blockjob: remove clock argument from block_job_sleep_ns
[qemu/ar7.git] / hw / arm / boot.c
blobc2720c80460ff57543915d752624f62d623e8d94
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include <libfdt.h>
13 #include "hw/hw.h"
14 #include "hw/arm/arm.h"
15 #include "hw/arm/linux-boot-if.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/sysemu.h"
18 #include "sysemu/numa.h"
19 #include "hw/boards.h"
20 #include "hw/loader.h"
21 #include "elf.h"
22 #include "sysemu/device_tree.h"
23 #include "qemu/config-file.h"
24 #include "exec/address-spaces.h"
26 /* Kernel boot protocol is specified in the kernel docs
27 * Documentation/arm/Booting and Documentation/arm64/booting.txt
28 * They have different preferred image load offsets from system RAM base.
30 #define KERNEL_ARGS_ADDR 0x100
31 #define KERNEL_LOAD_ADDR 0x00010000
32 #define KERNEL64_LOAD_ADDR 0x00080000
34 #define ARM64_TEXT_OFFSET_OFFSET 8
35 #define ARM64_MAGIC_OFFSET 56
37 typedef enum {
38 FIXUP_NONE = 0, /* do nothing */
39 FIXUP_TERMINATOR, /* end of insns */
40 FIXUP_BOARDID, /* overwrite with board ID number */
41 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
42 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
43 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
44 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
45 FIXUP_BOOTREG, /* overwrite with boot register address */
46 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
47 FIXUP_MAX,
48 } FixupType;
50 typedef struct ARMInsnFixup {
51 uint32_t insn;
52 FixupType fixup;
53 } ARMInsnFixup;
55 static const ARMInsnFixup bootloader_aarch64[] = {
56 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
57 { 0xaa1f03e1 }, /* mov x1, xzr */
58 { 0xaa1f03e2 }, /* mov x2, xzr */
59 { 0xaa1f03e3 }, /* mov x3, xzr */
60 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
61 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
62 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
63 { 0 }, /* .word @DTB Higher 32-bits */
64 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
65 { 0 }, /* .word @Kernel Entry Higher 32-bits */
66 { 0, FIXUP_TERMINATOR }
69 /* A very small bootloader: call the board-setup code (if needed),
70 * set r0-r2, then jump to the kernel.
71 * If we're not calling boot setup code then we don't copy across
72 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
75 static const ARMInsnFixup bootloader[] = {
76 { 0xe28fe004 }, /* add lr, pc, #4 */
77 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
78 { 0, FIXUP_BOARD_SETUP },
79 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
80 { 0xe3a00000 }, /* mov r0, #0 */
81 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
82 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
83 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
84 { 0, FIXUP_BOARDID },
85 { 0, FIXUP_ARGPTR },
86 { 0, FIXUP_ENTRYPOINT },
87 { 0, FIXUP_TERMINATOR }
90 /* Handling for secondary CPU boot in a multicore system.
91 * Unlike the uniprocessor/primary CPU boot, this is platform
92 * dependent. The default code here is based on the secondary
93 * CPU boot protocol used on realview/vexpress boards, with
94 * some parameterisation to increase its flexibility.
95 * QEMU platform models for which this code is not appropriate
96 * should override write_secondary_boot and secondary_cpu_reset_hook
97 * instead.
99 * This code enables the interrupt controllers for the secondary
100 * CPUs and then puts all the secondary CPUs into a loop waiting
101 * for an interprocessor interrupt and polling a configurable
102 * location for the kernel secondary CPU entry point.
