu = env_archcpu(env);
985 ppc_tb_t *tb_env = env->tb_env;
987 tb_env->tb_freq = freq;
988 tb_env->decr_freq = freq;
989 /* There is a bug in Linux 2.4 kernels:
990 * if a decrementer exception is pending when it enables msr_ee at startup,
991 * it's not ready to handle it...
993 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
994 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
995 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
998 static void timebase_save(PPCTimebase *tb)
1000 uint64_t ticks = cpu_get_host_ticks();
1001 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1003 if (!first_ppc_cpu->env.tb_env) {
1004 error_report("No timebase object");
1005 return;
1008 /* not used anymore, we keep it for compatibility */
1009 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1011 * tb_offset is only expected to be changed by QEMU so
1012 * there is no need to update it from KVM here
1014 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1016 tb->runstate_paused = runstate_check(RUN_STATE_PAUSED);
1019 static void timebase_load(PPCTimebase *tb)
1021 CPUState *cpu;
1022 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1023 int64_t tb_off_adj, tb_off;
1024 unsigned long freq;
1026 if (!first_ppc_cpu->env.tb_env) {
1027 error_report("No timebase object");
1028 return;
1031 freq = first_ppc_cpu->env.tb_env->tb_freq;
1033 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1035 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1036 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1037 (tb_off_adj - tb_off) / freq);
1039 /* Set new offset to all CPUs */
1040 CPU_FOREACH(cpu) {
1041 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1042 pcpu->env.tb_env->tb_offset = tb_off_adj;
1043 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1047 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1048 RunState state)
1050 PPCTimebase *tb = opaque;
1052 if (running) {
1053 timebase_load(tb);
1054 } else {
1055 timebase_save(tb);
1060 * When migrating a running guest, read the clock just
1061 * before migration, so that the guest clock counts
1062 * during the events between:
1064 * * vm_stop()
1066 * * pre_save()
1068 * This reduces clock difference on migration from 5s
1069 * to 0.1s (when max_downtime == 5s), because sending the
1070 * final pages of memory (which happens between vm_stop()
1071 * and pre_save()) takes max_downtime.
1073 static int timebase_pre_save(void *opaque)
1075 PPCTimebase *tb = opaque;
1077 /* guest_timebase won't be overridden in case of paused guest */
1078 if (!tb->runstate_paused) {
1079 timebase_save(tb);
1082 return 0;
1085 const VMStateDescription vmstate_ppc_timebase = {
1086 .name = "timebase",
1087 .version_id = 1,
1088 .minimum_version_id = 1,
1089 .minimum_version_id_old = 1,
1090 .pre_save = timebase_pre_save,
1091 .fields = (VMStateField []) {
1092 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1093 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1094 VMSTATE_END_OF_LIST()
1098 /* Set up (once) timebase frequency (in Hz) */
1099 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1101 PowerPCCPU *cpu = env_archcpu(env);
1102 ppc_tb_t *tb_env;
1104 tb_env = g_malloc0(sizeof(ppc_tb_t));
1105 env->tb_env = tb_env;
1106 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1107 if (is_book3s_arch2x(env)) {
1108 /* All Book3S 64bit CPUs implement level based DEC logic */
1109 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1111 /* Create new timer */
1112 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1113 if (env->has_hv_mode) {
1114 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1115 cpu);
1116 } else {
1117 tb_env->hdecr_timer = NULL;
1119 cpu_ppc_set_tb_clk(env, freq);
1121 return &cpu_ppc_set_tb_clk;
1124 /* Specific helpers for POWER & PowerPC 601 RTC */
1125 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1127 _cpu_ppc_store_tbu(env, value);
1130 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1132 return _cpu_ppc_load_tbu(env);
1135 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1137 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1140 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1142 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1145 /*****************************************************************************/
1146 /* PowerPC 40x timers */
1148 /* PIT, FIT & WDT */
1149 typedef struct ppc40x_timer_t ppc40x_timer_t;
1150 struct ppc40x_timer_t {
1151 uint64_t pit_reload; /* PIT auto-reload value */
1152 uint64_t fit_next; /* Tick for next FIT interrupt */
1153 QEMUTimer *fit_timer;
1154 uint64_t wdt_next; /* Tick for next WDT interrupt */
1155 QEMUTimer *wdt_timer;
