target/ppc/cpu-models: Rename power5+ and power7+ for new QOM naming rules
[qemu/ar7.git] / hw / i386 / x86.c
blob2b6291ad8d5f3e23806d825c4360a3dca4234b76
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-visit-common.h"
31 #include "qapi/clone-visitor.h"
32 #include "qapi/qapi-visit-machine.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/xen.h"
41 #include "trace.h"
43 #include "hw/i386/x86.h"
44 #include "target/i386/cpu.h"
45 #include "hw/i386/topology.h"
46 #include "hw/i386/fw_cfg.h"
47 #include "hw/intc/i8259.h"
48 #include "hw/rtc/mc146818rtc.h"
49 #include "target/i386/sev.h"
51 #include "hw/acpi/cpu_hotplug.h"
52 #include "hw/irq.h"
53 #include "hw/nmi.h"
54 #include "hw/loader.h"
55 #include "multiboot.h"
56 #include "elf.h"
57 #include "standard-headers/asm-x86/bootparam.h"
58 #include CONFIG_DEVICES
59 #include "kvm/kvm_i386.h"
61 #ifdef CONFIG_XEN_EMU
62 #include "hw/xen/xen.h"
63 #include "hw/i386/kvm/xen_evtchn.h"
64 #endif
66 /* Physical Address of PVH entry point read from kernel ELF NOTE */
67 static size_t pvh_start_addr;
69 static void init_topo_info(X86CPUTopoInfo *topo_info,
70 const X86MachineState *x86ms)
72 MachineState *ms = MACHINE(x86ms);
74 topo_info->dies_per_pkg = ms->smp.dies;
75 topo_info->cores_per_die = ms->smp.cores;
76 topo_info->threads_per_core = ms->smp.threads;
80 * Calculates initial APIC ID for a specific CPU index
82 * Currently we need to be able to calculate the APIC ID from the CPU index
83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85 * all CPUs up to max_cpus.
87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
88 unsigned int cpu_index)
90 X86CPUTopoInfo topo_info;
92 init_topo_info(&topo_info, x86ms);
94 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
100 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
102 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
103 goto out;
105 qdev_realize(DEVICE(cpu), NULL, errp);
107 out:
108 object_unref(cpu);
111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
113 int i;
114 const CPUArchIdList *possible_cpus;
115 MachineState *ms = MACHINE(x86ms);
116 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
118 x86_cpu_set_default_version(default_cpu_version);
121 * Calculates the limit to CPU APIC ID values
123 * Limit for the APIC ID value, so that all
124 * CPU APIC IDs are < x86ms->apic_id_limit.
126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
128 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
129 ms->smp.max_cpus - 1) + 1;
132 * Can we support APIC ID 255 or higher? With KVM, that requires
133 * both in-kernel lapic and X2APIC userspace API.
135 * kvm_enabled() must go first to ensure that kvm_* references are
136 * not emitted for the linker to consume (kvm_enabled() is
137 * a literal `0` in configurations where kvm_* aren't defined)
139 if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
140 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
141 error_report("current -smp configuration requires kernel "
142 "irqchip and X2APIC API support.");
143 exit(EXIT_FAILURE);
146 if (kvm_enabled()) {
147 kvm_set_max_apic_id(x86ms->apic_id_limit);
150 possible_cpus = mc->possible_cpu_arch_ids(ms);
151 for (i = 0; i < ms->smp.cpus; i++) {
152 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
156 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
158 MC146818RtcState *rtc = MC146818_RTC(s);
160 if (cpus_count > 0xff) {
162 * If the number of CPUs can't be represented in 8 bits, the
163 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
164 * to make old BIOSes fail more predictably.
166 mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
167 } else {
168 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
172 static int x86_apic_cmp(const void *a, const void *b)
174 CPUArchId *apic_a = (CPUArchId *)a;
175 CPUArchId *apic_b = (CPUArchId *)b;
177 return apic_a->arch_id - apic_b->arch_id;
181 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
182 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
183 * entry corresponding to CPU's apic_id returns NULL.
