4 * This implements a subset of the remote protocol as described in:
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
8 * Copyright (c) 2003-2005 Fabrice Bellard
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 * SPDX-License-Identifier: LGPL-2.0+
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace-root.h"
34 #ifdef CONFIG_USER_ONLY
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
46 #define MAX_PACKET_LENGTH 4096
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
55 #ifdef CONFIG_USER_ONLY
56 #define GDB_ATTACHED "0"
58 #define GDB_ATTACHED "1"
61 #ifndef CONFIG_USER_ONLY
62 static int phy_memory_mode
;
65 static inline int target_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
66 uint8_t *buf
, int len
, bool is_write
)
70 #ifndef CONFIG_USER_ONLY
71 if (phy_memory_mode
) {
73 cpu_physical_memory_write(addr
, buf
, len
);
75 cpu_physical_memory_read(addr
, buf
, len
);
81 cc
= CPU_GET_CLASS(cpu
);
82 if (cc
->memory_rw_debug
) {
83 return cc
->memory_rw_debug(cpu
, addr
, buf
, len
, is_write
);
85 return cpu_memory_rw_debug(cpu
, addr
, buf
, len
, is_write
);
88 /* Return the GDB index for a given vCPU state.
90 * For user mode this is simply the thread id. In system mode GDB
91 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
93 static inline int cpu_gdb_index(CPUState
*cpu
)
95 #if defined(CONFIG_USER_ONLY)
96 TaskState
*ts
= (TaskState
*) cpu
->opaque
;
99 return cpu
->cpu_index
+ 1;
109 GDB_SIGNAL_ALRM
= 14,
111 GDB_SIGNAL_XCPU
= 24,
112 GDB_SIGNAL_UNKNOWN
= 143
115 #ifdef CONFIG_USER_ONLY
117 /* Map target signal numbers to GDB protocol signal numbers and vice
118 * versa. For user emulation's currently supported systems, we can
119 * assume most signals are defined.
122 static int gdb_signal_table
[] = {
282 /* In system mode we only need SIGINT and SIGTRAP; other signals
283 are not yet supported. */
290 static int gdb_signal_table
[] = {
300 #ifdef CONFIG_USER_ONLY
301 static int target_signal_to_gdb (int sig
)
304 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
305 if (gdb_signal_table
[i
] == sig
)
307 return GDB_SIGNAL_UNKNOWN
;
311 static int gdb_signal_to_target (int sig
)
313 if (sig
< ARRAY_SIZE (gdb_signal_table
))
314 return gdb_signal_table
[sig
];
319 typedef struct GDBRegisterState
{
325 struct GDBRegisterState
*next
;
328 typedef struct GDBProcess
{
332 char target_xml
[1024];
344 typedef struct GDBState
{
345 CPUState
*c_cpu
; /* current CPU for step/continue ops */
346 CPUState
*g_cpu
; /* current CPU for other ops */
347 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
348 enum RSState state
; /* parsing state */
349 char line_buf
[MAX_PACKET_LENGTH
];
351 int line_sum
; /* running checksum */
352 int line_csum
; /* checksum at the end of the packet */
353 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
356 #ifdef CONFIG_USER_ONLY
364 GDBProcess
*processes
;
366 char syscall_buf
[256];
367 gdb_syscall_complete_cb current_syscall_cb
;
370 /* By default use no IRQs and no timers while single stepping so as to
371 * make single stepping like an ICE HW step.
373 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
375 static GDBState
*gdbserver_state
;
379 #ifdef CONFIG_USER_ONLY
380 /* XXX: This is not thread safe. Do we care? */
381 static int gdbserver_fd
= -1;
383 static int get_char(GDBState
*s
)
389 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
391 if (errno
== ECONNRESET
)
395 } else if (ret
== 0) {
413 /* Decide if either remote gdb syscalls or native file IO should be used. */
414 int use_gdb_syscalls(void)
416 SemihostingTarget target
= semihosting_get_target();
417 if (target
== SEMIHOSTING_TARGET_NATIVE
) {
418 /* -semihosting-config target=native */
420 } else if (target
== SEMIHOSTING_TARGET_GDB
) {
421 /* -semihosting-config target=gdb */
425 /* -semihosting-config target=auto */
426 /* On the first call check if gdb is connected and remember. */
427 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
428 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
431 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
434 /* Resume execution. */
435 static inline void gdb_continue(GDBState
*s
)
438 #ifdef CONFIG_USER_ONLY
439 s
->running_state
= 1;
440 trace_gdbstub_op_continue();
442 if (!runstate_needs_reset()) {
443 trace_gdbstub_op_continue();
450 * Resume execution, per CPU actions. For user-mode emulation it's
451 * equivalent to gdb_continue.
453 static int gdb_continue_partial(GDBState
*s
, char *newstates
)
457 #ifdef CONFIG_USER_ONLY
459 * This is not exactly accurate, but it's an improvement compared to the
460 * previous situation, where only one CPU would be single-stepped.
