i386: Compile CPUX86State xsave_buf only when support KVM or HVF
[qemu/ar7.git] / memory.c
blobaceadb2bf8fc5669ddf30225240b371d7a752f57
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/qdev-properties.h"
33 #include "migration/vmstate.h"
35 //#define DEBUG_UNASSIGNED
37 static unsigned memory_region_transaction_depth;
38 static bool memory_region_update_pending;
39 static bool ioeventfd_update_pending;
40 static bool global_dirty_log = false;
42 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
43 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45 static QTAILQ_HEAD(, AddressSpace) address_spaces
46 = QTAILQ_HEAD_INITIALIZER(address_spaces);
48 static GHashTable *flat_views;
50 typedef struct AddrRange AddrRange;
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
56 struct AddrRange {
57 Int128 start;
58 Int128 size;
61 static AddrRange addrrange_make(Int128 start, Int128 size)
63 return (AddrRange) { start, size };
66 static bool addrrange_equal(AddrRange r1, AddrRange r2)
68 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71 static Int128 addrrange_end(AddrRange r)
73 return int128_add(r.start, r.size);
76 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
78 int128_addto(&range.start, delta);
79 return range;
82 static bool addrrange_contains(AddrRange range, Int128 addr)
84 return int128_ge(addr, range.start)
85 && int128_lt(addr, addrrange_end(range));
88 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
90 return addrrange_contains(r1, r2.start)
91 || addrrange_contains(r2, r1.start);
94 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
96 Int128 start = int128_max(r1.start, r2.start);
97 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
98 return addrrange_make(start, int128_sub(end, start));
101 enum ListenerDirection { Forward, Reverse };
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
104 do { \
105 MemoryListener *_listener; \
107 switch (_direction) { \
108 case Forward: \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
114 break; \
115 case Reverse: \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
122 break; \
123 default: \
124 abort(); \
126 } while (0)
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
129 do { \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
133 switch (_direction) { \
134 case Forward: \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
140 break; \
141 case Reverse: \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
143 link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
148 break; \
149 default: \
150 abort(); \
152 } while (0)
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
201 return false;
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
221 #define FOR_EACH_FLAT_RANGE(var, view) \
222 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224 static inline MemoryRegionSection
225 section_from_flat_range(FlatRange *fr, FlatView *fv)
227 return (MemoryRegionSection) {
228 .mr = fr->mr,
229 .fv = fv,
230 .offset_within_region = fr->offset_in_region,
231 .size = fr->addr.size,
232 .offset_within_address_space = int128_get64(fr->addr.start),
233 .readonly = fr->readonly,
237 static bool flatrange_equal(FlatRange *a, FlatRange *b)
239 return a->mr == b->mr
240 && addrrange_equal(a->addr, b->addr)
241 && a->offset_in_region == b->offset_in_region
242 && a->romd_mode == b->romd_mode
243 && a->readonly == b->readonly;
246 static FlatView *flatview_new(MemoryRegion *mr_root)
248 FlatView *view;
250 view = g_new0(FlatView, 1);
251 view->ref = 1;
252 view->root = mr_root;
253 memory_region_ref(mr_root);
254 trace_flatview_new(view, mr_root);
256 return view;
259 /* Insert a range into a given position. Caller is responsible for maintaining
260 * sorting order.
262 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
264 if (view->nr == view->nr_allocated) {
265 view->nr_allocated = MAX(2 * view->nr, 10);
266 view->ranges = g_realloc(view->ranges,
267 view->nr_allocated * sizeof(*view->ranges));
269 memmove(view->ranges + pos + 1, view->ranges + pos,
270 (view->nr - pos) * sizeof(FlatRange));
271 view->ranges[pos] = *range;
272 memory_region_ref(range->mr);
273 ++view->nr;
276 static void flatview_destroy(FlatView *view)
278 int i;
280 trace_flatview_destroy(view, view->root);
281 if (view->dispatch) {
282 address_space_dispatch_free(view->dispatch);
284 for (i = 0; i < view->nr; i++) {
285 memory_region_unref(view->ranges[i].mr);
287 g_free(view->ranges);
288 memory_region_unref(view->root);
289 g_free(view);
292 static bool flatview_ref(FlatView *view)
294 return atomic_fetch_inc_nonzero(&view->ref) > 0;
297 void flatview_unref(FlatView *view)
299 if (atomic_fetch_dec(&view->ref) == 1) {
300 trace_flatview_destroy_rcu(view, view->root);
301 assert(view->root);
302 call_rcu(view, flatview_destroy, rcu);
306 static bool can_merge(FlatRange *r1, FlatRange *r2)
308 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
309 && r1->mr == r2->mr
310 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
311 r1->addr.size),
312 int128_make64(r2->offset_in_region))
313 && r1->dirty_log_mask == r2->dirty_log_mask
314 && r1->romd_mode == r2->romd_mode
315 && r1->readonly == r2->readonly;
318 /* Attempt to simplify a view by merging adjacent ranges */
319 static void flatview_simplify(FlatView *view)
321 unsigned i, j;
323 i = 0;
324 while (i < view->nr) {
325 j = i + 1;
326 while (j < view->nr
327 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
328 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
329 ++j;
331 ++i;
332 memmove(&view->ranges[i], &view->ranges[j],
333 (view->nr - j) * sizeof(view->ranges[j]));
334 view->nr -= j - i;
338 static bool memory_region_big_endian(MemoryRegion *mr)
340 #ifdef TARGET_WORDS_BIGENDIAN
341 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
342 #else
343 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
344 #endif
347 static bool memory_region_wrong_endianness(MemoryRegion *mr)
349 #ifdef TARGET_WORDS_BIGENDIAN
350 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
351 #else
352 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
353 #endif
356 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
358 if (memory_region_wrong_endianness(mr)) {
359 switch (size) {
360 case 1:
361 break;
362 case 2:
363 *data = bswap16(*data);
364 break;
365 case 4:
366 *data = bswap32(*data);
367 break;
368 case 8:
369 *data = bswap64(*data);
370 break;
371 default:
372 abort();
377 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
379 MemoryRegion *root;
380 hwaddr abs_addr = offset;
382 abs_addr += mr->addr;
383 for (root = mr; root->container; ) {
384 root = root->container;
385 abs_addr += root->addr;
388 return abs_addr;
391 static int get_cpu_index(void)
393 if (current_cpu) {
394 return current_cpu->cpu_index;
396 return -1;
399 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
400 hwaddr addr,
401 uint64_t *value,
402 unsigned size,
403 unsigned shift,
404 uint64_t mask,
405 MemTxAttrs attrs)
407 uint64_t tmp;
409 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
410 if (mr->subpage) {
411 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
412 } else if (mr == &io_mem_notdirty) {
413 /* Accesses to code which has previously been translated into a TB show
414 * up in the MMIO path, as accesses to the io_mem_notdirty
415 * MemoryRegion. */
416 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
417 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
418 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
419 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
421 *value |= (tmp & mask) << shift;
422 return MEMTX_OK;
425 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
426 hwaddr addr,
427 uint64_t *value,
428 unsigned size,
429 unsigned shift,
430 uint64_t mask,
431 MemTxAttrs attrs)
433 uint64_t tmp;
435 tmp = mr->ops->read(mr->opaque, addr, size);
436 if (mr->subpage) {
437 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
438 } else if (mr == &io_mem_notdirty) {
439 /* Accesses to code which has previously been translated into a TB show
440 * up in the MMIO path, as accesses to the io_mem_notdirty
441 * MemoryRegion. */
442 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
443 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
444 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
445 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
447 *value |= (tmp & mask) << shift;
448 return MEMTX_OK;
451 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
452 hwaddr addr,
453 uint64_t *value,
454 unsigned size,
455 unsigned shift,
456 uint64_t mask,
457 MemTxAttrs attrs)
459 uint64_t tmp = 0;
460 MemTxResult r;
462 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
463 if (mr->subpage) {
464 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
465 } else if (mr == &io_mem_notdirty) {
466 /* Accesses to code which has previously been translated into a TB show
467 * up in the MMIO path, as accesses to the io_mem_notdirty
468 * MemoryRegion. */
469 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
470 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
471 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
472 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
474 *value |= (tmp & mask) << shift;
475 return r;
478 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
479 hwaddr addr,
480 uint64_t *value,
481 unsigned size,
482 unsigned shift,
483 uint64_t mask,
484 MemTxAttrs attrs)
486 uint64_t tmp;
488 tmp = (*value >> shift) & mask;
489 if (mr->subpage) {
490 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
491 } else if (mr == &io_mem_notdirty) {
492 /* Accesses to code which has previously been translated into a TB show
493 * up in the MMIO path, as accesses to the io_mem_notdirty
494 * MemoryRegion. */
495 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
496 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
497 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
498 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
500 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
501 return MEMTX_OK;
504 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
505 hwaddr addr,
506 uint64_t *value,
507 unsigned size,
508 unsigned shift,
509 uint64_t mask,
510 MemTxAttrs attrs)
512 uint64_t tmp;
514 tmp = (*value >> shift) & mask;
515 if (mr->subpage) {
516 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
517 } else if (mr == &io_mem_notdirty) {
518 /* Accesses to code which has previously been translated into a TB show
519 * up in the MMIO path, as accesses to the io_mem_notdirty
520 * MemoryRegion. */
521 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
522 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
523 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
524 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
526 mr->ops->write(mr->opaque, addr, tmp, size);
527 return MEMTX_OK;
530 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
531 hwaddr addr,
532 uint64_t *value,
533 unsigned size,
534 unsigned shift,
535 uint64_t mask,
536 MemTxAttrs attrs)
538 uint64_t tmp;
540 tmp = (*value >> shift) & mask;
541 if (mr->subpage) {
542 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
543 } else if (mr == &io_mem_notdirty) {
544 /* Accesses to code which has previously been translated into a TB show
545 * up in the MMIO path, as accesses to the io_mem_notdirty
546 * MemoryRegion. */
547 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
548 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
549 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
550 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
552 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
555 static MemTxResult access_with_adjusted_size(hwaddr addr,
556 uint64_t *value,
557 unsigned size,
558 unsigned access_size_min,
559 unsigned access_size_max,
560 MemTxResult (*access_fn)
561 (MemoryRegion *mr,
562 hwaddr addr,
563 uint64_t *value,
564 unsigned size,
565 unsigned shift,
566 uint64_t mask,
567 MemTxAttrs attrs),
568 MemoryRegion *mr,
569 MemTxAttrs attrs)
571 uint64_t access_mask;
572 unsigned access_size;
573 unsigned i;
574 MemTxResult r = MEMTX_OK;
576 if (!access_size_min) {
577 access_size_min = 1;
579 if (!access_size_max) {
580 access_size_max = 4;
583 /* FIXME: support unaligned access? */
584 access_size = MAX(MIN(size, access_size_max), access_size_min);
585 access_mask = -1ULL >> (64 - access_size * 8);
586 if (memory_region_big_endian(mr)) {
587 for (i = 0; i < size; i += access_size) {
588 r |= access_fn(mr, addr + i, value, access_size,
589 (size - access_size - i) * 8, access_mask, attrs);
591 } else {
592 for (i = 0; i < size; i += access_size) {
593 r |= access_fn(mr, addr + i, value, access_size, i * 8,
594 access_mask, attrs);
597 return r;
600 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
602 AddressSpace *as;
604 while (mr->container) {
605 mr = mr->container;
607 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
608 if (mr == as->root) {
609 return as;
612 return NULL;
615 /* Render a memory region into the global view. Ranges in @view obscure
616 * ranges in @mr.