1157 /* 405 have the PIT, 440 have a DECR. */
1158 unsigned int decr_excp;
1161 /* Fixed interval timer */
1162 static void cpu_4xx_fit_cb (void *opaque)
1164 PowerPCCPU *cpu;
1165 CPUPPCState *env;
1166 ppc_tb_t *tb_env;
1167 ppc40x_timer_t *ppc40x_timer;
1168 uint64_t now, next;
1170 env = opaque;
1171 cpu = env_archcpu(env);
1172 tb_env = env->tb_env;
1173 ppc40x_timer = tb_env->opaque;
1174 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1175 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1176 case 0:
1177 next = 1 << 9;
1178 break;
1179 case 1:
1180 next = 1 << 13;
1181 break;
1182 case 2:
1183 next = 1 << 17;
1184 break;
1185 case 3:
1186 next = 1 << 21;
1187 break;
1188 default:
1189 /* Cannot occur, but makes gcc happy */
1190 return;
1192 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1193 if (next == now)
1194 next++;
1195 timer_mod(ppc40x_timer->fit_timer, next);
1196 env->spr[SPR_40x_TSR] |= 1 << 26;
1197 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1198 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1200 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1201 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1202 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1205 /* Programmable interval timer */
1206 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1208 ppc40x_timer_t *ppc40x_timer;
1209 uint64_t now, next;
1211 ppc40x_timer = tb_env->opaque;
1212 if (ppc40x_timer->pit_reload <= 1 ||
1213 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1214 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1215 /* Stop PIT */
1216 LOG_TB("%s: stop PIT\n", __func__);
1217 timer_del(tb_env->decr_timer);
1218 } else {
1219 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1220 __func__, ppc40x_timer->pit_reload);
1221 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1222 next = now + muldiv64(ppc40x_timer->pit_reload,
1223 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1224 if (is_excp)
1225 next += tb_env->decr_next - now;
1226 if (next == now)
1227 next++;
1228 timer_mod(tb_env->decr_timer, next);
1229 tb_env->decr_next = next;
1233 static void cpu_4xx_pit_cb (void *opaque)
1235 PowerPCCPU *cpu;
1236 CPUPPCState *env;
1237 ppc_tb_t *tb_env;
1238 ppc40x_timer_t *ppc40x_timer;
1240 env = opaque;
1241 cpu = env_archcpu(env);
1242 tb_env = env->tb_env;
1243 ppc40x_timer = tb_env->opaque;
1244 env->spr[SPR_40x_TSR] |= 1 << 27;
1245 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1246 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1248 start_stop_pit(env, tb_env, 1);
1249 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1250 "%016" PRIx64 "\n", __func__,
1251 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1252 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1253 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1254 ppc40x_timer->pit_reload);
1257 /* Watchdog timer */
1258 static void cpu_4xx_wdt_cb (void *opaque)
1260 PowerPCCPU *cpu;
1261 CPUPPCState *env;
1262 ppc_tb_t *tb_env;
1263 ppc40x_timer_t *ppc40x_timer;
1264 uint64_t now, next;
1266 env = opaque;
1267 cpu = env_archcpu(env);
1268 tb_env = env->tb_env;
1269 ppc40x_timer = tb_env->opaque;
1270 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1271 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1272 case 0:
1273 next = 1 << 17;
1274 break;
1275 case 1:
1276 next = 1 << 21;
1277 break;
1278 case 2:
1279 next = 1 << 25;
1280 break;
1281 case 3:
1282 next = 1 << 29;
1283 break;
1284 default:
1285 /* Cannot occur, but makes gcc happy */
1286 return;
1288 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1289 if (next == now)
1290 next++;
1291 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1292 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1293 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1294 case 0x0:
1295 case 0x1:
1296 timer_mod(ppc40x_timer->wdt_timer, next);
1297 ppc40x_timer->wdt_next = next;
1298 env->spr[SPR_40x_TSR] |= 1U << 31;
1299 break;
1300 case 0x2:
1301 timer_mod(ppc40x_timer->wdt_timer, next);
1302 ppc40x_timer->wdt_next = next;
1303 env->spr[SPR_40x_TSR] |= 1 << 30;
1304 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1305 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1307 break;
1308 case 0x3:
1309 env->spr[SPR_40x_TSR] &= ~0x30000000;
1310 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1311 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1312 case 0x0:
1313 /* No reset */
1314 break;
1315 case 0x1: /* Core reset */
1316 ppc40x_core_reset(cpu);
1317 break;
1318 case 0x2: /* Chip reset */
1319 ppc40x_chip_reset(cpu);
1320 break;
1321 case 0x3: /* System reset */
1322 ppc40x_system_reset(cpu);