104 #define DSB_INSN 0xf57ff04f
105 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
107 static const ARMInsnFixup smpboot[] = {
108 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
109 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
110 { 0xe3a01001 }, /* mov r1, #1 */
111 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
112 { 0xe3a010ff }, /* mov r1, #0xff */
113 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
114 { 0, FIXUP_DSB }, /* dsb */
115 { 0xe320f003 }, /* wfi */
116 { 0xe5901000 }, /* ldr r1, [r0] */
117 { 0xe1110001 }, /* tst r1, r1 */
118 { 0x0afffffb }, /* beq <wfi> */
119 { 0xe12fff11 }, /* bx r1 */
120 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
121 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
122 { 0, FIXUP_TERMINATOR }
125 static void write_bootloader(const char *name, hwaddr addr,
126 const ARMInsnFixup *insns, uint32_t *fixupcontext)
128 /* Fix up the specified bootloader fragment and write it into
129 * guest memory using rom_add_blob_fixed(). fixupcontext is
130 * an array giving the values to write in for the fixup types
131 * which write a value into the code array.
133 int i, len;
134 uint32_t *code;
136 len = 0;
137 while (insns[len].fixup != FIXUP_TERMINATOR) {
138 len++;
141 code = g_new0(uint32_t, len);
143 for (i = 0; i < len; i++) {
144 uint32_t insn = insns[i].insn;
145 FixupType fixup = insns[i].fixup;
147 switch (fixup) {
148 case FIXUP_NONE:
149 break;
150 case FIXUP_BOARDID:
151 case FIXUP_BOARD_SETUP:
152 case FIXUP_ARGPTR:
153 case FIXUP_ENTRYPOINT:
154 case FIXUP_GIC_CPU_IF:
155 case FIXUP_BOOTREG:
156 case FIXUP_DSB:
157 insn = fixupcontext[fixup];
158 break;
159 default:
160 abort();
162 code[i] = tswap32(insn);
165 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
167 g_free(code);
170 static void default_write_secondary(ARMCPU *cpu,
171 const struct arm_boot_info *info)
173 uint32_t fixupcontext[FIXUP_MAX];
175 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
176 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
177 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
178 fixupcontext[FIXUP_DSB] = DSB_INSN;
179 } else {
180 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
183 write_bootloader("smpboot", info->smp_loader_start,
184 smpboot, fixupcontext);
187 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
188 const struct arm_boot_info *info,
189 hwaddr mvbar_addr)
191 int n;
192 uint32_t mvbar_blob[] = {
193 /* mvbar_addr: secure monitor vectors
194 * Default unimplemented and unused vectors to spin. Makes it
195 * easier to debug (as opposed to the CPU running away).
197 0xeafffffe, /* (spin) */
198 0xeafffffe, /* (spin) */
199 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
200 0xeafffffe, /* (spin) */
201 0xeafffffe, /* (spin) */
202 0xeafffffe, /* (spin) */
203 0xeafffffe, /* (spin) */
204 0xeafffffe, /* (spin) */
206 uint32_t board_setup_blob[] = {
207 /* board setup addr */
208 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
209 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
210 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
211 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
212 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
213 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
214 0xe1600070, /* smc #0 ;call monitor to flush SCR */
215 0xe1a0f001, /* mov pc, r1 ;return */
218 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
219 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
221 /* check that these blobs don't overlap */
222 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
223 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
225 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
226 mvbar_blob[n] = tswap32(mvbar_blob[n]);
228 rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
229 mvbar_addr);
231 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
232 board_setup_blob[n] = tswap32(board_setup_blob[n]);
234 rom_add_blob_fixed("board-setup", board_setup_blob,
235 sizeof(board_setup_blob), info->board_setup_addr);
238 static void default_reset_secondary(ARMCPU *cpu,
239 const struct arm_boot_info *info)