618 static void render_memory_region(FlatView *view,
619 MemoryRegion *mr,
620 Int128 base,
621 AddrRange clip,
622 bool readonly)
624 MemoryRegion *subregion;
625 unsigned i;
626 hwaddr offset_in_region;
627 Int128 remain;
628 Int128 now;
629 FlatRange fr;
630 AddrRange tmp;
632 if (!mr->enabled) {
633 return;
636 int128_addto(&base, int128_make64(mr->addr));
637 readonly |= mr->readonly;
639 tmp = addrrange_make(base, mr->size);
641 if (!addrrange_intersects(tmp, clip)) {
642 return;
645 clip = addrrange_intersection(tmp, clip);
647 if (mr->alias) {
648 int128_subfrom(&base, int128_make64(mr->alias->addr));
649 int128_subfrom(&base, int128_make64(mr->alias_offset));
650 render_memory_region(view, mr->alias, base, clip, readonly);
651 return;
654 /* Render subregions in priority order. */
655 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
656 render_memory_region(view, subregion, base, clip, readonly);
659 if (!mr->terminates) {
660 return;
663 offset_in_region = int128_get64(int128_sub(clip.start, base));
664 base = clip.start;
665 remain = clip.size;
667 fr.mr = mr;
668 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
669 fr.romd_mode = mr->romd_mode;
670 fr.readonly = readonly;
672 /* Render the region itself into any gaps left by the current view. */
673 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
674 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
675 continue;
677 if (int128_lt(base, view->ranges[i].addr.start)) {
678 now = int128_min(remain,
679 int128_sub(view->ranges[i].addr.start, base));
680 fr.offset_in_region = offset_in_region;
681 fr.addr = addrrange_make(base, now);
682 flatview_insert(view, i, &fr);
683 ++i;
684 int128_addto(&base, now);
685 offset_in_region += int128_get64(now);
686 int128_subfrom(&remain, now);
688 now = int128_sub(int128_min(int128_add(base, remain),
689 addrrange_end(view->ranges[i].addr)),
690 base);
691 int128_addto(&base, now);
692 offset_in_region += int128_get64(now);
693 int128_subfrom(&remain, now);
695 if (int128_nz(remain)) {
696 fr.offset_in_region = offset_in_region;
697 fr.addr = addrrange_make(base, remain);
698 flatview_insert(view, i, &fr);
702 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
704 while (mr->enabled) {
705 if (mr->alias) {
706 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
707 /* The alias is included in its entirety. Use it as
708 * the "real" root, so that we can share more FlatViews.
710 mr = mr->alias;
711 continue;
713 } else if (!mr->terminates) {
714 unsigned int found = 0;
715 MemoryRegion *child, *next = NULL;
716 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
717 if (child->enabled) {
718 if (++found > 1) {
719 next = NULL;
720 break;
722 if (!child->addr && int128_ge(mr->size, child->size)) {
723 /* A child is included in its entirety. If it's the only
724 * enabled one, use it in the hope of finding an alias down the
725 * way. This will also let us share FlatViews.
727 next = child;
731 if (found == 0) {
732 return NULL;
734 if (next) {
735 mr = next;
736 continue;
740 return mr;
743 return NULL;
746 /* Render a memory topology into a list of disjoint absolute ranges. */
747 static FlatView *generate_memory_topology(MemoryRegion *mr)
749 int i;
750 FlatView *view;
752 view = flatview_new(mr);
754 if (mr) {
755 render_memory_region(view, mr, int128_zero(),
756 addrrange_make(int128_zero(), int128_2_64()), false);
758 flatview_simplify(view);
760 view->dispatch = address_space_dispatch_new(view);
761 for (i = 0; i < view->nr; i++) {
762 MemoryRegionSection mrs =
763 section_from_flat_range(&view->ranges[i], view);
764 flatview_add_to_dispatch(view, &mrs);
766 address_space_dispatch_compact(view->dispatch);
767 g_hash_table_replace(flat_views, mr, view);
769 return view;
772 static void address_space_add_del_ioeventfds(AddressSpace *as,
773 MemoryRegionIoeventfd *fds_new,
774 unsigned fds_new_nb,
775 MemoryRegionIoeventfd *fds_old,
776 unsigned fds_old_nb)
778 unsigned iold, inew;
779 MemoryRegionIoeventfd *fd;
780 MemoryRegionSection section;
782 /* Generate a symmetric difference of the old and new fd sets, adding
783 * and deleting as necessary.
786 iold = inew = 0;
787 while (iold < fds_old_nb || inew < fds_new_nb) {
788 if (iold < fds_old_nb
789 && (inew == fds_new_nb
790 || memory_region_ioeventfd_before(&fds_old[iold],
791 &fds_new[inew]))) {
792 fd = &fds_old[iold];
793 section = (MemoryRegionSection) {
794 .fv = address_space_to_flatview(as),
795 .offset_within_address_space = int128_get64(fd->addr.start),
796 .size = fd->addr.size,
798 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
799 fd->match_data, fd->data, fd->e);
800 ++iold;
801 } else if (inew < fds_new_nb
802 && (iold == fds_old_nb
803 || memory_region_ioeventfd_before(&fds_new[inew],
804 &fds_old[iold]))) {
805 fd = &fds_new[inew];
806 section = (MemoryRegionSection) {
807 .fv = address_space_to_flatview(as),
808 .offset_within_address_space = int128_get64(fd->addr.start),
809 .size = fd->addr.size,
811 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
812 fd->match_data, fd->data, fd->e);
813 ++inew;
814 } else {
815 ++iold;
816 ++inew;
821 FlatView *address_space_get_flatview(AddressSpace *as)
823 FlatView *view;
825 rcu_read_lock();
826 do {
827 view = address_space_to_flatview(as);
828 /* If somebody has replaced as->current_map concurrently,
829 * flatview_ref returns false.
831 } while (!flatview_ref(view));
832 rcu_read_unlock();
833 return view;
836 static void address_space_update_ioeventfds(AddressSpace *as)
838 FlatView *view;
839 FlatRange *fr;
840 unsigned ioeventfd_nb = 0;
841 MemoryRegionIoeventfd *ioeventfds = NULL;
842 AddrRange tmp;
843 unsigned i;
845 view = address_space_get_flatview(as);
846 FOR_EACH_FLAT_RANGE(fr, view) {
847 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
848 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
849 int128_sub(fr->addr.start,
850 int128_make64(fr->offset_in_region)));
851 if (addrrange_intersects(fr->addr, tmp)) {
852 ++ioeventfd_nb;
853 ioeventfds = g_realloc(ioeventfds,
854 ioeventfd_nb * sizeof(*ioeventfds));
855 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
856 ioeventfds[ioeventfd_nb-1].addr = tmp;
861 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
862 as->ioeventfds, as->ioeventfd_nb);
864 g_free(as->ioeventfds);
865 as->ioeventfds = ioeventfds;
866 as->ioeventfd_nb = ioeventfd_nb;
867 flatview_unref(view);
870 static void address_space_update_topology_pass(AddressSpace *as,
871 const FlatView *old_view,
872 const FlatView *new_view,
873 bool adding)
875 unsigned iold, inew;
876 FlatRange *frold, *frnew;
878 /* Generate a symmetric difference of the old and new memory maps.
879 * Kill ranges in the old map, and instantiate ranges in the new map.