463 if (newstates
[cpu
->cpu_index
] == 's') {
464 trace_gdbstub_op_stepping(cpu
->cpu_index
);
465 cpu_single_step(cpu
, sstep_flags
);
468 s
->running_state
= 1;
472 if (!runstate_needs_reset()) {
473 if (vm_prepare_start()) {
478 switch (newstates
[cpu
->cpu_index
]) {
481 break; /* nothing to do here */
483 trace_gdbstub_op_stepping(cpu
->cpu_index
);
484 cpu_single_step(cpu
, sstep_flags
);
489 trace_gdbstub_op_continue_cpu(cpu
->cpu_index
);
500 qemu_clock_enable(QEMU_CLOCK_VIRTUAL
, true);
506 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
508 #ifdef CONFIG_USER_ONLY
512 ret
= send(s
->fd
, buf
, len
, 0);
522 /* XXX this blocks entire thread. Rewrite to use
523 * qemu_chr_fe_write and background I/O callbacks */
524 qemu_chr_fe_write_all(&s
->chr
, buf
, len
);
528 static inline int fromhex(int v
)
530 if (v
>= '0' && v
<= '9')
532 else if (v
>= 'A' && v
<= 'F')
534 else if (v
>= 'a' && v
<= 'f')
540 static inline int tohex(int v
)
548 /* writes 2*len+1 bytes in buf */
549 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
554 for(i
= 0; i
< len
; i
++) {
556 *q
++ = tohex(c
>> 4);
557 *q
++ = tohex(c
& 0xf);
562 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
566 for(i
= 0; i
< len
; i
++) {
567 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
572 static void hexdump(const char *buf
, int len
,
573 void (*trace_fn
)(size_t ofs
, char const *text
))
575 char line_buffer
[3 * 16 + 4 + 16 + 1];
578 for (i
= 0; i
< len
|| (i
& 0xF); ++i
) {
579 size_t byte_ofs
= i
& 15;
582 memset(line_buffer
, ' ', 3 * 16 + 4 + 16);
583 line_buffer
[3 * 16 + 4 + 16] = 0;
586 size_t col_group
= (i
>> 2) & 3;
587 size_t hex_col
= byte_ofs
* 3 + col_group
;
588 size_t txt_col
= 3 * 16 + 4 + byte_ofs
;
593 line_buffer
[hex_col
+ 0] = tohex((value
>> 4) & 0xF);
594 line_buffer
[hex_col
+ 1] = tohex((value
>> 0) & 0xF);
595 line_buffer
[txt_col
+ 0] = (value
>= ' ' && value
< 127)
601 trace_fn(i
& -16, line_buffer
);
605 /* return -1 if error, 0 if OK */
606 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
, bool dump
)
611 if (dump
&& trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY
)) {
612 hexdump(buf
, len
, trace_gdbstub_io_binaryreply
);
621 for(i
= 0; i
< len
; i
++) {
625 *(p
++) = tohex((csum
>> 4) & 0xf);
626 *(p
++) = tohex((csum
) & 0xf);
628 s
->last_packet_len
= p
- s
->last_packet
;
629 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
631 #ifdef CONFIG_USER_ONLY
644 /* return -1 if error, 0 if OK */
645 static int put_packet(GDBState
*s
, const char *buf
)
647 trace_gdbstub_io_reply(buf
);
649 return put_packet_binary(s
, buf
, strlen(buf
), false);
652 /* Encode data using the encoding for 'x' packets. */
653 static int memtox(char *buf
, const char *mem
, int len
)
661 case '#': case '$': case '*': case '}':
673 static uint32_t gdb_get_cpu_pid(const GDBState
*s
, CPUState
*cpu
)
675 /* TODO: In user mode, we should use the task state PID */
676 if (cpu
->cluster_index
== UNASSIGNED_CLUSTER_INDEX
) {
677 /* Return the default process' PID */
678 return s
->processes
[s
->process_num
- 1].pid
;
680 return cpu
->cluster_index
+ 1;
683 static GDBProcess
*gdb_get_process(const GDBState
*s
, uint32_t pid
)
688 /* 0 means any process, we take the first one */
689 return &s
->processes
[0];
692 for (i
= 0; i
< s
->process_num
; i
++) {
693 if (s
->processes
[i
].pid
== pid
) {
694 return &s
->processes
[i
];
701 static GDBProcess
*gdb_get_cpu_process(const GDBState
*s
, CPUState
*cpu
)
703 return gdb_get_process(s
, gdb_get_cpu_pid(s
, cpu
));
706 static CPUState
*find_cpu(uint32_t thread_id
)
711 if (cpu_gdb_index(cpu
) == thread_id
) {
719 static CPUState
*get_first_cpu_in_process(const GDBState
*s
,
725 if (gdb_get_cpu_pid(s
, cpu
) == process
->pid
) {
733 static CPUState
*gdb_next_cpu_in_process(const GDBState
*s
, CPUState
*cpu
)
735 uint32_t pid
= gdb_get_cpu_pid(s
, cpu
);
739 if (gdb_get_cpu_pid(s
, cpu
) == pid
) {
749 /* Return the cpu following @cpu, while ignoring unattached processes. */
750 static CPUState
*gdb_next_attached_cpu(const GDBState
*s
, CPUState
*cpu
)
755 if (gdb_get_cpu_process(s
, cpu
)->attached
) {
765 /* Return the first attached cpu */
766 static CPUState
*gdb_first_attached_cpu(const GDBState
*s
)
768 CPUState
*cpu
= first_cpu
;
769 GDBProcess
*process
= gdb_get_cpu_process(s
, cpu
);
771 if (!process
->attached
) {
772 return gdb_next_attached_cpu(s
, cpu
);
778 static CPUState
*gdb_get_cpu(const GDBState
*s
, uint32_t pid
, uint32_t tid
)
784 /* 0 means any process/thread, we take the first attached one */
785 return gdb_first_attached_cpu(s
);
786 } else if (pid
&& !tid
) {
787 /* any thread in a specific process */
788 process
= gdb_get_process(s
, pid
);
790 if (process
== NULL
) {
794 if (!process
->attached
) {
798 return get_first_cpu_in_process(s
, process
);
800 /* a specific thread */
807 process
= gdb_get_cpu_process(s
, cpu
);
809 if (pid
&& process
->pid
!= pid
) {
813 if (!process
->attached
) {
821 static const char *get_feature_xml(const GDBState
*s
, const char *p
,
822 const char **newp
, GDBProcess
*process
)
827 CPUState
*cpu
= get_first_cpu_in_process(s
, process
);
828 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
831 while (p
[len
] && p
[len
] != ':')
836 if (strncmp(p
, "target.xml", len
) == 0) {
837 char *buf
= process
->target_xml
;
838 const size_t buf_sz
= sizeof(process
->target_xml
);
840 /* Generate the XML description for this CPU. */
845 "<?xml version=\"1.0\"?>"
846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
848 if (cc
->gdb_arch_name
) {
849 gchar
*arch
= cc
->gdb_arch_name(cpu
);
850 pstrcat(buf
, buf_sz
, "<architecture>");
851 pstrcat(buf
, buf_sz
, arch
);
852 pstrcat(buf
, buf_sz
, "</architecture>");
855 pstrcat(buf
, buf_sz
, "<xi:include href=\"");
856 pstrcat(buf
, buf_sz
, cc
->gdb_core_xml_file
);
857 pstrcat(buf
, buf_sz
, "\"/>");
858 for (r
= cpu
->gdb_regs
; r
; r
= r
->next
) {
859 pstrcat(buf
, buf_sz
, "<xi:include href=\"");
860 pstrcat(buf
, buf_sz
, r
->xml
);
861 pstrcat(buf
, buf_sz
, "\"/>");
863 pstrcat(buf
, buf_sz
, "</target>");
867 if (cc
->gdb_get_dynamic_xml
) {
868 char *xmlname
= g_strndup(p
, len
);
869 const char *xml
= cc
->gdb_get_dynamic_xml(cpu
, xmlname
);
877 name
= xml_builtin
[i
][0];
878 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
881 return name
? xml_builtin
[i
