2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
11 int access_type
, int is_user
,
12 hwaddr
*phys_ptr
, int *prot
,
13 target_ulong
*page_size
);
16 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
20 /* VFP data registers are always little-endian. */
21 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
23 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
26 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
27 /* Aliases for Q regs. */
30 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
31 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
35 switch (reg
- nregs
) {
36 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
37 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
38 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
43 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
47 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
49 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
52 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
55 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
56 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
60 switch (reg
- nregs
) {
61 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
62 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
63 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
68 static int raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
71 if (ri
->type
& ARM_CP_64BIT
) {
72 *value
= CPREG_FIELD64(env
, ri
);
74 *value
= CPREG_FIELD32(env
, ri
);
79 static int raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
82 if (ri
->type
& ARM_CP_64BIT
) {
83 CPREG_FIELD64(env
, ri
) = value
;
85 CPREG_FIELD32(env
, ri
) = value
;
90 static bool read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
93 /* Raw read of a coprocessor register (as needed for migration, etc)
94 * return true on success, false if the read is impossible for some reason.
96 if (ri
->type
& ARM_CP_CONST
) {
98 } else if (ri
->raw_readfn
) {
99 return (ri
->raw_readfn(env
, ri
, v
) == 0);
100 } else if (ri
->readfn
) {
101 return (ri
->readfn(env
, ri
, v
) == 0);
103 if (ri
->type
& ARM_CP_64BIT
) {
104 *v
= CPREG_FIELD64(env
, ri
);
106 *v
= CPREG_FIELD32(env
, ri
);
112 static bool write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
115 /* Raw write of a coprocessor register (as needed for migration, etc).
116 * Return true on success, false if the write is impossible for some reason.
117 * Note that constant registers are treated as write-ignored; the
118 * caller should check for success by whether a readback gives the
121 if (ri
->type
& ARM_CP_CONST
) {
123 } else if (ri
->raw_writefn
) {
124 return (ri
->raw_writefn(env
, ri
, v
) == 0);
125 } else if (ri
->writefn
) {
126 return (ri
->writefn(env
, ri
, v
) == 0);
128 if (ri
->type
& ARM_CP_64BIT
) {
129 CPREG_FIELD64(env
, ri
) = v
;
131 CPREG_FIELD32(env
, ri
) = v
;
137 bool write_cpustate_to_list(ARMCPU
*cpu
)
139 /* Write the coprocessor state from cpu->env to the (index,value) list. */
143 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
144 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
145 const ARMCPRegInfo
*ri
;
147 ri
= get_arm_cp_reginfo(cpu
, regidx
);
152 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
155 if (!read_raw_cp_reg(&cpu
->env
, ri
, &v
)) {
159 cpu
->cpreg_values
[i
] = v
;
164 bool write_list_to_cpustate(ARMCPU
*cpu
)
169 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
170 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
171 uint64_t v
= cpu
->cpreg_values
[i
];
173 const ARMCPRegInfo
*ri
;
175 ri
= get_arm_cp_reginfo(cpu
, regidx
);
180 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
183 /* Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
187 if (!write_raw_cp_reg(&cpu
->env
, ri
, v
) ||
188 !read_raw_cp_reg(&cpu
->env
, ri
, &readback
) ||
196 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
198 ARMCPU
*cpu
= opaque
;
200 const ARMCPRegInfo
*ri
;
202 regidx
= *(uint32_t *)key
;
203 ri
= get_arm_cp_reginfo(cpu
, regidx
);
205 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
206 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
207 /* The value array need not be initialized at this point */
208 cpu
->cpreg_array_len
++;
212 static void count_cpreg(gpointer key
, gpointer opaque
)
214 ARMCPU
*cpu
= opaque
;
216 const ARMCPRegInfo
*ri
;
218 regidx
= *(uint32_t *)key
;
219 ri
= get_arm_cp_reginfo(cpu
, regidx
);
221 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
222 cpu
->cpreg_array_len
++;
226 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
228 uint32_t aidx
= *(uint32_t *)a
;
229 uint32_t bidx
= *(uint32_t *)b
;
234 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
236 GList
**plist
= udata
;
238 *plist
= g_list_prepend(*plist
, key
);
241 void init_cpreg_list(ARMCPU
*cpu
)
243 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
244 * Note that we require cpreg_tuples[] to be sorted by key ID.
249 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
251 keys
= g_list_sort(keys
, cpreg_key_compare
);
253 cpu
->cpreg_array_len
= 0;
255 g_list_foreach(keys
, count_cpreg
, cpu
);
257 arraylen
= cpu
->cpreg_array_len
;
258 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
259 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
260 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
261 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
262 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
263 cpu
->cpreg_array_len
= 0;
265 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
267 assert(cpu
->cpreg_array_len
== arraylen
);
272 static int dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
274 env
->cp15
.c3
= value
;
275 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
279 static int fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
281 if (env
->cp15
.c13_fcse
!= value
) {
282 /* Unlike real hardware the qemu TLB uses virtual addresses,
283 * not modified virtual addresses, so this causes a TLB flush.
286 env
->cp15
.c13_fcse
= value
;
290 static int contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
293 if (env
->cp15
.c13_context
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)) {
294 /* For VMSA (when not using the LPAE long descriptor page table
295 * format) this register includes the ASID, so do a TLB flush.
296 * For PMSA it is purely a process ID and no action is needed.
300 env
->cp15
.c13_context
= value
;
304 static int tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
307 /* Invalidate all (TLBIALL) */
312 static int tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
315 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
316 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
320 static int tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
323 /* Invalidate by ASID (TLBIASID) */
324 tlb_flush(env
, value
== 0);
328 static int tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
331 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
332 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
336 static const ARMCPRegInfo cp_reginfo
[] = {
337 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
338 * version" bits will read as a reserved value, which should cause
339 * Linux to not try to use the debug hardware.
341 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
342 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
343 /* MMU Domain access control / MPU write buffer control */
344 { .name
= "DACR", .cp
= 15,
345 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
346 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
347 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
348 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
349 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
350 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
351 { .name
= "CONTEXTIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 1,
352 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
353 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
354 /* ??? This covers not just the impdef TLB lockdown registers but also
355 * some v7VMSA registers relating to TEX remap, so it is overly broad.
357 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
358 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
359 /* MMU TLB control. Note that the wildcarding means we cover not just
360 * the unified TLB ops but also the dside/iside/inner-shareable variants.
362 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
363 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
364 .type
= ARM_CP_NO_MIGRATE
},
365 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
366 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
367 .type
= ARM_CP_NO_MIGRATE
},
368 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
369 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
370 .type
= ARM_CP_NO_MIGRATE
},
371 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
372 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
373 .type
= ARM_CP_NO_MIGRATE
},
374 /* Cache maintenance ops; some of this space may be overridden later. */
375 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
376 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
377 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
381 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
382 /* Not all pre-v6 cores implemented this WFI, so this is slightly
385 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
386 .access
= PL1_W
, .type
= ARM_CP_WFI
},
390 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
391 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
392 * is UNPREDICTABLE; we choose to NOP as most implementations do).
394 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
395 .access
= PL1_W
, .type
= ARM_CP_WFI
},
396 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
397 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
398 * OMAPCP will override this space.
400 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
401 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
403 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
404 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
406 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
407 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
408 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
413 static int cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
415 if (env
->cp15
.c1_coproc
!= value
) {
416 env
->cp15
.c1_coproc
= value
;
417 /* ??? Is this safe when called from within a TB? */
423 static const ARMCPRegInfo v6_cp_reginfo
[] = {
424 /* prefetch by MVA in v6, NOP in v7 */
425 { .name
= "MVA_prefetch",
426 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
427 .access
= PL1_W
, .type
= ARM_CP_NOP
},
428 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
429 .access
= PL0_W
, .type
= ARM_CP_NOP
},
430 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
431 .access
= PL0_W
, .type
= ARM_CP_NOP
},
432 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
433 .access
= PL0_W
, .type
= ARM_CP_NOP
},
434 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
435 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_insn
),
437 /* Watchpoint Fault Address Register : should actually only be present
438 * for 1136, 1176, 11MPCore.
440 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
441 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
442 { .name
= "CPACR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
443 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
444 .resetvalue
= 0, .writefn
= cpacr_write
},
449 static int pmreg_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
452 /* Generic performance monitor register read function for where
453 * user access may be allowed by PMUSERENR.
455 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
458 *value
= CPREG_FIELD32(env
, ri
);
462 static int pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
465 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
468 /* only the DP, X, D and E bits are writable */
469 env
->cp15
.c9_pmcr
&= ~0x39;
470 env
->cp15
.c9_pmcr
|= (value
& 0x39);
474 static int pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
477 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
481 env
->cp15
.c9_pmcnten
|= value
;
485 static int pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
488 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
492 env
->cp15
.c9_pmcnten
&= ~value
;
496 static int pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
499 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
502 env
->cp15
.c9_pmovsr
&= ~value
;
506 static int pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
509 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
512 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
516 static int pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
519 env
->cp15
.c9_pmuserenr
= value
& 1;
523 static int pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
526 /* We have no event counters so only the C bit can be changed */
528 env
->cp15
.c9_pminten
|= value
;
532 static int pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
536 env
->cp15
.c9_pminten
&= ~value
;
540 static int ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
543 ARMCPU
*cpu
= arm_env_get_cpu(env
);
544 *value
= cpu
->ccsidr
[env
->cp15
.c0_cssel
];
548 static int csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
551 env
->cp15
.c0_cssel
= value
& 0xf;
555 static const ARMCPRegInfo v7_cp_reginfo
[] = {
556 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
559 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
560 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
561 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
562 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
563 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
564 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
565 .access
= PL1_W
, .type
= ARM_CP_NOP
},
566 /* Performance monitors are implementation defined in v7,
567 * but with an ARM recommended set of registers, which we
568 * follow (although we don't actually implement any counters)
570 * Performance registers fall into three categories:
571 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
572 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
573 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
574 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
575 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
577 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
578 .access
= PL0_RW
, .resetvalue
= 0,
579 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
580 .readfn
= pmreg_read
, .writefn
= pmcntenset_write
,
581 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
582 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
583 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
584 .readfn
= pmreg_read
, .writefn
= pmcntenclr_write
,
585 .type
= ARM_CP_NO_MIGRATE
},
586 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
587 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
588 .readfn
= pmreg_read
, .writefn
= pmovsr_write
,
589 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
590 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
593 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
594 .access
= PL0_W
, .type
= ARM_CP_NOP
},
595 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
596 * We choose to RAZ/WI. XXX should respect PMUSERENR.