881 iold = inew = 0;
882 while (iold < old_view->nr || inew < new_view->nr) {
883 if (iold < old_view->nr) {
884 frold = &old_view->ranges[iold];
885 } else {
886 frold = NULL;
888 if (inew < new_view->nr) {
889 frnew = &new_view->ranges[inew];
890 } else {
891 frnew = NULL;
894 if (frold
895 && (!frnew
896 || int128_lt(frold->addr.start, frnew->addr.start)
897 || (int128_eq(frold->addr.start, frnew->addr.start)
898 && !flatrange_equal(frold, frnew)))) {
899 /* In old but not in new, or in both but attributes changed. */
901 if (!adding) {
902 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
905 ++iold;
906 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
907 /* In both and unchanged (except logging may have changed) */
909 if (adding) {
910 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
911 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
912 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
913 frold->dirty_log_mask,
914 frnew->dirty_log_mask);
916 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
917 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
918 frold->dirty_log_mask,
919 frnew->dirty_log_mask);
923 ++iold;
924 ++inew;
925 } else {
926 /* In new */
928 if (adding) {
929 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
932 ++inew;
937 static void flatviews_init(void)
939 static FlatView *empty_view;
941 if (flat_views) {
942 return;
945 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
946 (GDestroyNotify) flatview_unref);
947 if (!empty_view) {
948 empty_view = generate_memory_topology(NULL);
949 /* We keep it alive forever in the global variable. */
950 flatview_ref(empty_view);
951 } else {
952 g_hash_table_replace(flat_views, NULL, empty_view);
953 flatview_ref(empty_view);
957 static void flatviews_reset(void)
959 AddressSpace *as;
961 if (flat_views) {
962 g_hash_table_unref(flat_views);
963 flat_views = NULL;
965 flatviews_init();
967 /* Render unique FVs */
968 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
969 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
971 if (g_hash_table_lookup(flat_views, physmr)) {
972 continue;
975 generate_memory_topology(physmr);
979 static void address_space_set_flatview(AddressSpace *as)
981 FlatView *old_view = address_space_to_flatview(as);
982 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
983 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
985 assert(new_view);
987 if (old_view == new_view) {
988 return;
991 if (old_view) {
992 flatview_ref(old_view);
995 flatview_ref(new_view);
997 if (!QTAILQ_EMPTY(&as->listeners)) {
998 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1000 if (!old_view2) {
1001 old_view2 = &tmpview;
1003 address_space_update_topology_pass(as, old_view2, new_view, false);
1004 address_space_update_topology_pass(as, old_view2, new_view, true);
1007 /* Writes are protected by the BQL. */
1008 atomic_rcu_set(&as->current_map, new_view);
1009 if (old_view) {
1010 flatview_unref(old_view);
1013 /* Note that all the old MemoryRegions are still alive up to this
1014 * point. This relieves most MemoryListeners from the need to
1015 * ref/unref the MemoryRegions they get---unless they use them
1016 * outside the iothread mutex, in which case precise reference
1017 * counting is necessary.
1019 if (old_view) {
1020 flatview_unref(old_view);
1024 static void address_space_update_topology(AddressSpace *as)
1026 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1028 flatviews_init();
1029 if (!g_hash_table_lookup(flat_views, physmr)) {
1030 generate_memory_topology(physmr);
1032 address_space_set_flatview(as);
1035 void memory_region_transaction_begin(void)
1037 qemu_flush_coalesced_mmio_buffer();
1038 ++memory_region_transaction_depth;
1041 void memory_region_transaction_commit(void)
1043 AddressSpace *as;
1045 assert(memory_region_transaction_depth);
1046 assert(qemu_mutex_iothread_locked());
1048 --memory_region_transaction_depth;
1049 if (!memory_region_transaction_depth) {
1050 if (memory_region_update_pending) {
1051 flatviews_reset();
1053 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1055 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1056 address_space_set_flatview(as);
1057 address_space_update_ioeventfds(as);
1059 memory_region_update_pending = false;
1060 ioeventfd_update_pending = false;
1061 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1062 } else if (ioeventfd_update_pending) {
1063 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1064 address_space_update_ioeventfds(as);
1066 ioeventfd_update_pending = false;
1071 static void memory_region_destructor_none(MemoryRegion *mr)
1075 static void memory_region_destructor_ram(MemoryRegion *mr)
1077 qemu_ram_free(mr->ram_block);
1080 static bool memory_region_need_escape(char c)
1082 return c == '/' || c == '[' || c == '\\' || c == ']';
1085 static char *memory_region_escape_name(const char *name)
1087 const char *p;
1088 char *escaped, *q;
1089 uint8_t c;
1090 size_t bytes = 0;
1092 for (p = name; *p; p++) {
1093 bytes += memory_region_need_escape(*p) ? 4 : 1;
1095 if (bytes == p - name) {
1096 return g_memdup(name, bytes + 1);
1099 escaped = g_malloc(bytes + 1);
1100 for (p = name, q = escaped; *p; p++) {
1101 c = *p;
1102 if (unlikely(memory_region_need_escape(c))) {
1103 *q++ = '\\';
1104 *q++ = 'x';
1105 *q++ = "0123456789abcdef"[c >> 4];
1106 c = "0123456789abcdef"[c & 15];
1108 *q++ = c;
1110 *q = 0;
1111 return escaped;
1114 static void memory_region_do_init(MemoryRegion *mr,
1115 Object *owner,
1116 const char *name,
1117 uint64_t size)
1119 mr->size = int128_make64(size);
1120 if (size == UINT64_MAX) {
1121 mr->size = int128_2_64();
1123 mr->name = g_strdup(name);
1124 mr->owner = owner;
1125 mr->ram_block = NULL;
1127 if (name) {
1128 char *escaped_name = memory_region_escape_name(name);
1129 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1131 if (!owner) {
1132 owner = container_get(qdev_get_machine(), "/unattached");
1135 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1136 object_unref(OBJECT(mr));
1137 g_free(name_array);
1138 g_free(escaped_name);
1142 void memory_region_init(MemoryRegion *mr,
1143 Object *owner,
1144 const char *name,
1145 uint64_t size)
1147 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1148 memory_region_do_init(mr, owner, name, size);
1151 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1152 void *opaque, Error **errp)
1154 MemoryRegion *mr = MEMORY_REGION(obj);
1155 uint64_t value = mr->addr;
1157 visit_type_uint64(v, name, &value, errp);
1160 static void memory_region_get_container(Object *obj, Visitor *v,
1161 const char *name, void *opaque,
1162 Error **errp)
1164 MemoryRegion *mr = MEMORY_REGION(obj);
1165 gchar *path = (gchar *)"";
1167 if (mr->container) {
1168 path = object_get_canonical_path(OBJECT(mr->container));
1170 visit_type_str(v, name, &path, errp);
1171 if (mr->container) {
1172 g_free(path);
1176 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1177 const char *part)
1179 MemoryRegion *mr = MEMORY_REGION(obj);
1181 return OBJECT(mr->container);
1184 static void memory_region_get_priority(Object *obj, Visitor *v,
1185 const char *name, void *opaque,
1186 Error **errp)
1188 MemoryRegion *mr = MEMORY_REGION(obj);
1189 int32_t value = mr->priority;
1191 visit_type_int32(v, name, &value, errp);
1194 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1195 void *opaque, Error **errp)
1197 MemoryRegion *mr = MEMORY_REGION(obj);
1198 uint64_t value = memory_region_size(mr);
1200 visit_type_uint64(v, name, &value, errp);
1203 static void memory_region_initfn(Object *obj)
1205 MemoryRegion *mr = MEMORY_REGION(obj);
1206 ObjectProperty *op;
1208 mr->ops = &unassigned_mem_ops;
1209 mr->enabled = true;
1210 mr->romd_mode = true;
1211 mr->global_locking = true;
1212 mr->destructor = memory_region_destructor_none;
1213 QTAILQ_INIT(&mr->subregions);
1214 QTAILQ_INIT(&mr->coalesced);
1216 op = object_property_add(OBJECT(mr), "container",
1217 "link<" TYPE_MEMORY_REGION ">",
1218 memory_region_get_container,
1219 NULL, /* memory_region_set_container */
1220 NULL, NULL, &error_abort);
1221 op->resolve = memory_region_resolve_container;
1223 object_property_add(OBJECT(mr), "addr", "uint64",
1224 memory_region_get_addr,
1225 NULL, /* memory_region_set_addr */
1226 NULL, NULL, &error_abort);
1227 object_property_add(OBJECT(mr), "priority", "uint32",
1228 memory_region_get_priority,
1229 NULL, /* memory_region_set_priority */
1230 NULL, NULL, &error_abort);
1231 object_property_add(OBJECT(mr), "size", "uint64",
1232 memory_region_get_size,
1233 NULL, /* memory_region_set_size, */
1234 NULL, NULL, &error_abort);
1237 static void iommu_memory_region_initfn(Object *obj)
1239 MemoryRegion *mr = MEMORY_REGION(obj);
1241 mr->is_iommu = true;
1244 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1245 unsigned size)
1247 #ifdef DEBUG_UNASSIGNED
1248 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1249 #endif
1250 if (current_cpu != NULL) {
1251 bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
1252 cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
1254 return 0;
1257 static void unassigned_mem_write(void *opaque, hwaddr addr,
1258 uint64_t val, unsigned size)
1260 #ifdef DEBUG_UNASSIGNED
1261 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1262 #endif
1263 if (current_cpu != NULL) {
1264 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1268 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1269 unsigned size, bool is_write,
1270 MemTxAttrs attrs)
1272 return false;
1275 const MemoryRegionOps unassigned_mem_ops = {
1276 .valid.accepts = unassigned_mem_accepts,
1277 .endianness = DEVICE_NATIVE_ENDIAN,
1280 static uint64_t memory_region_ram_device_read(void *opaque,
1281 hwaddr addr, unsigned size)
1283 MemoryRegion *mr = opaque;
1284 uint64_t data = (uint64_t)~0;
1286 switch (size) {
1287 case 1:
1288 data = *(uint8_t *)(mr->ram_block->host + addr);
1289 break;
1290 case 2:
1291 data = *(uint16_t *)(mr->ram_block->host + addr);
1292 break;
1293 case 4:
1294 data = *(uint32_t *)(mr->ram_block->host + addr);
1295 break;
1296 case 8:
1297 data = *(uint64_t *)(mr->ram_block->host + addr);
1298 break;
1301 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1303 return data;
1306 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1307 uint64_t data, unsigned size)
1309 MemoryRegion *mr = opaque;
1311 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1313 switch (size) {