241 CPUState *cs = CPU(cpu);
243 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
244 0, MEMTXATTRS_UNSPECIFIED, NULL);
245 cpu_set_pc(cs, info->smp_loader_start);
248 static inline bool have_dtb(const struct arm_boot_info *info)
250 return info->dtb_filename || info->get_dtb;
253 #define WRITE_WORD(p, value) do { \
254 address_space_stl_notdirty(&address_space_memory, p, value, \
255 MEMTXATTRS_UNSPECIFIED, NULL); \
256 p += 4; \
257 } while (0)
259 static void set_kernel_args(const struct arm_boot_info *info)
261 int initrd_size = info->initrd_size;
262 hwaddr base = info->loader_start;
263 hwaddr p;
265 p = base + KERNEL_ARGS_ADDR;
266 /* ATAG_CORE */
267 WRITE_WORD(p, 5);
268 WRITE_WORD(p, 0x54410001);
269 WRITE_WORD(p, 1);
270 WRITE_WORD(p, 0x1000);
271 WRITE_WORD(p, 0);
272 /* ATAG_MEM */
273 /* TODO: handle multiple chips on one ATAG list */
274 WRITE_WORD(p, 4);
275 WRITE_WORD(p, 0x54410002);
276 WRITE_WORD(p, info->ram_size);
277 WRITE_WORD(p, info->loader_start);
278 if (initrd_size) {
279 /* ATAG_INITRD2 */
280 WRITE_WORD(p, 4);
281 WRITE_WORD(p, 0x54420005);
282 WRITE_WORD(p, info->initrd_start);
283 WRITE_WORD(p, initrd_size);
285 if (info->kernel_cmdline && *info->kernel_cmdline) {
286 /* ATAG_CMDLINE */
287 int cmdline_size;
289 cmdline_size = strlen(info->kernel_cmdline);
290 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
291 cmdline_size + 1);
292 cmdline_size = (cmdline_size >> 2) + 1;
293 WRITE_WORD(p, cmdline_size + 2);
294 WRITE_WORD(p, 0x54410009);
295 p += cmdline_size * 4;
297 if (info->atag_board) {
298 /* ATAG_BOARD */
299 int atag_board_len;
300 uint8_t atag_board_buf[0x1000];
302 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
303 WRITE_WORD(p, (atag_board_len + 8) >> 2);
304 WRITE_WORD(p, 0x414f4d50);
305 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
306 p += atag_board_len;
308 /* ATAG_END */
309 WRITE_WORD(p, 0);
310 WRITE_WORD(p, 0);
313 static void set_kernel_args_old(const struct arm_boot_info *info)
315 hwaddr p;
316 const char *s;
317 int initrd_size = info->initrd_size;
318 hwaddr base = info->loader_start;
320 /* see linux/include/asm-arm/setup.h */
321 p = base + KERNEL_ARGS_ADDR;
322 /* page_size */
323 WRITE_WORD(p, 4096);
324 /* nr_pages */
325 WRITE_WORD(p, info->ram_size / 4096);
326 /* ramdisk_size */
327 WRITE_WORD(p, 0);
328 #define FLAG_READONLY 1
329 #define FLAG_RDLOAD 4
330 #define FLAG_RDPROMPT 8
331 /* flags */
332 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
333 /* rootdev */
334 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
335 /* video_num_cols */
336 WRITE_WORD(p, 0);
337 /* video_num_rows */
338 WRITE_WORD(p, 0);
339 /* video_x */
340 WRITE_WORD(p, 0);
341 /* video_y */
342 WRITE_WORD(p, 0);
343 /* memc_control_reg */
344 WRITE_WORD(p, 0);
345 /* unsigned char sounddefault */
346 /* unsigned char adfsdrives */
347 /* unsigned char bytes_per_char_h */
348 /* unsigned char bytes_per_char_v */
349 WRITE_WORD(p, 0);
350 /* pages_in_bank[4] */
351 WRITE_WORD(p, 0);
352 WRITE_WORD(p, 0);
353 WRITE_WORD(p, 0);
354 WRITE_WORD(p, 0);
355 /* pages_in_vram */
356 WRITE_WORD(p, 0);
357 /* initrd_start */
358 if (initrd_size) {
359 WRITE_WORD(p, info->initrd_start);
360 } else {
361 WRITE_WORD(p, 0);
363 /* initrd_size */
364 WRITE_WORD(p, initrd_size);
365 /* rd_start */
366 WRITE_WORD(p, 0);
367 /* system_rev */
368 WRITE_WORD(p, 0);
369 /* system_serial_low */
370 WRITE_WORD(p, 0);
371 /* system_serial_high */
372 WRITE_WORD(p, 0);
373 /* mem_fclk_21285 */
374 WRITE_WORD(p, 0);
375 /* zero unused fields */
376 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
377 WRITE_WORD(p, 0);
379 s = info->kernel_cmdline;
380 if (s) {
381 cpu_physical_memory_write(p, s, strlen(s) + 1);
382 } else {
383 WRITE_WORD(p, 0);
388 * load_dtb() - load a device tree binary image into memory
389 * @addr: the address to load the image at
390 * @binfo: struct describing the boot environment
391 * @addr_limit: upper limit of the available memory area at @addr
393 * Load a device tree supplied by the machine or by the user with the
394 * '-dtb' command line option, and put it at offset @addr in target
395 * memory.