598 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
599 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
600 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
601 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
602 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
603 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
605 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
606 .readfn
= pmreg_read
, .writefn
= pmxevtyper_write
,
607 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
608 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
609 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
610 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
611 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
612 .access
= PL0_R
| PL1_RW
,
613 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
615 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
616 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
618 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
620 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
621 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
622 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
623 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
624 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
625 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
626 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
628 { .name
= "CCSIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
629 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
630 { .name
= "CSSELR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
631 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
632 .writefn
= csselr_write
, .resetvalue
= 0 },
633 /* Auxiliary ID register: this actually has an IMPDEF value but for now
634 * just RAZ for all cores:
636 { .name
= "AIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 7,
637 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
641 static int teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
648 static int teehbr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
651 /* This is a helper function because the user access rights
652 * depend on the value of the TEECR.
654 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
657 *value
= env
->teehbr
;
661 static int teehbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
664 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
671 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
672 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
673 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
675 .writefn
= teecr_write
},
676 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
677 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
678 .resetvalue
= 0, .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
679 .readfn
= teehbr_read
, .writefn
= teehbr_write
},
683 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
684 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
686 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls1
),
688 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
689 .access
= PL0_R
|PL1_W
,
690 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls2
),
692 { .name
= "TPIDRPRW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 4,
694 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls3
),
699 #ifndef CONFIG_USER_ONLY
701 static uint64_t gt_get_countervalue(CPUARMState
*env
)
703 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
706 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
708 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
711 /* Timer enabled: calculate and set current ISTATUS, irq, and
712 * reset timer to when ISTATUS next has to change
714 uint64_t count
= gt_get_countervalue(&cpu
->env
);
715 /* Note that this must be unsigned 64 bit arithmetic: */
716 int istatus
= count
>= gt
->cval
;
719 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
720 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
721 (istatus
&& !(gt
->ctl
& 2)));
723 /* Next transition is when count rolls back over to zero */
724 nexttick
= UINT64_MAX
;
726 /* Next transition is when we hit cval */
729 /* Note that the desired next expiry time might be beyond the
730 * signed-64-bit range of a QEMUTimer -- in this case we just
731 * set the timer for as far in the future as possible. When the
732 * timer expires we will reset the timer for any remaining period.
734 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
735 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
737 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
739 /* Timer disabled: ISTATUS and timer output always clear */
741 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
742 timer_del(cpu
->gt_timer
[timeridx
]);
746 static int gt_cntfrq_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
749 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
750 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
753 *value
= env
->cp15
.c14_cntfrq
;
757 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
759 ARMCPU
*cpu
= arm_env_get_cpu(env
);
760 int timeridx
= ri
->opc1
& 1;
762 timer_del(cpu
->gt_timer
[timeridx
]);
765 static int gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
768 int timeridx
= ri
->opc1
& 1;
770 if (arm_current_pl(env
) == 0 &&
771 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
774 *value
= gt_get_countervalue(env
);
778 static int gt_cval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
781 int timeridx
= ri
->opc1
& 1;
783 if (arm_current_pl(env
) == 0 &&
784 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
787 *value
= env
->cp15
.c14_timer
[timeridx
].cval
;
791 static int gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
794 int timeridx
= ri
->opc1
& 1;
796 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
797 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
800 static int gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
803 int timeridx
= ri
->crm
& 1;
805 if (arm_current_pl(env
) == 0 &&
806 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
809 *value
= (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
810 gt_get_countervalue(env
));
814 static int gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
817 int timeridx
= ri
->crm
& 1;
819 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
820 + sextract64(value
, 0, 32);
821 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
825 static int gt_ctl_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
828 int timeridx
= ri
->crm
& 1;
830 if (arm_current_pl(env
) == 0 &&
831 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
834 *value
= env
->cp15
.c14_timer
[timeridx
].ctl
;
838 static int gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
841 ARMCPU
*cpu
= arm_env_get_cpu(env
);
842 int timeridx
= ri
->crm
& 1;
843 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
845 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
846 if ((oldval
^ value
) & 1) {
848 gt_recalc_timer(cpu
, timeridx
);
849 } else if ((oldval
& value
) & 2) {
850 /* IMASK toggled: don't need to recalculate,
851 * just set the interrupt line based on ISTATUS
853 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
854 (oldval
& 4) && (value
& 2));
859 void arm_gt_ptimer_cb(void *opaque
)
861 ARMCPU
*cpu
= opaque
;
863 gt_recalc_timer(cpu
, GTIMER_PHYS
);
866 void arm_gt_vtimer_cb(void *opaque
)
868 ARMCPU
*cpu
= opaque
;
870 gt_recalc_timer(cpu
, GTIMER_VIRT
);
873 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
874 /* Note that CNTFRQ is purely reads-as-written for the benefit
875 * of software; writing it doesn't actually change the timer frequency.
876 * Our reset value matches the fixed frequency we implement the timer at.
878 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
879 .access
= PL1_RW
| PL0_R
,
880 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
881 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
882 .readfn
= gt_cntfrq_read
, .raw_readfn
= raw_read
,
884 /* overall control: mostly access permissions */
885 { .name
= "CNTKCTL", .cp
= 15, .crn
= 14, .crm
= 1, .opc1
= 0, .opc2
= 0,
887 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
890 /* per-timer control */
891 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
892 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
893 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
895 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
896 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
898 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
899 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
900 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
902 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
903 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
905 /* TimerValue views: a 32 bit downcounting view of the underlying state */
906 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
907 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
908 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
910 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
911 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
912 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
914 /* The counter itself */
915 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
916 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
917 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
919 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
920 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
921 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
923 /* Comparison value, indicating when the timer goes off */
924 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
925 .access
= PL1_RW
| PL0_R
,
926 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
927 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
929 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
930 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
932 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
933 .access
= PL1_RW
| PL0_R
,
934 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
935 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
937 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
938 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
944 /* In user-mode none of the generic timer registers are accessible,
945 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
946 * so instead just don't register any of them.
948 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
954 static int par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
956 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
957 env
->cp15
.c7_par
= value
;
958 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
959 env
->cp15
.c7_par
= value
& 0xfffff6ff;
961 env
->cp15
.c7_par
= value
& 0xfffff1ff;
966 #ifndef CONFIG_USER_ONLY
967 /* get_phys_addr() isn't present for user-mode-only targets */
969 /* Return true if extended addresses are enabled, ie this is an
970 * LPAE implementation and we are using the long-descriptor translation
971 * table format because the TTBCR EAE bit is set.
973 static inline bool extended_addresses_enabled(CPUARMState
*env
)
975 return arm_feature(env
, ARM_FEATURE_LPAE
)
976 && (env
->cp15
.c2_control
& (1U << 31));
979 static int ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
982 target_ulong page_size
;
984 int ret
, is_user
= ri
->opc2
& 2;
985 int access_type
= ri
->opc2
& 1;
988 /* Other states are only available with TrustZone */
991 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
992 &phys_addr
, &prot
, &page_size
);
993 if (extended_addresses_enabled(env
)) {
994 /* ret is a DFSR/IFSR value for the long descriptor
995 * translation table format, but with WnR always clear.
996 * Convert it to a 64-bit PAR.
998 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1000 par64
|= phys_addr
& ~0xfffULL
;
1001 /* We don't set the ATTR or SH fields in the PAR. */
1004 par64
|= (ret
& 0x3f) << 1; /* FS */
1005 /* Note that S2WLK and FSTAGE are always zero, because we don't
1006 * implement virtualization and therefore there can't be a stage 2
1010 env
->cp15
.c7_par
= par64
;
1011 env
->cp15
.c7_par_hi
= par64
>> 32;
1013 /* ret is a DFSR/IFSR value for the short descriptor
1014 * translation table format (with WnR always clear).
1015 * Convert it to a 32-bit PAR.
1018 /* We do not set any attribute bits in the PAR */
1019 if (page_size
== (1 << 24)
1020 && arm_feature(env
, ARM_FEATURE_V7
)) {
1021 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1023 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1026 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1027 ((ret
& (12 << 1)) >> 6) |
1028 ((ret
& 0xf) << 1) | 1;
1030 env
->cp15
.c7_par_hi
= 0;
1036 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1037 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1038 .access
= PL1_RW
, .resetvalue
= 0,
1039 .fieldoffset
= offsetof(CPUARMState
, cp15
.c7_par
),
1040 .writefn
= par_write
},
1041 #ifndef CONFIG_USER_ONLY
1042 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1043 .access
= PL1_W
, .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1048 /* Return basic MPU access permission bits. */
1049 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1056 for (i
= 0; i
< 16; i
+= 2) {
1057 ret
|= (val
>> i
) & mask
;
1063 /* Pad basic MPU access permission bits to extended format. */
1064 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1071 for (i
= 0; i
< 16; i
+= 2) {
1072 ret
|= (val
& mask
) << i
;
1078 static int pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1081 env
->cp15
.c5_data
= extended_mpu_ap_bits(value
);
1085 static int pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1088 *value
= simple_mpu_ap_bits(env
->cp15
.c5_data
);
1092 static int pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1095 env
->cp15
.c5_insn
= extended_mpu_ap_bits(value
);
1099 static int pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1102 *value
= simple_mpu_ap_bits(env
->cp15
.c5_insn
);
1106 static int arm946_prbs_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1112 *value
= env
->cp15
.c6_region
[ri
->crm
];
1116 static int arm946_prbs_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1122 env
->cp15
.c6_region
[ri
->crm
] = value
;
1126 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1127 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1128 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1129 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0,
1130 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1131 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1132 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1133 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0,
1134 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1135 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1137 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1138 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1140 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1141 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1143 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1144 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1146 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1147 /* Protection region base and size registers */
1148 { .name
= "946_PRBS", .cp
= 15, .crn
= 6, .crm
= CP_ANY
, .opc1
= 0,
1149 .opc2
= CP_ANY
, .access
= PL1_RW
,
1150 .readfn
= arm946_prbs_read
, .writefn
= arm946_prbs_write
, },
1154 static int vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1157 int maskshift
= extract32(value
, 0, 3);
1159 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1160 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1164 /* Note that we always calculate c2_mask and c2_base_mask, but
1165 * they are only used for short-descriptor tables (ie if EAE is 0);
1166 * for long-descriptor tables the TTBCR fields are used differently
1167 * and the c2_mask and c2_base_mask values are meaningless.
