4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
33 #include "exec/cpu_ldst.h"
36 static void v7m_msr_xpsr(CPUARMState
*env
, uint32_t mask
,
37 uint32_t reg
, uint32_t val
)
39 /* Only APSR is actually writable */
41 uint32_t apsrmask
= 0;
44 apsrmask
|= XPSR_NZCV
| XPSR_Q
;
46 if ((mask
& 4) && arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
49 xpsr_write(env
, val
, apsrmask
);
53 static uint32_t v7m_mrs_xpsr(CPUARMState
*env
, uint32_t reg
, unsigned el
)
57 if ((reg
& 1) && el
) {
58 mask
|= XPSR_EXCP
; /* IPSR (unpriv. reads as zero) */
61 mask
|= XPSR_NZCV
| XPSR_Q
; /* APSR */
62 if (arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
66 /* EPSR reads as zero */
67 return xpsr_read(env
) & mask
;
70 static uint32_t v7m_mrs_control(CPUARMState
*env
, uint32_t secure
)
72 uint32_t value
= env
->v7m
.control
[secure
];
75 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
76 value
|= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
;
81 #ifdef CONFIG_USER_ONLY
83 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
85 uint32_t mask
= extract32(maskreg
, 8, 4);
86 uint32_t reg
= extract32(maskreg
, 0, 8);
89 case 0 ... 7: /* xPSR sub-fields */
90 v7m_msr_xpsr(env
, mask
, reg
, val
);
92 case 20: /* CONTROL */
93 /* There are no sub-fields that are actually writable from EL0. */
96 /* Unprivileged writes to other registers are ignored */
101 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
104 case 0 ... 7: /* xPSR sub-fields */
105 return v7m_mrs_xpsr(env
, reg
, 0);
106 case 20: /* CONTROL */
107 return v7m_mrs_control(env
, 0);
109 /* Unprivileged reads others as zero. */
114 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
116 /* translate.c should never generate calls here in user-only mode */
117 g_assert_not_reached();
120 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
122 /* translate.c should never generate calls here in user-only mode */
123 g_assert_not_reached();
126 void HELPER(v7m_preserve_fp_state
)(CPUARMState
*env
)
128 /* translate.c should never generate calls here in user-only mode */
129 g_assert_not_reached();
132 void HELPER(v7m_vlstm
)(CPUARMState
*env
, uint32_t fptr
)
134 /* translate.c should never generate calls here in user-only mode */
135 g_assert_not_reached();
138 void HELPER(v7m_vlldm
)(CPUARMState
*env
, uint32_t fptr
)
140 /* translate.c should never generate calls here in user-only mode */
141 g_assert_not_reached();
144 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
147 * The TT instructions can be used by unprivileged code, but in
148 * user-only emulation we don't have the MPU.
149 * Luckily since we know we are NonSecure unprivileged (and that in
150 * turn means that the A flag wasn't specified), all the bits in the
151 * register must be zero:
152 * IREGION: 0 because IRVALID is 0
153 * IRVALID: 0 because NS
157 * RW: 0 because unpriv and A flag not set
158 * R: 0 because unpriv and A flag not set
159 * SRVALID: 0 because NS
160 * MRVALID: 0 because unpriv and A flag not set
161 * SREGION: 0 becaus SRVALID is 0
162 * MREGION: 0 because MRVALID is 0
170 * What kind of stack write are we doing? This affects how exceptions
171 * generated during the stacking are treated.
173 typedef enum StackingMode
{
179 static bool v7m_stack_write(ARMCPU
*cpu
, uint32_t addr
, uint32_t value
,
180 ARMMMUIdx mmu_idx
, StackingMode mode
)
182 CPUState
*cs
= CPU(cpu
);
183 CPUARMState
*env
= &cpu
->env
;
184 MemTxAttrs attrs
= {};
186 target_ulong page_size
;
189 ARMMMUFaultInfo fi
= {};
190 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
194 if (get_phys_addr(env
, addr
, MMU_DATA_STORE
, mmu_idx
, &physaddr
,
195 &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
196 /* MPU/SAU lookup failed */
197 if (fi
.type
== ARMFault_QEMU_SFault
) {
198 if (mode
== STACK_LAZYFP
) {
199 qemu_log_mask(CPU_LOG_INT
,
200 "...SecureFault with SFSR.LSPERR "
201 "during lazy stacking\n");
202 env
->v7m
.sfsr
|= R_V7M_SFSR_LSPERR_MASK
;
204 qemu_log_mask(CPU_LOG_INT
,
205 "...SecureFault with SFSR.AUVIOL "
206 "during stacking\n");
207 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
209 env
->v7m
.sfsr
|= R_V7M_SFSR_SFARVALID_MASK
;
210 env
->v7m
.sfar
= addr
;
211 exc
= ARMV7M_EXCP_SECURE
;
214 if (mode
== STACK_LAZYFP
) {
215 qemu_log_mask(CPU_LOG_INT
,
216 "...MemManageFault with CFSR.MLSPERR\n");
217 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MLSPERR_MASK
;
219 qemu_log_mask(CPU_LOG_INT
,
220 "...MemManageFault with CFSR.MSTKERR\n");
221 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MSTKERR_MASK
;
223 exc
= ARMV7M_EXCP_MEM
;
228 address_space_stl_le(arm_addressspace(cs
, attrs
), physaddr
, value
,
230 if (txres
!= MEMTX_OK
) {
231 /* BusFault trying to write the data */
232 if (mode
== STACK_LAZYFP
) {
233 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.LSPERR\n");
234 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_LSPERR_MASK
;
236 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.STKERR\n");
237 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_STKERR_MASK
;
239 exc
= ARMV7M_EXCP_BUS
;
247 * By pending the exception at this point we are making
248 * the IMPDEF choice "overridden exceptions pended" (see the
249 * MergeExcInfo() pseudocode). The other choice would be to not
250 * pend them now and then make a choice about which to throw away
251 * later if we have two derived exceptions.
252 * The only case when we must not pend the exception but instead
253 * throw it away is if we are doing the push of the callee registers
254 * and we've already generated a derived exception (this is indicated
255 * by the caller passing STACK_IGNFAULTS). Even in this case we will
256 * still update the fault status registers.
260 armv7m_nvic_set_pending_derived(env
->nvic
, exc
, exc_secure
);
263 armv7m_nvic_set_pending_lazyfp(env
->nvic
, exc
, exc_secure
);
265 case STACK_IGNFAULTS
:
271 static bool v7m_stack_read(ARMCPU
*cpu
, uint32_t *dest
, uint32_t addr
,
274 CPUState
*cs
= CPU(cpu
);
275 CPUARMState
*env
= &cpu
->env
;
276 MemTxAttrs attrs
= {};
278 target_ulong page_size
;
281 ARMMMUFaultInfo fi
= {};
282 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
287 if (get_phys_addr(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &physaddr
,
288 &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
289 /* MPU/SAU lookup failed */
290 if (fi
.type
== ARMFault_QEMU_SFault
) {
291 qemu_log_mask(CPU_LOG_INT
,
292 "...SecureFault with SFSR.AUVIOL during unstack\n");
293 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
294 env
->v7m
.sfar
= addr
;
295 exc
= ARMV7M_EXCP_SECURE
;
298 qemu_log_mask(CPU_LOG_INT
,
299 "...MemManageFault with CFSR.MUNSTKERR\n");
300 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MUNSTKERR_MASK
;
301 exc
= ARMV7M_EXCP_MEM
;
307 value
= address_space_ldl(arm_addressspace(cs
, attrs
), physaddr
,
309 if (txres
!= MEMTX_OK
) {
310 /* BusFault trying to read the data */
311 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.UNSTKERR\n");
312 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_UNSTKERR_MASK
;
313 exc
= ARMV7M_EXCP_BUS
;
323 * By pending the exception at this point we are making
324 * the IMPDEF choice "overridden exceptions pended" (see the
325 * MergeExcInfo() pseudocode). The other choice would be to not
326 * pend them now and then make a choice about which to throw away
327 * later if we have two derived exceptions.
329 armv7m_nvic_set_pending(env
->nvic
, exc
, exc_secure
);
333 void HELPER(v7m_preserve_fp_state
)(CPUARMState
*env
)
336 * Preserve FP state (because LSPACT was set and we are about
337 * to execute an FP instruction). This corresponds to the
338 * PreserveFPState() pseudocode.
339 * We may throw an exception if the stacking fails.
341 ARMCPU
*cpu
= env_archcpu(env
);
342 bool is_secure
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
343 bool negpri
= !(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_HFRDY_MASK
);
344 bool is_priv
= !(env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_USER_MASK
);
345 bool splimviol
= env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_SPLIMVIOL_MASK
;
346 uint32_t fpcar
= env
->v7m
.fpcar
[is_secure
];
347 bool stacked_ok
= true;
348 bool ts
= is_secure
&& (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
);
351 /* Take the iothread lock as we are going to touch the NVIC */
352 qemu_mutex_lock_iothread();
354 /* Check the background context had access to the FPU */
355 if (!v7m_cpacr_pass(env
, is_secure
, is_priv
)) {
356 armv7m_nvic_set_pending_lazyfp(env
->nvic
, ARMV7M_EXCP_USAGE
, is_secure
);
357 env
->v7m
.cfsr
[is_secure
] |= R_V7M_CFSR_NOCP_MASK
;
359 } else if (!is_secure
&& !extract32(env
->v7m
.nsacr
, 10, 1)) {
360 armv7m_nvic_set_pending_lazyfp(env
->nvic
, ARMV7M_EXCP_USAGE
, M_REG_S
);
361 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
365 if (!splimviol
&& stacked_ok
) {
366 /* We only stack if the stack limit wasn't violated */
370 mmu_idx
= arm_v7m_mmu_idx_all(env
, is_secure
, is_priv
, negpri
);
371 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
372 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
373 uint32_t faddr
= fpcar
+ 4 * i
;
374 uint32_t slo
= extract64(dn
, 0, 32);
375 uint32_t shi
= extract64(dn
, 32, 32);
378 faddr
+= 8; /* skip the slot for the FPSCR */
380 stacked_ok
= stacked_ok
&&
381 v7m_stack_write(cpu
, faddr
, slo
, mmu_idx
, STACK_LAZYFP
) &&
382 v7m_stack_write(cpu
, faddr
+ 4, shi
, mmu_idx
, STACK_LAZYFP
);
385 stacked_ok
= stacked_ok
&&
386 v7m_stack_write(cpu
, fpcar
+ 0x40,
387 vfp_get_fpscr(env
), mmu_idx
, STACK_LAZYFP
);
391 * We definitely pended an exception, but it's possible that it
392 * might not be able to be taken now. If its priority permits us
393 * to take it now, then we must not update the LSPACT or FP regs,
394 * but instead jump out to take the exception immediately.