397 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
398 * than @addr), the device tree is only loaded if its size does not exceed
399 * the limit.
401 * Returns: the size of the device tree image on success,
402 * 0 if the image size exceeds the limit,
403 * -1 on errors.
405 * Note: Must not be called unless have_dtb(binfo) is true.
407 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
408 hwaddr addr_limit)
410 void *fdt = NULL;
411 int size, rc;
412 uint32_t acells, scells;
413 char *nodename;
414 unsigned int i;
415 hwaddr mem_base, mem_len;
417 if (binfo->dtb_filename) {
418 char *filename;
419 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
420 if (!filename) {
421 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
422 goto fail;
425 fdt = load_device_tree(filename, &size);
426 if (!fdt) {
427 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
428 g_free(filename);
429 goto fail;
431 g_free(filename);
432 } else {
433 fdt = binfo->get_dtb(binfo, &size);
434 if (!fdt) {
435 fprintf(stderr, "Board was unable to create a dtb blob\n");
436 goto fail;
440 if (addr_limit > addr && size > (addr_limit - addr)) {
441 /* Installing the device tree blob at addr would exceed addr_limit.
442 * Whether this constitutes failure is up to the caller to decide,
443 * so just return 0 as size, i.e., no error.
445 g_free(fdt);
446 return 0;
449 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
450 NULL, &error_fatal);
451 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
452 NULL, &error_fatal);
453 if (acells == 0 || scells == 0) {
454 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
455 goto fail;
458 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
459 /* This is user error so deserves a friendlier error message
460 * than the failure of setprop_sized_cells would provide
462 fprintf(stderr, "qemu: dtb file not compatible with "
463 "RAM size > 4GB\n");
464 goto fail;
467 if (nb_numa_nodes > 0) {
469 * Turn the /memory node created before into a NOP node, then create
470 * /memory@addr nodes for all numa nodes respectively.
472 qemu_fdt_nop_node(fdt, "/memory");
473 mem_base = binfo->loader_start;
474 for (i = 0; i < nb_numa_nodes; i++) {
475 mem_len = numa_info[i].node_mem;
476 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
477 qemu_fdt_add_subnode(fdt, nodename);
478 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
479 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
480 acells, mem_base,
481 scells, mem_len);
482 if (rc < 0) {
483 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
485 goto fail;
488 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
489 mem_base += mem_len;
490 g_free(nodename);
492 } else {
493 Error *err = NULL;
495 rc = fdt_path_offset(fdt, "/memory");
496 if (rc < 0) {
497 qemu_fdt_add_subnode(fdt, "/memory");
500 if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
501 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
504 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
505 acells, binfo->loader_start,
506 scells, binfo->ram_size);
507 if (rc < 0) {
508 fprintf(stderr, "couldn't set /memory/reg\n");
509 goto fail;
513 rc = fdt_path_offset(fdt, "/chosen");
514 if (rc < 0) {
515 qemu_fdt_add_subnode(fdt, "/chosen");
518 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
519 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
520 binfo->kernel_cmdline);
521 if (rc < 0) {
522 fprintf(stderr, "couldn't set /chosen/bootargs\n");
523 goto fail;
527 if (binfo->initrd_size) {
528 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
529 binfo->initrd_start);
530 if (rc < 0) {
531 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
532 goto fail;
535 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
536 binfo->initrd_start + binfo->initrd_size);
537 if (rc < 0) {
538 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
539 goto fail;
543 if (binfo->modify_dtb) {
544 binfo->modify_dtb(binfo, fdt);
547 qemu_fdt_dumpdtb(fdt, size);
549 /* Put the DTB into the memory map as a ROM image: this will ensure
550 * the DTB is copied again upon reset, even if addr points into RAM.