1314 case 1:
1315 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1316 break;
1317 case 2:
1318 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1319 break;
1320 case 4:
1321 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1322 break;
1323 case 8:
1324 *(uint64_t *)(mr->ram_block->host + addr) = data;
1325 break;
1329 static const MemoryRegionOps ram_device_mem_ops = {
1330 .read = memory_region_ram_device_read,
1331 .write = memory_region_ram_device_write,
1332 .endianness = DEVICE_HOST_ENDIAN,
1333 .valid = {
1334 .min_access_size = 1,
1335 .max_access_size = 8,
1336 .unaligned = true,
1338 .impl = {
1339 .min_access_size = 1,
1340 .max_access_size = 8,
1341 .unaligned = true,
1345 bool memory_region_access_valid(MemoryRegion *mr,
1346 hwaddr addr,
1347 unsigned size,
1348 bool is_write,
1349 MemTxAttrs attrs)
1351 int access_size_min, access_size_max;
1352 int access_size, i;
1354 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1355 return false;
1358 if (!mr->ops->valid.accepts) {
1359 return true;
1362 access_size_min = mr->ops->valid.min_access_size;
1363 if (!mr->ops->valid.min_access_size) {
1364 access_size_min = 1;
1367 access_size_max = mr->ops->valid.max_access_size;
1368 if (!mr->ops->valid.max_access_size) {
1369 access_size_max = 4;
1372 access_size = MAX(MIN(size, access_size_max), access_size_min);
1373 for (i = 0; i < size; i += access_size) {
1374 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1375 is_write, attrs)) {
1376 return false;
1380 return true;
1383 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1384 hwaddr addr,
1385 uint64_t *pval,
1386 unsigned size,
1387 MemTxAttrs attrs)
1389 *pval = 0;
1391 if (mr->ops->read) {
1392 return access_with_adjusted_size(addr, pval, size,
1393 mr->ops->impl.min_access_size,
1394 mr->ops->impl.max_access_size,
1395 memory_region_read_accessor,
1396 mr, attrs);
1397 } else if (mr->ops->read_with_attrs) {
1398 return access_with_adjusted_size(addr, pval, size,
1399 mr->ops->impl.min_access_size,
1400 mr->ops->impl.max_access_size,
1401 memory_region_read_with_attrs_accessor,
1402 mr, attrs);
1403 } else {
1404 return access_with_adjusted_size(addr, pval, size, 1, 4,
1405 memory_region_oldmmio_read_accessor,
1406 mr, attrs);
1410 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1411 hwaddr addr,
1412 uint64_t *pval,
1413 unsigned size,
1414 MemTxAttrs attrs)
1416 MemTxResult r;
1418 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1419 *pval = unassigned_mem_read(mr, addr, size);
1420 return MEMTX_DECODE_ERROR;
1423 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1424 adjust_endianness(mr, pval, size);
1425 return r;
1428 /* Return true if an eventfd was signalled */
1429 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1430 hwaddr addr,
1431 uint64_t data,
1432 unsigned size,
1433 MemTxAttrs attrs)
1435 MemoryRegionIoeventfd ioeventfd = {
1436 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1437 .data = data,
1439 unsigned i;
1441 for (i = 0; i < mr->ioeventfd_nb; i++) {
1442 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1443 ioeventfd.e = mr->ioeventfds[i].e;
1445 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1446 event_notifier_set(ioeventfd.e);
1447 return true;
1451 return false;
1454 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1455 hwaddr addr,
1456 uint64_t data,
1457 unsigned size,
1458 MemTxAttrs attrs)
1460 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1461 unassigned_mem_write(mr, addr, data, size);
1462 return MEMTX_DECODE_ERROR;
1465 adjust_endianness(mr, &data, size);
1467 if ((!kvm_eventfds_enabled()) &&
1468 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1469 return MEMTX_OK;
1472 if (mr->ops->write) {
1473 return access_with_adjusted_size(addr, &data, size,
1474 mr->ops->impl.min_access_size,
1475 mr->ops->impl.max_access_size,
1476 memory_region_write_accessor, mr,
1477 attrs);
1478 } else if (mr->ops->write_with_attrs) {
1479 return
1480 access_with_adjusted_size(addr, &data, size,
1481 mr->ops->impl.min_access_size,
1482 mr->ops->impl.max_access_size,
1483 memory_region_write_with_attrs_accessor,
1484 mr, attrs);
1485 } else {
1486 return access_with_adjusted_size(addr, &data, size, 1, 4,
1487 memory_region_oldmmio_write_accessor,
1488 mr, attrs);
1492 void memory_region_init_io(MemoryRegion *mr,
1493 Object *owner,
1494 const MemoryRegionOps *ops,
1495 void *opaque,
1496 const char *name,
1497 uint64_t size)
1499 memory_region_init(mr, owner, name, size);
1500 mr->ops = ops ? ops : &unassigned_mem_ops;
1501 mr->opaque = opaque;
1502 mr->terminates = true;
1505 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1506 Object *owner,
1507 const char *name,
1508 uint64_t size,
1509 Error **errp)
1511 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1514 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1515 Object *owner,
1516 const char *name,
1517 uint64_t size,
1518 bool share,
1519 Error **errp)
1521 Error *err = NULL;
1522 memory_region_init(mr, owner, name, size);
1523 mr->ram = true;
1524 mr->terminates = true;
1525 mr->destructor = memory_region_destructor_ram;
1526 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1527 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1528 if (err) {
1529 mr->size = int128_zero();
1530 object_unparent(OBJECT(mr));
1531 error_propagate(errp, err);
1535 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1536 Object *owner,
1537 const char *name,
1538 uint64_t size,
1539 uint64_t max_size,
1540 void (*resized)(const char*,
1541 uint64_t length,
1542 void *host),
1543 Error **errp)
1545 Error *err = NULL;
1546 memory_region_init(mr, owner, name, size);
1547 mr->ram = true;
1548 mr->terminates = true;
1549 mr->destructor = memory_region_destructor_ram;
1550 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1551 mr, &err);
1552 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1553 if (err) {
1554 mr->size = int128_zero();
1555 object_unparent(OBJECT(mr));
1556 error_propagate(errp, err);
1560 #ifdef __linux__
1561 void memory_region_init_ram_from_file(MemoryRegion *mr,
1562 struct Object *owner,
1563 const char *name,
1564 uint64_t size,
1565 uint64_t align,
1566 uint32_t ram_flags,
1567 const char *path,
1568 Error **errp)
1570 Error *err = NULL;
1571 memory_region_init(mr, owner, name, size);
1572 mr->ram = true;
1573 mr->terminates = true;
1574 mr->destructor = memory_region_destructor_ram;
1575 mr->align = align;
1576 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1577 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1578 if (err) {
1579 mr->size = int128_zero();
1580 object_unparent(OBJECT(mr));
1581 error_propagate(errp, err);
1585 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1586 struct Object *owner,
1587 const char *name,
1588 uint64_t size,
1589 bool share,
1590 int fd,
1591 Error **errp)
1593 Error *err = NULL;
1594 memory_region_init(mr, owner, name, size);
1595 mr->ram = true;
1596 mr->terminates = true;
1597 mr->destructor = memory_region_destructor_ram;
1598 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1599 share ? RAM_SHARED : 0,
1600 fd, &err);
1601 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1602 if (err) {
1603 mr->size = int128_zero();
1604 object_unparent(OBJECT(mr));
1605 error_propagate(errp, err);
1608 #endif
1610 void memory_region_init_ram_ptr(MemoryRegion *mr,
1611 Object *owner,
1612 const char *name,
1613 uint64_t size,
1614 void *ptr)
1616 memory_region_init(mr, owner, name, size);
1617 mr->ram = true;
1618 mr->terminates = true;
1619 mr->destructor = memory_region_destructor_ram;
1620 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1622 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1623 assert(ptr != NULL);
1624 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1627 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1628 Object *owner,
1629 const char *name,
1630 uint64_t size,
1631 void *ptr)
1633 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1634 mr->ram_device = true;
1635 mr->ops = &ram_device_mem_ops;
1636 mr->opaque = mr;
1639 void memory_region_init_alias(MemoryRegion *mr,
1640 Object *owner,
1641 const char *name,
1642 MemoryRegion *orig,
1643 hwaddr offset,
1644 uint64_t size)
1646 memory_region_init(mr, owner, name, size);
1647 mr->alias = orig;
1648 mr->alias_offset = offset;
1651 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1652 struct Object *owner,
1653 const char *name,
1654 uint64_t size,
1655 Error **errp)
1657 Error *err = NULL;
1658 memory_region_init(mr, owner, name, size);
1659 mr->ram = true;
1660 mr->readonly = true;
1661 mr->terminates = true;
1662 mr->destructor = memory_region_destructor_ram;
1663 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1664 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1665 if (err) {
1666 mr->size = int128_zero();
1667 object_unparent(OBJECT(mr));
1668 error_propagate(errp, err);
1672 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1673 Object *owner,
1674 const MemoryRegionOps *ops,
1675 void *opaque,
1676 const char *name,
1677 uint64_t size,
1678 Error **errp)
1680 Error *err = NULL;
1681 assert(ops);
1682 memory_region_init(mr, owner, name, size);
1683 mr->ops = ops;
1684 mr->opaque = opaque;
1685 mr->terminates = true;
1686 mr->rom_device = true;
1687 mr->destructor = memory_region_destructor_ram;
1688 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1689 if (err) {
1690 mr->size = int128_zero();
1691 object_unparent(OBJECT(mr));
1692 error_propagate(errp, err);
1696 void memory_region_init_iommu(void *_iommu_mr,
1697 size_t instance_size,
1698 const char *mrtypename,
1699 Object *owner,
1700 const char *name,
1701 uint64_t size)
1703 struct IOMMUMemoryRegion *iommu_mr;
1704 struct MemoryRegion *mr;
1706 object_initialize(_iommu_mr, instance_size, mrtypename);
1707 mr = MEMORY_REGION(_iommu_mr);
1708 memory_region_do_init(mr, owner, name, size);
1709 iommu_mr = IOMMU_MEMORY_REGION(mr);
1710 mr->terminates = true; /* then re-forwards */
1711 QLIST_INIT(&iommu_mr->iommu_notify);
1712 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1715 static void memory_region_finalize(Object *obj)
1717 MemoryRegion *mr = MEMORY_REGION(obj);
1719 assert(!mr->container);
1721 /* We know the region is not visible in any address space (it
1722 * does not have a container and cannot be a root either because
1723 * it has no references, so we can blindly clear mr->enabled.