395 * If it's just pending and won't be taken until the current
396 * handler exits, then we do update LSPACT and the FP regs.
398 take_exception
= !stacked_ok
&&
399 armv7m_nvic_can_take_pending_exception(env
->nvic
);
401 qemu_mutex_unlock_iothread();
403 if (take_exception
) {
404 raise_exception_ra(env
, EXCP_LAZYFP
, 0, 1, GETPC());
407 env
->v7m
.fpccr
[is_secure
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
410 /* Clear s0 to s31 and the FPSCR */
413 for (i
= 0; i
< 32; i
+= 2) {
414 *aa32_vfp_dreg(env
, i
/ 2) = 0;
416 vfp_set_fpscr(env
, 0);
419 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
425 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
426 * This may change the current stack pointer between Main and Process
427 * stack pointers if it is done for the CONTROL register for the current
430 static void write_v7m_control_spsel_for_secstate(CPUARMState
*env
,
434 bool old_is_psp
= v7m_using_psp(env
);
436 env
->v7m
.control
[secstate
] =
437 deposit32(env
->v7m
.control
[secstate
],
438 R_V7M_CONTROL_SPSEL_SHIFT
,
439 R_V7M_CONTROL_SPSEL_LENGTH
, new_spsel
);
441 if (secstate
== env
->v7m
.secure
) {
442 bool new_is_psp
= v7m_using_psp(env
);
445 if (old_is_psp
!= new_is_psp
) {
446 tmp
= env
->v7m
.other_sp
;
447 env
->v7m
.other_sp
= env
->regs
[13];
454 * Write to v7M CONTROL.SPSEL bit. This may change the current
455 * stack pointer between Main and Process stack pointers.
457 static void write_v7m_control_spsel(CPUARMState
*env
, bool new_spsel
)
459 write_v7m_control_spsel_for_secstate(env
, new_spsel
, env
->v7m
.secure
);
462 void write_v7m_exception(CPUARMState
*env
, uint32_t new_exc
)
465 * Write a new value to v7m.exception, thus transitioning into or out
466 * of Handler mode; this may result in a change of active stack pointer.
468 bool new_is_psp
, old_is_psp
= v7m_using_psp(env
);
471 env
->v7m
.exception
= new_exc
;
473 new_is_psp
= v7m_using_psp(env
);
475 if (old_is_psp
!= new_is_psp
) {
476 tmp
= env
->v7m
.other_sp
;
477 env
->v7m
.other_sp
= env
->regs
[13];
482 /* Switch M profile security state between NS and S */
483 static void switch_v7m_security_state(CPUARMState
*env
, bool new_secstate
)
485 uint32_t new_ss_msp
, new_ss_psp
;
487 if (env
->v7m
.secure
== new_secstate
) {
492 * All the banked state is accessed by looking at env->v7m.secure
493 * except for the stack pointer; rearrange the SP appropriately.
495 new_ss_msp
= env
->v7m
.other_ss_msp
;
496 new_ss_psp
= env
->v7m
.other_ss_psp
;
498 if (v7m_using_psp(env
)) {
499 env
->v7m
.other_ss_psp
= env
->regs
[13];
500 env
->v7m
.other_ss_msp
= env
->v7m
.other_sp
;
502 env
->v7m
.other_ss_msp
= env
->regs
[13];
503 env
->v7m
.other_ss_psp
= env
->v7m
.other_sp
;
506 env
->v7m
.secure
= new_secstate
;
508 if (v7m_using_psp(env
)) {
509 env
->regs
[13] = new_ss_psp
;
510 env
->v7m
.other_sp
= new_ss_msp
;
512 env
->regs
[13] = new_ss_msp
;
513 env
->v7m
.other_sp
= new_ss_psp
;
517 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
521 * - if the return value is a magic value, do exception return (like BX)
522 * - otherwise bit 0 of the return value is the target security state
526 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
527 /* Covers FNC_RETURN and EXC_RETURN magic */
528 min_magic
= FNC_RETURN_MIN_MAGIC
;
530 /* EXC_RETURN magic only */
531 min_magic
= EXC_RETURN_MIN_MAGIC
;
534 if (dest
>= min_magic
) {
536 * This is an exception return magic value; put it where
537 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
538 * Note that if we ever add gen_ss_advance() singlestep support to
539 * M profile this should count as an "instruction execution complete"
540 * event (compare gen_bx_excret_final_code()).
542 env
->regs
[15] = dest
& ~1;
543 env
->thumb
= dest
& 1;
544 HELPER(exception_internal
)(env
, EXCP_EXCEPTION_EXIT
);
548 /* translate.c should have made BXNS UNDEF unless we're secure */
549 assert(env
->v7m
.secure
);
552 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
554 switch_v7m_security_state(env
, dest
& 1);
556 env
->regs
[15] = dest
& ~1;
557 arm_rebuild_hflags(env
);
560 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
564 * - bit 0 of the destination address is the target security state
567 /* At this point regs[15] is the address just after the BLXNS */
568 uint32_t nextinst
= env
->regs
[15] | 1;
569 uint32_t sp
= env
->regs
[13] - 8;
572 /* translate.c will have made BLXNS UNDEF unless we're secure */
573 assert(env
->v7m
.secure
);
577 * Target is Secure, so this is just a normal BLX,
578 * except that the low bit doesn't indicate Thumb/not.
580 env
->regs
[14] = nextinst
;
582 env
->regs
[15] = dest
& ~1;
586 /* Target is non-secure: first push a stack frame */
587 if (!QEMU_IS_ALIGNED(sp
, 8)) {
588 qemu_log_mask(LOG_GUEST_ERROR
,
589 "BLXNS with misaligned SP is UNPREDICTABLE\n");
592 if (sp
< v7m_sp_limit(env
)) {
593 raise_exception(env
, EXCP_STKOF
, 0, 1);
596 saved_psr
= env
->v7m
.exception
;
597 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
) {
598 saved_psr
|= XPSR_SFPA
;
601 /* Note that these stores can throw exceptions on MPU faults */
602 cpu_stl_data_ra(env
, sp
, nextinst
, GETPC());
603 cpu_stl_data_ra(env
, sp
+ 4, saved_psr
, GETPC());
606 env
->regs
[14] = 0xfeffffff;
607 if (arm_v7m_is_handler_mode(env
)) {
609 * Write a dummy value to IPSR, to avoid leaking the current secure
610 * exception number to non-secure code. This is guaranteed not
611 * to cause write_v7m_exception() to actually change stacks.
613 write_v7m_exception(env
, 1);
615 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
616 switch_v7m_security_state(env
, 0);
618 env
->regs
[15] = dest
;
619 arm_rebuild_hflags(env
);
622 static uint32_t *get_v7m_sp_ptr(CPUARMState
*env
, bool secure
, bool threadmode
,
626 * Return a pointer to the location where we currently store the
627 * stack pointer for the requested security state and thread mode.
628 * This pointer will become invalid if the CPU state is updated
629 * such that the stack pointers are switched around (eg changing
630 * the SPSEL control bit).
631 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
632 * Unlike that pseudocode, we require the caller to pass us in the
633 * SPSEL control bit value; this is because we also use this
634 * function in handling of pushing of the callee-saves registers
635 * part of the v8M stack frame (pseudocode PushCalleeStack()),
636 * and in the tailchain codepath the SPSEL bit comes from the exception
637 * return magic LR value from the previous exception. The pseudocode
638 * opencodes the stack-selection in PushCalleeStack(), but we prefer
639 * to make this utility function generic enough to do the job.
641 bool want_psp
= threadmode
&& spsel
;
643 if (secure
== env
->v7m
.secure
) {
644 if (want_psp
== v7m_using_psp(env
)) {
645 return &env
->regs
[13];
647 return &env
->v7m
.other_sp
;
651 return &env
->v7m
.other_ss_psp
;
653 return &env
->v7m
.other_ss_msp
;
658 static bool arm_v7m_load_vector(ARMCPU
*cpu
, int exc
, bool targets_secure
,
661 CPUState
*cs
= CPU(cpu
);
662 CPUARMState
*env
= &cpu
->env
;
664 uint32_t addr
= env
->v7m
.vecbase
[targets_secure
] + exc
* 4;
665 uint32_t vector_entry
;
666 MemTxAttrs attrs
= {};
670 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targets_secure
, true);
673 * We don't do a get_phys_addr() here because the rules for vector
674 * loads are special: they always use the default memory map, and
675 * the default memory map permits reads from all addresses.
676 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
677 * that we want this special case which would always say "yes",
678 * we just do the SAU lookup here followed by a direct physical load.
680 attrs
.secure
= targets_secure
;
683 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
684 V8M_SAttributes sattrs
= {};
686 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
688 attrs
.secure
= false;
689 } else if (!targets_secure
) {
691 * NS access to S memory: the underlying exception which we escalate
692 * to HardFault is SecureFault, which always targets Secure.
699 vector_entry
= address_space_ldl(arm_addressspace(cs
, attrs
), addr
,
701 if (result
!= MEMTX_OK
) {
703 * Underlying exception is BusFault: its target security state
704 * depends on BFHFNMINS.
706 exc_secure
= !(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
);
709 *pvec
= vector_entry
;
714 * All vector table fetch fails are reported as HardFault, with
715 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
716 * technically the underlying exception is a SecureFault or BusFault
717 * that is escalated to HardFault.) This is a terminal exception,
718 * so we will either take the HardFault immediately or else enter
719 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
720 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
721 * secure); otherwise it targets the same security state as the
722 * underlying exception.
724 if (!(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
)) {
727 env
->v7m
.hfsr
|= R_V7M_HFSR_VECTTBL_MASK
| R_V7M_HFSR_FORCED_MASK
;
728 armv7m_nvic_set_pending_derived(env
->nvic
, ARMV7M_EXCP_HARD
, exc_secure
);
732 static uint32_t v7m_integrity_sig(CPUARMState
*env
, uint32_t lr
)
735 * Return the integrity signature value for the callee-saves
736 * stack frame section. @lr is the exception return payload/LR value
737 * whose FType bit forms bit 0 of the signature if FP is present.