][1] : NULL
;
884 static int gdb_read_register(CPUState
*cpu
, uint8_t *mem_buf
, int reg
)
886 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
887 CPUArchState
*env
= cpu
->env_ptr
;
890 if (reg
< cc
->gdb_num_core_regs
) {
891 return cc
->gdb_read_register(cpu
, mem_buf
, reg
);
894 for (r
= cpu
->gdb_regs
; r
; r
= r
->next
) {
895 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
896 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
902 static int gdb_write_register(CPUState
*cpu
, uint8_t *mem_buf
, int reg
)
904 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
905 CPUArchState
*env
= cpu
->env_ptr
;
908 if (reg
< cc
->gdb_num_core_regs
) {
909 return cc
->gdb_write_register(cpu
, mem_buf
, reg
);
912 for (r
= cpu
->gdb_regs
; r
; r
= r
->next
) {
913 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
914 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
920 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
921 specifies the first register number and these registers are included in
922 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
923 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
926 void gdb_register_coprocessor(CPUState
*cpu
,
927 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
928 int num_regs
, const char *xml
, int g_pos
)
931 GDBRegisterState
**p
;
935 /* Check for duplicates. */
936 if (strcmp((*p
)->xml
, xml
) == 0)
941 s
= g_new0(GDBRegisterState
, 1);
942 s
->base_reg
= cpu
->gdb_num_regs
;
943 s
->num_regs
= num_regs
;
944 s
->get_reg
= get_reg
;
945 s
->set_reg
= set_reg
;
948 /* Add to end of list. */
949 cpu
->gdb_num_regs
+= num_regs
;
952 if (g_pos
!= s
->base_reg
) {
953 error_report("Error: Bad gdb register numbering for '%s', "
954 "expected %d got %d", xml
, g_pos
, s
->base_reg
);
956 cpu
->gdb_num_g_regs
= cpu
->gdb_num_regs
;
961 #ifndef CONFIG_USER_ONLY
962 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
963 static inline int xlat_gdb_type(CPUState
*cpu
, int gdbtype
)
965 static const int xlat
[] = {
966 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
967 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
968 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
971 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
972 int cputype
= xlat
[gdbtype
];
974 if (cc
->gdb_stop_before_watchpoint
) {
975 cputype
|= BP_STOP_BEFORE_ACCESS
;
981 static int gdb_breakpoint_insert(int type
, target_ulong addr
, target_ulong len
)
987 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
991 case GDB_BREAKPOINT_SW
:
992 case GDB_BREAKPOINT_HW
:
994 err
= cpu_breakpoint_insert(cpu
, addr
, BP_GDB
, NULL
);
1000 #ifndef CONFIG_USER_ONLY
1001 case GDB_WATCHPOINT_WRITE
:
1002 case GDB_WATCHPOINT_READ
:
1003 case GDB_WATCHPOINT_ACCESS
:
1005 err
= cpu_watchpoint_insert(cpu
, addr
, len
,
1006 xlat_gdb_type(cpu
, type
), NULL
);
1018 static int gdb_breakpoint_remove(int type
, target_ulong addr
, target_ulong len
)
1023 if (kvm_enabled()) {
1024 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1028 case GDB_BREAKPOINT_SW
:
1029 case GDB_BREAKPOINT_HW
:
1031 err
= cpu_breakpoint_remove(cpu
, addr
, BP_GDB
);
1037 #ifndef CONFIG_USER_ONLY
1038 case GDB_WATCHPOINT_WRITE
:
1039 case GDB_WATCHPOINT_READ
:
1040 case GDB_WATCHPOINT_ACCESS
:
1042 err
= cpu_watchpoint_remove(cpu
, addr
, len
,
1043 xlat_gdb_type(cpu
, type
));
1054 static inline void gdb_cpu_breakpoint_remove_all(CPUState
*cpu
)
1056 cpu_breakpoint_remove_all(cpu
, BP_GDB
);
1057 #ifndef CONFIG_USER_ONLY
1058 cpu_watchpoint_remove_all(cpu
, BP_GDB
);
1062 static void gdb_process_breakpoint_remove_all(const GDBState
*s
, GDBProcess
*p
)
1064 CPUState
*cpu
= get_first_cpu_in_process(s
, p
);
1067 gdb_cpu_breakpoint_remove_all(cpu
);
1068 cpu
= gdb_next_cpu_in_process(s
, cpu
);
1072 static void gdb_breakpoint_remove_all(void)
1076 if (kvm_enabled()) {
1077 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1082 gdb_cpu_breakpoint_remove_all(cpu
);
1086 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1088 CPUState
*cpu
= s
->c_cpu
;
1090 cpu_synchronize_state(cpu
);
1091 cpu_set_pc(cpu
, pc
);
1094 static char *gdb_fmt_thread_id(const GDBState
*s
, CPUState
*cpu
,
1095 char *buf
, size_t buf_size
)
1097 if (s
->multiprocess
) {
1098 snprintf(buf
, buf_size
, "p%02x.%02x",
1099 gdb_get_cpu_pid(s
, cpu
), cpu_gdb_index(cpu
));
1101 snprintf(buf
, buf_size
, "%02x", cpu_gdb_index(cpu
));
1107 typedef enum GDBThreadIdKind
{
1109 GDB_ALL_THREADS
, /* One process, all threads */
1114 static GDBThreadIdKind
read_thread_id(const char *buf
, const char **end_buf
,
1115 uint32_t *pid
, uint32_t *tid
)
1122 ret
= qemu_strtoul(buf
, &buf
, 16, &p
);
1125 return GDB_READ_THREAD_ERR
;
1134 ret
= qemu_strtoul(buf
, &buf
, 16, &t
);
1137 return GDB_READ_THREAD_ERR
;
1143 return GDB_ALL_PROCESSES
;
1151 return GDB_ALL_THREADS
;
1158 return GDB_ONE_THREAD
;
1162 * gdb_handle_vcont - Parses and handles a vCont packet.
1163 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1164 * a format error, 0 on success.
1166 static int gdb_handle_vcont(GDBState
*s
, const char *p
)
1168 int res
, signal
= 0;
1173 GDBProcess
*process
;
1175 GDBThreadIdKind kind
;
1176 #ifdef CONFIG_USER_ONLY
1177 int max_cpus
= 1; /* global variable max_cpus exists only in system mode */
1180 max_cpus
= max_cpus
<= cpu
->cpu_index
? cpu
->cpu_index
+ 1 : max_cpus
;
1183 MachineState
*ms
= MACHINE(qdev_get_machine());
1184 unsigned int max_cpus
= ms
->smp
.max_cpus
;
1186 /* uninitialised CPUs stay 0 */
1187 newstates
= g_new0(char, max_cpus
);
1189 /* mark valid CPUs with 1 */
1191 newstates
[cpu
->cpu_index
] = 1;
1195 * res keeps track of what error we are returning, with -ENOTSUP meaning
1196 * that the command is unknown or unsupported, thus returning an empty
1197 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1198 * or incorrect parameters passed.
1208 if (cur_action
== 'C' || cur_action
== 'S') {
1209 cur_action
= qemu_tolower(cur_action
);
1210 res
= qemu_strtoul(p
+ 1, &p
, 16, &tmp
);
1214 signal
= gdb_signal_to_target(tmp
);
1215 } else if (cur_action
!= 'c' && cur_action
!= 's') {
1216 /* unknown/invalid/unsupported command */
1221 if (*p
== '\0' || *p
== ';') {
1223 * No thread specifier, action is on "all threads". The
1224 * specification is unclear regarding the process to act on. We
1225 * choose all processes.