185 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
187 CPUArchId apic_id, *found_cpu;
189 apic_id.arch_id = id;
190 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
191 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
192 x86_apic_cmp);
193 if (found_cpu && idx) {
194 *idx = found_cpu - ms->possible_cpus->cpus;
196 return found_cpu;
199 void x86_cpu_plug(HotplugHandler *hotplug_dev,
200 DeviceState *dev, Error **errp)
202 CPUArchId *found_cpu;
203 Error *local_err = NULL;
204 X86CPU *cpu = X86_CPU(dev);
205 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
207 if (x86ms->acpi_dev) {
208 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
209 if (local_err) {
210 goto out;
214 /* increment the number of CPUs */
215 x86ms->boot_cpus++;
216 if (x86ms->rtc) {
217 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
219 if (x86ms->fw_cfg) {
220 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
223 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
224 found_cpu->cpu = OBJECT(dev);
225 out:
226 error_propagate(errp, local_err);
229 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
230 DeviceState *dev, Error **errp)
232 int idx = -1;
233 X86CPU *cpu = X86_CPU(dev);
234 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
236 if (!x86ms->acpi_dev) {
237 error_setg(errp, "CPU hot unplug not supported without ACPI");
238 return;
241 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
242 assert(idx != -1);
243 if (idx == 0) {
244 error_setg(errp, "Boot CPU is unpluggable");
245 return;
248 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
249 errp);
252 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
253 DeviceState *dev, Error **errp)
255 CPUArchId *found_cpu;
256 Error *local_err = NULL;
257 X86CPU *cpu = X86_CPU(dev);
258 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
260 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
261 if (local_err) {
262 goto out;
265 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
266 found_cpu->cpu = NULL;
267 qdev_unrealize(dev);
269 /* decrement the number of CPUs */
270 x86ms->boot_cpus--;
271 /* Update the number of CPUs in CMOS */
272 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
273 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
274 out:
275 error_propagate(errp, local_err);
278 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
279 DeviceState *dev, Error **errp)
281 int idx;
282 CPUState *cs;
283 CPUArchId *cpu_slot;
284 X86CPUTopoIDs topo_ids;
285 X86CPU *cpu = X86_CPU(dev);
286 CPUX86State *env = &cpu->env;
287 MachineState *ms = MACHINE(hotplug_dev);
288 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
289 unsigned int smp_cores = ms->smp.cores;
290 unsigned int smp_threads = ms->smp.threads;
291 X86CPUTopoInfo topo_info;
293 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
294 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
295 ms->cpu_type);
296 return;
299 if (x86ms->acpi_dev) {
300 Error *local_err = NULL;
302 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
303 &local_err);
304 if (local_err) {
305 error_propagate(errp, local_err);
306 return;
310 init_topo_info(&topo_info, x86ms);
312 env->nr_dies = ms->smp.dies;
315 * If APIC ID is not set,
316 * set it based on socket/die/core/thread properties.
318 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
319 int max_socket = (ms->smp.max_cpus - 1) /
320 smp_threads / smp_cores / ms->smp.dies;
323 * die-id was optional in QEMU 4.0 and older, so keep it optional
324 * if there's only one die per socket.
326 if (cpu->die_id < 0 && ms->smp.dies == 1) {
327 cpu->die_id = 0;
330 if (cpu->socket_id < 0) {
331 error_setg(errp, "CPU socket-id is not set");
332 return;
333 } else if (cpu->socket_id > max_socket) {
334 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
335 cpu->socket_id, max_socket);
336 return;
338 if (cpu->die_id < 0) {
339 error_setg(errp, "CPU die-id is not set");
340 return;
341 } else if (cpu->die_id > ms->smp.dies - 1) {
342 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
343 cpu->die_id, ms->smp.dies - 1);
344 return;
346 if (cpu->core_id < 0) {
347 error_setg(errp, "CPU core-id is not set");
348 return;
349 } else if (cpu->core_id > (smp_cores - 1)) {
350 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
351 cpu->core_id, smp_cores - 1);
352 return;
354 if (cpu->thread_id < 0) {
355 error_setg(errp, "CPU thread-id is not set");
356 return;
357 } else if (cpu->thread_id > (smp_threads - 1)) {
358 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
359 cpu->thread_id, smp_threads - 1);
360 return;
363 topo_ids.pkg_id = cpu->socket_id;
364 topo_ids.die_id = cpu->die_id;
365 topo_ids.core_id = cpu->core_id;
366 topo_ids.smt_id = cpu->thread_id;
367 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
370 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
371 if (!cpu_slot) {
372 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
373 error_setg(errp,
374 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
375 " APIC ID %" PRIu32 ", valid index range 0:%d",
376 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
377 cpu->apic_id, ms->possible_cpus->len - 1);
378 return;
381 if (cpu_slot->cpu) {
382 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
383 idx, cpu->apic_id);
384 return;
387 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
388 * so that machine_query_hotpluggable_cpus would show correct values
390 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
391 * once -smp refactoring is complete and there will be CPU private
392 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
393 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
394 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
395 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
396 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