739 uint32_t sig
= 0xfefa125a;
741 if (!arm_feature(env
, ARM_FEATURE_VFP
) || (lr
& R_V7M_EXCRET_FTYPE_MASK
)) {
747 static bool v7m_push_callee_stack(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
751 * For v8M, push the callee-saves register part of the stack frame.
752 * Compare the v8M pseudocode PushCalleeStack().
753 * In the tailchaining case this may not be the current stack.
755 CPUARMState
*env
= &cpu
->env
;
756 uint32_t *frame_sp_p
;
763 StackingMode smode
= ignore_faults
? STACK_IGNFAULTS
: STACK_NORMAL
;
766 bool mode
= lr
& R_V7M_EXCRET_MODE_MASK
;
767 bool priv
= !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_NPRIV_MASK
) ||
770 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, M_REG_S
, priv
);
771 frame_sp_p
= get_v7m_sp_ptr(env
, M_REG_S
, mode
,
772 lr
& R_V7M_EXCRET_SPSEL_MASK
);
773 want_psp
= mode
&& (lr
& R_V7M_EXCRET_SPSEL_MASK
);
775 limit
= env
->v7m
.psplim
[M_REG_S
];
777 limit
= env
->v7m
.msplim
[M_REG_S
];
780 mmu_idx
= arm_mmu_idx(env
);
781 frame_sp_p
= &env
->regs
[13];
782 limit
= v7m_sp_limit(env
);
785 frameptr
= *frame_sp_p
- 0x28;
786 if (frameptr
< limit
) {
788 * Stack limit failure: set SP to the limit value, and generate
789 * STKOF UsageFault. Stack pushes below the limit must not be
790 * performed. It is IMPDEF whether pushes above the limit are
791 * performed; we choose not to.
793 qemu_log_mask(CPU_LOG_INT
,
794 "...STKOF during callee-saves register stacking\n");
795 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
796 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
803 * Write as much of the stack frame as we can. A write failure may
804 * cause us to pend a derived exception.
806 sig
= v7m_integrity_sig(env
, lr
);
808 v7m_stack_write(cpu
, frameptr
, sig
, mmu_idx
, smode
) &&
809 v7m_stack_write(cpu
, frameptr
+ 0x8, env
->regs
[4], mmu_idx
, smode
) &&
810 v7m_stack_write(cpu
, frameptr
+ 0xc, env
->regs
[5], mmu_idx
, smode
) &&
811 v7m_stack_write(cpu
, frameptr
+ 0x10, env
->regs
[6], mmu_idx
, smode
) &&
812 v7m_stack_write(cpu
, frameptr
+ 0x14, env
->regs
[7], mmu_idx
, smode
) &&
813 v7m_stack_write(cpu
, frameptr
+ 0x18, env
->regs
[8], mmu_idx
, smode
) &&
814 v7m_stack_write(cpu
, frameptr
+ 0x1c, env
->regs
[9], mmu_idx
, smode
) &&
815 v7m_stack_write(cpu
, frameptr
+ 0x20, env
->regs
[10], mmu_idx
, smode
) &&
816 v7m_stack_write(cpu
, frameptr
+ 0x24, env
->regs
[11], mmu_idx
, smode
);
818 /* Update SP regardless of whether any of the stack accesses failed. */
819 *frame_sp_p
= frameptr
;
824 static void v7m_exception_taken(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
825 bool ignore_stackfaults
)
828 * Do the "take the exception" parts of exception entry,
829 * but not the pushing of state to the stack. This is
830 * similar to the pseudocode ExceptionTaken() function.
832 CPUARMState
*env
= &cpu
->env
;
836 bool push_failed
= false;
838 armv7m_nvic_get_pending_irq_info(env
->nvic
, &exc
, &targets_secure
);
839 qemu_log_mask(CPU_LOG_INT
, "...taking pending %s exception %d\n",
840 targets_secure
? "secure" : "nonsecure", exc
);
843 /* Sanitize LR FType and PREFIX bits */
844 if (!arm_feature(env
, ARM_FEATURE_VFP
)) {
845 lr
|= R_V7M_EXCRET_FTYPE_MASK
;
847 lr
= deposit32(lr
, 24, 8, 0xff);
850 if (arm_feature(env
, ARM_FEATURE_V8
)) {
851 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
852 (lr
& R_V7M_EXCRET_S_MASK
)) {
854 * The background code (the owner of the registers in the
855 * exception frame) is Secure. This means it may either already
856 * have or now needs to push callee-saves registers.
858 if (targets_secure
) {
859 if (dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
)) {
861 * We took an exception from Secure to NonSecure
862 * (which means the callee-saved registers got stacked)
863 * and are now tailchaining to a Secure exception.
864 * Clear DCRS so eventual return from this Secure
865 * exception unstacks the callee-saved registers.
867 lr
&= ~R_V7M_EXCRET_DCRS_MASK
;
871 * We're going to a non-secure exception; push the
872 * callee-saves registers to the stack now, if they're
875 if (lr
& R_V7M_EXCRET_DCRS_MASK
&&
876 !(dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
))) {
877 push_failed
= v7m_push_callee_stack(cpu
, lr
, dotailchain
,
880 lr
|= R_V7M_EXCRET_DCRS_MASK
;
884 lr
&= ~R_V7M_EXCRET_ES_MASK
;
885 if (targets_secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
886 lr
|= R_V7M_EXCRET_ES_MASK
;
888 lr
&= ~R_V7M_EXCRET_SPSEL_MASK
;
889 if (env
->v7m
.control
[targets_secure
] & R_V7M_CONTROL_SPSEL_MASK
) {
890 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
894 * Clear registers if necessary to prevent non-secure exception
895 * code being able to see register values from secure code.
896 * Where register values become architecturally UNKNOWN we leave
897 * them with their previous values.
899 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
900 if (!targets_secure
) {
902 * Always clear the caller-saved registers (they have been
903 * pushed to the stack earlier in v7m_push_stack()).
904 * Clear callee-saved registers if the background code is
905 * Secure (in which case these regs were saved in
906 * v7m_push_callee_stack()).
910 for (i
= 0; i
< 13; i
++) {
911 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
912 if (i
< 4 || i
> 11 || (lr
& R_V7M_EXCRET_S_MASK
)) {
917 xpsr_write(env
, 0, XPSR_NZCV
| XPSR_Q
| XPSR_GE
| XPSR_IT
);
922 if (push_failed
&& !ignore_stackfaults
) {
924 * Derived exception on callee-saves register stacking:
925 * we might now want to take a different exception which
926 * targets a different security state, so try again from the top.
928 qemu_log_mask(CPU_LOG_INT
,
929 "...derived exception on callee-saves register stacking");
930 v7m_exception_taken(cpu
, lr
, true, true);
934 if (!arm_v7m_load_vector(cpu
, exc
, targets_secure
, &addr
)) {
935 /* Vector load failed: derived exception */
936 qemu_log_mask(CPU_LOG_INT
, "...derived exception on vector table load");
937 v7m_exception_taken(cpu
, lr
, true, true);
942 * Now we've done everything that might cause a derived exception
943 * we can go ahead and activate whichever exception we're going to
944 * take (which might now be the derived exception).
946 armv7m_nvic_acknowledge_irq(env
->nvic
);
948 /* Switch to target security state -- must do this before writing SPSEL */
949 switch_v7m_security_state(env
, targets_secure
);
950 write_v7m_control_spsel(env
, 0);
951 arm_clear_exclusive(env
);
952 /* Clear SFPA and FPCA (has no effect if no FPU) */
953 env
->v7m
.control
[M_REG_S
] &=
954 ~(R_V7M_CONTROL_FPCA_MASK
| R_V7M_CONTROL_SFPA_MASK
);
956 env
->condexec_bits
= 0;
958 env
->regs
[15] = addr
& 0xfffffffe;
959 env
->thumb
= addr
& 1;
960 arm_rebuild_hflags(env
);
963 static void v7m_update_fpccr(CPUARMState
*env
, uint32_t frameptr
,
967 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
968 * that we will need later in order to do lazy FP reg stacking.
970 bool is_secure
= env
->v7m
.secure
;
971 void *nvic
= env
->nvic
;
973 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
974 * are banked and we want to update the bit in the bank for the
975 * current security state; and in one case we want to specifically
976 * update the NS banked version of a bit even if we are secure.