552 rom_add_blob_fixed("dtb", fdt, size, addr);
554 g_free(fdt);
556 return size;
558 fail:
559 g_free(fdt);
560 return -1;
563 static void do_cpu_reset(void *opaque)
565 ARMCPU *cpu = opaque;
566 CPUState *cs = CPU(cpu);
567 CPUARMState *env = &cpu->env;
568 const struct arm_boot_info *info = env->boot_info;
570 cpu_reset(cs);
571 if (info) {
572 if (!info->is_linux) {
573 int i;
574 /* Jump to the entry point. */
575 uint64_t entry = info->entry;
577 switch (info->endianness) {
578 case ARM_ENDIANNESS_LE:
579 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
580 for (i = 1; i < 4; ++i) {
581 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
583 env->uncached_cpsr &= ~CPSR_E;
584 break;
585 case ARM_ENDIANNESS_BE8:
586 env->cp15.sctlr_el[1] |= SCTLR_E0E;
587 for (i = 1; i < 4; ++i) {
588 env->cp15.sctlr_el[i] |= SCTLR_EE;
590 env->uncached_cpsr |= CPSR_E;
591 break;
592 case ARM_ENDIANNESS_BE32:
593 env->cp15.sctlr_el[1] |= SCTLR_B;
594 break;
595 case ARM_ENDIANNESS_UNKNOWN:
596 break; /* Board's decision */
597 default:
598 g_assert_not_reached();
601 if (!env->aarch64) {
602 env->thumb = info->entry & 1;
603 entry &= 0xfffffffe;
605 cpu_set_pc(cs, entry);
606 } else {
607 /* If we are booting Linux then we need to check whether we are
608 * booting into secure or non-secure state and adjust the state
609 * accordingly. Out of reset, ARM is defined to be in secure state
610 * (SCR.NS = 0), we change that here if non-secure boot has been
611 * requested.
613 if (arm_feature(env, ARM_FEATURE_EL3)) {
614 /* AArch64 is defined to come out of reset into EL3 if enabled.
615 * If we are booting Linux then we need to adjust our EL as
616 * Linux expects us to be in EL2 or EL1. AArch32 resets into
617 * SVC, which Linux expects, so no privilege/exception level to
618 * adjust.
620 if (env->aarch64) {
621 env->cp15.scr_el3 |= SCR_RW;
622 if (arm_feature(env, ARM_FEATURE_EL2)) {
623 env->cp15.hcr_el2 |= HCR_RW;
624 env->pstate = PSTATE_MODE_EL2h;
625 } else {
626 env->pstate = PSTATE_MODE_EL1h;
630 /* Set to non-secure if not a secure boot */
631 if (!info->secure_boot &&
632 (cs != first_cpu || !info->secure_board_setup)) {
633 /* Linux expects non-secure state */
634 env->cp15.scr_el3 |= SCR_NS;
638 if (cs == first_cpu) {
639 cpu_set_pc(cs, info->loader_start);
641 if (!have_dtb(info)) {
642 if (old_param) {
643 set_kernel_args_old(info);
644 } else {
645 set_kernel_args(info);
648 } else {
649 info->secondary_cpu_reset_hook(cpu, info);
656 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
657 * by key.
658 * @fw_cfg: The firmware config instance to store the data in.
659 * @size_key: The firmware config key to store the size of the loaded
660 * data under, with fw_cfg_add_i32().