1169 env
->cp15
.c2_control
= value
;
1170 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1171 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1175 static int vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1178 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1179 /* With LPAE the TTBCR could result in a change of ASID
1180 * via the TTBCR.A1 bit, so do a TLB flush.
1184 return vmsa_ttbcr_raw_write(env
, ri
, value
);
1187 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1189 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1190 env
->cp15
.c2_control
= 0;
1191 env
->cp15
.c2_mask
= 0;
1194 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1195 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1197 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1198 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1200 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1201 { .name
= "TTBR0", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1203 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base0
), .resetvalue
= 0, },
1204 { .name
= "TTBR1", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1206 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base1
), .resetvalue
= 0, },
1207 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1208 .access
= PL1_RW
, .writefn
= vmsa_ttbcr_write
,
1209 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1210 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1211 { .name
= "DFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1212 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_data
),
1217 static int omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1220 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1221 /* The OS_TYPE bit in this register changes the reported CPUID! */
1222 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1223 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1227 static int omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1230 env
->cp15
.c15_threadid
= value
& 0xffff;
1234 static int omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1237 /* Wait-for-interrupt (deprecated) */
1238 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1242 static int omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1245 /* On OMAP there are registers indicating the max/min index of dcache lines
1246 * containing a dirty line; cache flush operations have to reset these.
1248 env
->cp15
.c15_i_max
= 0x000;
1249 env
->cp15
.c15_i_min
= 0xff0;
1253 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1254 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1255 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1256 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1257 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1258 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1259 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1261 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1262 .writefn
= omap_ticonfig_write
},
1263 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1265 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1266 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1267 .access
= PL1_RW
, .resetvalue
= 0xff0,
1268 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1269 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1271 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1272 .writefn
= omap_threadid_write
},
1273 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1274 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1275 .type
= ARM_CP_NO_MIGRATE
,
1276 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1277 /* TODO: Peripheral port remap register:
1278 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1279 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1282 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1283 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1284 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1285 .writefn
= omap_cachemaint_write
},
1286 { .name
= "C9", .cp
= 15, .crn
= 9,
1287 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1288 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1292 static int xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1296 if (env
->cp15
.c15_cpar
!= value
) {
1297 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1299 env
->cp15
.c15_cpar
= value
;
1304 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1305 { .name
= "XSCALE_CPAR",
1306 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1307 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1308 .writefn
= xscale_cpar_write
, },
1309 { .name
= "XSCALE_AUXCR",
1310 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1311 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1316 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1317 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1318 * implementation of this implementation-defined space.
1319 * Ideally this should eventually disappear in favour of actually
1320 * implementing the correct behaviour for all cores.
1322 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1323 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1324 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1329 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1330 /* Cache status: RAZ because we have no cache so it's always clean */
1331 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1332 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1337 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1338 /* We never have a a block transfer operation in progress */
1339 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1340 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1342 /* The cache ops themselves: these all NOP for QEMU */
1343 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1344 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1345 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1346 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1347 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1348 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1349 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1350 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1351 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1352 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1353 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1354 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1358 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1359 /* The cache test-and-clean instructions always return (1 << 30)
1360 * to indicate that there are no dirty cache lines.
1362 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1363 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1364 .resetvalue
= (1 << 30) },
1365 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1366 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1367 .resetvalue
= (1 << 30) },
1371 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1372 /* Ignore ReadBuffer accesses */
1373 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1374 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1375 .access
= PL1_RW
, .resetvalue
= 0,
1376 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1380 static int mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1383 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1384 uint32_t mpidr
= cs
->cpu_index
;
1385 /* We don't support setting cluster ID ([8..11])
1386 * so these bits always RAZ.
1388 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1389 mpidr
|= (1U << 31);
1390 /* Cores which are uniprocessor (non-coherent)
1391 * but still implement the MP extensions set
1392 * bit 30. (For instance, A9UP.) However we do
1393 * not currently model any of those cores.
1400 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1401 { .name
= "MPIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1402 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1406 static int par64_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1408 *value
= ((uint64_t)env
->cp15
.c7_par_hi
<< 32) | env
->cp15
.c7_par
;
1412 static int par64_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1414 env
->cp15
.c7_par_hi
= value
>> 32;
1415 env
->cp15
.c7_par
= value
;
1419 static void par64_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1421 env
->cp15
.c7_par_hi
= 0;
1422 env
->cp15
.c7_par
= 0;
1425 static int ttbr064_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1428 *value
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
1432 static int ttbr064_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1435 env
->cp15
.c2_base0_hi
= value
>> 32;
1436 env
->cp15
.c2_base0
= value
;
1440 static int ttbr064_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1443 /* Writes to the 64 bit format TTBRs may change the ASID */
1445 return ttbr064_raw_write(env
, ri
, value
);
1448 static void ttbr064_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1450 env
->cp15
.c2_base0_hi
= 0;
1451 env
->cp15
.c2_base0
= 0;
1454 static int ttbr164_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1457 *value
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
1461 static int ttbr164_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1464 env
->cp15
.c2_base1_hi
= value
>> 32;
1465 env
->cp15
.c2_base1
= value
;
1469 static void ttbr164_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1471 env
->cp15
.c2_base1_hi
= 0;
1472 env
->cp15
.c2_base1
= 0;
1475 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1476 /* NOP AMAIR0/1: the override is because these clash with the rather
1477 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1479 { .name
= "AMAIR0", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1480 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1482 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1483 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1485 /* 64 bit access versions of the (dummy) debug registers */
1486 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1487 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1488 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1489 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1490 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1491 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1492 .readfn
= par64_read
, .writefn
= par64_write
, .resetfn
= par64_reset
},
1493 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1494 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr064_read
,
1495 .writefn
= ttbr064_write
, .raw_writefn
= ttbr064_raw_write
,
1496 .resetfn
= ttbr064_reset
},
1497 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1498 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr164_read
,
1499 .writefn
= ttbr164_write
, .resetfn
= ttbr164_reset
},
1503 static int sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1505 env
->cp15
.c1_sys
= value
;
1506 /* ??? Lots of these bits are not implemented. */
1507 /* This may enable/disable the MMU, so do a TLB flush. */
1512 void register_cp_regs_for_features(ARMCPU
*cpu
)
1514 /* Register all the coprocessor registers based on feature bits */
1515 CPUARMState
*env
= &cpu
->env
;
1516 if (arm_feature(env
, ARM_FEATURE_M
)) {
1517 /* M profile has no coprocessor registers */
1521 define_arm_cp_regs(cpu
, cp_reginfo
);
1522 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1523 /* The ID registers all have impdef reset values */
1524 ARMCPRegInfo v6_idregs
[] = {
1525 { .name
= "ID_PFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1526 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1527 .resetvalue
= cpu
->id_pfr0
},
1528 { .name
= "ID_PFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1529 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1530 .resetvalue
= cpu
->id_pfr1
},
1531 { .name
= "ID_DFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1532 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1533 .resetvalue
= cpu
->id_dfr0
},
1534 { .name
= "ID_AFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1535 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1536 .resetvalue
= cpu
->id_afr0
},
1537 { .name
= "ID_MMFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1538 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1539 .resetvalue
= cpu
->id_mmfr0
},
1540 { .name
= "ID_MMFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1541 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1542 .resetvalue
= cpu
->id_mmfr1
},
1543 { .name
= "ID_MMFR2", .cp
= 15, .crn
= 0, .crm
= 1,
1544 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1545 .resetvalue
= cpu
->id_mmfr2
},
1546 { .name
= "ID_MMFR3", .cp
= 15, .crn
= 0, .crm
= 1,
1547 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1548 .resetvalue
= cpu
->id_mmfr3
},
1549 { .name
= "ID_ISAR0", .cp
= 15, .crn
= 0, .crm
= 2,
1550 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1551 .resetvalue
= cpu
->id_isar0
},
1552 { .name
= "ID_ISAR1", .cp
= 15, .crn
= 0, .crm
= 2,
1553 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1554 .resetvalue
= cpu
->id_isar1
},
1555 { .name
= "ID_ISAR2", .cp
= 15, .crn
= 0, .crm
= 2,
1556 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1557 .resetvalue
= cpu
->id_isar2
},
1558 { .name
= "ID_ISAR3", .cp
= 15, .crn
= 0, .crm
= 2,
1559 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1560 .resetvalue
= cpu
->id_isar3
},
1561 { .name
= "ID_ISAR4", .cp
= 15, .crn
= 0, .crm
= 2,
1562 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1563 .resetvalue
= cpu
->id_isar4
},
1564 { .name
= "ID_ISAR5", .cp
= 15, .crn
= 0, .crm
= 2,
1565 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1566 .resetvalue
= cpu
->id_isar5
},
1567 /* 6..7 are as yet unallocated and must RAZ */
1568 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
1569 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1571 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
1572 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1576 define_arm_cp_regs(cpu
, v6_idregs
);
1577 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
1579 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
1581 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1582 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
1584 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1585 /* v7 performance monitor control register: same implementor
1586 * field as main ID register, and we implement no event counters.
1588 ARMCPRegInfo pmcr
= {
1589 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
1590 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
1591 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
1592 .readfn
= pmreg_read
, .writefn
= pmcr_write
,
1593 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
1595 ARMCPRegInfo clidr
= {
1596 .name
= "CLIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
1597 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
1599 define_one_arm_cp_reg(cpu
, &pmcr
);
1600 define_one_arm_cp_reg(cpu
, &clidr
);
1601 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
1603 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
1605 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1606 /* These are the MPU registers prior to PMSAv6. Any new
1607 * PMSA core later than the ARM946 will require that we
1608 * implement the PMSAv6 or PMSAv7 registers, which are
1609 * completely different.
1611 assert(!arm_feature(env
, ARM_FEATURE_V6
));
1612 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
1614 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
1616 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
1617 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
1619 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1620 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
1622 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1623 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
1625 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
1626 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
1628 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
1629 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
1631 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
1632 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
1634 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1635 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
1637 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1638 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
1640 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1641 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
1643 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
1644 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
1646 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1647 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
1649 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1650 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1651 * be read-only (ie write causes UNDEF exception).
1654 ARMCPRegInfo id_cp_reginfo
[] = {
1655 /* Note that the MIDR isn't a simple constant register because
1656 * of the TI925 behaviour where writes to another register can
1657 * cause the MIDR value to change.