978 uint32_t *fpccr_s
= &env
->v7m
.fpccr
[M_REG_S
];
979 uint32_t *fpccr_ns
= &env
->v7m
.fpccr
[M_REG_NS
];
980 uint32_t *fpccr
= &env
->v7m
.fpccr
[is_secure
];
981 bool hfrdy
, bfrdy
, mmrdy
, ns_ufrdy
, s_ufrdy
, sfrdy
, monrdy
;
983 env
->v7m
.fpcar
[is_secure
] = frameptr
& ~0x7;
985 if (apply_splim
&& arm_feature(env
, ARM_FEATURE_V8
)) {
987 uint32_t splim
= v7m_sp_limit(env
);
988 bool ign
= armv7m_nvic_neg_prio_requested(nvic
, is_secure
) &&
989 (env
->v7m
.ccr
[is_secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
);
991 splimviol
= !ign
&& frameptr
< splim
;
992 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, SPLIMVIOL
, splimviol
);
995 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, LSPACT
, 1);
997 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, S
, is_secure
);
999 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, USER
, arm_current_el(env
) == 0);
1001 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, THREAD
,
1002 !arm_v7m_is_handler_mode(env
));
1004 hfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_HARD
, false);
1005 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, HFRDY
, hfrdy
);
1007 bfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_BUS
, false);
1008 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, BFRDY
, bfrdy
);
1010 mmrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_MEM
, is_secure
);
1011 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, MMRDY
, mmrdy
);
1013 ns_ufrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_USAGE
, false);
1014 *fpccr_ns
= FIELD_DP32(*fpccr_ns
, V7M_FPCCR
, UFRDY
, ns_ufrdy
);
1016 monrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_DEBUG
, false);
1017 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, MONRDY
, monrdy
);
1019 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1020 s_ufrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_USAGE
, true);
1021 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, UFRDY
, s_ufrdy
);
1023 sfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_SECURE
, false);
1024 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, SFRDY
, sfrdy
);
1028 void HELPER(v7m_vlstm
)(CPUARMState
*env
, uint32_t fptr
)
1030 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1031 bool s
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
1032 bool lspact
= env
->v7m
.fpccr
[s
] & R_V7M_FPCCR_LSPACT_MASK
;
1033 uintptr_t ra
= GETPC();
1035 assert(env
->v7m
.secure
);
1037 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1041 /* Check access to the coprocessor is permitted */
1042 if (!v7m_cpacr_pass(env
, true, arm_current_el(env
) != 0)) {
1043 raise_exception_ra(env
, EXCP_NOCP
, 0, 1, GETPC());
1047 /* LSPACT should not be active when there is active FP state */
1048 raise_exception_ra(env
, EXCP_LSERR
, 0, 1, GETPC());
1052 raise_exception_ra(env
, EXCP_UNALIGNED
, 0, 1, GETPC());
1056 * Note that we do not use v7m_stack_write() here, because the
1057 * accesses should not set the FSR bits for stacking errors if they
1058 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1059 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1062 if (!(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPEN_MASK
)) {
1063 bool ts
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
;
1066 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
1067 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
1068 uint32_t faddr
= fptr
+ 4 * i
;
1069 uint32_t slo
= extract64(dn
, 0, 32);
1070 uint32_t shi
= extract64(dn
, 32, 32);
1073 faddr
+= 8; /* skip the slot for the FPSCR */
1075 cpu_stl_data_ra(env
, faddr
, slo
, ra
);
1076 cpu_stl_data_ra(env
, faddr
+ 4, shi
, ra
);
1078 cpu_stl_data_ra(env
, fptr
+ 0x40, vfp_get_fpscr(env
), ra
);
1081 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1082 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1085 for (i
= 0; i
< 32; i
+= 2) {
1086 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1088 vfp_set_fpscr(env
, 0);
1091 v7m_update_fpccr(env
, fptr
, false);
1094 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
1097 void HELPER(v7m_vlldm
)(CPUARMState
*env
, uint32_t fptr
)
1099 uintptr_t ra
= GETPC();
1101 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1102 assert(env
->v7m
.secure
);
1104 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1108 /* Check access to the coprocessor is permitted */
1109 if (!v7m_cpacr_pass(env
, true, arm_current_el(env
) != 0)) {
1110 raise_exception_ra(env
, EXCP_NOCP
, 0, 1, GETPC());
1113 if (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
) {
1114 /* State in FP is still valid */
1115 env
->v7m
.fpccr
[M_REG_S
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
1117 bool ts
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
;
1122 raise_exception_ra(env
, EXCP_UNALIGNED
, 0, 1, GETPC());
1125 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
1128 uint32_t faddr
= fptr
+ 4 * i
;
1131 faddr
+= 8; /* skip the slot for the FPSCR */
1134 slo
= cpu_ldl_data_ra(env
, faddr
, ra
);
1135 shi
= cpu_ldl_data_ra(env
, faddr
+ 4, ra
);
1137 dn
= (uint64_t) shi
<< 32 | slo
;
1138 *aa32_vfp_dreg(env
, i
/ 2) = dn
;
1140 fpscr
= cpu_ldl_data_ra(env
, fptr
+ 0x40, ra
);
1141 vfp_set_fpscr(env
, fpscr
);
1144 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_FPCA_MASK
;
1147 static bool v7m_push_stack(ARMCPU
*cpu
)
1150 * Do the "set up stack frame" part of exception entry,
1151 * similar to pseudocode PushStack().
1152 * Return true if we generate a derived exception (and so
1153 * should ignore further stack faults trying to process
1154 * that derived exception.)
1156 bool stacked_ok
= true, limitviol
= false;
1157 CPUARMState
*env
= &cpu
->env
;
1158 uint32_t xpsr
= xpsr_read(env
);
1159 uint32_t frameptr
= env
->regs
[13];
1160 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
1162 bool nsacr_cp10
= extract32(env
->v7m
.nsacr
, 10, 1);
1164 if ((env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) &&
1165 (env
->v7m
.secure
|| nsacr_cp10
)) {
1166 if (env
->v7m
.secure
&&
1167 env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
) {
1176 /* Align stack pointer if the guest wants that */
1177 if ((frameptr
& 4) &&
1178 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKALIGN_MASK
)) {
1180 xpsr
|= XPSR_SPREALIGN
;
1184 if (env
->v7m
.secure
&&
1185 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1189 frameptr
-= framesize
;
1191 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1192 uint32_t limit
= v7m_sp_limit(env
);
1194 if (frameptr
< limit
) {
1196 * Stack limit failure: set SP to the limit value, and generate
1197 * STKOF UsageFault. Stack pushes below the limit must not be
1198 * performed. It is IMPDEF whether pushes above the limit are
1199 * performed; we choose not to.
1201 qemu_log_mask(CPU_LOG_INT
,
1202 "...STKOF during stacking\n");
1203 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
1204 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1206 env
->regs
[13] = limit
;
1208 * We won't try to perform any further memory accesses but
1209 * we must continue through the following code to check for
1210 * permission faults during FPU state preservation, and we
1211 * must update FPCCR if lazy stacking is enabled.
1219 * Write as much of the stack frame as we can. If we fail a stack
1220 * write this will result in a derived exception being pended
1221 * (which may be taken in preference to the one we started with
1222 * if it has higher priority).
1224 stacked_ok
= stacked_ok
&&
1225 v7m_stack_write(cpu
, frameptr
, env
->regs
[0], mmu_idx
, STACK_NORMAL
) &&
1226 v7m_stack_write(cpu
, frameptr
+ 4, env
->regs
[1],
1227 mmu_idx
, STACK_NORMAL
) &&
1228 v7m_stack_write(cpu
, frameptr
+ 8, env
->regs
[2],
1229 mmu_idx
, STACK_NORMAL
) &&
1230 v7m_stack_write(cpu
, frameptr
+ 12, env
->regs
[3],
1231 mmu_idx
, STACK_NORMAL
) &&
1232 v7m_stack_write(cpu
, frameptr
+ 16, env
->regs
[12],
1233 mmu_idx
, STACK_NORMAL
) &&
1234 v7m_stack_write(cpu
, frameptr
+ 20, env
->regs
[14],
1235 mmu_idx
, STACK_NORMAL
) &&
1236 v7m_stack_write(cpu
, frameptr
+ 24, env
->regs
[15],
1237 mmu_idx
, STACK_NORMAL
) &&
1238 v7m_stack_write(cpu
, frameptr
+ 28, xpsr
, mmu_idx
, STACK_NORMAL
);
1240 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) {
1241 /* FPU is active, try to save its registers */
1242 bool fpccr_s
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
1243 bool lspact
= env
->v7m
.fpccr
[fpccr_s
] & R_V7M_FPCCR_LSPACT_MASK
;
1245 if (lspact
&& arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1246 qemu_log_mask(CPU_LOG_INT
,
1247 "...SecureFault because LSPACT and FPCA both set\n");
1248 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1249 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1250 } else if (!env
->v7m
.secure
&& !nsacr_cp10
) {
1251 qemu_log_mask(CPU_LOG_INT
,
1252 "...Secure UsageFault with CFSR.NOCP because "
1253 "NSACR.CP10 prevents stacking FP regs\n");
1254 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, M_REG_S
);
1255 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
1257 if (!(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPEN_MASK
)) {
1258 /* Lazy stacking disabled, save registers now */
1260 bool cpacr_pass
= v7m_cpacr_pass(env
, env
->v7m
.secure
,
1261 arm_current_el(env
) != 0);
1263 if (stacked_ok
&& !cpacr_pass
) {
1265 * Take UsageFault if CPACR forbids access. The pseudocode
1266 * here does a full CheckCPEnabled() but we know the NSACR
1267 * check can never fail as we have already handled that.
1269 qemu_log_mask(CPU_LOG_INT
,
1270 "...UsageFault with CFSR.NOCP because "
1271 "CPACR.CP10 prevents stacking FP regs\n");
1272 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1274 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_NOCP_MASK
;
1278 for (i
= 0; i
< ((framesize
== 0xa8) ? 32 : 16); i
+= 2) {
1279 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
1280 uint32_t faddr
= frameptr
+ 0x20 + 4 * i
;
1281 uint32_t slo
= extract64(dn
, 0, 32);
1282 uint32_t shi
= extract64(dn
, 32, 32);
1285 faddr
+= 8; /* skip the slot for the FPSCR */
1287 stacked_ok
= stacked_ok
&&
1288 v7m_stack_write(cpu
, faddr
, slo
,
1289 mmu_idx
, STACK_NORMAL
) &&
1290 v7m_stack_write(cpu
, faddr
+ 4, shi
,
1291 mmu_idx
, STACK_NORMAL
);
1293 stacked_ok
= stacked_ok
&&
1294 v7m_stack_write(cpu
, frameptr
+ 0x60,
1295 vfp_get_fpscr(env
), mmu_idx
, STACK_NORMAL
);
1297 for (i
= 0; i
< ((framesize
== 0xa8) ? 32 : 16); i
+= 2) {
1298 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1300 vfp_set_fpscr(env
, 0);
1303 /* Lazy stacking enabled, save necessary info to stack later */
1304 v7m_update_fpccr(env
, frameptr
+ 0x20, true);
1310 * If we broke a stack limit then SP was already updated earlier;
1311 * otherwise we update SP regardless of whether any of the stack
1312 * accesses failed or we took some other kind of fault.
1315 env
->regs
[13] = frameptr
;
1321 static void do_v7m_exception_exit(ARMCPU
*cpu
)
1323 CPUARMState
*env
= &cpu
->env
;
1325 uint32_t xpsr
, xpsr_mask
;
1326 bool ufault
= false;
1327 bool sfault
= false;
1328 bool return_to_sp_process
;
1329 bool return_to_handler
;
1330 bool rettobase
= false;
1331 bool exc_secure
= false;
1332 bool return_to_secure
;
1334 bool restore_s16_s31
;
1337 * If we're not in Handler mode then jumps to magic exception-exit
1338 * addresses don't have magic behaviour. However for the v8M
1339 * security extensions the magic secure-function-return has to
1340 * work in thread mode too, so to avoid doing an extra check in
1341 * the generated code we allow exception-exit magic to also cause the
1342 * internal exception and bring us here in thread mode. Correct code
1343 * will never try to do this (the following insn fetch will always
1344 * fault) so we the overhead of having taken an unnecessary exception
1347 if (!arm_v7m_is_handler_mode(env
)) {
1352 * In the spec pseudocode ExceptionReturn() is called directly
1353 * from BXWritePC() and gets the full target PC value including
1354 * bit zero. In QEMU's implementation we treat it as a normal
1355 * jump-to-register (which is then caught later on), and so split
1356 * the target value up between env->regs[15] and env->thumb in
1357 * gen_bx(). Reconstitute it.