1724 * memory_region_set_enabled instead could trigger a transaction
1725 * and cause an infinite loop.
1727 mr->enabled = false;
1728 memory_region_transaction_begin();
1729 while (!QTAILQ_EMPTY(&mr->subregions)) {
1730 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1731 memory_region_del_subregion(mr, subregion);
1733 memory_region_transaction_commit();
1735 mr->destructor(mr);
1736 memory_region_clear_coalescing(mr);
1737 g_free((char *)mr->name);
1738 g_free(mr->ioeventfds);
1741 Object *memory_region_owner(MemoryRegion *mr)
1743 Object *obj = OBJECT(mr);
1744 return obj->parent;
1747 void memory_region_ref(MemoryRegion *mr)
1749 /* MMIO callbacks most likely will access data that belongs
1750 * to the owner, hence the need to ref/unref the owner whenever
1751 * the memory region is in use.
1753 * The memory region is a child of its owner. As long as the
1754 * owner doesn't call unparent itself on the memory region,
1755 * ref-ing the owner will also keep the memory region alive.
1756 * Memory regions without an owner are supposed to never go away;
1757 * we do not ref/unref them because it slows down DMA sensibly.
1759 if (mr && mr->owner) {
1760 object_ref(mr->owner);
1764 void memory_region_unref(MemoryRegion *mr)
1766 if (mr && mr->owner) {
1767 object_unref(mr->owner);
1771 uint64_t memory_region_size(MemoryRegion *mr)
1773 if (int128_eq(mr->size, int128_2_64())) {
1774 return UINT64_MAX;
1776 return int128_get64(mr->size);
1779 const char *memory_region_name(const MemoryRegion *mr)
1781 if (!mr->name) {
1782 ((MemoryRegion *)mr)->name =
1783 object_get_canonical_path_component(OBJECT(mr));
1785 return mr->name;
1788 bool memory_region_is_ram_device(MemoryRegion *mr)
1790 return mr->ram_device;
1793 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1795 uint8_t mask = mr->dirty_log_mask;
1796 if (global_dirty_log && mr->ram_block) {
1797 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1799 return mask;
1802 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1804 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1807 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1809 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1810 IOMMUNotifier *iommu_notifier;
1811 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1813 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1814 flags |= iommu_notifier->notifier_flags;
1817 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1818 imrc->notify_flag_changed(iommu_mr,
1819 iommu_mr->iommu_notify_flags,
1820 flags);
1823 iommu_mr->iommu_notify_flags = flags;
1826 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1827 IOMMUNotifier *n)
1829 IOMMUMemoryRegion *iommu_mr;
1831 if (mr->alias) {
1832 memory_region_register_iommu_notifier(mr->alias, n);
1833 return;
1836 /* We need to register for at least one bitfield */
1837 iommu_mr = IOMMU_MEMORY_REGION(mr);
1838 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1839 assert(n->start <= n->end);
1840 assert(n->iommu_idx >= 0 &&
1841 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1843 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1844 memory_region_update_iommu_notify_flags(iommu_mr);
1847 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1849 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1851 if (imrc->get_min_page_size) {
1852 return imrc->get_min_page_size(iommu_mr);
1854 return TARGET_PAGE_SIZE;
1857 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1859 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1860 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1861 hwaddr addr, granularity;
1862 IOMMUTLBEntry iotlb;
1864 /* If the IOMMU has its own replay callback, override */
1865 if (imrc->replay) {
1866 imrc->replay(iommu_mr, n);
1867 return;
1870 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1872 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1873 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1874 if (iotlb.perm != IOMMU_NONE) {
1875 n->notify(n, &iotlb);
1878 /* if (2^64 - MR size) < granularity, it's possible to get an
1879 * infinite loop here. This should catch such a wraparound */
1880 if ((addr + granularity) < addr) {
1881 break;
1886 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1888 IOMMUNotifier *notifier;
1890 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1891 memory_region_iommu_replay(iommu_mr, notifier);
1895 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1896 IOMMUNotifier *n)
1898 IOMMUMemoryRegion *iommu_mr;
1900 if (mr->alias) {
1901 memory_region_unregister_iommu_notifier(mr->alias, n);
1902 return;
1904 QLIST_REMOVE(n, node);
1905 iommu_mr = IOMMU_MEMORY_REGION(mr);
1906 memory_region_update_iommu_notify_flags(iommu_mr);
1909 void memory_region_notify_one(IOMMUNotifier *notifier,
1910 IOMMUTLBEntry *entry)
1912 IOMMUNotifierFlag request_flags;
1915 * Skip the notification if the notification does not overlap
1916 * with registered range.
1918 if (notifier->start > entry->iova + entry->addr_mask ||
1919 notifier->end < entry->iova) {
1920 return;
1923 if (entry->perm & IOMMU_RW) {
1924 request_flags = IOMMU_NOTIFIER_MAP;
1925 } else {
1926 request_flags = IOMMU_NOTIFIER_UNMAP;
1929 if (notifier->notifier_flags & request_flags) {
1930 notifier->notify(notifier, entry);
1934 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1935 int iommu_idx,
1936 IOMMUTLBEntry entry)
1938 IOMMUNotifier *iommu_notifier;
1940 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1942 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1943 if (iommu_notifier->iommu_idx == iommu_idx) {
1944 memory_region_notify_one(iommu_notifier, &entry);
1949 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1950 enum IOMMUMemoryRegionAttr attr,
1951 void *data)
1953 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1955 if (!imrc->get_attr) {
1956 return -EINVAL;
1959 return imrc->get_attr(iommu_mr, attr, data);
1962 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1963 MemTxAttrs attrs)
1965 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1967 if (!imrc->attrs_to_index) {
1968 return 0;
1971 return imrc->attrs_to_index(iommu_mr, attrs);
1974 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1976 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1978 if (!imrc->num_indexes) {
1979 return 1;
1982 return imrc->num_indexes(iommu_mr);
1985 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1987 uint8_t mask = 1 << client;
1988 uint8_t old_logging;
1990 assert(client == DIRTY_MEMORY_VGA);
1991 old_logging = mr->vga_logging_count;
1992 mr->vga_logging_count += log ? 1 : -1;
1993 if (!!old_logging == !!mr->vga_logging_count) {
1994 return;
1997 memory_region_transaction_begin();
1998 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1999 memory_region_update_pending |= mr->enabled;
2000 memory_region_transaction_commit();
2003 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
2004 hwaddr size, unsigned client)
2006 assert(mr->ram_block);
2007 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
2008 size, client);
2011 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2012 hwaddr size)
2014 assert(mr->ram_block);
2015 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2016 size,
2017 memory_region_get_dirty_log_mask(mr));
2020 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2022 MemoryListener *listener;
2023 AddressSpace *as;
2024 FlatView *view;
2025 FlatRange *fr;
2027 /* If the same address space has multiple log_sync listeners, we
2028 * visit that address space's FlatView multiple times. But because
2029 * log_sync listeners are rare, it's still cheaper than walking each
2030 * address space once.