1227 kind
= GDB_ALL_PROCESSES
;
1228 } else if (*p
++ == ':') {
1229 kind
= read_thread_id(p
, &p
, &pid
, &tid
);
1236 case GDB_READ_THREAD_ERR
:
1240 case GDB_ALL_PROCESSES
:
1241 cpu
= gdb_first_attached_cpu(s
);
1243 if (newstates
[cpu
->cpu_index
] == 1) {
1244 newstates
[cpu
->cpu_index
] = cur_action
;
1247 cpu
= gdb_next_attached_cpu(s
, cpu
);
1251 case GDB_ALL_THREADS
:
1252 process
= gdb_get_process(s
, pid
);
1254 if (!process
->attached
) {
1259 cpu
= get_first_cpu_in_process(s
, process
);
1261 if (newstates
[cpu
->cpu_index
] == 1) {
1262 newstates
[cpu
->cpu_index
] = cur_action
;
1265 cpu
= gdb_next_cpu_in_process(s
, cpu
);
1269 case GDB_ONE_THREAD
:
1270 cpu
= gdb_get_cpu(s
, pid
, tid
);
1272 /* invalid CPU/thread specified */
1278 /* only use if no previous match occourred */
1279 if (newstates
[cpu
->cpu_index
] == 1) {
1280 newstates
[cpu
->cpu_index
] = cur_action
;
1286 gdb_continue_partial(s
, newstates
);
1294 typedef union GdbCmdVariant
{
1297 unsigned long val_ul
;
1298 unsigned long long val_ull
;
1300 GDBThreadIdKind kind
;
1306 static const char *cmd_next_param(const char *param
, const char delimiter
)
1308 static const char all_delimiters
[] = ",;:=";
1309 char curr_delimiters
[2] = {0};
1310 const char *delimiters
;
1312 if (delimiter
== '?') {
1313 delimiters
= all_delimiters
;
1314 } else if (delimiter
== '0') {
1315 return strchr(param
, '\0');
1316 } else if (delimiter
== '.' && *param
) {
1319 curr_delimiters
[0] = delimiter
;
1320 delimiters
= curr_delimiters
;
1323 param
+= strcspn(param
, delimiters
);
1330 static int cmd_parse_params(const char *data
, const char *schema
,
1331 GdbCmdVariant
*params
, int *num_params
)
1334 const char *curr_schema
, *curr_data
;
1342 curr_schema
= schema
;
1345 while (curr_schema
[0] && curr_schema
[1] && *curr_data
) {
1346 switch (curr_schema
[0]) {
1348 if (qemu_strtoul(curr_data
, &curr_data
, 16,
1349 ¶ms
[curr_param
].val_ul
)) {
1353 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1356 if (qemu_strtou64(curr_data
, &curr_data
, 16,
1357 (uint64_t *)¶ms
[curr_param
].val_ull
)) {
1361 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1364 params
[curr_param
].data
= curr_data
;
1366 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1369 params
[curr_param
].opcode
= *(uint8_t *)curr_data
;
1371 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1374 params
[curr_param
].thread_id
.kind
=
1375 read_thread_id(curr_data
, &curr_data
,
1376 ¶ms
[curr_param
].thread_id
.pid
,
1377 ¶ms
[curr_param
].thread_id
.tid
);
1379 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1382 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1390 *num_params
= curr_param
;
1394 typedef struct GdbCmdContext
{
1396 GdbCmdVariant
*params
;
1398 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1399 char str_buf
[MAX_PACKET_LENGTH
+ 1];
1402 typedef void (*GdbCmdHandler
)(GdbCmdContext
*gdb_ctx
, void *user_ctx
);
1405 * cmd_startswith -> cmd is compared using startswith
1408 * schema definitions:
1409 * Each schema parameter entry consists of 2 chars,
1410 * the first char represents the parameter type handling
1411 * the second char represents the delimiter for the next parameter
1413 * Currently supported schema types:
1414 * 'l' -> unsigned long (stored in .val_ul)
1415 * 'L' -> unsigned long long (stored in .val_ull)
1416 * 's' -> string (stored in .data)
1417 * 'o' -> single char (stored in .opcode)
1418 * 't' -> thread id (stored in .thread_id)
1419 * '?' -> skip according to delimiter
1421 * Currently supported delimiters:
1422 * '?' -> Stop at any delimiter (",;:=\0")
1423 * '0' -> Stop at "\0"
1424 * '.' -> Skip 1 char unless reached "\0"
1425 * Any other value is treated as the delimiter value itself
1427 typedef struct GdbCmdParseEntry
{
1428 GdbCmdHandler handler
;
1430 bool cmd_startswith
;
1434 static inline int startswith(const char *string
, const char *pattern
)
1436 return !strncmp(string
, pattern
, strlen(pattern
));
1439 static int process_string_cmd(GDBState
*s
, void *user_ctx
, const char *data
,
1440 const GdbCmdParseEntry
*cmds
, int num_cmds
)
1442 int i
, schema_len
, max_num_params
= 0;
1443 GdbCmdContext gdb_ctx
;
1449 for (i
= 0; i
< num_cmds
; i
++) {
1450 const GdbCmdParseEntry
*cmd
= &cmds
[i
];
1451 g_assert(cmd
->handler
&& cmd
->cmd
);
1453 if ((cmd
->cmd_startswith
&& !startswith(data
, cmd
->cmd
)) ||
1454 (!cmd
->cmd_startswith
&& strcmp(cmd
->cmd
, data
))) {
1459 schema_len
= strlen(cmd
->schema
);
1460 if (schema_len
% 2) {
1464 max_num_params
= schema_len
/ 2;
1468 (GdbCmdVariant
*)alloca(sizeof(*gdb_ctx
.params
) * max_num_params
);
1469 memset(gdb_ctx
.params
, 0, sizeof(*gdb_ctx
.params
) * max_num_params
);
1471 if (cmd_parse_params(&data
[strlen(cmd
->cmd
)], cmd
->schema
,
1472 gdb_ctx
.params
, &gdb_ctx
.num_params
)) {
1477 cmd
->handler(&gdb_ctx
, user_ctx
);
1484 static void run_cmd_parser(GDBState
*s
, const char *data
,
1485 const GdbCmdParseEntry
*cmd
)
1491 /* In case there was an error during the command parsing we must
1492 * send a NULL packet to indicate the command is not supported */
1493 if (process_string_cmd(s
, NULL
, data
, cmd
, 1)) {
1498 static void handle_detach(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1500 GDBProcess
*process
;
1501 GDBState
*s
= gdb_ctx
->s
;
1504 if (s
->multiprocess
) {
1505 if (!gdb_ctx
->num_params
) {
1506 put_packet(s
, "E22");
1510 pid
= gdb_ctx
->params
[0].val_ul
;
1513 process
= gdb_get_process(s
, pid
);
1514 gdb_process_breakpoint_remove_all(s
, process
);
1515 process
->attached
= false;
1517 if (pid
== gdb_get_cpu_pid(s