1659 * Unimplemented registers in the c15 0 0 0 space default to
1660 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1661 * and friends override accordingly.
1664 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
1665 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
1666 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
1667 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
1668 .type
= ARM_CP_OVERRIDE
},
1670 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
1671 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
1673 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
1674 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1676 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
1677 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1678 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1680 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
1681 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1683 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
1684 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1686 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
1687 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1689 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
1690 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1692 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
1693 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1696 ARMCPRegInfo crn0_wi_reginfo
= {
1697 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
1698 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
1699 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
1701 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
1702 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1704 /* Register the blanket "writes ignored" value first to cover the
1705 * whole space. Then update the specific ID registers to allow write
1706 * access, so that they ignore writes rather than causing them to
1709 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
1710 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1714 define_arm_cp_regs(cpu
, id_cp_reginfo
);
1717 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
1718 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
1721 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
1722 ARMCPRegInfo auxcr
= {
1723 .name
= "AUXCR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1,
1724 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
1725 .resetvalue
= cpu
->reset_auxcr
1727 define_one_arm_cp_reg(cpu
, &auxcr
);
1730 /* Generic registers whose values depend on the implementation */
1732 ARMCPRegInfo sctlr
= {
1733 .name
= "SCTLR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
1734 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
1735 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
1736 .raw_writefn
= raw_write
,
1738 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1739 /* Normally we would always end the TB on an SCTLR write, but Linux
1740 * arch/arm/mach-pxa/sleep.S expects two instructions following
1741 * an MMU enable to execute from cache. Imitate this behaviour.
1743 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
1745 define_one_arm_cp_reg(cpu
, &sctlr
);
1749 ARMCPU
*cpu_arm_init(const char *cpu_model
)
1755 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpu_model
);
1759 cpu
= ARM_CPU(object_new(object_class_get_name(oc
)));
1761 env
->cpu_model_str
= cpu_model
;
1763 /* TODO this should be set centrally, once possible */
1764 object_property_set_bool(OBJECT(cpu
), true, "realized", NULL
);
1769 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
1771 CPUState
*cs
= CPU(cpu
);
1772 CPUARMState
*env
= &cpu
->env
;
1774 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
1775 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1776 51, "arm-neon.xml", 0);
1777 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1778 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1779 35, "arm-vfp3.xml", 0);
1780 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
1781 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1782 19, "arm-vfp.xml", 0);
1786 /* Sort alphabetically by type name, except for "any". */
1787 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
1789 ObjectClass
*class_a
= (ObjectClass
*)a
;
1790 ObjectClass
*class_b
= (ObjectClass
*)b
;
1791 const char *name_a
, *name_b
;
1793 name_a
= object_class_get_name(class_a
);
1794 name_b
= object_class_get_name(class_b
);
1795 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
1797 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
1800 return strcmp(name_a
, name_b
);
1804 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
1806 ObjectClass
*oc
= data
;
1807 CPUListState
*s
= user_data
;
1808 const char *typename
;
1811 typename
= object_class_get_name(oc
);
1812 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1813 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
1818 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
1822 .cpu_fprintf
= cpu_fprintf
,
1826 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1827 list
= g_slist_sort(list
, arm_cpu_list_compare
);
1828 (*cpu_fprintf
)(f
, "Available CPUs:\n");
1829 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
1833 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
1835 ObjectClass
*oc
= data
;
1836 CpuDefinitionInfoList
**cpu_list
= user_data
;
1837 CpuDefinitionInfoList
*entry
;
1838 CpuDefinitionInfo
*info
;
1839 const char *typename
;
1841 typename
= object_class_get_name(oc
);
1842 info
= g_malloc0(sizeof(*info
));
1843 info
->name
= g_strndup(typename
,
1844 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1846 entry
= g_malloc0(sizeof(*entry
));
1847 entry
->value
= info
;
1848 entry
->next
= *cpu_list
;
1852 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
1854 CpuDefinitionInfoList
*cpu_list
= NULL
;
1857 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1858 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
1864 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
1865 const ARMCPRegInfo
*r
, void *opaque
)
1867 /* Define implementations of coprocessor registers.
1868 * We store these in a hashtable because typically
1869 * there are less than 150 registers in a space which
1870 * is 16*16*16*8*8 = 262144 in size.
1871 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1872 * If a register is defined twice then the second definition is
1873 * used, so this can be used to define some generic registers and
1874 * then override them with implementation specific variations.
1875 * At least one of the original and the second definition should
1876 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1877 * against accidental use.
1879 int crm
, opc1
, opc2
;
1880 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
1881 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
1882 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
1883 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
1884 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
1885 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
1886 /* 64 bit registers have only CRm and Opc1 fields */
1887 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
1888 /* Check that the register definition has enough info to handle
1889 * reads and writes if they are permitted.
1891 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
1892 if (r
->access
& PL3_R
) {
1893 assert(r
->fieldoffset
|| r
->readfn
);
1895 if (r
->access
& PL3_W
) {
1896 assert(r
->fieldoffset
|| r
->writefn
);
1899 /* Bad type field probably means missing sentinel at end of reg list */
1900 assert(cptype_valid(r
->type
));
1901 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
1902 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
1903 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
1904 uint32_t *key
= g_new(uint32_t, 1);
1905 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
1906 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
1907 *key
= ENCODE_CP_REG(r
->cp
, is64
, r
->crn
, crm
, opc1
, opc2
);
1909 r2
->opaque
= opaque
;
1911 /* Make sure reginfo passed to helpers for wildcarded regs
1912 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1917 /* By convention, for wildcarded registers only the first
1918 * entry is used for migration; the others are marked as
1919 * NO_MIGRATE so we don't try to transfer the register
1920 * multiple times. Special registers (ie NOP/WFI) are
1923 if ((r
->type
& ARM_CP_SPECIAL
) ||
1924 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
1925 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
1926 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
1927 r2
->type
|= ARM_CP_NO_MIGRATE
;
1930 /* Overriding of an existing definition must be explicitly
1933 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
1934 ARMCPRegInfo
*oldreg
;
1935 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
1936 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
1937 fprintf(stderr
, "Register redefined: cp=%d %d bit "
1938 "crn=%d crm=%d opc1=%d opc2=%d, "
1939 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
1940 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
1941 oldreg
->name
, r2
->name
);
1942 g_assert_not_reached();
1945 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
1951 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
1952 const ARMCPRegInfo
*regs
, void *opaque
)
1954 /* Define a whole list of registers */
1955 const ARMCPRegInfo
*r
;
1956 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1957 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
1961 const ARMCPRegInfo
*get_arm_cp_reginfo(ARMCPU
*cpu
, uint32_t encoded_cp
)
1963 return g_hash_table_lookup(cpu
->cp_regs
, &encoded_cp
);
1966 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1969 /* Helper coprocessor write function for write-ignore registers */
1973 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1975 /* Helper coprocessor write function for read-as-zero registers */
1980 static int bad_mode_switch(CPUARMState
*env
, int mode
)
1982 /* Return true if it is not valid for us to switch to
1983 * this CPU mode (ie all the UNPREDICTABLE cases in
1984 * the ARM ARM CPSRWriteByInstr pseudocode).
1987 case ARM_CPU_MODE_USR
:
1988 case ARM_CPU_MODE_SYS
:
1989 case ARM_CPU_MODE_SVC
:
1990 case ARM_CPU_MODE_ABT
:
1991 case ARM_CPU_MODE_UND
:
1992 case ARM_CPU_MODE_IRQ
:
1993 case ARM_CPU_MODE_FIQ
:
2000 uint32_t cpsr_read(CPUARMState
*env
)
2003 ZF
= (env
->ZF
== 0);
2004 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
2005 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
2006 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
2007 | ((env
->condexec_bits
& 0xfc) << 8)
2011 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
2013 if (mask
& CPSR_NZCV
) {
2014 env
->ZF
= (~val
) & CPSR_Z