397 topo_ids.pkg_id);
398 return;
400 cpu->socket_id = topo_ids.pkg_id;
402 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
403 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
404 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
405 return;
407 cpu->die_id = topo_ids.die_id;
409 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
410 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
411 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
412 topo_ids.core_id);
413 return;
415 cpu->core_id = topo_ids.core_id;
417 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
418 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
419 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
420 topo_ids.smt_id);
421 return;
423 cpu->thread_id = topo_ids.smt_id;
426 * kvm_enabled() must go first to ensure that kvm_* references are
427 * not emitted for the linker to consume (kvm_enabled() is
428 * a literal `0` in configurations where kvm_* aren't defined)
430 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
431 !kvm_hv_vpindex_settable()) {
432 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
433 return;
436 cs = CPU(cpu);
437 cs->cpu_index = idx;
439 numa_cpu_pre_plug(cpu_slot, dev, errp);
442 CpuInstanceProperties
443 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
445 MachineClass *mc = MACHINE_GET_CLASS(ms);
446 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
448 assert(cpu_index < possible_cpus->len);
449 return possible_cpus->cpus[cpu_index].props;
452 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
454 X86CPUTopoIDs topo_ids;
455 X86MachineState *x86ms = X86_MACHINE(ms);
456 X86CPUTopoInfo topo_info;
458 init_topo_info(&topo_info, x86ms);
460 assert(idx < ms->possible_cpus->len);
461 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
462 &topo_info, &topo_ids);
463 return topo_ids.pkg_id % ms->numa_state->num_nodes;
466 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
468 X86MachineState *x86ms = X86_MACHINE(ms);
469 unsigned int max_cpus = ms->smp.max_cpus;
470 X86CPUTopoInfo topo_info;
471 int i;
473 if (ms->possible_cpus) {
475 * make sure that max_cpus hasn't changed since the first use, i.e.
476 * -smp hasn't been parsed after it
478 assert(ms->possible_cpus->len == max_cpus);
479 return ms->possible_cpus;
482 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
483 sizeof(CPUArchId) * max_cpus);
484 ms->possible_cpus->len = max_cpus;
486 init_topo_info(&topo_info, x86ms);
488 for (i = 0; i < ms->possible_cpus->len; i++) {
489 X86CPUTopoIDs topo_ids;
491 ms->possible_cpus->cpus[i].type = ms->cpu_type;
492 ms->possible_cpus->cpus[i].vcpus_count = 1;
493 ms->possible_cpus->cpus[i].arch_id =
494 x86_cpu_apic_id_from_index(x86ms, i);
495 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
496 &topo_info, &topo_ids);
497 ms->possible_cpus->cpus[i].props.has_socket_id = true;
498 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
499 if (ms->smp.dies > 1) {
500 ms->possible_cpus->cpus[i].props.has_die_id = true;
501 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
503 ms->possible_cpus->cpus[i].props.has_core_id = true;
504 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
505 ms->possible_cpus->cpus[i].props.has_thread_id = true;
506 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
508 return ms->possible_cpus;
511 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
513 /* cpu index isn't used */
514 CPUState *cs;
516 CPU_FOREACH(cs) {
517 X86CPU *cpu = X86_CPU(cs);
519 if (!cpu->apic_state) {
520 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
521 } else {
522 apic_deliver_nmi(cpu->apic_state);
527 static long get_file_size(FILE *f)
529 long where, size;
531 /* XXX: on Unix systems, using fstat() probably makes more sense */
533 where = ftell(f);
534 fseek(f, 0, SEEK_END);
535 size = ftell(f);
536 fseek(f, where, SEEK_SET);
538 return size;
541 /* TSC handling */
542 uint64_t cpu_get_tsc(CPUX86State *env)
544 return cpus_get_elapsed_ticks();
547 /* IRQ handling */
548 static void pic_irq_request(void *opaque, int irq, int level)
550 CPUState *cs = first_cpu;
551 X86CPU *cpu = X86_CPU(cs);
553 trace_x86_pic_interrupt(irq, level);
554 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
555 !whpx_apic_in_platform()) {
556 CPU_FOREACH(cs) {
557 cpu = X86_CPU(cs);
558 if (apic_accept_pic_intr(cpu->apic_state)) {
559 apic_deliver_pic_intr(cpu->apic_state, level);
562 } else {
563 if (level) {
564 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
565 } else {
566 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
571 qemu_irq x86_allocate_cpu_irq(void)
573 return qemu_allocate_irq(pic_irq_request, NULL, 0);
576 int cpu_get_pic_interrupt(CPUX86State *env)
578 X86CPU *cpu = env_archcpu(env);
579 int intno;
581 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
582 intno = apic_get_interrupt(cpu->apic_state);
583 if (intno >= 0) {
584 return intno;
586 /* read the irq from the PIC */
587 if (!apic_accept_pic_intr(cpu->apic_state)) {
588 return -1;
592 intno = pic_read_irq(isa_pic);
593 return intno;
596 DeviceState *cpu_get_current_apic(void)
598 if (current_cpu) {
599 X86CPU *cpu = X86_CPU(current_cpu);
600 return cpu->apic_state;
601 } else {
602 return NULL;
606 void gsi_handler(void *opaque, int n, int level)
608 GSIState *s = opaque;
610 trace_x86_gsi_interrupt(n, level);
611 switch (n) {
612 case 0 ... ISA_NUM_IRQS - 1:
613 if (s->i8259_irq[n]) {
614 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
615 qemu_set_irq(s->i8259_irq[n], level);
617 /* fall through */
618 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
619 #ifdef CONFIG_XEN_EMU
621 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
622 * routing actually works properly under Xen). And then to
623 * *either* the PIRQ handling or the I/OAPIC depending on
624 * whether the former wants it.