1359 excret
= env
->regs
[15];
1364 qemu_log_mask(CPU_LOG_INT
, "Exception return: magic PC %" PRIx32
1365 " previous exception %d\n",
1366 excret
, env
->v7m
.exception
);
1368 if ((excret
& R_V7M_EXCRET_RES1_MASK
) != R_V7M_EXCRET_RES1_MASK
) {
1369 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero high bits in exception "
1370 "exit PC value 0x%" PRIx32
" are UNPREDICTABLE\n",
1374 ftype
= excret
& R_V7M_EXCRET_FTYPE_MASK
;
1376 if (!arm_feature(env
, ARM_FEATURE_VFP
) && !ftype
) {
1377 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero FTYPE in exception "
1378 "exit PC value 0x%" PRIx32
" is UNPREDICTABLE "
1379 "if FPU not present\n",
1384 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1386 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1387 * we pick which FAULTMASK to clear.
1389 if (!env
->v7m
.secure
&&
1390 ((excret
& R_V7M_EXCRET_ES_MASK
) ||
1391 !(excret
& R_V7M_EXCRET_DCRS_MASK
))) {
1393 /* For all other purposes, treat ES as 0 (R_HXSR) */
1394 excret
&= ~R_V7M_EXCRET_ES_MASK
;
1396 exc_secure
= excret
& R_V7M_EXCRET_ES_MASK
;
1399 if (env
->v7m
.exception
!= ARMV7M_EXCP_NMI
) {
1401 * Auto-clear FAULTMASK on return from other than NMI.
1402 * If the security extension is implemented then this only
1403 * happens if the raw execution priority is >= 0; the
1404 * value of the ES bit in the exception return value indicates
1405 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1407 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1408 if (armv7m_nvic_raw_execution_priority(env
->nvic
) >= 0) {
1409 env
->v7m
.faultmask
[exc_secure
] = 0;
1412 env
->v7m
.faultmask
[M_REG_NS
] = 0;
1416 switch (armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
,
1419 /* attempt to exit an exception that isn't active */
1423 /* still an irq active now */
1427 * We returned to base exception level, no nesting.
1428 * (In the pseudocode this is written using "NestedActivation != 1"
1429 * where we have 'rettobase == false'.)
1434 g_assert_not_reached();
1437 return_to_handler
= !(excret
& R_V7M_EXCRET_MODE_MASK
);
1438 return_to_sp_process
= excret
& R_V7M_EXCRET_SPSEL_MASK
;
1439 return_to_secure
= arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
1440 (excret
& R_V7M_EXCRET_S_MASK
);
1442 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1443 if (!arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1445 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1446 * we choose to take the UsageFault.
1448 if ((excret
& R_V7M_EXCRET_S_MASK
) ||
1449 (excret
& R_V7M_EXCRET_ES_MASK
) ||
1450 !(excret
& R_V7M_EXCRET_DCRS_MASK
)) {
1454 if (excret
& R_V7M_EXCRET_RES0_MASK
) {
1458 /* For v7M we only recognize certain combinations of the low bits */
1459 switch (excret
& 0xf) {
1460 case 1: /* Return to Handler */
1462 case 13: /* Return to Thread using Process stack */
1463 case 9: /* Return to Thread using Main stack */
1465 * We only need to check NONBASETHRDENA for v7M, because in
1466 * v8M this bit does not exist (it is RES1).
1469 !(env
->v7m
.ccr
[env
->v7m
.secure
] &
1470 R_V7M_CCR_NONBASETHRDENA_MASK
)) {
1480 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1481 * Handler mode (and will be until we write the new XPSR.Interrupt
1482 * field) this does not switch around the current stack pointer.
1483 * We must do this before we do any kind of tailchaining, including
1484 * for the derived exceptions on integrity check failures, or we will
1485 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1487 write_v7m_control_spsel_for_secstate(env
, return_to_sp_process
, exc_secure
);
1490 * Clear scratch FP values left in caller saved registers; this
1491 * must happen before any kind of tail chaining.
1493 if ((env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_CLRONRET_MASK
) &&
1494 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
)) {
1495 if (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
) {
1496 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1497 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1498 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1499 "stackframe: error during lazy state deactivation\n");
1500 v7m_exception_taken(cpu
, excret
, true, false);
1503 /* Clear s0..s15 and FPSCR */
1506 for (i
= 0; i
< 16; i
+= 2) {
1507 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1509 vfp_set_fpscr(env
, 0);
1514 env
->v7m
.sfsr
|= R_V7M_SFSR_INVER_MASK
;
1515 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1516 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1517 "stackframe: failed EXC_RETURN.ES validity check\n");
1518 v7m_exception_taken(cpu
, excret
, true, false);
1524 * Bad exception return: instead of popping the exception
1525 * stack, directly take a usage fault on the current stack.
1527 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1528 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
1529 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1530 "stackframe: failed exception return integrity check\n");
1531 v7m_exception_taken(cpu
, excret
, true, false);
1536 * Tailchaining: if there is currently a pending exception that
1537 * is high enough priority to preempt execution at the level we're
1538 * about to return to, then just directly take that exception now,
1539 * avoiding an unstack-and-then-stack. Note that now we have
1540 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1541 * our current execution priority is already the execution priority we are
1542 * returning to -- none of the state we would unstack or set based on
1543 * the EXCRET value affects it.
1545 if (armv7m_nvic_can_take_pending_exception(env
->nvic
)) {
1546 qemu_log_mask(CPU_LOG_INT
, "...tailchaining to pending exception\n");
1547 v7m_exception_taken(cpu
, excret
, true, false);
1551 switch_v7m_security_state(env
, return_to_secure
);
1555 * The stack pointer we should be reading the exception frame from
1556 * depends on bits in the magic exception return type value (and
1557 * for v8M isn't necessarily the stack pointer we will eventually
1558 * end up resuming execution with). Get a pointer to the location
1559 * in the CPU state struct where the SP we need is currently being
1560 * stored; we will use and modify it in place.
1561 * We use this limited C variable scope so we don't accidentally
1562 * use 'frame_sp_p' after we do something that makes it invalid.
1564 uint32_t *frame_sp_p
= get_v7m_sp_ptr(env
,
1567 return_to_sp_process
);
1568 uint32_t frameptr
= *frame_sp_p
;
1571 bool return_to_priv
= return_to_handler
||
1572 !(env
->v7m
.control
[return_to_secure
] & R_V7M_CONTROL_NPRIV_MASK
);
1574 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, return_to_secure
,
1577 if (!QEMU_IS_ALIGNED(frameptr
, 8) &&
1578 arm_feature(env
, ARM_FEATURE_V8
)) {
1579 qemu_log_mask(LOG_GUEST_ERROR
,
1580 "M profile exception return with non-8-aligned SP "
1581 "for destination state is UNPREDICTABLE\n");
1584 /* Do we need to pop callee-saved registers? */
1585 if (return_to_secure
&&
1586 ((excret
& R_V7M_EXCRET_ES_MASK
) == 0 ||
1587 (excret
& R_V7M_EXCRET_DCRS_MASK
) == 0)) {
1588 uint32_t actual_sig
;
1590 pop_ok
= v7m_stack_read(cpu
, &actual_sig
, frameptr
, mmu_idx
);
1592 if (pop_ok
&& v7m_integrity_sig(env
, excret
) != actual_sig
) {
1593 /* Take a SecureFault on the current stack */
1594 env
->v7m
.sfsr
|= R_V7M_SFSR_INVIS_MASK
;
1595 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1596 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1597 "stackframe: failed exception return integrity "
1598 "signature check\n");
1599 v7m_exception_taken(cpu
, excret
, true, false);
1604 v7m_stack_read(cpu
, &env
->regs
[4], frameptr
+ 0x8, mmu_idx
) &&
1605 v7m_stack_read(cpu
, &env
->regs
[5], frameptr
+ 0xc, mmu_idx
) &&
1606 v7m_stack_read(cpu
, &env
->regs
[6], frameptr
+ 0x10, mmu_idx
) &&
1607 v7m_stack_read(cpu
, &env
->regs
[7], frameptr
+ 0x14, mmu_idx
) &&
1608 v7m_stack_read(cpu
, &env
->regs
[8], frameptr
+ 0x18, mmu_idx
) &&
1609 v7m_stack_read(cpu
, &env
->regs
[9], frameptr
+ 0x1c, mmu_idx
) &&
1610 v7m_stack_read(cpu
, &env
->regs
[10], frameptr
+ 0x20, mmu_idx
) &&
1611 v7m_stack_read(cpu
, &env
->regs
[11], frameptr
+ 0x24, mmu_idx
);
1618 v7m_stack_read(cpu
, &env
->regs
[0], frameptr
, mmu_idx
) &&
1619 v7m_stack_read(cpu
, &env
->regs
[1], frameptr
+ 0x4, mmu_idx
) &&
1620 v7m_stack_read(cpu
, &env
->regs
[2], frameptr
+ 0x8, mmu_idx
) &&
1621 v7m_stack_read(cpu
, &env
->regs
[3], frameptr
+ 0xc, mmu_idx
) &&
1622 v7m_stack_read(cpu
, &env
->regs
[12], frameptr
+ 0x10, mmu_idx
) &&
1623 v7m_stack_read(cpu
, &env
->regs
[14], frameptr
+ 0x14, mmu_idx
) &&
1624 v7m_stack_read(cpu
, &env
->regs
[15], frameptr
+ 0x18, mmu_idx
) &&
1625 v7m_stack_read(cpu
, &xpsr
, frameptr
+ 0x1c, mmu_idx
);
1629 * v7m_stack_read() pended a fault, so take it (as a tail
1630 * chained exception on the same stack frame)
1632 qemu_log_mask(CPU_LOG_INT
, "...derived exception on unstacking\n");
1633 v7m_exception_taken(cpu
, excret
, true, false);
1638 * Returning from an exception with a PC with bit 0 set is defined
1639 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1640 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1641 * the lsbit, and there are several RTOSes out there which incorrectly
1642 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1643 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1644 * complain about the badly behaved guest.