2032 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2033 if (!listener->log_sync) {
2034 continue;
2036 as = listener->address_space;
2037 view = address_space_get_flatview(as);
2038 FOR_EACH_FLAT_RANGE(fr, view) {
2039 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2040 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2041 listener->log_sync(listener, &mrs);
2044 flatview_unref(view);
2048 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2049 hwaddr addr,
2050 hwaddr size,
2051 unsigned client)
2053 assert(mr->ram_block);
2054 memory_region_sync_dirty_bitmap(mr);
2055 return cpu_physical_memory_snapshot_and_clear_dirty(
2056 memory_region_get_ram_addr(mr) + addr, size, client);
2059 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2060 hwaddr addr, hwaddr size)
2062 assert(mr->ram_block);
2063 return cpu_physical_memory_snapshot_get_dirty(snap,
2064 memory_region_get_ram_addr(mr) + addr, size);
2067 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2069 if (mr->readonly != readonly) {
2070 memory_region_transaction_begin();
2071 mr->readonly = readonly;
2072 memory_region_update_pending |= mr->enabled;
2073 memory_region_transaction_commit();
2077 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2079 if (mr->romd_mode != romd_mode) {
2080 memory_region_transaction_begin();
2081 mr->romd_mode = romd_mode;
2082 memory_region_update_pending |= mr->enabled;
2083 memory_region_transaction_commit();
2087 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2088 hwaddr size, unsigned client)
2090 assert(mr->ram_block);
2091 cpu_physical_memory_test_and_clear_dirty(
2092 memory_region_get_ram_addr(mr) + addr, size, client);
2095 int memory_region_get_fd(MemoryRegion *mr)
2097 int fd;
2099 rcu_read_lock();
2100 while (mr->alias) {
2101 mr = mr->alias;
2103 fd = mr->ram_block->fd;
2104 rcu_read_unlock();
2106 return fd;
2109 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2111 void *ptr;
2112 uint64_t offset = 0;
2114 rcu_read_lock();
2115 while (mr->alias) {
2116 offset += mr->alias_offset;
2117 mr = mr->alias;
2119 assert(mr->ram_block);
2120 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2121 rcu_read_unlock();
2123 return ptr;
2126 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2128 RAMBlock *block;
2130 block = qemu_ram_block_from_host(ptr, false, offset);
2131 if (!block) {
2132 return NULL;
2135 return block->mr;
2138 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2140 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2143 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2145 assert(mr->ram_block);
2147 qemu_ram_resize(mr->ram_block, newsize, errp);
2150 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2152 FlatView *view;
2153 FlatRange *fr;
2154 CoalescedMemoryRange *cmr;
2155 AddrRange tmp;
2156 MemoryRegionSection section;
2158 view = address_space_get_flatview(as);
2159 FOR_EACH_FLAT_RANGE(fr, view) {
2160 if (fr->mr == mr) {
2161 section = (MemoryRegionSection) {
2162 .fv = view,
2163 .offset_within_address_space = int128_get64(fr->addr.start),
2164 .size = fr->addr.size,
2167 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
2168 int128_get64(fr->addr.start),
2169 int128_get64(fr->addr.size));
2170 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
2171 tmp = addrrange_shift(cmr->addr,
2172 int128_sub(fr->addr.start,
2173 int128_make64(fr->offset_in_region)));
2174 if (!addrrange_intersects(tmp, fr->addr)) {
2175 continue;
2177 tmp = addrrange_intersection(tmp, fr->addr);
2178 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
2179 int128_get64(tmp.start),
2180 int128_get64(tmp.size));
2184 flatview_unref(view);
2187 static void memory_region_update_coalesced_range(MemoryRegion *mr)
2189 AddressSpace *as;
2191 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2192 memory_region_update_coalesced_range_as(mr, as);
2196 void memory_region_set_coalescing(MemoryRegion *mr)
2198 memory_region_clear_coalescing(mr);
2199 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2202 void memory_region_add_coalescing(MemoryRegion *mr,
2203 hwaddr offset,
2204 uint64_t size)
2206 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2208 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2209 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2210 memory_region_update_coalesced_range(mr);
2211 memory_region_set_flush_coalesced(mr);
2214 void memory_region_clear_coalescing(MemoryRegion *mr)
2216 CoalescedMemoryRange *cmr;
2217 bool updated = false;
2219 qemu_flush_coalesced_mmio_buffer();
2220 mr->flush_coalesced_mmio = false;
2222 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2223 cmr = QTAILQ_FIRST(&mr->coalesced);
2224 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2225 g_free(cmr);
2226 updated = true;
2229 if (updated) {
2230 memory_region_update_coalesced_range(mr);
2234 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2236 mr->flush_coalesced_mmio = true;
2239 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2241 qemu_flush_coalesced_mmio_buffer();
2242 if (QTAILQ_EMPTY(&mr->coalesced)) {
2243 mr->flush_coalesced_mmio = false;
2247 void memory_region_clear_global_locking(MemoryRegion *mr)
2249 mr->global_locking = false;
2252 static bool userspace_eventfd_warning;
2254 void memory_region_add_eventfd(MemoryRegion *mr,
2255 hwaddr addr,
2256 unsigned size,
2257 bool match_data,
2258 uint64_t data,
2259 EventNotifier *e)
2261 MemoryRegionIoeventfd mrfd = {
2262 .addr.start = int128_make64(addr),
2263 .addr.size = int128_make64(size),
2264 .match_data = match_data,
2265 .data = data,
2266 .e = e,
2268 unsigned i;
2270 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2271 userspace_eventfd_warning))) {
2272 userspace_eventfd_warning = true;
2273 error_report("Using eventfd without MMIO binding in KVM. "
2274 "Suboptimal performance expected");
2277 if (size) {
2278 adjust_endianness(mr, &mrfd.data, size);
2280 memory_region_transaction_begin();
2281 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2282 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2283 break;
2286 ++mr->ioeventfd_nb;
2287 mr->ioeventfds = g_realloc(mr->ioeventfds,
2288 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2289 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2290 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2291 mr->ioeventfds[i] = mrfd;
2292 ioeventfd_update_pending |= mr->enabled;
2293 memory_region_transaction_commit();
2296 void memory_region_del_eventfd(MemoryRegion *mr,
2297 hwaddr addr,
2298 unsigned size,
2299 bool match_data,
2300 uint64_t data,
2301 EventNotifier *e)
2303 MemoryRegionIoeventfd mrfd = {
2304 .addr.start = int128_make64(addr),
2305 .addr.size = int128_make64(size),
2306 .match_data = match_data,
2307 .data = data,
2308 .e = e,
2310 unsigned i;
2312 if (size) {
2313 adjust_endianness(mr, &mrfd.data, size);
2315 memory_region_transaction_begin();
2316 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2317 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2318 break;
2321 assert(i != mr->ioeventfd_nb);
2322 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2323 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2324 --mr->ioeventfd_nb;
2325 mr->ioeventfds = g_realloc(mr->ioeventfds,
2326 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2327 ioeventfd_update_pending |= mr->enabled;
2328 memory_region_transaction_commit();
2331 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2333 MemoryRegion *mr = subregion->container;
2334 MemoryRegion *other;
2336 memory_region_transaction_begin();
2338 memory_region_ref(subregion);
2339 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2340 if (subregion->priority >= other->priority) {
2341 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2342 goto done;
2345 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2346 done:
2347 memory_region_update_pending |= mr->enabled && subregion->enabled;
2348 memory_region_transaction_commit();
2351 static void memory_region_add_subregion_common(MemoryRegion *mr,
2352 hwaddr offset,
2353 MemoryRegion *subregion)
2355 assert(!subregion->container);
2356 subregion->container = mr;
2357 subregion->addr = offset;
2358 memory_region_update_container_subregions(subregion);
2361 void memory_region_add_subregion(MemoryRegion *mr,
2362 hwaddr offset,
2363 MemoryRegion *subregion)
2365 subregion->priority = 0;
2366 memory_region_add_subregion_common(mr, offset, subregion);
2369 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2370 hwaddr offset,
2371 MemoryRegion *subregion,
2372 int priority)
2374 subregion->priority = priority;
2375 memory_region_add_subregion_common(mr, offset, subregion);
2378 void memory_region_del_subregion(MemoryRegion *mr,
2379 MemoryRegion *subregion)
2381 memory_region_transaction_begin();
2382 assert(subregion->container == mr);
2383 subregion->container = NULL;
2384 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2385 memory_region_unref(subregion);
2386 memory_region_update_pending |= mr->enabled && subregion->enabled;
2387 memory_region_transaction_commit();
2390 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2392 if (enabled == mr->enabled) {
2393 return;
2395 memory_region_transaction_begin();
2396 mr->enabled = enabled;
2397 memory_region_update_pending = true;
2398 memory_region_transaction_commit();
2401 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2403 Int128 s = int128_make64(size);
2405 if (size == UINT64_MAX) {
2406 s = int128_2_64();
2408 if (int128_eq(s, mr->size)) {
2409 return;
2411 memory_region_transaction_begin();
2412 mr->size = s;
2413 memory_region_update_pending = true;
2414 memory_region_transaction_commit();
2417 static void memory_region_readd_subregion(MemoryRegion *mr)
2419 MemoryRegion *container = mr->container;
2421 if (container) {
2422 memory_region_transaction_begin();
2423 memory_region_ref(mr);
2424 memory_region_del_subregion(container, mr);
2425 mr->container = container;
2426 memory_region_update_container_subregions(mr);
2427 memory_region_unref(mr);
2428 memory_region_transaction_commit();
2432 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2434 if (addr != mr->addr) {
2435 mr->addr = addr;
2436 memory_region_readd_subregion(mr);
2440 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2442 assert(mr->alias);
2444 if (offset == mr->alias_offset) {
2445 return;
2448 memory_region_transaction_begin();
2449 mr->alias_offset = offset;
2450 memory_region_update_pending |= mr->enabled;
2451 memory_region_transaction_commit();
2454 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2456 return mr->align;
2459 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2461 const AddrRange *addr = addr_;
2462 const FlatRange *fr = fr_;
2464 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2465 return -1;
2466 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2467 return 1;
2469 return 0;
2472 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2474 return bsearch(&addr, view->ranges, view->nr,
2475 sizeof(FlatRange), cmp_flatrange_addr);
2478 bool memory_region_is_mapped(MemoryRegion *mr)
2480 return mr->container ? true : false;
2483 /* Same as memory_region_find, but it does not add a reference to the
2484 * returned region. It must be called from an RCU critical section.