626 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
627 break;
629 #endif
630 qemu_set_irq(s->ioapic_irq[n], level);
631 break;
632 case IO_APIC_SECONDARY_IRQBASE
633 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
634 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
635 break;
639 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
641 DeviceState *dev;
642 SysBusDevice *d;
643 unsigned int i;
645 assert(parent_name);
646 if (kvm_ioapic_in_kernel()) {
647 dev = qdev_new(TYPE_KVM_IOAPIC);
648 } else {
649 dev = qdev_new(TYPE_IOAPIC);
651 object_property_add_child(object_resolve_path(parent_name, NULL),
652 "ioapic", OBJECT(dev));
653 d = SYS_BUS_DEVICE(dev);
654 sysbus_realize_and_unref(d, &error_fatal);
655 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
657 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
658 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
662 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
664 DeviceState *dev;
665 SysBusDevice *d;
666 unsigned int i;
668 dev = qdev_new(TYPE_IOAPIC);
669 d = SYS_BUS_DEVICE(dev);
670 sysbus_realize_and_unref(d, &error_fatal);
671 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
673 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
674 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
676 return dev;
679 struct setup_data {
680 uint64_t next;
681 uint32_t type;
682 uint32_t len;
683 uint8_t data[];
684 } __attribute__((packed));
688 * The entry point into the kernel for PVH boot is different from
689 * the native entry point. The PVH entry is defined by the x86/HVM
690 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
692 * This function is passed to load_elf() when it is called from
693 * load_elfboot() which then additionally checks for an ELF Note of
694 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
695 * parse the PVH entry address from the ELF Note.
697 * Due to trickery in elf_opts.h, load_elf() is actually available as
698 * load_elf32() or load_elf64() and this routine needs to be able
699 * to deal with being called as 32 or 64 bit.
701 * The address of the PVH entry point is saved to the 'pvh_start_addr'
702 * global variable. (although the entry point is 32-bit, the kernel
703 * binary can be either 32-bit or 64-bit).
705 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
707 size_t *elf_note_data_addr;
709 /* Check if ELF Note header passed in is valid */
710 if (arg1 == NULL) {
711 return 0;
714 if (is64) {
715 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
716 uint64_t nhdr_size64 = sizeof(struct elf64_note);
717 uint64_t phdr_align = *(uint64_t *)arg2;
718 uint64_t nhdr_namesz = nhdr64->n_namesz;
720 elf_note_data_addr =
721 ((void *)nhdr64) + nhdr_size64 +
722 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
724 pvh_start_addr = *elf_note_data_addr;
725 } else {
726 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
727 uint32_t nhdr_size32 = sizeof(struct elf32_note);
728 uint32_t phdr_align = *(uint32_t *)arg2;
729 uint32_t nhdr_namesz = nhdr32->n_namesz;
731 elf_note_data_addr =
732 ((void *)nhdr32) + nhdr_size32 +
733 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
735 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
738 return pvh_start_addr;
741 static bool load_elfboot(const char *kernel_filename,
742 int kernel_file_size,
743 uint8_t *header,
744 size_t pvh_xen_start_addr,
745 FWCfgState *fw_cfg)
747 uint32_t flags = 0;
748 uint32_t mh_load_addr = 0;
749 uint32_t elf_kernel_size = 0;
750 uint64_t elf_entry;
751 uint64_t elf_low, elf_high;
752 int kernel_size;
754 if (ldl_p(header) != 0x464c457f) {
755 return false; /* no elfboot */
758 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
759 flags = elf_is64 ?