1646 if (env
->regs
[15] & 1) {
1647 env
->regs
[15] &= ~1U;
1648 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1649 qemu_log_mask(LOG_GUEST_ERROR
,
1650 "M profile return from interrupt with misaligned "
1651 "PC is UNPREDICTABLE on v7M\n");
1655 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1657 * For v8M we have to check whether the xPSR exception field
1658 * matches the EXCRET value for return to handler/thread
1659 * before we commit to changing the SP and xPSR.
1661 bool will_be_handler
= (xpsr
& XPSR_EXCP
) != 0;
1662 if (return_to_handler
!= will_be_handler
) {
1664 * Take an INVPC UsageFault on the current stack.
1665 * By this point we will have switched to the security state
1666 * for the background state, so this UsageFault will target
1669 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1671 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1672 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1673 "stackframe: failed exception return integrity "
1675 v7m_exception_taken(cpu
, excret
, true, false);
1681 /* FP present and we need to handle it */
1682 if (!return_to_secure
&&
1683 (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
)) {
1684 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1685 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1686 qemu_log_mask(CPU_LOG_INT
,
1687 "...taking SecureFault on existing stackframe: "
1688 "Secure LSPACT set but exception return is "
1689 "not to secure state\n");
1690 v7m_exception_taken(cpu
, excret
, true, false);
1694 restore_s16_s31
= return_to_secure
&&
1695 (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
);
1697 if (env
->v7m
.fpccr
[return_to_secure
] & R_V7M_FPCCR_LSPACT_MASK
) {
1698 /* State in FPU is still valid, just clear LSPACT */
1699 env
->v7m
.fpccr
[return_to_secure
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
1703 bool cpacr_pass
, nsacr_pass
;
1705 cpacr_pass
= v7m_cpacr_pass(env
, return_to_secure
,
1707 nsacr_pass
= return_to_secure
||
1708 extract32(env
->v7m
.nsacr
, 10, 1);
1711 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1713 env
->v7m
.cfsr
[return_to_secure
] |= R_V7M_CFSR_NOCP_MASK
;
1714 qemu_log_mask(CPU_LOG_INT
,
1715 "...taking UsageFault on existing "
1716 "stackframe: CPACR.CP10 prevents unstacking "
1718 v7m_exception_taken(cpu
, excret
, true, false);
1720 } else if (!nsacr_pass
) {
1721 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, true);
1722 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_INVPC_MASK
;
1723 qemu_log_mask(CPU_LOG_INT
,
1724 "...taking Secure UsageFault on existing "
1725 "stackframe: NSACR.CP10 prevents unstacking "
1727 v7m_exception_taken(cpu
, excret
, true, false);
1731 for (i
= 0; i
< (restore_s16_s31
? 32 : 16); i
+= 2) {
1734 uint32_t faddr
= frameptr
+ 0x20 + 4 * i
;
1737 faddr
+= 8; /* Skip the slot for the FPSCR */
1741 v7m_stack_read(cpu
, &slo
, faddr
, mmu_idx
) &&
1742 v7m_stack_read(cpu
, &shi
, faddr
+ 4, mmu_idx
);
1748 dn
= (uint64_t)shi
<< 32 | slo
;
1749 *aa32_vfp_dreg(env
, i
/ 2) = dn
;
1752 v7m_stack_read(cpu
, &fpscr
, frameptr
+ 0x60, mmu_idx
);
1754 vfp_set_fpscr(env
, fpscr
);
1758 * These regs are 0 if security extension present;
1759 * otherwise merely UNKNOWN. We zero always.
1761 for (i
= 0; i
< (restore_s16_s31
? 32 : 16); i
+= 2) {
1762 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1764 vfp_set_fpscr(env
, 0);
1768 env
->v7m
.control
[M_REG_S
] = FIELD_DP32(env
->v7m
.control
[M_REG_S
],
1769 V7M_CONTROL
, FPCA
, !ftype
);
1771 /* Commit to consuming the stack frame */
1775 if (restore_s16_s31
) {
1780 * Undo stack alignment (the SPREALIGN bit indicates that the original
1781 * pre-exception SP was not 8-aligned and we added a padding word to
1782 * align it, so we undo this by ORing in the bit that increases it
1783 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1784 * would work too but a logical OR is how the pseudocode specifies it.)
1786 if (xpsr
& XPSR_SPREALIGN
) {
1789 *frame_sp_p
= frameptr
;
1792 xpsr_mask
= ~(XPSR_SPREALIGN
| XPSR_SFPA
);
1793 if (!arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
1794 xpsr_mask
&= ~XPSR_GE
;
1796 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1797 xpsr_write(env
, xpsr
, xpsr_mask
);
1799 if (env
->v7m
.secure
) {
1800 bool sfpa
= xpsr
& XPSR_SFPA
;
1802 env
->v7m
.control
[M_REG_S
] = FIELD_DP32(env
->v7m
.control
[M_REG_S
],
1803 V7M_CONTROL
, SFPA
, sfpa
);
1807 * The restored xPSR exception field will be zero if we're
1808 * resuming in Thread mode. If that doesn't match what the
1809 * exception return excret specified then this is a UsageFault.
1810 * v7M requires we make this check here; v8M did it earlier.
1812 if (return_to_handler
!= arm_v7m_is_handler_mode(env
)) {
1814 * Take an INVPC UsageFault by pushing the stack again;
1815 * we know we're v7M so this is never a Secure UsageFault.
1817 bool ignore_stackfaults
;
1819 assert(!arm_feature(env
, ARM_FEATURE_V8
));
1820 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, false);
1821 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1822 ignore_stackfaults
= v7m_push_stack(cpu
);
1823 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on new stackframe: "
1824 "failed exception return integrity check\n");
1825 v7m_exception_taken(cpu
, excret
, false, ignore_stackfaults
);
1829 /* Otherwise, we have a successful exception exit. */
1830 arm_clear_exclusive(env
);
1831 arm_rebuild_hflags(env
);
1832 qemu_log_mask(CPU_LOG_INT
, "...successful exception return\n");
1835 static bool do_v7m_function_return(ARMCPU
*cpu
)
1838 * v8M security extensions magic function return.
1840 * (1) throw an exception (longjump)
1841 * (2) return true if we successfully handled the function return
1842 * (3) return false if we failed a consistency check and have
1843 * pended a UsageFault that needs to be taken now
1845 * At this point the magic return value is split between env->regs[15]
1846 * and env->thumb. We don't bother to reconstitute it because we don't
1847 * need it (all values are handled the same way).
1849 CPUARMState
*env
= &cpu
->env
;
1850 uint32_t newpc
, newpsr
, newpsr_exc
;
1852 qemu_log_mask(CPU_LOG_INT
, "...really v7M secure function return\n");
1855 bool threadmode
, spsel
;
1858 uint32_t *frame_sp_p
;
1861 /* Pull the return address and IPSR from the Secure stack */
1862 threadmode
= !arm_v7m_is_handler_mode(env
);
1863 spsel
= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SPSEL_MASK
;
1865 frame_sp_p
= get_v7m_sp_ptr(env
, true, threadmode
, spsel
);
1866 frameptr
= *frame_sp_p
;
1869 * These loads may throw an exception (for MPU faults). We want to
1870 * do them as secure, so work out what MMU index that is.
1872 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
1873 oi
= make_memop_idx(MO_LE
, arm_to_core_mmu_idx(mmu_idx
));
1874 newpc
= helper_le_ldul_mmu(env
, frameptr
, oi
, 0);
1875 newpsr
= helper_le_ldul_mmu(env
, frameptr
+ 4, oi
, 0);
1877 /* Consistency checks on new IPSR */
1878 newpsr_exc
= newpsr
& XPSR_EXCP
;
1879 if (!((env
->v7m
.exception
== 0 && newpsr_exc
== 0) ||
1880 (env
->v7m
.exception
== 1 && newpsr_exc
!= 0))) {
1881 /* Pend the fault and tell our caller to take it */
1882 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1883 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1885 qemu_log_mask(CPU_LOG_INT
,
1886 "...taking INVPC UsageFault: "
1887 "IPSR consistency check failed\n");
1891 *frame_sp_p
= frameptr
+ 8;
1894 /* This invalidates frame_sp_p */
1895 switch_v7m_security_state(env
, true);
1896 env
->v7m
.exception
= newpsr_exc
;
1897 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
1898 if (newpsr
& XPSR_SFPA
) {
1899 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_SFPA_MASK
;
1901 xpsr_write(env
, 0, XPSR_IT
);
1902 env
->thumb
= newpc
& 1;
1903 env
->regs
[15] = newpc
& ~1;
1904 arm_rebuild_hflags(env
);
1906 qemu_log_mask(CPU_LOG_INT
, "...function return successful\n");
1910 static bool v7m_read_half_insn(ARMCPU
*cpu
, ARMMMUIdx mmu_idx
,
1911 uint32_t addr
, uint16_t *insn
)
1914 * Load a 16-bit portion of a v7M instruction, returning true on success,
1915 * or false on failure (in which case we will have pended the appropriate
1917 * We need to do the instruction fetch's MPU and SAU checks
1918 * like this because there is no MMU index that would allow
1919 * doing the load with a single function call. Instead we must
1920 * first check that the security attributes permit the load
1921 * and that they don't mismatch on the two halves of the instruction,
1922 * and then we do the load as a secure load (ie using the security
1923 * attributes of the address, not the CPU, as architecturally required).
1925 CPUState
*cs
= CPU(cpu
);
1926 CPUARMState
*env
= &cpu
->env
;
1927 V8M_SAttributes sattrs
= {};
1928 MemTxAttrs attrs
= {};
1929 ARMMMUFaultInfo fi
= {};
1931 target_ulong page_size
;
1935 v8m_security_lookup(env
, addr
, MMU_INST_FETCH
, mmu_idx
, &sattrs
);
1936 if (!sattrs
.nsc
|| sattrs
.ns
) {
1938 * This must be the second half of the insn, and it straddles a
1939 * region boundary with the second half not being S&NSC.