;
2016 env
->CF
= (val
>> 29) & 1;
2017 env
->VF
= (val
<< 3) & 0x80000000;
2020 env
->QF
= ((val
& CPSR_Q
) != 0);
2022 env
->thumb
= ((val
& CPSR_T
) != 0);
2023 if (mask
& CPSR_IT_0_1
) {
2024 env
->condexec_bits
&= ~3;
2025 env
->condexec_bits
|= (val
>> 25) & 3;
2027 if (mask
& CPSR_IT_2_7
) {
2028 env
->condexec_bits
&= 3;
2029 env
->condexec_bits
|= (val
>> 8) & 0xfc;
2031 if (mask
& CPSR_GE
) {
2032 env
->GE
= (val
>> 16) & 0xf;
2035 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
2036 if (bad_mode_switch(env
, val
& CPSR_M
)) {
2037 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2038 * We choose to ignore the attempt and leave the CPSR M field
2043 switch_mode(env
, val
& CPSR_M
);
2046 mask
&= ~CACHED_CPSR_BITS
;
2047 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
2050 /* Sign/zero extend */
2051 uint32_t HELPER(sxtb16
)(uint32_t x
)
2054 res
= (uint16_t)(int8_t)x
;
2055 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
2059 uint32_t HELPER(uxtb16
)(uint32_t x
)
2062 res
= (uint16_t)(uint8_t)x
;
2063 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
2067 uint32_t HELPER(clz
)(uint32_t x
)
2072 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
2076 if (num
== INT_MIN
&& den
== -1)
2081 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
2088 uint32_t HELPER(rbit
)(uint32_t x
)
2090 x
= ((x
& 0xff000000) >> 24)
2091 | ((x
& 0x00ff0000) >> 8)
2092 | ((x
& 0x0000ff00) << 8)
2093 | ((x
& 0x000000ff) << 24);
2094 x
= ((x
& 0xf0f0f0f0) >> 4)
2095 | ((x
& 0x0f0f0f0f) << 4);
2096 x
= ((x
& 0x88888888) >> 3)
2097 | ((x
& 0x44444444) >> 1)
2098 | ((x
& 0x22222222) << 1)
2099 | ((x
& 0x11111111) << 3);
2103 #if defined(CONFIG_USER_ONLY)
2105 void arm_cpu_do_interrupt(CPUState
*cs
)
2107 ARMCPU
*cpu
= ARM_CPU(cs
);
2108 CPUARMState
*env
= &cpu
->env
;
2110 env
->exception_index
= -1;
2113 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
2117 env
->exception_index
= EXCP_PREFETCH_ABORT
;
2118 env
->cp15
.c6_insn
= address
;
2120 env
->exception_index
= EXCP_DATA_ABORT
;
2121 env
->cp15
.c6_data
= address
;
2126 /* These should probably raise undefined insn exceptions. */
2127 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2129 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2132 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2134 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2138 void switch_mode(CPUARMState
*env
, int mode
)
2140 if (mode
!= ARM_CPU_MODE_USR
)
2141 cpu_abort(env
, "Tried to switch out of user mode\n");
2144 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2146 cpu_abort(env
, "banked r13 write\n");
2149 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2151 cpu_abort(env
, "banked r13 read\n");
2157 /* Map CPU modes onto saved register banks. */
2158 int bank_number(int mode
)
2161 case ARM_CPU_MODE_USR
:
2162 case ARM_CPU_MODE_SYS
:
2164 case ARM_CPU_MODE_SVC
:
2166 case ARM_CPU_MODE_ABT
:
2168 case ARM_CPU_MODE_UND
:
2170 case ARM_CPU_MODE_IRQ
:
2172 case ARM_CPU_MODE_FIQ
:
2175 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
2178 void switch_mode(CPUARMState
*env
, int mode
)
2183 old_mode
= env
->uncached_cpsr
& CPSR_M
;
2184 if (mode
== old_mode
)
2187 if (old_mode
== ARM_CPU_MODE_FIQ
) {
2188 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2189 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
2190 } else if (mode
== ARM_CPU_MODE_FIQ
) {
2191 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2192 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
2195 i
= bank_number(old_mode
);
2196 env
->banked_r13
[i
] = env
->regs
[13];
2197 env
->banked_r14
[i
] = env
->regs
[14];
2198 env
->banked_spsr
[i
] = env
->spsr
;
2200 i
= bank_number(mode
);
2201 env
->regs
[13] = env
->banked_r13
[i
];
2202 env
->regs
[14] = env
->banked_r14
[i
];
2203 env
->spsr
= env
->banked_spsr
[i
];
2206 static void v7m_push(CPUARMState
*env
, uint32_t val
)
2209 stl_phys(env
->regs
[13], val
);
2212 static uint32_t v7m_pop(CPUARMState
*env
)
2215 val
= ldl_phys(env
->regs
[13]);
2220 /* Switch to V7M main or process stack pointer. */
2221 static void switch_v7m_sp(CPUARMState
*env
, int process
)
2224 if (env
->v7m
.current_sp
!= process
) {
2225 tmp
= env
->v7m
.other_sp
;
2226 env
->v7m
.other_sp
= env
->regs
[13];
2227 env
->regs
[13] = tmp
;
2228 env
->v7m
.current_sp
= process
;
2232 static void do_v7m_exception_exit(CPUARMState
*env
)
2237 type
= env
->regs
[15];
2238 if (env
->v7m
.exception
!= 0)
2239 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
2241 /* Switch to the target stack. */
2242 switch_v7m_sp(env
, (type
& 4) != 0);
2243 /* Pop registers. */
2244 env
->regs
[0] = v7m_pop(env
);
2245 env
->regs
[1] = v7m_pop(env
);
2246 env
->regs
[2] = v7m_pop(env
);
2247 env
->regs
[3] = v7m_pop(env
);
2248 env
->regs
[12] = v7m_pop(env
);
2249 env
->regs
[14] = v7m_pop(env
);
2250 env
->regs
[15] = v7m_pop(env
);
2251 xpsr
= v7m_pop(env
);
2252 xpsr_write(env
, xpsr
, 0xfffffdff);
2253 /* Undo stack alignment. */
2256 /* ??? The exception return type specifies Thread/Handler mode. However
2257 this is also implied by the xPSR value. Not sure what to do
2258 if there is a mismatch. */
2259 /* ??? Likewise for mismatches between the CONTROL register and the stack
2263 /* Exception names for debug logging; note that not all of these
2264 * precisely correspond to architectural exceptions.
2266 static const char * const excnames
[] = {
2267 [EXCP_UDEF
] = "Undefined Instruction",
2269 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
2270 [EXCP_DATA_ABORT
] = "Data Abort",
2273 [EXCP_BKPT
] = "Breakpoint",
2274 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
2275 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
2276 [EXCP_STREX
] = "QEMU intercept of STREX",
2279 static inline void arm_log_exception(int idx
)
2281 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
2282 const char *exc
= NULL
;
2284 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
2285 exc
= excnames
[idx
];
2290 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
2294 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2296 ARMCPU
*cpu
= ARM_CPU(cs
);
2297 CPUARMState
*env
= &cpu
->env
;
2298 uint32_t xpsr
= xpsr_read(env
);
2302 arm_log_exception(env
->exception_index
);
2305 if (env
->v7m
.current_sp
)
2307 if (env
->v7m
.exception
== 0)
2310 /* For exceptions we just mark as pending on the NVIC, and let that
2312 /* TODO: Need to escalate if the current priority is higher than the
2313 one we're raising. */
2314 switch (env
->exception_index
) {
2316 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
2319 /* The PC already points to the next instruction. */
2320 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
2322 case EXCP_PREFETCH_ABORT
:
2323 case EXCP_DATA_ABORT
:
2324 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
2327 if (semihosting_enabled
) {
2329 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2332 env
->regs
[0] = do_arm_semihosting(env
);
2333 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2337 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
2340 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
2342 case EXCP_EXCEPTION_EXIT
:
2343 do_v7m_exception_exit(env
);
2346 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2347 return; /* Never happens. Keep compiler happy. */
2350 /* Align stack pointer. */
2351 /* ??? Should only do this if Configuration Control Register
2352 STACKALIGN bit is set. */
2353 if (env
->regs
[13] & 4) {
2357 /* Switch to the handler mode. */
2358 v7m_push(env
, xpsr
);
2359 v7m_push(env
, env
->regs
[15]);
2360 v7m_push(env
, env
->regs
[14]);
2361 v7m_push(env
, env
->regs
[12]);
2362 v7m_push(env
, env
->regs
[3]);
2363 v7m_push(env
, env
->regs
[2]);
2364 v7m_push(env
, env
->regs
[1]);
2365 v7m_push(env
, env
->regs
[0]);
2366 switch_v7m_sp(env
, 0);
2368 env
->condexec_bits
= 0;
2370 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
2371 env
->regs
[15] = addr
& 0xfffffffe;
2372 env
->thumb
= addr
& 1;
2375 /* Handle a CPU exception. */
2376 void arm_cpu_do_interrupt(CPUState
*cs
)
2378 ARMCPU
*cpu
= ARM_CPU(cs
);
2379 CPUARMState
*env
= &cpu
->env
;
2387 arm_log_exception(env
->exception_index
);
2389 /* TODO: Vectored interrupt controller. */
2390 switch (env
->exception_index
) {
2392 new_mode
= ARM_CPU_MODE_UND
;
2401 if (semihosting_enabled
) {
2402 /* Check for semihosting interrupt. */
2404 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
2407 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
2410 /* Only intercept calls from privileged modes, to provide some
2411 semblance of security. */
2412 if (((mask
== 0x123456 && !env
->thumb
)
2413 || (mask
== 0xab && env
->thumb
))
2414 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2415 env
->regs
[0] = do_arm_semihosting(env
);
2416 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2420 new_mode
= ARM_CPU_MODE_SVC
;
2423 /* The PC already points to the next instruction. */
2427 /* See if this is a semihosting syscall. */
2428 if (env
->thumb
&& semihosting_enabled
) {
2429 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2431 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2433 env
->regs
[0] = do_arm_semihosting(env
);
2434 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2438 env
->cp15
.c5_insn
= 2;
2439 /* Fall through to prefetch abort. */
2440 case EXCP_PREFETCH_ABORT
:
2441 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
2442 env
->cp15
.c5_insn
, env
->cp15
.c6_insn
);
2443 new_mode
= ARM_CPU_MODE_ABT
;
2445 mask
= CPSR_A
| CPSR_I
;
2448 case EXCP_DATA_ABORT
:
2449 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
2450 env
->cp15
.c5_data
, env
->cp15
.c6_data
);
2451 new_mode
= ARM_CPU_MODE_ABT
;
2453 mask
= CPSR_A
| CPSR_I
;
2457 new_mode
= ARM_CPU_MODE_IRQ
;
2459 /* Disable IRQ and imprecise data aborts. */
2460 mask
= CPSR_A
| CPSR_I
;
2464 new_mode
= ARM_CPU_MODE_FIQ
;
2466 /* Disable FIQ, IRQ and imprecise data aborts. */
2467 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
2471 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2472 return; /* Never happens. Keep compiler happy. */
2475 if (env
->cp15
.c1_sys
& (1 << 13)) {
2478 switch_mode (env
, new_mode
);
2479 env
->spsr
= cpsr_read(env
);
2480 /* Clear IT bits. */
2481 env
->condexec_bits
= 0;
2482 /* Switch to the new mode, and to the correct instruction set. */
2483 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
2484 env
->uncached_cpsr
|= mask
;
2485 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2486 * and we should just guard the thumb mode on V4 */
2487 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
2488 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
2490 env
->regs
[14] = env
->regs
[15] + offset
;
2491 env
->regs
[15] = addr
;
2492 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
2495 /* Check section/page access permissions.