760 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
762 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
763 error_report("elfboot unsupported flags = %x", flags);
764 exit(1);
767 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
768 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
769 NULL, &elf_note_type, &elf_entry,
770 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
771 0, 0);
773 if (kernel_size < 0) {
774 error_report("Error while loading elf kernel");
775 exit(1);
777 mh_load_addr = elf_low;
778 elf_kernel_size = elf_high - elf_low;
780 if (pvh_start_addr == 0) {
781 error_report("Error loading uncompressed kernel without PVH ELF Note");
782 exit(1);
784 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
785 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
786 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
788 return true;
791 void x86_load_linux(X86MachineState *x86ms,
792 FWCfgState *fw_cfg,
793 int acpi_data_size,
794 bool pvh_enabled)
796 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
797 uint16_t protocol;
798 int setup_size, kernel_size, cmdline_size;
799 int dtb_size, setup_data_offset;
800 uint32_t initrd_max;
801 uint8_t header[8192], *setup, *kernel;
802 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
803 FILE *f;
804 char *vmode;
805 MachineState *machine = MACHINE(x86ms);
806 struct setup_data *setup_data;
807 const char *kernel_filename = machine->kernel_filename;
808 const char *initrd_filename = machine->initrd_filename;
809 const char *dtb_filename = machine->dtb;
810 const char *kernel_cmdline = machine->kernel_cmdline;
811 SevKernelLoaderContext sev_load_ctx = {};
813 /* Align to 16 bytes as a paranoia measure */
814 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
816 /* load the kernel header */
817 f = fopen(kernel_filename, "rb");
818 if (!f) {
819 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
820 kernel_filename, strerror(errno));
821 exit(1);
824 kernel_size = get_file_size(f);
825 if (!kernel_size ||
826 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
827 MIN(ARRAY_SIZE(header), kernel_size)) {
828 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
829 kernel_filename, strerror(errno));
830 exit(1);
833 /* kernel protocol version */
834 if (ldl_p(header + 0x202) == 0x53726448) {
835 protocol = lduw_p(header + 0x206);
836 } else {
838 * This could be a multiboot kernel. If it is, let's stop treating it
839 * like a Linux kernel.
840 * Note: some multiboot images could be in the ELF format (the same of
841 * PVH), so we try multiboot first since we check the multiboot magic
842 * header before to load it.
844 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
845 kernel_cmdline, kernel_size, header)) {
846 return;
849 * Check if the file is an uncompressed kernel file (ELF) and load it,
850 * saving the PVH entry point used by the x86/HVM direct boot ABI.
851 * If load_elfboot() is successful, populate the fw_cfg info.
853 if (pvh_enabled &&
854 load_elfboot(kernel_filename, kernel_size,
855 header, pvh_start_addr, fw_cfg)) {
856 fclose(f);
858 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
859 strlen(kernel_cmdline) + 1);
860 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
862 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
863 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
864 header, sizeof(header));
866 /* load initrd */
867 if (initrd_filename) {
868 GMappedFile *mapped_file;
869 gsize initrd_size;
870 gchar *initrd_data;
871 GError *gerr = NULL;
873 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
874 if (!mapped_file) {
875 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
876 initrd_filename, gerr->message);
877 exit(1);
879 x86ms->initrd_mapped_file = mapped_file;
881 initrd_data = g_mapped_file_get_contents(mapped_file);
882 initrd_size = g_mapped_file_get_length(mapped_file);
883 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
884 if (initrd_size >= initrd_max) {
885 fprintf(stderr, "qemu: initrd is too large, cannot support."
886 "(max: %"PRIu32", need %"PRId64")\n",
887 initrd_max, (uint64_t)initrd_size);
888 exit(1);
891 initrd_addr = (initrd_max - initrd_size) & ~4095;
893 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
894 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
895 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
896 initrd_size);
899 option_rom[nb_option_roms].bootindex = 0;
900 option_rom[nb_option_roms].name = "pvh.bin";
901 nb_option_roms++;
903 return;
905 protocol = 0;
908 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
909 /* Low kernel */
910 real_addr = 0x90000;
911 cmdline_addr = 0x9a000 - cmdline_size;
912 prot_addr = 0x10000;
913 } else if (protocol < 0x202) {
914 /* High but ancient kernel */
915 real_addr = 0x90000;
916 cmdline_addr = 0x9a000 - cmdline_size;
917 prot_addr = 0x100000;
918 } else {
919 /* High and recent kernel */
920 real_addr = 0x10000;
921 cmdline_addr = 0x20000;
922 prot_addr = 0x100000;
925 /* highest address for loading the initrd */
926 if (protocol >= 0x20c &&
927 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
929 * Linux has supported initrd up to 4 GB for a very long time (2007,
930 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
931 * though it only sets initrd_max to 2 GB to "work around bootloader
932 * bugs". Luckily, QEMU firmware(which does something like bootloader)
933 * has supported this.
935 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
936 * be loaded into any address.
938 * In addition, initrd_max is uint32_t simply because QEMU doesn't
939 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
940 * field).