, s
->c_cpu
)) {
1518 s
->c_cpu
= gdb_first_attached_cpu(s
);
1521 if (pid
== gdb_get_cpu_pid(s
, s
->g_cpu
)) {
1522 s
->g_cpu
= gdb_first_attached_cpu(s
);
1526 /* No more process attached */
1527 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1530 put_packet(s
, "OK");
1533 static void handle_thread_alive(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1537 if (!gdb_ctx
->num_params
) {
1538 put_packet(gdb_ctx
->s
, "E22");
1542 if (gdb_ctx
->params
[0].thread_id
.kind
== GDB_READ_THREAD_ERR
) {
1543 put_packet(gdb_ctx
->s
, "E22");
1547 cpu
= gdb_get_cpu(gdb_ctx
->s
, gdb_ctx
->params
[0].thread_id
.pid
,
1548 gdb_ctx
->params
[0].thread_id
.tid
);
1550 put_packet(gdb_ctx
->s
, "E22");
1554 put_packet(gdb_ctx
->s
, "OK");
1557 static void handle_continue(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1559 if (gdb_ctx
->num_params
) {
1560 gdb_set_cpu_pc(gdb_ctx
->s
, gdb_ctx
->params
[0].val_ull
);
1563 gdb_ctx
->s
->signal
= 0;
1564 gdb_continue(gdb_ctx
->s
);
1567 static void handle_cont_with_sig(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1569 unsigned long signal
= 0;
1572 * Note: C sig;[addr] is currently unsupported and we simply
1573 * omit the addr parameter
1575 if (gdb_ctx
->num_params
) {
1576 signal
= gdb_ctx
->params
[0].val_ul
;
1579 gdb_ctx
->s
->signal
= gdb_signal_to_target(signal
);
1580 if (gdb_ctx
->s
->signal
== -1) {
1581 gdb_ctx
->s
->signal
= 0;
1583 gdb_continue(gdb_ctx
->s
);
1586 static void handle_set_thread(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1590 if (gdb_ctx
->num_params
!= 2) {
1591 put_packet(gdb_ctx
->s
, "E22");
1595 if (gdb_ctx
->params
[1].thread_id
.kind
== GDB_READ_THREAD_ERR
) {
1596 put_packet(gdb_ctx
->s
, "E22");
1600 if (gdb_ctx
->params
[1].thread_id
.kind
!= GDB_ONE_THREAD
) {
1601 put_packet(gdb_ctx
->s
, "OK");
1605 cpu
= gdb_get_cpu(gdb_ctx
->s
, gdb_ctx
->params
[1].thread_id
.pid
,
1606 gdb_ctx
->params
[1].thread_id
.tid
);
1608 put_packet(gdb_ctx
->s
, "E22");
1613 * Note: This command is deprecated and modern gdb's will be using the
1614 * vCont command instead.
1616 switch (gdb_ctx
->params
[0].opcode
) {
1618 gdb_ctx
->s
->c_cpu
= cpu
;
1619 put_packet(gdb_ctx
->s
, "OK");
1622 gdb_ctx
->s
->g_cpu
= cpu
;
1623 put_packet(gdb_ctx
->s
, "OK");
1626 put_packet(gdb_ctx
->s
, "E22");
1631 static void handle_insert_bp(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1635 if (gdb_ctx
->num_params
!= 3) {
1636 put_packet(gdb_ctx
->s
, "E22");
1640 res
= gdb_breakpoint_insert(gdb_ctx
->params
[0].val_ul
,
1641 gdb_ctx
->params
[1].val_ull
,
1642 gdb_ctx
->params
[2].val_ull
);
1644 put_packet(gdb_ctx
->s
, "OK");
1646 } else if (res
== -ENOSYS
) {
1647 put_packet(gdb_ctx
->s
, "");
1651 put_packet(gdb_ctx
->s
, "E22");
1654 static void handle_remove_bp(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1658 if (gdb_ctx
->num_params
!= 3) {
1659 put_packet(gdb_ctx
->s
, "E22");
1663 res
= gdb_breakpoint_remove(gdb_ctx
->params
[0].val_ul
,
1664 gdb_ctx
->params
[1].val_ull
,
1665 gdb_ctx
->params
[2].val_ull
);
1667 put_packet(gdb_ctx
->s
, "OK");
1669 } else if (res
== -ENOSYS
) {
1670 put_packet(gdb_ctx
->s
, "");
1674 put_packet(gdb_ctx
->s
, "E22");
1678 * handle_set/get_reg
1680 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1681 * This works, but can be very slow. Anything new enough to understand
1682 * XML also knows how to use this properly. However to use this we
1683 * need to define a local XML file as well as be talking to a
1684 * reasonably modern gdb. Responding with an empty packet will cause
1685 * the remote gdb to fallback to older methods.
1688 static void handle_set_reg(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1693 put_packet(gdb_ctx
->s
, "");
1697 if (gdb_ctx
->num_params
!= 2) {
1698 put_packet(gdb_ctx
->s
, "E22");
1702 reg_size
= strlen(gdb_ctx
->params
[1].data
) / 2;
1703 hextomem(gdb_ctx
->mem_buf
, gdb_ctx
->params
[1].data
, reg_size
);
1704 gdb_write_register(gdb_ctx
->s
->g_cpu
, gdb_ctx
->mem_buf
,
1705 gdb_ctx
->params
[0].val_ull
);
1706 put_packet(gdb_ctx
->s
, "OK");
1709 static void handle_get_reg(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1714 put_packet(gdb_ctx
->s
, "");
1718 if (!gdb_ctx
->num_params
) {
1719 put_packet(gdb_ctx
->s
, "E14");
1723 reg_size
= gdb_read_register(gdb_ctx
->s
->g_cpu
, gdb_ctx
->mem_buf
,
1724 gdb_ctx
->params
[0].val_ull
);
1726 put_packet(gdb_ctx
->s
, "E14");
1730 memtohex(gdb_ctx
->str_buf
, gdb_ctx
->mem_buf
, reg_size
);
1731 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1734 static void handle_write_mem(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1736 if (gdb_ctx
->num_params
!= 3) {
1737 put_packet(gdb_ctx
->s
, "E22");
1741 /* hextomem() reads 2*len bytes */
1742 if (gdb_ctx
->params
[1].val_ull
> strlen(gdb_ctx
->params
[2].data
) / 2) {
1743 put_packet(gdb_ctx
->s
, "E22");
1747 hextomem(gdb_ctx
->mem_buf
, gdb_ctx
->params
[2].data
,
1748 gdb_ctx
->params
[1].val_ull
);
1749 if (target_memory_rw_debug(gdb_ctx
->s
->g_cpu
, gdb_ctx
->params
[0].val_ull
,
1751 gdb_ctx
->params
[1].val_ull
, true)) {
1752 put_packet(gdb_ctx
->s
, "E14");
1756 put_packet(gdb_ctx
->s
, "OK");
1759 static void handle_read_mem(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1761 if (gdb_ctx
->num_params
!= 2) {
1762 put_packet(gdb_ctx
->s
, "E22");
1766 /* memtohex() doubles the required space */
1767 if (gdb_ctx
->params
[1].val_ull
> MAX_PACKET_LENGTH
/ 2) {
1768 put_packet(gdb_ctx
->s
, "E22");
1772 if (target_memory_rw_debug(gdb_ctx
->s
->g_cpu
, gdb_ctx
->params
[0].val_ull
,
1774 gdb_ctx
->params