2496 Returns the page protection flags, or zero if the access is not
2498 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
2499 int access_type
, int is_user
)
2503 if (domain_prot
== 3) {
2504 return PAGE_READ
| PAGE_WRITE
;
2507 if (access_type
== 1)
2510 prot_ro
= PAGE_READ
;
2514 if (access_type
== 1)
2516 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
2518 return is_user
? 0 : PAGE_READ
;
2525 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
2530 return PAGE_READ
| PAGE_WRITE
;
2532 return PAGE_READ
| PAGE_WRITE
;
2533 case 4: /* Reserved. */
2536 return is_user
? 0 : prot_ro
;
2540 if (!arm_feature (env
, ARM_FEATURE_V6K
))
2548 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
2552 if (address
& env
->cp15
.c2_mask
)
2553 table
= env
->cp15
.c2_base1
& 0xffffc000;
2555 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
2557 table
|= (address
>> 18) & 0x3ffc;
2561 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
2562 int is_user
, hwaddr
*phys_ptr
,
2563 int *prot
, target_ulong
*page_size
)
2574 /* Pagetable walk. */
2575 /* Lookup l1 descriptor. */
2576 table
= get_level1_table_address(env
, address
);
2577 desc
= ldl_phys(table
);
2579 domain
= (desc
>> 5) & 0x0f;
2580 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2582 /* Section translation fault. */
2586 if (domain_prot
== 0 || domain_prot
== 2) {
2588 code
= 9; /* Section domain fault. */
2590 code
= 11; /* Page domain fault. */
2595 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2596 ap
= (desc
>> 10) & 3;
2598 *page_size
= 1024 * 1024;
2600 /* Lookup l2 entry. */
2602 /* Coarse pagetable. */
2603 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2605 /* Fine pagetable. */
2606 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
2608 desc
= ldl_phys(table
);
2610 case 0: /* Page translation fault. */
2613 case 1: /* 64k page. */
2614 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2615 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2616 *page_size
= 0x10000;
2618 case 2: /* 4k page. */
2619 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2620 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2621 *page_size
= 0x1000;
2623 case 3: /* 1k page. */
2625 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2626 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2628 /* Page translation fault. */
2633 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
2635 ap
= (desc
>> 4) & 3;
2639 /* Never happens, but compiler isn't smart enough to tell. */
2644 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2646 /* Access permission fault. */
2650 *phys_ptr
= phys_addr
;
2653 return code
| (domain
<< 4);
2656 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
2657 int is_user
, hwaddr
*phys_ptr
,
2658 int *prot
, target_ulong
*page_size
)
2671 /* Pagetable walk. */
2672 /* Lookup l1 descriptor. */
2673 table
= get_level1_table_address(env
, address
);
2674 desc
= ldl_phys(table
);
2676 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
2677 /* Section translation fault, or attempt to use the encoding
2678 * which is Reserved on implementations without PXN.
2683 if ((type
== 1) || !(desc
& (1 << 18))) {
2684 /* Page or Section. */
2685 domain
= (desc
>> 5) & 0x0f;
2687 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2688 if (domain_prot
== 0 || domain_prot
== 2) {
2690 code
= 9; /* Section domain fault. */
2692 code
= 11; /* Page domain fault. */
2697 if (desc
& (1 << 18)) {
2699 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
2700 *page_size
= 0x1000000;
2703 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2704 *page_size
= 0x100000;
2706 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
2707 xn
= desc
& (1 << 4);
2711 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
2712 pxn
= (desc
>> 2) & 1;
2714 /* Lookup l2 entry. */
2715 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2716 desc
= ldl_phys(table
);
2717 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
2719 case 0: /* Page translation fault. */
2722 case 1: /* 64k page. */
2723 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2724 xn
= desc
& (1 << 15);
2725 *page_size
= 0x10000;
2727 case 2: case 3: /* 4k page. */
2728 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2730 *page_size
= 0x1000;
2733 /* Never happens, but compiler isn't smart enough to tell. */
2738 if (domain_prot
== 3) {
2739 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2741 if (pxn
&& !is_user
) {
2744 if (xn
&& access_type
== 2)
2747 /* The simplified model uses AP[0] as an access control bit. */
2748 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
2749 /* Access flag fault. */
2750 code
= (code
== 15) ? 6 : 3;
2753 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2755 /* Access permission fault. */
2762 *phys_ptr
= phys_addr
;
2765 return code
| (domain
<< 4);
2768 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2769 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2772 translation_fault
= 1,
2774 permission_fault
= 3,
2777 static int get_phys_addr_lpae(CPUARMState
*env
, uint32_t address
,
2778 int access_type
, int is_user
,
2779 hwaddr
*phys_ptr
, int *prot
,
2780 target_ulong
*page_size_ptr
)
2782 /* Read an LPAE long-descriptor translation table. */
2783 MMUFaultType fault_type
= translation_fault
;
2791 uint32_t tableattrs
;
2792 target_ulong page_size
;
2795 /* Determine whether this address is in the region controlled by
2796 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2797 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2798 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2800 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 3);
2801 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 3);
2802 if (t0sz
&& !extract32(address
, 32 - t0sz
, t0sz
)) {
2803 /* there is a ttbr0 region and we are in it (high bits all zero) */
2805 } else if (t1sz
&& !extract32(~address
, 32 - t1sz
, t1sz
)) {
2806 /* there is a ttbr1 region and we are in it (high bits all one) */
2809 /* ttbr0 region is "everything not in the ttbr1 region" */
2812 /* ttbr1 region is "everything not in the ttbr0 region" */
2815 /* in the gap between the two regions, this is a Translation fault */
2816 fault_type
= translation_fault
;
2820 /* Note that QEMU ignores shareability and cacheability attributes,
2821 * so we don't need to do anything with the SH, ORGN, IRGN fields
2822 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2823 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2824 * implement any ASID-like capability so we can ignore it (instead
2825 * we will always flush the TLB any time the ASID is changed).
2827 if (ttbr_select
== 0) {
2828 ttbr
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
2829 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
2832 ttbr
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
2833 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
2838 /* Translation table walk disabled => Translation fault on TLB miss */
2842 /* If the region is small enough we will skip straight to a 2nd level
2843 * lookup. This affects the number of bits of the address used in
2844 * combination with the TTBR to find the first descriptor. ('n' here
2845 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2846 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2855 /* Clear the vaddr bits which aren't part of the within-region address,
2856 * so that we don't have to special case things when calculating the
2857 * first descriptor address.
2859 address
&= (0xffffffffU
>> tsz
);
2861 /* Now we can extract the actual base address from the TTBR */
2862 descaddr
= extract64(ttbr
, 0, 40);
2863 descaddr
&= ~((1ULL << n
) - 1);
2867 uint64_t descriptor
;
2869 descaddr
|= ((address
>> (9 * (4 - level
))) & 0xff8);
2870 descriptor
= ldq_phys(descaddr
);
2871 if (!(descriptor
& 1) ||
2872 (!(descriptor
& 2) && (level
== 3))) {
2873 /* Invalid, or the Reserved level 3 encoding */
2876 descaddr
= descriptor
& 0xfffffff000ULL
;
2878 if ((descriptor
& 2) && (level
< 3)) {
2879 /* Table entry. The top five bits are attributes which may
2880 * propagate down through lower levels of the table (and
2881 * which are all arranged so that 0 means "no effect", so
2882 * we can gather them up by ORing in the bits at each level).
2884 tableattrs
|= extract64(descriptor
, 59, 5);
2888 /* Block entry at level 1 or 2, or page entry at level 3.
2889 * These are basically the same thing, although the number
2890 * of bits we pull in from the vaddr varies.
2892 page_size
= (1 << (39 - (9 * level
)));
2893 descaddr
|= (address
& (page_size
- 1));
2894 /* Extract attributes from the descriptor and merge with table attrs */
2895 attrs
= extract64(descriptor
, 2, 10)
2896 | (extract64(descriptor
, 52, 12) << 10);
2897 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
2898 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
2899 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2900 * means "force PL1 access only", which means forcing AP[1] to 0.
2902 if (extract32(tableattrs
, 2, 1)) {
2905 /* Since we're always in the Non-secure state, NSTable is ignored. */
2908 /* Here descaddr is the final physical address, and attributes
2911 fault_type
= access_fault
;
2912 if ((attrs
& (1 << 8)) == 0) {
2916 fault_type
= permission_fault
;
2917 if (is_user
&& !(attrs
& (1 << 4))) {
2918 /* Unprivileged access not enabled */
2921 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2922 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
2924 if (access_type
== 2) {
2927 *prot
&= ~PAGE_EXEC
;
2929 if (attrs
& (1 << 5)) {
2930 /* Write access forbidden */
2931 if (access_type
== 1) {
2934 *prot
&= ~PAGE_WRITE
;
2937 *phys_ptr
= descaddr
;
2938 *page_size_ptr
= page_size
;
2942 /* Long-descriptor format IFSR/DFSR value */
2943 return (1 << 9) | (fault_type
<< 2) | level
;
2946 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
2947 int access_type
, int is_user
,
2948 hwaddr
*phys_ptr
, int *prot
)
2954 *phys_ptr
= address
;
2955 for (n
= 7; n
>= 0; n
--) {
2956 base
= env
->cp15
.c6_region
[n
];
2957 if ((base
& 1) == 0)
2959 mask
= 1 << ((base
>> 1) & 0x1f);
2960 /* Keep this shift separate from the above to avoid an
2961 (undefined) << 32. */
2962 mask
= (mask
<< 1) - 1;
2963 if (((base
^ address
) & ~mask
) == 0)
2969 if (access_type
== 2) {
2970 mask
= env
->cp15
.c5_insn
;
2972 mask
= env
->cp15
.c5_data
;
2974 mask
= (mask
>> (n
* 4)) & 0xf;
2981 *prot
= PAGE_READ
| PAGE_WRITE
;
2986 *prot
|= PAGE_WRITE
;
2989 *prot
= PAGE_READ
| PAGE_WRITE
;
3000 /* Bad permission. */
3007 /* get_phys_addr - get the physical address for this virtual address
3009 * Find the physical address corresponding to the given virtual address,
3010 * by doing a translation table walk on MMU based systems or using the
3011 * MPU state on MPU based systems.
3013 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3014 * prot and page_size are not filled in, and the return value provides
3015 * information on why the translation aborted, in the format of a
3016 * DFSR/IFSR fault register, with the following caveats:
3017 * * we honour the short vs long DFSR format differences.
3018 * * the WnR bit is never set (the caller must do this).