942 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
944 initrd_max = UINT32_MAX;
945 } else if (protocol >= 0x203) {
946 initrd_max = ldl_p(header + 0x22c);
947 } else {
948 initrd_max = 0x37ffffff;
951 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
952 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
955 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
956 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
957 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
958 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
959 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
961 if (protocol >= 0x202) {
962 stl_p(header + 0x228, cmdline_addr);
963 } else {
964 stw_p(header + 0x20, 0xA33F);
965 stw_p(header + 0x22, cmdline_addr - real_addr);
968 /* handle vga= parameter */
969 vmode = strstr(kernel_cmdline, "vga=");
970 if (vmode) {
971 unsigned int video_mode;
972 const char *end;
973 int ret;
974 /* skip "vga=" */
975 vmode += 4;
976 if (!strncmp(vmode, "normal", 6)) {
977 video_mode = 0xffff;
978 } else if (!strncmp(vmode, "ext", 3)) {
979 video_mode = 0xfffe;
980 } else if (!strncmp(vmode, "ask", 3)) {
981 video_mode = 0xfffd;
982 } else {
983 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
984 if (ret != 0 || (*end && *end != ' ')) {
985 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
986 exit(1);
989 stw_p(header + 0x1fa, video_mode);
992 /* loader type */
994 * High nybble = B reserved for QEMU; low nybble is revision number.
995 * If this code is substantially changed, you may want to consider
996 * incrementing the revision.
998 if (protocol >= 0x200) {
999 header[0x210] = 0xB0;
1001 /* heap */
1002 if (protocol >= 0x201) {
1003 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1004 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1007 /* load initrd */
1008 if (initrd_filename) {
1009 GMappedFile *mapped_file;
1010 gsize initrd_size;
1011 gchar *initrd_data;
1012 GError *gerr = NULL;
1014 if (protocol < 0x200) {
1015 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1016 exit(1);
1019 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1020 if (!mapped_file) {
1021 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1022 initrd_filename, gerr->message);
1023 exit(1);
1025 x86ms->initrd_mapped_file = mapped_file;
1027 initrd_data = g_mapped_file_get_contents(mapped_file);
1028 initrd_size = g_mapped_file_get_length(mapped_file);
1029 if (initrd_size >= initrd_max) {
1030 fprintf(stderr, "qemu: initrd is too large, cannot support."
1031 "(max: %"PRIu32", need %"PRId64")\n",
1032 initrd_max, (uint64_t)initrd_size);
1033 exit(1);
1036 initrd_addr = (initrd_max - initrd_size) & ~4095;
1038 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1039 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1040 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1041 sev_load_ctx.initrd_data = initrd_data;
1042 sev_load_ctx.initrd_size = initrd_size;
1044 stl_p(header + 0x218, initrd_addr);
1045 stl_p(header + 0x21c, initrd_size);
1048 /* load kernel and setup */
1049 setup_size = header[0x1f1];
1050 if (setup_size == 0) {
1051 setup_size = 4;
1053 setup_size = (setup_size + 1) * 512;
1054 if (setup_size > kernel_size) {
1055 fprintf(stderr, "qemu: invalid kernel header\n");
1056 exit(1);
1058 kernel_size -= setup_size;
1060 setup = g_malloc(setup_size);
1061 kernel = g_malloc(kernel_size);
1062 fseek(f, 0, SEEK_SET);
1063 if (fread(setup, 1, setup_size, f) != setup_size) {
1064 fprintf(stderr, "fread() failed\n");
1065 exit(1);
1067 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1068 fprintf(stderr, "fread() failed\n");
1069 exit(1);
1071 fclose(f);
1073 /* append dtb to kernel */
1074 if (dtb_filename) {
1075 if (protocol < 0x209) {
1076 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1077 exit(1);
1080 dtb_size = get_image_size(dtb_filename);
1081 if (dtb_size <= 0) {
1082 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1083 dtb_filename, strerror(errno));
1084 exit(1);
1087 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1088 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1089 kernel = g_realloc(kernel, kernel_size);
1091 stq_p(header + 0x250, prot_addr + setup_data_offset);
1093 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1094 setup_data->next = 0;
1095 setup_data->type = cpu_to_le32(SETUP_DTB);
1096 setup_data->len = cpu_to_le32(dtb_size);
1098 load_image_size(dtb_filename, setup_data->data, dtb_size);
1102 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1103 * efi stub for booting and doesn't require any values to be placed in the
1104 * kernel header. We therefore don't update the header so the hash of the
1105 * kernel on the other side of the fw_cfg interface matches the hash of the
1106 * file the user passed in.