[1].val_ull
, false)) {
1775 put_packet(gdb_ctx
->s
, "E14");
1779 memtohex(gdb_ctx
->str_buf
, gdb_ctx
->mem_buf
, gdb_ctx
->params
[1].val_ull
);
1780 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1783 static void handle_write_all_regs(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1785 target_ulong addr
, len
;
1789 if (!gdb_ctx
->num_params
) {
1793 cpu_synchronize_state(gdb_ctx
->s
->g_cpu
);
1794 registers
= gdb_ctx
->mem_buf
;
1795 len
= strlen(gdb_ctx
->params
[0].data
) / 2;
1796 hextomem(registers
, gdb_ctx
->params
[0].data
, len
);
1797 for (addr
= 0; addr
< gdb_ctx
->s
->g_cpu
->gdb_num_g_regs
&& len
> 0;
1799 reg_size
= gdb_write_register(gdb_ctx
->s
->g_cpu
, registers
, addr
);
1801 registers
+= reg_size
;
1803 put_packet(gdb_ctx
->s
, "OK");
1806 static void handle_read_all_regs(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1808 target_ulong addr
, len
;
1810 cpu_synchronize_state(gdb_ctx
->s
->g_cpu
);
1812 for (addr
= 0; addr
< gdb_ctx
->s
->g_cpu
->gdb_num_g_regs
; addr
++) {
1813 len
+= gdb_read_register(gdb_ctx
->s
->g_cpu
, gdb_ctx
->mem_buf
+ len
,
1817 memtohex(gdb_ctx
->str_buf
, gdb_ctx
->mem_buf
, len
);
1818 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1821 static void handle_file_io(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1823 if (gdb_ctx
->num_params
>= 2 && gdb_ctx
->s
->current_syscall_cb
) {
1824 target_ulong ret
, err
;
1826 ret
= (target_ulong
)gdb_ctx
->params
[0].val_ull
;
1827 err
= (target_ulong
)gdb_ctx
->params
[1].val_ull
;
1828 gdb_ctx
->s
->current_syscall_cb(gdb_ctx
->s
->c_cpu
, ret
, err
);
1829 gdb_ctx
->s
->current_syscall_cb
= NULL
;
1832 if (gdb_ctx
->num_params
>= 3 && gdb_ctx
->params
[2].opcode
== (uint8_t)'C') {
1833 put_packet(gdb_ctx
->s
, "T02");
1837 gdb_continue(gdb_ctx
->s
);
1840 static void handle_step(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1842 if (gdb_ctx
->num_params
) {
1843 gdb_set_cpu_pc(gdb_ctx
->s
, (target_ulong
)gdb_ctx
->params
[0].val_ull
);
1846 cpu_single_step(gdb_ctx
->s
->c_cpu
, sstep_flags
);
1847 gdb_continue(gdb_ctx
->s
);
1850 static void handle_v_cont_query(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1852 put_packet(gdb_ctx
->s
, "vCont;c;C;s;S");
1855 static void handle_v_cont(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1859 if (!gdb_ctx
->num_params
) {
1863 res
= gdb_handle_vcont(gdb_ctx
->s
, gdb_ctx
->params
[0].data
);
1864 if ((res
== -EINVAL
) || (res
== -ERANGE
)) {
1865 put_packet(gdb_ctx
->s
, "E22");
1867 put_packet(gdb_ctx
->s
, "");
1871 static void handle_v_attach(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1873 GDBProcess
*process
;
1877 pstrcpy(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "E22");
1878 if (!gdb_ctx
->num_params
) {
1882 process
= gdb_get_process(gdb_ctx
->s
, gdb_ctx
->params
[0].val_ul
);
1887 cpu
= get_first_cpu_in_process(gdb_ctx
->s
, process
);
1892 process
->attached
= true;
1893 gdb_ctx
->s
->g_cpu
= cpu
;
1894 gdb_ctx
->s
->c_cpu
= cpu
;
1896 gdb_fmt_thread_id(gdb_ctx
->s
, cpu
, thread_id
, sizeof(thread_id
));
1897 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "T%02xthread:%s;",
1898 GDB_SIGNAL_TRAP
, thread_id
);
1900 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1903 static void handle_v_kill(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1905 /* Kill the target */
1906 put_packet(gdb_ctx
->s
, "OK");
1907 error_report("QEMU: Terminated via GDBstub");
1911 static GdbCmdParseEntry gdb_v_commands_table
[] = {
1912 /* Order is important if has same prefix */
1914 .handler
= handle_v_cont_query
,
1919 .handler
= handle_v_cont
,
1921 .cmd_startswith
= 1,
1925 .handler
= handle_v_attach
,
1927 .cmd_startswith
= 1,
1931 .handler
= handle_v_kill
,
1937 static void handle_v_commands(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1939 if (!gdb_ctx
->num_params
) {
1943 if (process_string_cmd(gdb_ctx
->s
, NULL
, gdb_ctx
->params
[0].data
,
1944 gdb_v_commands_table
,
1945 ARRAY_SIZE(gdb_v_commands_table
))) {
1946 put_packet(gdb_ctx
->s
, "");
1950 static void handle_query_qemu_sstepbits(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1952 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
),
1953 "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", SSTEP_ENABLE
,
1954 SSTEP_NOIRQ
, SSTEP_NOTIMER
);
1955 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1958 static void handle_set_qemu_sstep(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1960 if (!gdb_ctx
->num_params
) {
1964 sstep_flags
= gdb_ctx
->params
[0].val_ul
;
1965 put_packet(gdb_ctx
->s
, "OK");
1968 static void handle_query_qemu_sstep(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1970 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "0x%x", sstep_flags
);
1971 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1974 static void handle_query_curr_tid(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1977 GDBProcess
*process
;
1981 * "Current thread" remains vague in the spec, so always return
1982 * the first thread of the current process (gdb returns the
1985 process
= gdb_get_cpu_process(gdb_ctx
->s
, gdb_ctx
->s
->g_cpu
);
1986 cpu
= get_first_cpu_in_process(gdb_ctx
->s
, process
);
1987 gdb_fmt_thread_id(gdb_ctx
->s
, cpu
, thread_id
, sizeof(thread_id
));
1988 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "QC%s", thread_id
);
1989 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
1992 static void handle_query_threads(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1996 if (!gdb_ctx
->s
->query_cpu
) {
1997 put_packet(gdb_ctx
->s
, "l");
2001 gdb_fmt_thread_id(gdb_ctx
->s