3019 * * for MPU based systems we don't bother to return a full FSR format
3023 * @address: virtual address to get physical address for
3024 * @access_type: 0 for read, 1 for write, 2 for execute
3025 * @is_user: 0 for privileged access, 1 for user
3026 * @phys_ptr: set to the physical address corresponding to the virtual address
3027 * @prot: set to the permissions for the page containing phys_ptr
3028 * @page_size: set to the size of the page containing phys_ptr
3030 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
3031 int access_type
, int is_user
,
3032 hwaddr
*phys_ptr
, int *prot
,
3033 target_ulong
*page_size
)
3035 /* Fast Context Switch Extension. */
3036 if (address
< 0x02000000)
3037 address
+= env
->cp15
.c13_fcse
;
3039 if ((env
->cp15
.c1_sys
& 1) == 0) {
3040 /* MMU/MPU disabled. */
3041 *phys_ptr
= address
;
3042 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3043 *page_size
= TARGET_PAGE_SIZE
;
3045 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3046 *page_size
= TARGET_PAGE_SIZE
;
3047 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
3049 } else if (extended_addresses_enabled(env
)) {
3050 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
3052 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
3053 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
3056 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
3061 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
3062 int access_type
, int mmu_idx
)
3065 target_ulong page_size
;
3069 is_user
= mmu_idx
== MMU_USER_IDX
;
3070 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
3073 /* Map a single [sub]page. */
3074 phys_addr
&= ~(hwaddr
)0x3ff;
3075 address
&= ~(uint32_t)0x3ff;
3076 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
3080 if (access_type
== 2) {
3081 env
->cp15
.c5_insn
= ret
;
3082 env
->cp15
.c6_insn
= address
;
3083 env
->exception_index
= EXCP_PREFETCH_ABORT
;
3085 env
->cp15
.c5_data
= ret
;
3086 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
3087 env
->cp15
.c5_data
|= (1 << 11);
3088 env
->cp15
.c6_data
= address
;
3089 env
->exception_index
= EXCP_DATA_ABORT
;
3094 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
3096 ARMCPU
*cpu
= ARM_CPU(cs
);
3098 target_ulong page_size
;
3102 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
3111 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3113 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3114 env
->regs
[13] = val
;
3116 env
->banked_r13
[bank_number(mode
)] = val
;
3120 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3122 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3123 return env
->regs
[13];
3125 return env
->banked_r13
[bank_number(mode
)];
3129 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3133 return xpsr_read(env
) & 0xf8000000;
3135 return xpsr_read(env
) & 0xf80001ff;
3137 return xpsr_read(env
) & 0xff00fc00;
3139 return xpsr_read(env
) & 0xff00fdff;
3141 return xpsr_read(env
) & 0x000001ff;
3143 return xpsr_read(env
) & 0x0700fc00;
3145 return xpsr_read(env
) & 0x0700edff;
3147 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
3149 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
3150 case 16: /* PRIMASK */
3151 return (env
->uncached_cpsr
& CPSR_I
) != 0;
3152 case 17: /* BASEPRI */
3153 case 18: /* BASEPRI_MAX */
3154 return env
->v7m
.basepri
;
3155 case 19: /* FAULTMASK */
3156 return (env
->uncached_cpsr
& CPSR_F
) != 0;
3157 case 20: /* CONTROL */
3158 return env
->v7m
.control
;
3160 /* ??? For debugging only. */
3161 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
3166 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3170 xpsr_write(env
, val
, 0xf8000000);
3173 xpsr_write(env
, val
, 0xf8000000);
3176 xpsr_write(env
, val
, 0xfe00fc00);
3179 xpsr_write(env
, val
, 0xfe00fc00);
3182 /* IPSR bits are readonly. */
3185 xpsr_write(env
, val
, 0x0600fc00);
3188 xpsr_write(env
, val
, 0x0600fc00);
3191 if (env
->v7m
.current_sp
)
3192 env
->v7m
.other_sp
= val
;
3194 env
->regs
[13] = val
;
3197 if (env
->v7m
.current_sp
)
3198 env
->regs
[13] = val
;
3200 env
->v7m
.other_sp
= val
;
3202 case 16: /* PRIMASK */
3204 env
->uncached_cpsr
|= CPSR_I
;
3206 env
->uncached_cpsr
&= ~CPSR_I
;
3208 case 17: /* BASEPRI */
3209 env
->v7m
.basepri
= val
& 0xff;
3211 case 18: /* BASEPRI_MAX */
3213 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
3214 env
->v7m
.basepri
= val
;
3216 case 19: /* FAULTMASK */
3218 env
->uncached_cpsr
|= CPSR_F
;
3220 env
->uncached_cpsr
&= ~CPSR_F
;
3222 case 20: /* CONTROL */
3223 env
->v7m
.control
= val
& 3;
3224 switch_v7m_sp(env
, (val
& 2) != 0);
3227 /* ??? For debugging only. */
3228 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
3235 /* Note that signed overflow is undefined in C. The following routines are
3236 careful to use unsigned types where modulo arithmetic is required.
3237 Failure to do so _will_ break on newer gcc. */
3239 /* Signed saturating arithmetic. */
3241 /* Perform 16-bit signed saturating addition. */
3242 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
3247 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
3256 /* Perform 8-bit signed saturating addition. */
3257 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
3262 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
3271 /* Perform 16-bit signed saturating subtraction. */
3272 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
3277 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
3286 /* Perform 8-bit signed saturating subtraction. */
3287 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
3292 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
3301 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3302 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3303 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3304 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3307 #include "op_addsub.h"
3309 /* Unsigned saturating arithmetic. */
3310 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
3319 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
3327 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
3336 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
3344 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3345 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3346 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3347 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3350 #include "op_addsub.h"
3352 /* Signed modulo arithmetic. */
3353 #define SARITH16(a, b, n, op) do { \
3355 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3356 RESULT(sum, n, 16); \
3358 ge |= 3 << (n * 2); \
3361 #define SARITH8(a, b, n, op) do { \
3363 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3364 RESULT(sum, n, 8); \
3370 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3371 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3372 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3373 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3377 #include "op_addsub.h"
3379 /* Unsigned modulo arithmetic. */
3380 #define ADD16(a, b, n) do { \
3382 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3383 RESULT(sum, n, 16); \
3384 if ((sum >> 16) == 1) \
3385 ge |= 3 << (n * 2); \
3388 #define ADD8(a, b, n) do { \
3390 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3391 RESULT(sum, n, 8); \
3392 if ((sum >> 8) == 1) \
3396 #define SUB16(a, b, n) do { \
3398 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3399 RESULT(sum, n, 16); \
3400 if ((sum >> 16) == 0) \
3401 ge |= 3 << (n * 2); \
3404 #define SUB8(a, b, n) do { \
3406 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3407 RESULT(sum, n, 8); \
3408 if ((sum >> 8) == 0) \
3415 #include "op_addsub.h"
3417 /* Halved signed arithmetic. */
3418 #define ADD16(a, b, n) \
3419 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3420 #define SUB16(a, b, n) \
3421 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3422 #define ADD8(a, b, n) \
3423 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3424 #define SUB8(a, b, n) \
3425 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3428 #include "op_addsub.h"
3430 /* Halved unsigned arithmetic. */
3431 #define ADD16(a, b, n) \
3432 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3433 #define SUB16(a, b, n) \
3434 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3435 #define ADD8(a, b, n) \
3436 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3437 #define SUB8(a, b, n) \
3438 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3441 #include "op_addsub.h"
3443 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
3451 /* Unsigned sum of absolute byte differences. */
3452 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
3455 sum
= do_usad(a
, b
);
3456 sum
+= do_usad(a
>> 8, b
>> 8);
3457 sum
+= do_usad(a
>> 16, b
>>16);
3458 sum
+= do_usad(a
>> 24, b
>> 24);
3462 /* For ARMv6 SEL instruction. */
3463 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
3476 return (a
& mask
) | (b
& ~mask
);
3479 /* VFP support. We follow the convention used for VFP instructions:
3480 Single precision routines have a "s" suffix, double precision a
3483 /* Convert host exception flags to vfp form. */
3484 static inline int vfp_exceptbits_from_host(int host_bits
)
3486 int target_bits
= 0;
3488 if (host_bits
& float_flag_invalid
)
3490 if (host_bits
& float_flag_divbyzero
)
3492 if (host_bits
& float_flag_overflow
)
3494 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
3496 if (host_bits
& float_flag_inexact
)
3497 target_bits
|= 0x10;
3498 if (host_bits
& float_flag_input_denormal
)
3499 target_bits
|= 0x80;
3503 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
3508 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
3509 | (env
->vfp
.vec_len
<< 16)
3510 | (env
->vfp
.vec_stride
<< 20);
3511 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
3512 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
3513 fpscr
|= vfp_exceptbits_from_host(i
);
3517 uint32_t vfp_get_fpscr(CPUARMState
*env
)
3519 return HELPER(vfp_get_fpscr
)(env
);
3522 /* Convert vfp exception flags to target form. */
3523 static inline int vfp_exceptbits_to_host(int target_bits
)
3527 if (target_bits
& 1)
3528 host_bits
|= float_flag_invalid
;
3529 if (target_bits
& 2)
3530 host_bits
|= float_flag_divbyzero
;
3531 if (target_bits
& 4)
3532 host_bits
|= float_flag_overflow
;
3533 if (target_bits
& 8)
3534 host_bits
|= float_flag_underflow
;
3535 if (target_bits
& 0x10)
3536 host_bits
|= float_flag_inexact
;
3537 if (target_bits
& 0x80)
3538 host_bits
|= float_flag_input_denormal
;
3542 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
3547 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
3548 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
3549 env
->vfp
.vec_len
= (val
>> 16) & 7;
3550 env
->vfp
.vec_stride
= (val
>> 20) & 3;
3553 if (changed
& (3 << 22)) {
3554 i
= (val
>> 22) & 3;
3557 i
= float_round_nearest_even
;
3563 i
= float_round_down
;
3566 i
= float_round_to_zero
;
3569 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
3571 if (changed
& (1 << 24)) {
3572 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3573 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3575 if (changed
& (1 << 25))
3576 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
3578 i
= vfp_exceptbits_to_host(val
);
3579 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
3580 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
3583 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
3585 HELPER(vfp_set_fpscr
)(env
, val
);
3588 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3590 #define VFP_BINOP(name) \
3591 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3593 float_status *fpst = fpstp; \
3594 return float32_ ## name(a, b, fpst); \
3596 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3598 float_status *fpst = fpstp; \
3599 return float64_ ## name(a, b, fpst); \
3607 float32
VFP_HELPER(neg
, s
)(float32 a
)
3609 return float32_chs(a
);
3612 float64
VFP_HELPER(neg
, d
)(float64 a
)
3614 return float64_chs(a
);
3617 float32
VFP_HELPER(abs
, s
)(float32 a
)
3619 return float32_abs(a
);
3622 float64
VFP_HELPER(abs
, d
)(float64 a
)
3624 return float64_abs(a
);
3627 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
3629 return float32_sqrt(a
, &env
->vfp
.fp_status
);
3632 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
3634 return float64_sqrt(a
, &env
->vfp
.fp_status
);
3637 /* XXX: check quiet/signaling case */
3638 #define DO_VFP_cmp(p, type) \
3639 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3642 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3643 case 0: flags = 0x6; break; \
3644 case -1: flags = 0x8; break; \
3645 case 1: flags = 0x2; break; \
3646 default: case 2: flags = 0x3; break; \
3648 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3649 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3651 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3654 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3655 case 0: flags = 0x6; break; \
3656 case -1: flags = 0x8; break; \
3657 case 1: flags = 0x2; break; \
3658 default: case 2: flags = 0x3; break; \
3660 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3661 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3663 DO_VFP_cmp(s
, float32
)
3664 DO_VFP_cmp(d
, float64
)
3667 /* Integer to float and float to integer conversions */
3669 #define CONV_ITOF(name, fsz, sign) \
3670 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3672 float_status *fpst = fpstp; \
3673 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3676 #define CONV_FTOI(name, fsz, sign, round) \
3677 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3679 float_status *fpst = fpstp; \
3680 if (float##fsz##_is_any_nan(x)) { \
3681 float_raise(float_flag_invalid, fpst); \
3684 return float##fsz##_to_##sign##int32##round(x, fpst); \
3687 #define FLOAT_CONVS(name, p, fsz, sign) \
3688 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3689 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3690 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3692 FLOAT_CONVS(si
, s
, 32, )
3693 FLOAT_CONVS(si
, d
, 64, )
3694 FLOAT_CONVS(ui
, s
, 32, u
)
3695 FLOAT_CONVS(ui
, d
, 64, u
)
3701 /* floating point conversion */
3702 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
3704 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
3705 /* ARM requires that S<->D conversion of any kind of NaN generates
3706 * a quiet NaN by forcing the most significant frac bit to 1.