661 * @data_key: The firmware config key to store the loaded data under,
662 * with fw_cfg_add_bytes().
663 * @image_name: The name of the image file to load. If it is NULL, the
664 * function returns without doing anything.
665 * @try_decompress: Whether the image should be decompressed (gunzipped) before
666 * adding it to fw_cfg. If decompression fails, the image is
667 * loaded as-is.
669 * In case of failure, the function prints an error message to stderr and the
670 * process exits with status 1.
672 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
673 uint16_t data_key, const char *image_name,
674 bool try_decompress)
676 size_t size = -1;
677 uint8_t *data;
679 if (image_name == NULL) {
680 return;
683 if (try_decompress) {
684 size = load_image_gzipped_buffer(image_name,
685 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
688 if (size == (size_t)-1) {
689 gchar *contents;
690 gsize length;
692 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
693 fprintf(stderr, "failed to load \"%s\"\n", image_name);
694 exit(1);
696 size = length;
697 data = (uint8_t *)contents;
700 fw_cfg_add_i32(fw_cfg, size_key, size);
701 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
704 static int do_arm_linux_init(Object *obj, void *opaque)
706 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
707 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
708 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
709 struct arm_boot_info *info = opaque;
711 if (albifc->arm_linux_init) {
712 albifc->arm_linux_init(albif, info->secure_boot);
715 return 0;
718 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
719 uint64_t *lowaddr, uint64_t *highaddr,
720 int elf_machine)
722 bool elf_is64;
723 union {
724 Elf32_Ehdr h32;
725 Elf64_Ehdr h64;
726 } elf_header;
727 int data_swab = 0;
728 bool big_endian;
729 uint64_t ret = -1;
730 Error *err = NULL;
733 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
734 if (err) {
735 return ret;
738 if (elf_is64) {
739 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
740 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
741 : ARM_ENDIANNESS_LE;
742 } else {
743 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
744 if (big_endian) {
745 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
746 info->endianness = ARM_ENDIANNESS_BE8;
747 } else {
748 info->endianness = ARM_ENDIANNESS_BE32;
749 /* In BE32, the CPU has a different view of the per-byte
750 * address map than the rest of the system. BE32 ELF files
751 * are organised such that they can be programmed through
752 * the CPU's per-word byte-reversed view of the world. QEMU
753 * however loads ELF files independently of the CPU. So
754 * tell the ELF loader to byte reverse the data for us.
756 data_swab = 2;
758 } else {
759 info->endianness = ARM_ENDIANNESS_LE;
763 ret = load_elf(info->kernel_filename, NULL, NULL,
764 pentry, lowaddr, highaddr, big_endian, elf_machine,
765 1, data_swab);
766 if (ret <= 0) {
767 /* The header loaded but the image didn't */
768 exit(1);
771 return ret;
774 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
775 hwaddr *entry)
777 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
778 uint8_t *buffer;
779 int size;
781 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
782 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
783 &buffer);
785 if (size < 0) {
786 gsize len;
788 /* Load as raw file otherwise */
789 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
790 return -1;
792 size = len;
795 /* check the arm64 magic header value -- very old kernels may not have it */
796 if (memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
797 uint64_t hdrvals[2];
799 /* The arm64 Image header has text_offset and image_size fields at 8 and
800 * 16 bytes into the Image header, respectively. The text_offset field
801 * is only valid if the image_size is non-zero.
803 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
804 if (hdrvals[1] != 0) {
805 kernel_load_offset = le64_to_cpu(hdrvals[0]);
809 *entry = mem_base + kernel_load_offset;
810 rom_add_blob_fixed(filename, buffer, size, *entry);
812 g_free(buffer);
814 return size;
817 static void arm_load_kernel_notify(Notifier *notifier, void *data)
819 CPUState *cs;
820 int kernel_size;
821 int initrd_size;
822 int is_linux = 0;
823 uint64_t elf_entry, elf_low_addr, elf_high_addr;
824 int elf_machine;
825 hwaddr entry;
826 static const ARMInsnFixup *primary_loader;
827 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
828 notifier, notifier);
829 ARMCPU *cpu = n->cpu;
830 struct arm_boot_info *info =
831 container_of(n, struct arm_boot_info, load_kernel_notifier);
833 /* The board code is not supposed to set secure_board_setup unless
834 * running its code in secure mode is actually possible, and KVM
835 * doesn't support secure.