1941 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
1942 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1943 qemu_log_mask(CPU_LOG_INT
,
1944 "...really SecureFault with SFSR.INVEP\n");
1947 if (get_phys_addr(env
, addr
, MMU_INST_FETCH
, mmu_idx
,
1948 &physaddr
, &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
1949 /* the MPU lookup failed */
1950 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
1951 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
, env
->v7m
.secure
);
1952 qemu_log_mask(CPU_LOG_INT
, "...really MemManage with CFSR.IACCVIOL\n");
1955 *insn
= address_space_lduw_le(arm_addressspace(cs
, attrs
), physaddr
,
1957 if (txres
!= MEMTX_OK
) {
1958 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
1959 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
1960 qemu_log_mask(CPU_LOG_INT
, "...really BusFault with CFSR.IBUSERR\n");
1966 static bool v7m_handle_execute_nsc(ARMCPU
*cpu
)
1969 * Check whether this attempt to execute code in a Secure & NS-Callable
1970 * memory region is for an SG instruction; if so, then emulate the
1971 * effect of the SG instruction and return true. Otherwise pend
1972 * the correct kind of exception and return false.
1974 CPUARMState
*env
= &cpu
->env
;
1979 * We should never get here unless get_phys_addr_pmsav8() caused
1980 * an exception for NS executing in S&NSC memory.
1982 assert(!env
->v7m
.secure
);
1983 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
1985 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
1986 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
1988 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15], &insn
)) {
1996 if (insn
!= 0xe97f) {
1998 * Not an SG instruction first half (we choose the IMPDEF
1999 * early-SG-check option).
2004 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15] + 2, &insn
)) {
2008 if (insn
!= 0xe97f) {
2010 * Not an SG instruction second half (yes, both halves of the SG
2011 * insn have the same hex value)
2017 * OK, we have confirmed that we really have an SG instruction.
2018 * We know we're NS in S memory so don't need to repeat those checks.
2020 qemu_log_mask(CPU_LOG_INT
, "...really an SG instruction at 0x%08" PRIx32
2021 ", executing it\n", env
->regs
[15]);
2022 env
->regs
[14] &= ~1;
2023 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
2024 switch_v7m_security_state(env
, true);
2025 xpsr_write(env
, 0, XPSR_IT
);
2027 arm_rebuild_hflags(env
);
2031 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2032 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2033 qemu_log_mask(CPU_LOG_INT
,
2034 "...really SecureFault with SFSR.INVEP\n");
2038 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2040 ARMCPU
*cpu
= ARM_CPU(cs
);
2041 CPUARMState
*env
= &cpu
->env
;
2043 bool ignore_stackfaults
;
2045 arm_log_exception(cs
->exception_index
);
2048 * For exceptions we just mark as pending on the NVIC, and let that
2051 switch (cs
->exception_index
) {
2053 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2054 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNDEFINSTR_MASK
;
2059 * NOCP might be directed to something other than the current
2060 * security state if this fault is because of NSACR; we indicate
2061 * the target security state using exception.target_el.
2063 int target_secstate
;
2065 if (env
->exception
.target_el
== 3) {
2066 target_secstate
= M_REG_S
;
2068 target_secstate
= env
->v7m
.secure
;
2070 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, target_secstate
);
2071 env
->v7m
.cfsr
[target_secstate
] |= R_V7M_CFSR_NOCP_MASK
;
2075 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2076 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVSTATE_MASK
;
2079 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2080 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
2083 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2084 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
2086 case EXCP_UNALIGNED
:
2087 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2088 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNALIGNED_MASK
;
2091 /* The PC already points to the next instruction. */
2092 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
, env
->v7m
.secure
);
2094 case EXCP_PREFETCH_ABORT
:
2095 case EXCP_DATA_ABORT
:
2097 * Note that for M profile we don't have a guest facing FSR, but
2098 * the env->exception.fsr will be populated by the code that
2099 * raises the fault, in the A profile short-descriptor format.
2101 switch (env
->exception
.fsr
& 0xf) {
2102 case M_FAKE_FSR_NSC_EXEC
:
2104 * Exception generated when we try to execute code at an address
2105 * which is marked as Secure & Non-Secure Callable and the CPU
2106 * is in the Non-Secure state. The only instruction which can
2107 * be executed like this is SG (and that only if both halves of
2108 * the SG instruction have the same security attributes.)
2109 * Everything else must generate an INVEP SecureFault, so we
2110 * emulate the SG instruction here.
2112 if (v7m_handle_execute_nsc(cpu
)) {
2116 case M_FAKE_FSR_SFAULT
:
2118 * Various flavours of SecureFault for attempts to execute or
2119 * access data in the wrong security state.
2121 switch (cs
->exception_index
) {
2122 case EXCP_PREFETCH_ABORT
:
2123 if (env
->v7m
.secure
) {
2124 env
->v7m
.sfsr
|= R_V7M_SFSR_INVTRAN_MASK
;
2125 qemu_log_mask(CPU_LOG_INT
,
2126 "...really SecureFault with SFSR.INVTRAN\n");
2128 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2129 qemu_log_mask(CPU_LOG_INT
,
2130 "...really SecureFault with SFSR.INVEP\n");
2133 case EXCP_DATA_ABORT
:
2134 /* This must be an NS access to S memory */
2135 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
2136 qemu_log_mask(CPU_LOG_INT
,
2137 "...really SecureFault with SFSR.AUVIOL\n");
2140 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2142 case 0x8: /* External Abort */
2143 switch (cs
->exception_index
) {
2144 case EXCP_PREFETCH_ABORT
:
2145 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
2146 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IBUSERR\n");
2148 case EXCP_DATA_ABORT
:
2149 env
->v7m
.cfsr
[M_REG_NS
] |=
2150 (R_V7M_CFSR_PRECISERR_MASK
| R_V7M_CFSR_BFARVALID_MASK
);
2151 env
->v7m
.bfar
= env
->exception
.vaddress
;
2152 qemu_log_mask(CPU_LOG_INT
,
2153 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2157 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
2161 * All other FSR values are either MPU faults or "can't happen
2162 * for M profile" cases.
2164 switch (cs
->exception_index
) {
2165 case EXCP_PREFETCH_ABORT
:
2166 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
2167 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IACCVIOL\n");
2169 case EXCP_DATA_ABORT
:
2170 env
->v7m
.cfsr
[env
->v7m
.secure
] |=
2171 (R_V7M_CFSR_DACCVIOL_MASK
| R_V7M_CFSR_MMARVALID_MASK
);
2172 env
->v7m
.mmfar
[env
->v7m
.secure
] = env
->exception
.vaddress
;
2173 qemu_log_mask(CPU_LOG_INT
,
2174 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2175 env
->v7m
.mmfar
[env
->v7m
.secure
]);
2178 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
,
2184 qemu_log_mask(CPU_LOG_INT
,
2185 "...handling as semihosting call 0x%x\n",
2187 env
->regs
[0] = do_arm_semihosting(env
);
2188 env
->regs
[15] += env
->thumb
? 2 : 4;
2191 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
, false);
2195 case EXCP_EXCEPTION_EXIT
:
2196 if (env
->regs
[15] < EXC_RETURN_MIN_MAGIC
) {
2197 /* Must be v8M security extension function return */
2198 assert(env
->regs
[15] >= FNC_RETURN_MIN_MAGIC
);
2199 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
2200 if (do_v7m_function_return(cpu
)) {
2204 do_v7m_exception_exit(cpu
);
2210 * We already pended the specific exception in the NVIC in the
2211 * v7m_preserve_fp_state() helper function.
2215 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
2216 return; /* Never happens. Keep compiler happy. */
2219 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2220 lr
= R_V7M_EXCRET_RES1_MASK
|
2221 R_V7M_EXCRET_DCRS_MASK
;
2223 * The S bit indicates whether we should return to Secure
2224 * or NonSecure (ie our current state).
2225 * The ES bit indicates whether we're taking this exception
2226 * to Secure or NonSecure (ie our target state). We set it
2227 * later, in v7m_exception_taken().
2228 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2229 * This corresponds to the ARM ARM pseudocode for v8M setting
2230 * some LR bits in PushStack() and some in ExceptionTaken();
2231 * the distinction matters for the tailchain cases where we
2232 * can take an exception without pushing the stack.
2234 if (env
->v7m
.secure
) {
2235 lr
|= R_V7M_EXCRET_S_MASK
;
2238 lr
= R_V7M_EXCRET_RES1_MASK
|
2239 R_V7M_EXCRET_S_MASK
|
2240 R_V7M_EXCRET_DCRS_MASK
|
2241 R_V7M_EXCRET_ES_MASK
;
2242 if (env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
) {
2243 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
2246 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
)) {
2247 lr
|= R_V7M_EXCRET_FTYPE_MASK
;
2249 if (!arm_v7m_is_handler_mode(env
)) {
2250 lr
|= R_V7M_EXCRET_MODE_MASK
;
2253 ignore_stackfaults
= v7m_push_stack(cpu
);
2254 v7m_exception_taken(cpu
, lr
, false, ignore_stackfaults
);
2257 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2259 unsigned el
= arm_current_el(env
);
2261 /* First handle registers which unprivileged can read */
2263 case 0 ... 7: /* xPSR sub-fields */
2264 return v7m_mrs_xpsr(env
, reg
, el
);
2265 case 20: /* CONTROL */
2266 return v7m_mrs_control(env
, env
->v7m
.secure
);
2267 case 0x94: /* CONTROL_NS */
2269 * We have to handle this here because unprivileged Secure code
2270 * can read the NS CONTROL register.