3708 return float64_maybe_silence_nan(r
);
3711 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
3713 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
3714 /* ARM requires that S<->D conversion of any kind of NaN generates
3715 * a quiet NaN by forcing the most significant frac bit to 1.
3717 return float32_maybe_silence_nan(r
);
3720 /* VFP3 fixed point conversion. */
3721 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3722 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3725 float_status *fpst = fpstp; \
3727 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3728 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3730 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3733 float_status *fpst = fpstp; \
3735 if (float##fsz##_is_any_nan(x)) { \
3736 float_raise(float_flag_invalid, fpst); \
3739 tmp = float##fsz##_scalbn(x, shift, fpst); \
3740 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3743 VFP_CONV_FIX(sh
, d
, 64, int16
, )
3744 VFP_CONV_FIX(sl
, d
, 64, int32
, )
3745 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
3746 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
3747 VFP_CONV_FIX(sh
, s
, 32, int16
, )
3748 VFP_CONV_FIX(sl
, s
, 32, int32
, )
3749 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
3750 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
3753 /* Half precision conversions. */
3754 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
3756 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
3757 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
3759 return float32_maybe_silence_nan(r
);
3764 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
3766 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
3767 float16 r
= float32_to_float16(a
, ieee
, s
);
3769 r
= float16_maybe_silence_nan(r
);
3771 return float16_val(r
);
3774 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
3776 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
3779 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
3781 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
3784 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
3786 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
3789 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
3791 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
3794 #define float32_two make_float32(0x40000000)
3795 #define float32_three make_float32(0x40400000)
3796 #define float32_one_point_five make_float32(0x3fc00000)
3798 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
3800 float_status
*s
= &env
->vfp
.standard_fp_status
;
3801 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
3802 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
3803 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
3804 float_raise(float_flag_input_denormal
, s
);
3808 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
3811 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
3813 float_status
*s
= &env
->vfp
.standard_fp_status
;
3815 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
3816 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
3817 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
3818 float_raise(float_flag_input_denormal
, s
);
3820 return float32_one_point_five
;
3822 product
= float32_mul(a
, b
, s
);
3823 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
3828 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3829 * int->float conversions at run-time. */
3830 #define float64_256 make_float64(0x4070000000000000LL)
3831 #define float64_512 make_float64(0x4080000000000000LL)
3833 /* The algorithm that must be used to calculate the estimate
3834 * is specified by the ARM ARM.
3836 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
3838 /* These calculations mustn't set any fp exception flags,
3839 * so we use a local copy of the fp_status.
3841 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3842 float_status
*s
= &dummy_status
;
3843 /* q = (int)(a * 512.0) */
3844 float64 q
= float64_mul(float64_512
, a
, s
);
3845 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3847 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3848 q
= int64_to_float64(q_int
, s
);
3849 q
= float64_add(q
, float64_half
, s
);
3850 q
= float64_div(q
, float64_512
, s
);
3851 q
= float64_div(float64_one
, q
, s
);
3853 /* s = (int)(256.0 * r + 0.5) */
3854 q
= float64_mul(q
, float64_256
, s
);
3855 q
= float64_add(q
, float64_half
, s
);
3856 q_int
= float64_to_int64_round_to_zero(q
, s
);
3858 /* return (double)s / 256.0 */
3859 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3862 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
3864 float_status
*s
= &env
->vfp
.standard_fp_status
;
3866 uint32_t val32
= float32_val(a
);
3869 int a_exp
= (val32
& 0x7f800000) >> 23;
3870 int sign
= val32
& 0x80000000;
3872 if (float32_is_any_nan(a
)) {
3873 if (float32_is_signaling_nan(a
)) {
3874 float_raise(float_flag_invalid
, s
);
3876 return float32_default_nan
;
3877 } else if (float32_is_infinity(a
)) {
3878 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3879 } else if (float32_is_zero_or_denormal(a
)) {
3880 if (!float32_is_zero(a
)) {
3881 float_raise(float_flag_input_denormal
, s
);
3883 float_raise(float_flag_divbyzero
, s
);
3884 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3885 } else if (a_exp
>= 253) {
3886 float_raise(float_flag_underflow
, s
);
3887 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3890 f64
= make_float64((0x3feULL
<< 52)
3891 | ((int64_t)(val32
& 0x7fffff) << 29));
3893 result_exp
= 253 - a_exp
;
3895 f64
= recip_estimate(f64
, env
);
3898 | ((result_exp
& 0xff) << 23)
3899 | ((float64_val(f64
) >> 29) & 0x7fffff);
3900 return make_float32(val32
);
3903 /* The algorithm that must be used to calculate the estimate
3904 * is specified by the ARM ARM.
3906 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
3908 /* These calculations mustn't set any fp exception flags,
3909 * so we use a local copy of the fp_status.
3911 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3912 float_status
*s
= &dummy_status
;
3916 if (float64_lt(a
, float64_half
, s
)) {
3917 /* range 0.25 <= a < 0.5 */
3919 /* a in units of 1/512 rounded down */
3920 /* q0 = (int)(a * 512.0); */
3921 q
= float64_mul(float64_512
, a
, s
);
3922 q_int
= float64_to_int64_round_to_zero(q
, s
);
3924 /* reciprocal root r */
3925 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3926 q
= int64_to_float64(q_int
, s
);
3927 q
= float64_add(q
, float64_half
, s
);
3928 q
= float64_div(q
, float64_512
, s
);
3929 q
= float64_sqrt(q
, s
);
3930 q
= float64_div(float64_one
, q
, s
);
3932 /* range 0.5 <= a < 1.0 */
3934 /* a in units of 1/256 rounded down */
3935 /* q1 = (int)(a * 256.0); */
3936 q
= float64_mul(float64_256
, a
, s
);
3937 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3939 /* reciprocal root r */
3940 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3941 q
= int64_to_float64(q_int
, s
);
3942 q
= float64_add(q
, float64_half
, s
);
3943 q
= float64_div(q
, float64_256
, s
);
3944 q
= float64_sqrt(q
, s
);
3945 q
= float64_div(float64_one
, q
, s
);
3947 /* r in units of 1/256 rounded to nearest */
3948 /* s = (int)(256.0 * r + 0.5); */
3950 q
= float64_mul(q
, float64_256
,s
);
3951 q
= float64_add(q
, float64_half
, s
);
3952 q_int
= float64_to_int64_round_to_zero(q
, s
);
3954 /* return (double)s / 256.0;*/
3955 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3958 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
3960 float_status
*s
= &env
->vfp
.standard_fp_status
;
3966 val
= float32_val(a
);
3968 if (float32_is_any_nan(a
)) {
3969 if (float32_is_signaling_nan(a
)) {
3970 float_raise(float_flag_invalid
, s
);
3972 return float32_default_nan
;
3973 } else if (float32_is_zero_or_denormal(a
)) {
3974 if (!float32_is_zero(a
)) {
3975 float_raise(float_flag_input_denormal
, s
);
3977 float_raise(float_flag_divbyzero
, s
);
3978 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3979 } else if (float32_is_neg(a
)) {
3980 float_raise(float_flag_invalid
, s
);
3981 return float32_default_nan
;
3982 } else if (float32_is_infinity(a
)) {
3983 return float32_zero
;
3986 /* Normalize to a double-precision value between 0.25 and 1.0,
3987 * preserving the parity of the exponent. */
3988 if ((val
& 0x800000) == 0) {
3989 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3991 | ((uint64_t)(val
& 0x7fffff) << 29));
3993 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3995 | ((uint64_t)(val
& 0x7fffff) << 29));
3998 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
4000 f64
= recip_sqrt_estimate(f64
, env
);
4002 val64
= float64_val(f64
);
4004 val
= ((result_exp
& 0xff) << 23)
4005 | ((val64
>> 29) & 0x7fffff);
4006 return make_float32(val
);
4009 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
4013 if ((a
& 0x80000000) == 0) {
4017 f64
= make_float64((0x3feULL
<< 52)
4018 | ((int64_t)(a
& 0x7fffffff) << 21));
4020 f64
= recip_estimate (f64
, env
);
4022 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4025 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
4029 if ((a
& 0xc0000000) == 0) {
4033 if (a
& 0x80000000) {
4034 f64
= make_float64((0x3feULL
<< 52)
4035 | ((uint64_t)(a
& 0x7fffffff) << 21));
4036 } else { /* bits 31-30 == '01' */
4037 f64
= make_float64((0x3fdULL
<< 52)
4038 | ((uint64_t)(a
& 0x3fffffff) << 22));
4041 f64
= recip_sqrt_estimate(f64
, env
);
4043 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4046 /* VFPv4 fused multiply-accumulate */
4047 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
4049 float_status
*fpst
= fpstp
;
4050 return float32_muladd(a
, b
, c
, 0, fpst
);
4053 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
4055 float_status
*fpst
= fpstp
;
4056 return float64_muladd(a
, b
, c
, 0, fpst
);