837 assert(!(info->secure_board_setup && kvm_enabled()));
839 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
841 /* Load the kernel. */
842 if (!info->kernel_filename || info->firmware_loaded) {
844 if (have_dtb(info)) {
845 /* If we have a device tree blob, but no kernel to supply it to (or
846 * the kernel is supposed to be loaded by the bootloader), copy the
847 * DTB to the base of RAM for the bootloader to pick up.
849 if (load_dtb(info->loader_start, info, 0) < 0) {
850 exit(1);
854 if (info->kernel_filename) {
855 FWCfgState *fw_cfg;
856 bool try_decompressing_kernel;
858 fw_cfg = fw_cfg_find();
859 try_decompressing_kernel = arm_feature(&cpu->env,
860 ARM_FEATURE_AARCH64);
862 /* Expose the kernel, the command line, and the initrd in fw_cfg.
863 * We don't process them here at all, it's all left to the
864 * firmware.
866 load_image_to_fw_cfg(fw_cfg,
867 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
868 info->kernel_filename,
869 try_decompressing_kernel);
870 load_image_to_fw_cfg(fw_cfg,
871 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
872 info->initrd_filename, false);
874 if (info->kernel_cmdline) {
875 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
876 strlen(info->kernel_cmdline) + 1);
877 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
878 info->kernel_cmdline);
882 /* We will start from address 0 (typically a boot ROM image) in the
883 * same way as hardware.
885 return;
888 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
889 primary_loader = bootloader_aarch64;
890 elf_machine = EM_AARCH64;
891 } else {
892 primary_loader = bootloader;
893 if (!info->write_board_setup) {
894 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
896 elf_machine = EM_ARM;
899 if (!info->secondary_cpu_reset_hook) {
900 info->secondary_cpu_reset_hook = default_reset_secondary;
902 if (!info->write_secondary_boot) {
903 info->write_secondary_boot = default_write_secondary;
906 if (info->nb_cpus == 0)
907 info->nb_cpus = 1;
909 /* We want to put the initrd far enough into RAM that when the
910 * kernel is uncompressed it will not clobber the initrd. However
911 * on boards without much RAM we must ensure that we still leave
912 * enough room for a decent sized initrd, and on boards with large
913 * amounts of RAM we must avoid the initrd being so far up in RAM
914 * that it is outside lowmem and inaccessible to the kernel.
915 * So for boards with less than 256MB of RAM we put the initrd
916 * halfway into RAM, and for boards with 256MB of RAM or more we put
917 * the initrd at 128MB.
919 info->initrd_start = info->loader_start +
920 MIN(info->ram_size / 2, 128 * 1024 * 1024);
922 /* Assume that raw images are linux kernels, and ELF images are not. */
923 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
924 &elf_high_addr, elf_machine);
925 if (kernel_size > 0 && have_dtb(info)) {
926 /* If there is still some room left at the base of RAM, try and put
927 * the DTB there like we do for images loaded with -bios or -pflash.