1108 if (!sev_enabled()) {
1109 memcpy(setup, header, MIN(sizeof(header), setup_size));
1112 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1113 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1114 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1115 sev_load_ctx.kernel_data = (char *)kernel;
1116 sev_load_ctx.kernel_size = kernel_size;
1118 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1119 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1120 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1121 sev_load_ctx.setup_data = (char *)setup;
1122 sev_load_ctx.setup_size = setup_size;
1124 if (sev_enabled()) {
1125 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1128 option_rom[nb_option_roms].bootindex = 0;
1129 option_rom[nb_option_roms].name = "linuxboot.bin";
1130 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1131 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1133 nb_option_roms++;
1136 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1137 MemoryRegion *rom_memory, bool isapc_ram_fw)
1139 const char *bios_name;
1140 char *filename;
1141 MemoryRegion *bios, *isa_bios;
1142 int bios_size, isa_bios_size;
1143 ssize_t ret;
1145 /* BIOS load */
1146 bios_name = ms->firmware ?: default_firmware;
1147 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1148 if (filename) {
1149 bios_size = get_image_size(filename);
1150 } else {
1151 bios_size = -1;
1153 if (bios_size <= 0 ||
1154 (bios_size % 65536) != 0) {
1155 goto bios_error;
1157 bios = g_malloc(sizeof(*bios));
1158 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1159 if (sev_enabled()) {
1161 * The concept of a "reset" simply doesn't exist for
1162 * confidential computing guests, we have to destroy and
1163 * re-launch them instead. So there is no need to register
1164 * the firmware as rom to properly re-initialize on reset.
1165 * Just go for a straight file load instead.
1167 void *ptr = memory_region_get_ram_ptr(bios);
1168 load_image_size(filename, ptr, bios_size);
1169 x86_firmware_configure(ptr, bios_size);
1170 } else {
1171 if (!isapc_ram_fw) {
1172 memory_region_set_readonly(bios, true);
1174 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1175 if (ret != 0) {
1176 goto bios_error;
1179 g_free(filename);
1181 /* map the last 128KB of the BIOS in ISA space */
1182 isa_bios_size = MIN(bios_size, 128 * KiB);
1183 isa_bios = g_malloc(sizeof(*isa_bios));
1184 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1185 bios_size - isa_bios_size, isa_bios_size);
1186 memory_region_add_subregion_overlap(rom_memory,
1187 0x100000 - isa_bios_size,
1188 isa_bios,
1190 if (!isapc_ram_fw) {
1191 memory_region_set_readonly(isa_bios, true);
1194 /* map all the bios at the top of memory */
1195 memory_region_add_subregion(rom_memory,
1196 (uint32_t)(-bios_size),
1197 bios);
1198 return;
1200 bios_error:
1201 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1202 exit(1);
1205 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1207 bool smm_available = false;
1209 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1210 return false;
1213 if (tcg_enabled() || qtest_enabled()) {
1214 smm_available = true;
1215 } else if (kvm_enabled()) {
1216 smm_available = kvm_has_smm();
1219 if (smm_available) {
1220 return true;
1223 if (x86ms->smm == ON_OFF_AUTO_ON) {
1224 error_report("System Management Mode not supported by this hypervisor.");
1225 exit(1);
1227 return false;
1230 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1231 void *opaque, Error **errp)
1233 X86MachineState *x86ms = X86_MACHINE(obj);
1234 OnOffAuto smm = x86ms->smm;
1236 visit_type_OnOffAuto(v, name, &smm, errp);
1239 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1240 void *opaque, Error **errp)
1242 X86MachineState *x86ms = X86_MACHINE(obj);
1244 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1247 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1249 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1250 return false;
1252 return true;
1255 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1256 void *opaque, Error **errp)
1258 X86MachineState *x86ms = X86_MACHINE(obj);
1259 OnOffAuto acpi = x86ms->acpi;
1261 visit_type_OnOffAuto(v, name, &acpi, errp);
1264 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1265 void *opaque, Error **errp)
1267 X86MachineState *x86ms = X86_MACHINE(obj);
1269 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1272 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1273 void *opaque, Error **errp)
1275 X86MachineState *x86ms = X86_MACHINE(obj);
1276 OnOffAuto pit = x86ms->pit;
1278 visit_type_OnOffAuto(v, name, &pit, errp);
1281 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1282 void *opaque, Error **errp)
1284 X86MachineState *x86ms = X86_MACHINE(obj);;
1286 visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1289 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1290 void *opaque, Error **errp)
1292 X86MachineState *x86ms = X86_MACHINE(obj);
1293 OnOffAuto pic = x86ms->pic;
1295 visit_type_OnOffAuto(v, name, &pic, errp);
1298 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1299 void *opaque, Error **errp)
1301 X86MachineState *x86ms = X86_MACHINE(obj);
1303 visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1306 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1308 X86MachineState *x86ms = X86_MACHINE(obj);