, gdb_ctx
->s
->query_cpu
, thread_id
,
2003 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "m%s", thread_id
);
2004 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2005 gdb_ctx
->s
->query_cpu
=
2006 gdb_next_attached_cpu(gdb_ctx
->s
, gdb_ctx
->s
->query_cpu
);
2009 static void handle_query_first_threads(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2011 gdb_ctx
->s
->query_cpu
= gdb_first_attached_cpu(gdb_ctx
->s
);
2012 handle_query_threads(gdb_ctx
, user_ctx
);
2015 static void handle_query_thread_extra(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2020 if (!gdb_ctx
->num_params
||
2021 gdb_ctx
->params
[0].thread_id
.kind
== GDB_READ_THREAD_ERR
) {
2022 put_packet(gdb_ctx
->s
, "E22");
2026 cpu
= gdb_get_cpu(gdb_ctx
->s
, gdb_ctx
->params
[0].thread_id
.pid
,
2027 gdb_ctx
->params
[0].thread_id
.tid
);
2032 cpu_synchronize_state(cpu
);
2034 if (gdb_ctx
->s
->multiprocess
&& (gdb_ctx
->s
->process_num
> 1)) {
2035 /* Print the CPU model and name in multiprocess mode */
2036 ObjectClass
*oc
= object_get_class(OBJECT(cpu
));
2037 const char *cpu_model
= object_class_get_name(oc
);
2038 char *cpu_name
= object_get_canonical_path_component(OBJECT(cpu
));
2039 len
= snprintf((char *)gdb_ctx
->mem_buf
, sizeof(gdb_ctx
->str_buf
) / 2,
2040 "%s %s [%s]", cpu_model
, cpu_name
,
2041 cpu
->halted
? "halted " : "running");
2044 /* memtohex() doubles the required space */
2045 len
= snprintf((char *)gdb_ctx
->mem_buf
, sizeof(gdb_ctx
->str_buf
) / 2,
2046 "CPU#%d [%s]", cpu
->cpu_index
,
2047 cpu
->halted
? "halted " : "running");
2049 trace_gdbstub_op_extra_info((char *)gdb_ctx
->mem_buf
);
2050 memtohex(gdb_ctx
->str_buf
, gdb_ctx
->mem_buf
, len
);
2051 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2054 #ifdef CONFIG_USER_ONLY
2055 static void handle_query_offsets(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2059 ts
= gdb_ctx
->s
->c_cpu
->opaque
;
2060 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
),
2061 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2062 ";Bss=" TARGET_ABI_FMT_lx
,
2063 ts
->info
->code_offset
,
2064 ts
->info
->data_offset
,
2065 ts
->info
->data_offset
);
2066 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2069 static void handle_query_rcmd(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2073 if (!gdb_ctx
->num_params
) {
2074 put_packet(gdb_ctx
->s
, "E22");
2078 len
= strlen(gdb_ctx
->params
[0].data
);
2080 put_packet(gdb_ctx
->s
, "E01");
2085 hextomem(gdb_ctx
->mem_buf
, gdb_ctx
->params
[0].data
, len
);
2086 gdb_ctx
->mem_buf
[len
++] = 0;
2087 qemu_chr_be_write(gdb_ctx
->s
->mon_chr
, gdb_ctx
->mem_buf
, len
);
2088 put_packet(gdb_ctx
->s
, "OK");
2093 static void handle_query_supported(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2097 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "PacketSize=%x",
2099 cc
= CPU_GET_CLASS(first_cpu
);
2100 if (cc
->gdb_core_xml_file
) {
2101 pstrcat(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
),
2102 ";qXfer:features:read+");
2105 if (gdb_ctx
->num_params
&&
2106 strstr(gdb_ctx
->params
[0].data
, "multiprocess+")) {
2107 gdb_ctx
->s
->multiprocess
= true;
2110 pstrcat(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), ";multiprocess+");
2111 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2114 static void handle_query_xfer_features(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2116 GDBProcess
*process
;
2118 unsigned long len
, total_len
, addr
;
2122 if (gdb_ctx
->num_params
< 3) {
2123 put_packet(gdb_ctx
->s
, "E22");
2127 process
= gdb_get_cpu_process(gdb_ctx
->s
, gdb_ctx
->s
->g_cpu
);
2128 cc
= CPU_GET_CLASS(gdb_ctx
->s
->g_cpu
);
2129 if (!cc
->gdb_core_xml_file
) {
2130 put_packet(gdb_ctx
->s
, "");
2135 p
= gdb_ctx
->params
[0].data
;
2136 xml
= get_feature_xml(gdb_ctx
->s
, p
, &p
, process
);
2138 put_packet(gdb_ctx
->s
, "E00");
2142 addr
= gdb_ctx
->params
[1].val_ul
;
2143 len
= gdb_ctx
->params
[2].val_ul
;
2144 total_len
= strlen(xml
);
2145 if (addr
> total_len
) {
2146 put_packet(gdb_ctx
->s
, "E00");
2150 if (len
> (MAX_PACKET_LENGTH
- 5) / 2) {
2151 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2154 if (len
< total_len
- addr
) {
2155 gdb_ctx
->str_buf
[0] = 'm';
2156 len
= memtox(gdb_ctx
->str_buf
+ 1, xml
+ addr
, len
);
2158 gdb_ctx
->str_buf
[0] = 'l';
2159 len
= memtox(gdb_ctx
->str_buf
+ 1, xml
+ addr
, total_len
- addr
);
2162 put_packet_binary(gdb_ctx
->s
, gdb_ctx
->str_buf
, len
+ 1, true);
2165 static void handle_query_attached(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2167 put_packet(gdb_ctx
->s
, GDB_ATTACHED
);
2170 static void handle_query_qemu_supported(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2172 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "sstepbits;sstep");
2173 #ifndef CONFIG_USER_ONLY
2174 pstrcat(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), ";PhyMemMode");
2176 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2179 #ifndef CONFIG_USER_ONLY
2180 static void handle_query_qemu_phy_mem_mode(GdbCmdContext
*gdb_ctx
,
2183 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "%d", phy_memory_mode
);
2184 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2187 static void handle_set_qemu_phy_mem_mode(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2189 if (!gdb_ctx
->num_params
) {
2190 put_packet(gdb_ctx
->s
, "E22");
2194 if (!gdb_ctx
->params
[0].val_ul
) {
2195 phy_memory_mode
= 0;
2197 phy_memory_mode
= 1;
2199 put_packet(gdb_ctx
->s
, "OK");
2203 static GdbCmdParseEntry gdb_gen_query_set_common_table
[] = {
2204 /* Order is important if has same prefix */