2272 if (!env
->v7m
.secure
) {
2275 return env
->v7m
.control
[M_REG_NS
] |
2276 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
);
2280 return 0; /* unprivileged reads others as zero */
2283 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2285 case 0x88: /* MSP_NS */
2286 if (!env
->v7m
.secure
) {
2289 return env
->v7m
.other_ss_msp
;
2290 case 0x89: /* PSP_NS */
2291 if (!env
->v7m
.secure
) {
2294 return env
->v7m
.other_ss_psp
;
2295 case 0x8a: /* MSPLIM_NS */
2296 if (!env
->v7m
.secure
) {
2299 return env
->v7m
.msplim
[M_REG_NS
];
2300 case 0x8b: /* PSPLIM_NS */
2301 if (!env
->v7m
.secure
) {
2304 return env
->v7m
.psplim
[M_REG_NS
];
2305 case 0x90: /* PRIMASK_NS */
2306 if (!env
->v7m
.secure
) {
2309 return env
->v7m
.primask
[M_REG_NS
];
2310 case 0x91: /* BASEPRI_NS */
2311 if (!env
->v7m
.secure
) {
2314 return env
->v7m
.basepri
[M_REG_NS
];
2315 case 0x93: /* FAULTMASK_NS */
2316 if (!env
->v7m
.secure
) {
2319 return env
->v7m
.faultmask
[M_REG_NS
];
2320 case 0x98: /* SP_NS */
2323 * This gives the non-secure SP selected based on whether we're
2324 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2326 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
2328 if (!env
->v7m
.secure
) {
2331 if (!arm_v7m_is_handler_mode(env
) && spsel
) {
2332 return env
->v7m
.other_ss_psp
;
2334 return env
->v7m
.other_ss_msp
;
2344 return v7m_using_psp(env
) ? env
->v7m
.other_sp
: env
->regs
[13];
2346 return v7m_using_psp(env
) ? env
->regs
[13] : env
->v7m
.other_sp
;
2347 case 10: /* MSPLIM */
2348 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2351 return env
->v7m
.msplim
[env
->v7m
.secure
];
2352 case 11: /* PSPLIM */
2353 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2356 return env
->v7m
.psplim
[env
->v7m
.secure
];
2357 case 16: /* PRIMASK */
2358 return env
->v7m
.primask
[env
->v7m
.secure
];
2359 case 17: /* BASEPRI */
2360 case 18: /* BASEPRI_MAX */
2361 return env
->v7m
.basepri
[env
->v7m
.secure
];
2362 case 19: /* FAULTMASK */
2363 return env
->v7m
.faultmask
[env
->v7m
.secure
];
2366 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to read unknown special"
2367 " register %d\n", reg
);
2372 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
2375 * We're passed bits [11..0] of the instruction; extract
2376 * SYSm and the mask bits.
2377 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2378 * we choose to treat them as if the mask bits were valid.
2379 * NB that the pseudocode 'mask' variable is bits [11..10],
2380 * whereas ours is [11..8].
2382 uint32_t mask
= extract32(maskreg
, 8, 4);
2383 uint32_t reg
= extract32(maskreg
, 0, 8);
2384 int cur_el
= arm_current_el(env
);
2386 if (cur_el
== 0 && reg
> 7 && reg
!= 20) {
2388 * only xPSR sub-fields and CONTROL.SFPA may be written by
2394 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2396 case 0x88: /* MSP_NS */
2397 if (!env
->v7m
.secure
) {
2400 env
->v7m
.other_ss_msp
= val
;
2402 case 0x89: /* PSP_NS */
2403 if (!env
->v7m
.secure
) {
2406 env
->v7m
.other_ss_psp
= val
;
2408 case 0x8a: /* MSPLIM_NS */
2409 if (!env
->v7m
.secure
) {
2412 env
->v7m
.msplim
[M_REG_NS
] = val
& ~7;
2414 case 0x8b: /* PSPLIM_NS */
2415 if (!env
->v7m
.secure
) {
2418 env
->v7m
.psplim
[M_REG_NS
] = val
& ~7;
2420 case 0x90: /* PRIMASK_NS */
2421 if (!env
->v7m
.secure
) {
2424 env
->v7m
.primask
[M_REG_NS
] = val
& 1;
2426 case 0x91: /* BASEPRI_NS */
2427 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2430 env
->v7m
.basepri
[M_REG_NS
] = val
& 0xff;
2432 case 0x93: /* FAULTMASK_NS */
2433 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2436 env
->v7m
.faultmask
[M_REG_NS
] = val
& 1;
2438 case 0x94: /* CONTROL_NS */
2439 if (!env
->v7m
.secure
) {
2442 write_v7m_control_spsel_for_secstate(env
,
2443 val
& R_V7M_CONTROL_SPSEL_MASK
,
2445 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2446 env
->v7m
.control
[M_REG_NS
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
2447 env
->v7m
.control
[M_REG_NS
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
2450 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2451 * RES0 if the FPU is not present, and is stored in the S bank
2453 if (arm_feature(env
, ARM_FEATURE_VFP
) &&
2454 extract32(env
->v7m
.nsacr
, 10, 1)) {
2455 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
2456 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_FPCA_MASK
;
2459 case 0x98: /* SP_NS */
2462 * This gives the non-secure SP selected based on whether we're
2463 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2465 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
2466 bool is_psp
= !arm_v7m_is_handler_mode(env
) && spsel
;
2469 if (!env
->v7m
.secure
) {
2473 limit
= is_psp
? env
->v7m
.psplim
[false] : env
->v7m
.msplim
[false];
2476 CPUState
*cs
= env_cpu(env
);
2478 cpu_restore_state(cs
, GETPC(), true);
2479 raise_exception(env
, EXCP_STKOF
, 0, 1);
2483 env
->v7m
.other_ss_psp
= val
;
2485 env
->v7m
.other_ss_msp
= val
;
2495 case 0 ... 7: /* xPSR sub-fields */
2496 v7m_msr_xpsr(env
, mask
, reg
, val
);
2499 if (v7m_using_psp(env
)) {
2500 env
->v7m
.other_sp
= val
;
2502 env
->regs
[13] = val
;
2506 if (v7m_using_psp(env
)) {
2507 env
->regs
[13] = val
;
2509 env
->v7m
.other_sp
= val
;
2512 case 10: /* MSPLIM */
2513 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2516 env
->v7m
.msplim
[env
->v7m
.secure
] = val
& ~7;
2518 case 11: /* PSPLIM */
2519 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2522 env
->v7m
.psplim
[env
->v7m
.secure
] = val
& ~7;
2524 case 16: /* PRIMASK */
2525 env
->v7m
.primask
[env
->v7m
.secure
] = val
& 1;
2527 case 17: /* BASEPRI */
2528 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2531 env
->v7m
.basepri
[env
->v7m
.secure
] = val
& 0xff;
2533 case 18: /* BASEPRI_MAX */
2534 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2538 if (val
!= 0 && (val
< env
->v7m
.basepri
[env
->v7m
.secure
]
2539 || env
->v7m
.basepri
[env
->v7m
.secure
] == 0)) {
2540 env
->v7m
.basepri
[env
->v7m
.secure
] = val
;
2543 case 19: /* FAULTMASK */
2544 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2547 env
->v7m
.faultmask
[env
->v7m
.secure
] = val
& 1;
2549 case 20: /* CONTROL */
2551 * Writing to the SPSEL bit only has an effect if we are in
2552 * thread mode; other bits can be updated by any privileged code.
2553 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2554 * env->v7m.control, so we only need update the others.
2555 * For v7M, we must just ignore explicit writes to SPSEL in handler
2556 * mode; for v8M the write is permitted but will have no effect.
2557 * All these bits are writes-ignored from non-privileged code,
2560 if (cur_el
> 0 && (arm_feature(env
, ARM_FEATURE_V8
) ||
2561 !arm_v7m_is_handler_mode(env
))) {
2562 write_v7m_control_spsel(env
, (val
& R_V7M_CONTROL_SPSEL_MASK
) != 0);
2564 if (cur_el
> 0 && arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2565 env
->v7m
.control
[env
->v7m
.secure
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
2566 env
->v7m
.control
[env
->v7m
.secure
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
2568 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
2570 * SFPA is RAZ/WI from NS or if no FPU.
2571 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2572 * Both are stored in the S bank.
2574 if (env
->v7m
.secure
) {
2575 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
2576 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_SFPA_MASK
;
2579 (env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
) ||
2580 extract32(env
->v7m
.nsacr
, 10, 1))) {
2581 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
2582 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_FPCA_MASK
;
2588 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to write unknown special"
2589 " register %d\n", reg
);
2594 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
2596 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2597 bool forceunpriv
= op
& 1;
2599 V8M_SAttributes sattrs
= {};
2601 bool r
, rw
, nsr
, nsrw
, mrvalid
;
2603 ARMMMUFaultInfo fi
= {};
2604 MemTxAttrs attrs
= {};
2609 bool targetsec
= env
->v7m
.secure
;
2613 * Work out what the security state and privilege level we're
2614 * interested in is...
2617 targetsec
= !targetsec
;
2623 targetpriv
= arm_v7m_is_handler_mode(env
) ||
2624 !(env
->v7m
.control
[targetsec
] & R_V7M_CONTROL_NPRIV_MASK
);
2627 /* ...and then figure out which MMU index this is */
2628 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targetsec
, targetpriv
);
2631 * We know that the MPU and SAU don't care about the access type
2632 * for our purposes beyond that we don't want to claim to be
2633 * an insn fetch, so we arbitrarily call this a read.
2637 * MPU region info only available for privileged or if
2638 * inspecting the other MPU state.
2640 if (arm_current_el(env
) != 0 || alt
) {
2641 /* We can ignore the return value as prot is always set */
2642 pmsav8_mpu_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
,
2643 &phys_addr
, &attrs
, &prot
, &is_subpage
,
2645 if (mregion
== -1) {
2651 r
= prot
& PAGE_READ
;
2652 rw
= prot
& PAGE_WRITE
;
2660 if (env
->v7m
.secure
) {
2661 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
2662 nsr
= sattrs
.ns
&& r
;
2663 nsrw
= sattrs
.ns
&& rw
;
2670 tt_resp
= (sattrs
.iregion
<< 24) |
2671 (sattrs
.irvalid
<< 23) |
2672 ((!sattrs
.ns
) << 22) |
2677 (sattrs
.srvalid
<< 17) |
2679 (sattrs
.sregion
<< 8) |
2685 #endif /* !CONFIG_USER_ONLY */
2687 ARMMMUIdx
arm_v7m_mmu_idx_all(CPUARMState
*env
,
2688 bool secstate
, bool priv
, bool negpri
)
2690 ARMMMUIdx mmu_idx
= ARM_MMU_IDX_M
;
2693 mmu_idx
|= ARM_MMU_IDX_M_PRIV
;
2697 mmu_idx
|= ARM_MMU_IDX_M_NEGPRI
;
2701 mmu_idx
|= ARM_MMU_IDX_M_S
;
2707 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState
*env
,
2708 bool secstate
, bool priv
)
2710 bool negpri
= armv7m_nvic_neg_prio_requested(env
->nvic
, secstate
);
2712 return arm_v7m_mmu_idx_all(env
, secstate
, priv
, negpri
);
2715 /* Return the MMU index for a v7M CPU in the specified security state */
2716 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
2718 bool priv
= arm_current_el(env
) != 0;
2720 return arm_v7m_mmu_idx_for_secstate_and_priv(env
, secstate
, priv
);