1323 break;
1328 void store_40x_pit (CPUPPCState *env, target_ulong val)
1330 ppc_tb_t *tb_env;
1331 ppc40x_timer_t *ppc40x_timer;
1333 tb_env = env->tb_env;
1334 ppc40x_timer = tb_env->opaque;
1335 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1336 ppc40x_timer->pit_reload = val;
1337 start_stop_pit(env, tb_env, 0);
1340 target_ulong load_40x_pit (CPUPPCState *env)
1342 return cpu_ppc_load_decr(env);
1345 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1347 CPUPPCState *env = opaque;
1348 ppc_tb_t *tb_env = env->tb_env;
1350 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1351 freq);
1352 tb_env->tb_freq = freq;
1353 tb_env->decr_freq = freq;
1354 /* XXX: we should also update all timers */
1357 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1358 unsigned int decr_excp)
1360 ppc_tb_t *tb_env;
1361 ppc40x_timer_t *ppc40x_timer;
1363 tb_env = g_malloc0(sizeof(ppc_tb_t));
1364 env->tb_env = tb_env;
1365 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1366 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1367 tb_env->tb_freq = freq;
1368 tb_env->decr_freq = freq;
1369 tb_env->opaque = ppc40x_timer;
1370 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1371 if (ppc40x_timer != NULL) {
1372 /* We use decr timer for PIT */
1373 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1374 ppc40x_timer->fit_timer =
1375 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1376 ppc40x_timer->wdt_timer =
1377 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1378 ppc40x_timer->decr_excp = decr_excp;
1381 return &ppc_40x_set_tb_clk;
1384 /*****************************************************************************/
1385 /* Embedded PowerPC Device Control Registers */
1386 typedef struct ppc_dcrn_t ppc_dcrn_t;
1387 struct ppc_dcrn_t {
1388 dcr_read_cb dcr_read;
1389 dcr_write_cb dcr_write;
1390 void *opaque;
1393 /* XXX: on 460, DCR addresses are 32 bits wide,
1394 * using DCRIPR to get the 22 upper bits of the DCR address
1396 #define DCRN_NB 1024
1397 struct ppc_dcr_t {
1398 ppc_dcrn_t dcrn[DCRN_NB];
1399 int (*read_error)(int dcrn);
1400 int (*write_error)(int dcrn);
1403 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1405 ppc_dcrn_t *dcr;
1407 if (dcrn < 0 || dcrn >= DCRN_NB)
1408 goto error;
1409 dcr = &dcr_env->dcrn[dcrn];
1410 if (dcr->dcr_read == NULL)
1411 goto error;
1412 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1414 return 0;
1416 error:
1417 if (dcr_env->read_error != NULL)
1418 return (*dcr_env->read_error)(dcrn);
1420 return -1;
1423 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1425 ppc_dcrn_t *dcr;
1427 if (dcrn < 0 || dcrn >= DCRN_NB)
1428 goto error;
1429 dcr = &dcr_env->dcrn[dcrn];
1430 if (dcr->dcr_write == NULL)
1431 goto error;
1432 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1434 return 0;
1436 error:
1437 if (dcr_env->write_error != NULL)
1438 return (*dcr_env->write_error)(dcrn);
1440 return -1;
1443 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1444 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1446 ppc_dcr_t *dcr_env;
1447 ppc_dcrn_t *dcr;
1449 dcr_env = env->dcr_env;
1450 if (dcr_env == NULL)
1451 return -1;
1452 if (dcrn < 0 || dcrn >= DCRN_NB)
1453 return -1;
1454 dcr = &dcr_env->dcrn[dcrn];
1455 if (dcr->opaque != NULL ||
1456 dcr->dcr_read != NULL ||
1457 dcr->dcr_write != NULL)
1458 return -1;
1459 dcr->opaque = opaque;
1460 dcr->dcr_read = dcr_read;
1461 dcr->dcr_write = dcr_write;
1463 return 0;
1466 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1467 int (*write_error)(int dcrn))
1469 ppc_dcr_t *dcr_env;
1471 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1472 dcr_env->read_error = read_error;
1473 dcr_env->write_error = write_error;
1474 env->dcr_env = dcr_env;
1476 return 0;
1479 /*****************************************************************************/
1480 /* Debug port */
1481 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1483 addr &= 0xF;
1484 switch (addr) {
1485 case 0:
1486 printf("%c", val);
1487 break;
1488 case 1:
1489 printf("\n");
1490 fflush(stdout);
1491 break;
1492 case 2:
1493 printf("Set loglevel to %04" PRIx32 "\n", val);
1494 qemu_set_log(val | 0x100);
1495 break;
1499 int ppc_cpu_pir(PowerPCCPU *cpu)
1501 CPUPPCState *env = &cpu->env;
1502 return env->spr_cb[SPR_PIR].default_value;
1505 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1507 CPUState *cs;
1509 CPU_FOREACH(cs) {
1510 PowerPCCPU *cpu = POWERPC_CPU(cs);
1512 if (ppc_cpu_pir(cpu) == pir) {
1513 return cpu;
1517 return NULL;
1520 void ppc_irq_reset(PowerPCCPU *cpu)
1522 CPUPPCState *env = &cpu->env;
1524 env->irq_input_state = 0;
1525 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);