2486 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2487 hwaddr addr, uint64_t size)
2489 MemoryRegionSection ret = { .mr = NULL };
2490 MemoryRegion *root;
2491 AddressSpace *as;
2492 AddrRange range;
2493 FlatView *view;
2494 FlatRange *fr;
2496 addr += mr->addr;
2497 for (root = mr; root->container; ) {
2498 root = root->container;
2499 addr += root->addr;
2502 as = memory_region_to_address_space(root);
2503 if (!as) {
2504 return ret;
2506 range = addrrange_make(int128_make64(addr), int128_make64(size));
2508 view = address_space_to_flatview(as);
2509 fr = flatview_lookup(view, range);
2510 if (!fr) {
2511 return ret;
2514 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2515 --fr;
2518 ret.mr = fr->mr;
2519 ret.fv = view;
2520 range = addrrange_intersection(range, fr->addr);
2521 ret.offset_within_region = fr->offset_in_region;
2522 ret.offset_within_region += int128_get64(int128_sub(range.start,
2523 fr->addr.start));
2524 ret.size = range.size;
2525 ret.offset_within_address_space = int128_get64(range.start);
2526 ret.readonly = fr->readonly;
2527 return ret;
2530 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2531 hwaddr addr, uint64_t size)
2533 MemoryRegionSection ret;
2534 rcu_read_lock();
2535 ret = memory_region_find_rcu(mr, addr, size);
2536 if (ret.mr) {
2537 memory_region_ref(ret.mr);
2539 rcu_read_unlock();
2540 return ret;
2543 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2545 MemoryRegion *mr;
2547 rcu_read_lock();
2548 mr = memory_region_find_rcu(container, addr, 1).mr;
2549 rcu_read_unlock();
2550 return mr && mr != container;
2553 void memory_global_dirty_log_sync(void)
2555 memory_region_sync_dirty_bitmap(NULL);
2558 static VMChangeStateEntry *vmstate_change;
2560 void memory_global_dirty_log_start(void)
2562 if (vmstate_change) {
2563 qemu_del_vm_change_state_handler(vmstate_change);
2564 vmstate_change = NULL;
2567 global_dirty_log = true;
2569 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2571 /* Refresh DIRTY_LOG_MIGRATION bit. */
2572 memory_region_transaction_begin();
2573 memory_region_update_pending = true;
2574 memory_region_transaction_commit();
2577 static void memory_global_dirty_log_do_stop(void)
2579 global_dirty_log = false;
2581 /* Refresh DIRTY_LOG_MIGRATION bit. */
2582 memory_region_transaction_begin();
2583 memory_region_update_pending = true;
2584 memory_region_transaction_commit();
2586 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2589 static void memory_vm_change_state_handler(void *opaque, int running,
2590 RunState state)
2592 if (running) {
2593 memory_global_dirty_log_do_stop();
2595 if (vmstate_change) {
2596 qemu_del_vm_change_state_handler(vmstate_change);
2597 vmstate_change = NULL;
2602 void memory_global_dirty_log_stop(void)
2604 if (!runstate_is_running()) {
2605 if (vmstate_change) {
2606 return;
2608 vmstate_change = qemu_add_vm_change_state_handler(
2609 memory_vm_change_state_handler, NULL);
2610 return;
2613 memory_global_dirty_log_do_stop();
2616 static void listener_add_address_space(MemoryListener *listener,
2617 AddressSpace *as)
2619 FlatView *view;
2620 FlatRange *fr;
2622 if (listener->begin) {
2623 listener->begin(listener);
2625 if (global_dirty_log) {
2626 if (listener->log_global_start) {
2627 listener->log_global_start(listener);
2631 view = address_space_get_flatview(as);
2632 FOR_EACH_FLAT_RANGE(fr, view) {
2633 MemoryRegionSection section = section_from_flat_range(fr, view);
2635 if (listener->region_add) {
2636 listener->region_add(listener, &section);
2638 if (fr->dirty_log_mask && listener->log_start) {
2639 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2642 if (listener->commit) {
2643 listener->commit(listener);
2645 flatview_unref(view);
2648 static void listener_del_address_space(MemoryListener *listener,
2649 AddressSpace *as)
2651 FlatView *view;
2652 FlatRange *fr;
2654 if (listener->begin) {
2655 listener->begin(listener);
2657 view = address_space_get_flatview(as);
2658 FOR_EACH_FLAT_RANGE(fr, view) {
2659 MemoryRegionSection section = section_from_flat_range(fr, view);
2661 if (fr->dirty_log_mask && listener->log_stop) {
2662 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2664 if (listener->region_del) {
2665 listener->region_del(listener, &section);
2668 if (listener->commit) {
2669 listener->commit(listener);
2671 flatview_unref(view);
2674 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2676 MemoryListener *other = NULL;
2678 listener->address_space = as;
2679 if (QTAILQ_EMPTY(&memory_listeners)
2680 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2681 memory_listeners)->priority) {
2682 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2683 } else {
2684 QTAILQ_FOREACH(other, &memory_listeners, link) {
2685 if (listener->priority < other->priority) {
2686 break;
2689 QTAILQ_INSERT_BEFORE(other, listener, link);
2692 if (QTAILQ_EMPTY(&as->listeners)
2693 || listener->priority >= QTAILQ_LAST(&as->listeners,
2694 memory_listeners)->priority) {
2695 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2696 } else {
2697 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2698 if (listener->priority < other->priority) {
2699 break;
2702 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2705 listener_add_address_space(listener, as);
2708 void memory_listener_unregister(MemoryListener *listener)
2710 if (!listener->address_space) {
2711 return;
2714 listener_del_address_space(listener, listener->address_space);
2715 QTAILQ_REMOVE(&memory_listeners, listener, link);
2716 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2717 listener->address_space = NULL;
2720 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2722 memory_region_ref(root);
2723 as->root = root;
2724 as->current_map = NULL;
2725 as->ioeventfd_nb = 0;
2726 as->ioeventfds = NULL;
2727 QTAILQ_INIT(&as->listeners);
2728 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2729 as->name = g_strdup(name ? name : "anonymous");
2730 address_space_update_topology(as);
2731 address_space_update_ioeventfds(as);
2734 static void do_address_space_destroy(AddressSpace *as)
2736 assert(QTAILQ_EMPTY(&as->listeners));
2738 flatview_unref(as->current_map);
2739 g_free(as->name);
2740 g_free(as->ioeventfds);
2741 memory_region_unref(as->root);
2744 void address_space_destroy(AddressSpace *as)
2746 MemoryRegion *root = as->root;
2748 /* Flush out anything from MemoryListeners listening in on this */
2749 memory_region_transaction_begin();
2750 as->root = NULL;
2751 memory_region_transaction_commit();
2752 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2754 /* At this point, as->dispatch and as->current_map are dummy
2755 * entries that the guest should never use. Wait for the old
2756 * values to expire before freeing the data.
2758 as->root = root;
2759 call_rcu(as, do_address_space_destroy, rcu);
2762 static const char *memory_region_type(MemoryRegion *mr)
2764 if (memory_region_is_ram_device(mr)) {
2765 return "ramd";
2766 } else if (memory_region_is_romd(mr)) {
2767 return "romd";
2768 } else if (memory_region_is_rom(mr)) {
2769 return "rom";
2770 } else if (memory_region_is_ram(mr)) {
2771 return "ram";
2772 } else {
2773 return "i/o";
2777 typedef struct MemoryRegionList MemoryRegionList;
2779 struct MemoryRegionList {
2780 const MemoryRegion *mr;
2781 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2784 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2786 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2787 int128_sub((size), int128_one())) : 0)
2788 #define MTREE_INDENT " "
2790 static void mtree_expand_owner(fprintf_function mon_printf, void *f,
2791 const char *label, Object *obj)
2793 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2795 mon_printf(f, " %s:{%s", label, dev ? "dev" : "obj");
2796 if (dev && dev->id) {
2797 mon_printf(f, " id=%s", dev->id);
2798 } else {
2799 gchar *canonical_path = object_get_canonical_path(obj);
2800 if (canonical_path) {
2801 mon_printf(f, " path=%s", canonical_path);
2802 g_free(canonical_path);
2803 } else {
2804 mon_printf(f, " type=%s", object_get_typename(obj));
2807 mon_printf(f, "}");
2810 static void mtree_print_mr_owner(fprintf_function mon_printf, void *f,
2811 const MemoryRegion *mr)
2813 Object *owner = mr->owner;
2814 Object *parent = memory_region_owner((MemoryRegion *)mr);
2816 if (!owner && !parent) {
2817 mon_printf(f, " orphan");
2818 return;
2820 if (owner) {
2821 mtree_expand_owner(mon_printf, f, "owner", owner);
2823 if (parent && parent != owner) {
2824 mtree_expand_owner(mon_printf, f, "parent", parent);
2828 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2829 const MemoryRegion *mr, unsigned int level,
2830 hwaddr base,
2831 MemoryRegionListHead *alias_print_queue,
2832 bool owner)
2834 MemoryRegionList *new_ml, *ml, *next_ml;
2835 MemoryRegionListHead submr_print_queue;
2836 const MemoryRegion *submr;
2837 unsigned int i;
2838 hwaddr cur_start, cur_end;
2840 if (!mr) {
2841 return;
2844 for (i = 0; i < level; i++) {
2845 mon_printf(f, MTREE_INDENT);
2848 cur_start = base + mr->addr;
2849 cur_end = cur_start + MR_SIZE(mr->size);
2852 * Try to detect overflow of memory region. This should never
2853 * happen normally. When it happens, we dump something to warn the
2854 * user who is observing this.