1310 return g_strdup(x86ms->oem_id);
1313 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1315 X86MachineState *x86ms = X86_MACHINE(obj);
1316 size_t len = strlen(value);
1318 if (len > 6) {
1319 error_setg(errp,
1320 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1321 "6 bytes in size");
1322 return;
1325 strncpy(x86ms->oem_id, value, 6);
1328 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1330 X86MachineState *x86ms = X86_MACHINE(obj);
1332 return g_strdup(x86ms->oem_table_id);
1335 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1336 Error **errp)
1338 X86MachineState *x86ms = X86_MACHINE(obj);
1339 size_t len = strlen(value);
1341 if (len > 8) {
1342 error_setg(errp,
1343 "User specified "X86_MACHINE_OEM_TABLE_ID
1344 " value is bigger than "
1345 "8 bytes in size");
1346 return;
1348 strncpy(x86ms->oem_table_id, value, 8);
1351 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1352 const char *name, void *opaque, Error **errp)
1354 X86MachineState *x86ms = X86_MACHINE(obj);
1355 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1357 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1360 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1361 const char *name, void *opaque, Error **errp)
1363 X86MachineState *x86ms = X86_MACHINE(obj);
1365 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1368 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1369 void *opaque, Error **errp)
1371 X86MachineState *x86ms = X86_MACHINE(obj);
1372 SgxEPCList *list = x86ms->sgx_epc_list;
1374 visit_type_SgxEPCList(v, name, &list, errp);
1377 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1378 void *opaque, Error **errp)
1380 X86MachineState *x86ms = X86_MACHINE(obj);
1381 SgxEPCList *list;
1383 list = x86ms->sgx_epc_list;
1384 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1386 qapi_free_SgxEPCList(list);
1389 static void x86_machine_initfn(Object *obj)
1391 X86MachineState *x86ms = X86_MACHINE(obj);
1393 x86ms->smm = ON_OFF_AUTO_AUTO;
1394 x86ms->acpi = ON_OFF_AUTO_AUTO;
1395 x86ms->pit = ON_OFF_AUTO_AUTO;
1396 x86ms->pic = ON_OFF_AUTO_AUTO;
1397 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1398 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1399 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1400 x86ms->bus_lock_ratelimit = 0;
1401 x86ms->above_4g_mem_start = 4 * GiB;
1404 static void x86_machine_class_init(ObjectClass *oc, void *data)
1406 MachineClass *mc = MACHINE_CLASS(oc);
1407 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1408 NMIClass *nc = NMI_CLASS(oc);
1410 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1411 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1412 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1413 x86mc->save_tsc_khz = true;
1414 x86mc->fwcfg_dma_enabled = true;
1415 nc->nmi_monitor_handler = x86_nmi;
1417 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1418 x86_machine_get_smm, x86_machine_set_smm,
1419 NULL, NULL);
1420 object_class_property_set_description(oc, X86_MACHINE_SMM,
1421 "Enable SMM");
1423 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1424 x86_machine_get_acpi, x86_machine_set_acpi,
1425 NULL, NULL);
1426 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1427 "Enable ACPI");
1429 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1430 x86_machine_get_pit,
1431 x86_machine_set_pit,
1432 NULL, NULL);
1433 object_class_property_set_description(oc, X86_MACHINE_PIT,
1434 "Enable i8254 PIT");
1436 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1437 x86_machine_get_pic,
1438 x86_machine_set_pic,
1439 NULL, NULL);
1440 object_class_property_set_description(oc, X86_MACHINE_PIC,
1441 "Enable i8259 PIC");
1443 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1444 x86_machine_get_oem_id,
1445 x86_machine_set_oem_id);
1446 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1447 "Override the default value of field OEMID "
1448 "in ACPI table header."
1449 "The string may be up to 6 bytes in size");
1452 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1453 x86_machine_get_oem_table_id,
1454 x86_machine_set_oem_table_id);
1455 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1456 "Override the default value of field OEM Table ID "
1457 "in ACPI table header."
1458 "The string may be up to 8 bytes in size");
1460 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1461 x86_machine_get_bus_lock_ratelimit,
1462 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1463 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1464 "Set the ratelimit for the bus locks acquired in VMs");
1466 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1467 machine_get_sgx_epc, machine_set_sgx_epc,
1468 NULL, NULL);
1469 object_class_property_set_description(oc, "sgx-epc",
1470 "SGX EPC device");
1473 static const TypeInfo x86_machine_info = {
1474 .name = TYPE_X86_MACHINE,
1475 .parent = TYPE_MACHINE,
1476 .abstract = true,
1477 .instance_size = sizeof(X86MachineState),
1478 .instance_init = x86_machine_initfn,
1479 .class_size = sizeof(X86MachineClass),
1480 .class_init = x86_machine_class_init,
1481 .interfaces = (InterfaceInfo[]) {
1482 { TYPE_NMI },
1487 static void x86_machine_register_types(void)
1489 type_register_static(&x86_machine_info);
1492 type_init(x86_machine_register_types)