929 if (elf_low_addr > info->loader_start
930 || elf_high_addr < info->loader_start) {
931 /* Pass elf_low_addr as address limit to load_dtb if it may be
932 * pointing into RAM, otherwise pass '0' (no limit)
934 if (elf_low_addr < info->loader_start) {
935 elf_low_addr = 0;
937 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
938 exit(1);
942 entry = elf_entry;
943 if (kernel_size < 0) {
944 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
945 &is_linux, NULL, NULL);
947 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
948 kernel_size = load_aarch64_image(info->kernel_filename,
949 info->loader_start, &entry);
950 is_linux = 1;
951 } else if (kernel_size < 0) {
952 /* 32-bit ARM */
953 entry = info->loader_start + KERNEL_LOAD_ADDR;
954 kernel_size = load_image_targphys(info->kernel_filename, entry,
955 info->ram_size - KERNEL_LOAD_ADDR);
956 is_linux = 1;
958 if (kernel_size < 0) {
959 fprintf(stderr, "qemu: could not load kernel '%s'\n",
960 info->kernel_filename);
961 exit(1);
963 info->entry = entry;
964 if (is_linux) {
965 uint32_t fixupcontext[FIXUP_MAX];
967 if (info->initrd_filename) {
968 initrd_size = load_ramdisk(info->initrd_filename,
969 info->initrd_start,
970 info->ram_size -
971 info->initrd_start);
972 if (initrd_size < 0) {
973 initrd_size = load_image_targphys(info->initrd_filename,
974 info->initrd_start,
975 info->ram_size -
976 info->initrd_start);
978 if (initrd_size < 0) {
979 fprintf(stderr, "qemu: could not load initrd '%s'\n",
980 info->initrd_filename);
981 exit(1);
983 } else {
984 initrd_size = 0;
986 info->initrd_size = initrd_size;
988 fixupcontext[FIXUP_BOARDID] = info->board_id;
989 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
991 /* for device tree boot, we pass the DTB directly in r2. Otherwise
992 * we point to the kernel args.
994 if (have_dtb(info)) {
995 hwaddr align;
996 hwaddr dtb_start;
998 if (elf_machine == EM_AARCH64) {
1000 * Some AArch64 kernels on early bootup map the fdt region as
1002 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1004 * Let's play safe and prealign it to 2MB to give us some space.
1006 align = 2 * 1024 * 1024;
1007 } else {
1009 * Some 32bit kernels will trash anything in the 4K page the
1010 * initrd ends in, so make sure the DTB isn't caught up in that.
1012 align = 4096;
1015 /* Place the DTB after the initrd in memory with alignment. */
1016 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
1017 if (load_dtb(dtb_start, info, 0) < 0) {
1018 exit(1);
1020 fixupcontext[FIXUP_ARGPTR] = dtb_start;
1021 } else {
1022 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1023 if (info->ram_size >= (1ULL << 32)) {
1024 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
1025 " Linux kernel using ATAGS (try passing a device tree"
1026 " using -dtb)\n");
1027 exit(1);
1030 fixupcontext[FIXUP_ENTRYPOINT] = entry;
1032 write_bootloader("bootloader", info->loader_start,
1033 primary_loader, fixupcontext);
1035 if (info->nb_cpus > 1) {
1036 info->write_secondary_boot(cpu, info);
1038 if (info->write_board_setup) {
1039 info->write_board_setup(cpu, info);
1042 /* Notify devices which need to fake up firmware initialization
1043 * that we're doing a direct kernel boot.
1045 object_child_foreach_recursive(object_get_root(),
1046 do_arm_linux_init, info);
1048 info->is_linux = is_linux;
1050 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1051 ARM_CPU(cs)->env.boot_info = info;
1055 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1057 CPUState *cs;
1059 info->load_kernel_notifier.cpu = cpu;
1060 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1061 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1063 /* CPU objects (unlike devices) are not automatically reset on system
1064 * reset, so we must always register a handler to do so. If we're
1065 * actually loading a kernel, the handler is also responsible for
1066 * arranging that we start it correctly.
1068 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1069 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1073 static const TypeInfo arm_linux_boot_if_info = {
1074 .name = TYPE_ARM_LINUX_BOOT_IF,
1075 .parent = TYPE_INTERFACE,
1076 .class_size = sizeof(ARMLinuxBootIfClass),
1079 static void arm_linux_boot_register_types(void)
1081 type_register_static(&arm_linux_boot_if_info);
1084 type_init(arm_linux_boot_register_types)