2856 if (cur_start < base || cur_end < cur_start) {
2857 mon_printf(f, "[DETECTED OVERFLOW!] ");
2860 if (mr->alias) {
2861 MemoryRegionList *ml;
2862 bool found = false;
2864 /* check if the alias is already in the queue */
2865 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2866 if (ml->mr == mr->alias) {
2867 found = true;
2871 if (!found) {
2872 ml = g_new(MemoryRegionList, 1);
2873 ml->mr = mr->alias;
2874 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2876 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2877 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2878 "-" TARGET_FMT_plx "%s",
2879 cur_start, cur_end,
2880 mr->priority,
2881 memory_region_type((MemoryRegion *)mr),
2882 memory_region_name(mr),
2883 memory_region_name(mr->alias),
2884 mr->alias_offset,
2885 mr->alias_offset + MR_SIZE(mr->size),
2886 mr->enabled ? "" : " [disabled]");
2887 if (owner) {
2888 mtree_print_mr_owner(mon_printf, f, mr);
2890 } else {
2891 mon_printf(f,
2892 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s",
2893 cur_start, cur_end,
2894 mr->priority,
2895 memory_region_type((MemoryRegion *)mr),
2896 memory_region_name(mr),
2897 mr->enabled ? "" : " [disabled]");
2898 if (owner) {
2899 mtree_print_mr_owner(mon_printf, f, mr);
2902 mon_printf(f, "\n");
2904 QTAILQ_INIT(&submr_print_queue);
2906 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2907 new_ml = g_new(MemoryRegionList, 1);
2908 new_ml->mr = submr;
2909 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2910 if (new_ml->mr->addr < ml->mr->addr ||
2911 (new_ml->mr->addr == ml->mr->addr &&
2912 new_ml->mr->priority > ml->mr->priority)) {
2913 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2914 new_ml = NULL;
2915 break;
2918 if (new_ml) {
2919 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2923 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2924 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2925 alias_print_queue, owner);
2928 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2929 g_free(ml);
2933 struct FlatViewInfo {
2934 fprintf_function mon_printf;
2935 void *f;
2936 int counter;
2937 bool dispatch_tree;
2938 bool owner;
2941 static void mtree_print_flatview(gpointer key, gpointer value,
2942 gpointer user_data)
2944 FlatView *view = key;
2945 GArray *fv_address_spaces = value;
2946 struct FlatViewInfo *fvi = user_data;
2947 fprintf_function p = fvi->mon_printf;
2948 void *f = fvi->f;
2949 FlatRange *range = &view->ranges[0];
2950 MemoryRegion *mr;
2951 int n = view->nr;
2952 int i;
2953 AddressSpace *as;
2955 p(f, "FlatView #%d\n", fvi->counter);
2956 ++fvi->counter;
2958 for (i = 0; i < fv_address_spaces->len; ++i) {
2959 as = g_array_index(fv_address_spaces, AddressSpace*, i);
2960 p(f, " AS \"%s\", root: %s", as->name, memory_region_name(as->root));
2961 if (as->root->alias) {
2962 p(f, ", alias %s", memory_region_name(as->root->alias));
2964 p(f, "\n");
2967 p(f, " Root memory region: %s\n",
2968 view->root ? memory_region_name(view->root) : "(none)");
2970 if (n <= 0) {
2971 p(f, MTREE_INDENT "No rendered FlatView\n\n");
2972 return;
2975 while (n--) {
2976 mr = range->mr;
2977 if (range->offset_in_region) {
2978 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2979 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx,
2980 int128_get64(range->addr.start),
2981 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2982 mr->priority,
2983 range->readonly ? "rom" : memory_region_type(mr),
2984 memory_region_name(mr),
2985 range->offset_in_region);
2986 } else {
2987 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2988 TARGET_FMT_plx " (prio %d, %s): %s",
2989 int128_get64(range->addr.start),
2990 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2991 mr->priority,
2992 range->readonly ? "rom" : memory_region_type(mr),
2993 memory_region_name(mr));
2995 if (fvi->owner) {
2996 mtree_print_mr_owner(p, f, mr);
2998 p(f, "\n");
2999 range++;
3002 #if !defined(CONFIG_USER_ONLY)
3003 if (fvi->dispatch_tree && view->root) {
3004 mtree_print_dispatch(p, f, view->dispatch, view->root);
3006 #endif
3008 p(f, "\n");
3011 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3012 gpointer user_data)
3014 FlatView *view = key;
3015 GArray *fv_address_spaces = value;
3017 g_array_unref(fv_address_spaces);
3018 flatview_unref(view);
3020 return true;
3023 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
3024 bool dispatch_tree, bool owner)
3026 MemoryRegionListHead ml_head;
3027 MemoryRegionList *ml, *ml2;
3028 AddressSpace *as;
3030 if (flatview) {
3031 FlatView *view;
3032 struct FlatViewInfo fvi = {
3033 .mon_printf = mon_printf,
3034 .f = f,
3035 .counter = 0,
3036 .dispatch_tree = dispatch_tree,
3037 .owner = owner,
3039 GArray *fv_address_spaces;
3040 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3042 /* Gather all FVs in one table */
3043 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3044 view = address_space_get_flatview(as);
3046 fv_address_spaces = g_hash_table_lookup(views, view);
3047 if (!fv_address_spaces) {
3048 fv_address_spaces = g_array_new(false, false, sizeof(as));
3049 g_hash_table_insert(views, view, fv_address_spaces);
3052 g_array_append_val(fv_address_spaces, as);
3055 /* Print */
3056 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3058 /* Free */
3059 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3060 g_hash_table_unref(views);
3062 return;
3065 QTAILQ_INIT(&ml_head);
3067 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3068 mon_printf(f, "address-space: %s\n", as->name);
3069 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head, owner);
3070 mon_printf(f, "\n");
3073 /* print aliased regions */
3074 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3075 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
3076 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head, owner);
3077 mon_printf(f, "\n");
3080 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3081 g_free(ml);
3085 void memory_region_init_ram(MemoryRegion *mr,
3086 struct Object *owner,
3087 const char *name,
3088 uint64_t size,
3089 Error **errp)
3091 DeviceState *owner_dev;
3092 Error *err = NULL;
3094 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3095 if (err) {
3096 error_propagate(errp, err);
3097 return;
3099 /* This will assert if owner is neither NULL nor a DeviceState.
3100 * We only want the owner here for the purposes of defining a
3101 * unique name for migration. TODO: Ideally we should implement
3102 * a naming scheme for Objects which are not DeviceStates, in
3103 * which case we can relax this restriction.
3105 owner_dev = DEVICE(owner);
3106 vmstate_register_ram(mr, owner_dev);
3109 void memory_region_init_rom(MemoryRegion *mr,
3110 struct Object *owner,
3111 const char *name,
3112 uint64_t size,
3113 Error **errp)
3115 DeviceState *owner_dev;
3116 Error *err = NULL;
3118 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3119 if (err) {
3120 error_propagate(errp, err);
3121 return;
3123 /* This will assert if owner is neither NULL nor a DeviceState.
3124 * We only want the owner here for the purposes of defining a
3125 * unique name for migration. TODO: Ideally we should implement
3126 * a naming scheme for Objects which are not DeviceStates, in
3127 * which case we can relax this restriction.
3129 owner_dev = DEVICE(owner);
3130 vmstate_register_ram(mr, owner_dev);
3133 void memory_region_init_rom_device(MemoryRegion *mr,
3134 struct Object *owner,
3135 const MemoryRegionOps *ops,
3136 void *opaque,
3137 const char *name,
3138 uint64_t size,
3139 Error **errp)
3141 DeviceState *owner_dev;
3142 Error *err = NULL;
3144 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3145 name, size, &err);
3146 if (err) {
3147 error_propagate(errp, err);
3148 return;
3150 /* This will assert if owner is neither NULL nor a DeviceState.
3151 * We only want the owner here for the purposes of defining a
3152 * unique name for migration. TODO: Ideally we should implement
3153 * a naming scheme for Objects which are not DeviceStates, in
3154 * which case we can relax this restriction.
3156 owner_dev = DEVICE(owner);
3157 vmstate_register_ram(mr, owner_dev);
3160 static const TypeInfo memory_region_info = {
3161 .parent = TYPE_OBJECT,
3162 .name = TYPE_MEMORY_REGION,
3163 .instance_size = sizeof(MemoryRegion),
3164 .instance_init = memory_region_initfn,
3165 .instance_finalize = memory_region_finalize,
3168 static const TypeInfo iommu_memory_region_info = {
3169 .parent = TYPE_MEMORY_REGION,
3170 .name = TYPE_IOMMU_MEMORY_REGION,
3171 .class_size = sizeof(IOMMUMemoryRegionClass),
3172 .instance_size = sizeof(IOMMUMemoryRegion),
3173 .instance_init = iommu_memory_region_initfn,
3174 .abstract = true,
3177 static void memory_register_types(void)
3179 type_register_static(&memory_region_info);
3180 type_register_static(&iommu_memory_region_info);
3183 type_init(memory_register_types)