2206 .handler
= handle_query_qemu_sstepbits
,
2207 .cmd
= "qemu.sstepbits",
2210 .handler
= handle_query_qemu_sstep
,
2211 .cmd
= "qemu.sstep",
2214 .handler
= handle_set_qemu_sstep
,
2215 .cmd
= "qemu.sstep=",
2216 .cmd_startswith
= 1,
2221 static GdbCmdParseEntry gdb_gen_query_table
[] = {
2223 .handler
= handle_query_curr_tid
,
2227 .handler
= handle_query_threads
,
2228 .cmd
= "sThreadInfo",
2231 .handler
= handle_query_first_threads
,
2232 .cmd
= "fThreadInfo",
2235 .handler
= handle_query_thread_extra
,
2236 .cmd
= "ThreadExtraInfo,",
2237 .cmd_startswith
= 1,
2240 #ifdef CONFIG_USER_ONLY
2242 .handler
= handle_query_offsets
,
2247 .handler
= handle_query_rcmd
,
2249 .cmd_startswith
= 1,
2254 .handler
= handle_query_supported
,
2255 .cmd
= "Supported:",
2256 .cmd_startswith
= 1,
2260 .handler
= handle_query_supported
,
2265 .handler
= handle_query_xfer_features
,
2266 .cmd
= "Xfer:features:read:",
2267 .cmd_startswith
= 1,
2271 .handler
= handle_query_attached
,
2276 .handler
= handle_query_attached
,
2280 .handler
= handle_query_qemu_supported
,
2281 .cmd
= "qemu.Supported",
2283 #ifndef CONFIG_USER_ONLY
2285 .handler
= handle_query_qemu_phy_mem_mode
,
2286 .cmd
= "qemu.PhyMemMode",
2291 static GdbCmdParseEntry gdb_gen_set_table
[] = {
2292 /* Order is important if has same prefix */
2294 .handler
= handle_set_qemu_sstep
,
2295 .cmd
= "qemu.sstep:",
2296 .cmd_startswith
= 1,
2299 #ifndef CONFIG_USER_ONLY
2301 .handler
= handle_set_qemu_phy_mem_mode
,
2302 .cmd
= "qemu.PhyMemMode:",
2303 .cmd_startswith
= 1,
2309 static void handle_gen_query(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2311 if (!gdb_ctx
->num_params
) {
2315 if (!process_string_cmd(gdb_ctx
->s
, NULL
, gdb_ctx
->params
[0].data
,
2316 gdb_gen_query_set_common_table
,
2317 ARRAY_SIZE(gdb_gen_query_set_common_table
))) {
2321 if (process_string_cmd(gdb_ctx
->s
, NULL
, gdb_ctx
->params
[0].data
,
2322 gdb_gen_query_table
,
2323 ARRAY_SIZE(gdb_gen_query_table
))) {
2324 put_packet(gdb_ctx
->s
, "");
2328 static void handle_gen_set(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2330 if (!gdb_ctx
->num_params
) {
2334 if (!process_string_cmd(gdb_ctx
->s
, NULL
, gdb_ctx
->params
[0].data
,
2335 gdb_gen_query_set_common_table
,
2336 ARRAY_SIZE(gdb_gen_query_set_common_table
))) {
2340 if (process_string_cmd(gdb_ctx
->s
, NULL
, gdb_ctx
->params
[0].data
,
2342 ARRAY_SIZE(gdb_gen_set_table
))) {
2343 put_packet(gdb_ctx
->s
, "");
2347 static void handle_target_halt(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2351 gdb_fmt_thread_id(gdb_ctx
->s
, gdb_ctx
->s
->c_cpu
, thread_id
,
2353 snprintf(gdb_ctx
->str_buf
, sizeof(gdb_ctx
->str_buf
), "T%02xthread:%s;",
2354 GDB_SIGNAL_TRAP
, thread_id
);
2355 put_packet(gdb_ctx
->s
, gdb_ctx
->str_buf
);
2357 * Remove all the breakpoints when this query is issued,
2358 * because gdb is doing an initial connect and the state
2359 * should be cleaned up.
2361 gdb_breakpoint_remove_all();
2364 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
2366 const GdbCmdParseEntry
*cmd_parser
= NULL
;
2368 trace_gdbstub_io_command(line_buf
);
2370 switch (line_buf
[0]) {
2372 put_packet(s
, "OK");
2376 static const GdbCmdParseEntry target_halted_cmd_desc
= {
2377 .handler
= handle_target_halt
,
2381 cmd_parser
= &target_halted_cmd_desc
;
2386 static const GdbCmdParseEntry continue_cmd_desc
= {
2387 .handler
= handle_continue
,
2389 .cmd_startswith
= 1,
2392 cmd_parser
= &continue_cmd_desc
;
2397 static const GdbCmdParseEntry cont_with_sig_cmd_desc
= {
2398 .handler
= handle_cont_with_sig
,
2400 .cmd_startswith
= 1,
2403 cmd_parser
= &cont_with_sig_cmd_desc
;
2408 static const GdbCmdParseEntry v_cmd_desc
= {
2409 .handler
= handle_v_commands
,
2411 .cmd_startswith
= 1,
2414 cmd_parser
= &v_cmd_desc
;
2418 /* Kill the target */
2419 error_report("QEMU: Terminated via GDBstub");
2423 static const GdbCmdParseEntry detach_cmd_desc
= {
2424 .handler
= handle_detach
,
2426 .cmd_startswith
= 1,
2429 cmd_parser
= &detach_cmd_desc
;
2434 static const GdbCmdParseEntry step_cmd_desc
= {
2435 .handler
= handle_step
,
2437 .cmd_startswith
= 1,
2440 cmd_parser
= &step_cmd_desc
;
2445 static const GdbCmdParseEntry file_io_cmd_desc
= {
2446 .handler
= handle_file_io
,
2448 .cmd_startswith
= 1,
2451 cmd_parser
= &file_io_cmd_desc
;
2456 static const GdbCmdParseEntry read_all_regs_cmd_desc
= {
2457 .handler
= handle_read_all_regs
,
2461 cmd_parser
= &read_all_regs_cmd_desc
;
2466 static const GdbCmdParseEntry write_all_regs_cmd_desc
= {
2467 .handler
= handle_write_all_regs
,
2469 .cmd_startswith
= 1,
2472 cmd_parser
= &write_all_regs_cmd_desc
;
2477 static const GdbCmdParseEntry read_mem_cmd_desc
= {
2478 .handler
= handle_read_mem
,
2480 .cmd_startswith
= 1,
2483 cmd_parser
= &read_mem_cmd_desc
;
2488 static const GdbCmdParseEntry write_mem_cmd_desc
= {
2489 .handler
= handle_write_mem
,
2491 .cmd_startswith
= 1,
2494 cmd_parser
= &write_mem_cmd_desc
;
2499 static const GdbCmdParseEntry get_reg_cmd_desc
= {
2500 .handler
= handle_get_reg
,
2502 .cmd_startswith
= 1,
2505 cmd_parser
= &get_reg_cmd_desc
;
2510 static const GdbCmdParseEntry set_reg_cmd_desc
= {
2511 .handler
= handle_set_reg
,
2513 .cmd_startswith
= 1,
2516 cmd_parser
= &set_reg_cmd_desc
;
2521 static const GdbCmdParseEntry insert_bp_cmd_desc
= {
2522 .handler
= handle_insert_bp
,
2524 .cmd_startswith
= 1,
2527 cmd_parser
= &insert_bp_cmd_desc
;
2532 static const GdbCmdParseEntry remove_bp_cmd_desc
= {
2533 .handler
= handle_remove_bp
,
2535 .cmd_startswith
= 1,
2538 cmd_parser
= &remove_bp_cmd_desc
;
2543 static const GdbCmdParseEntry set_thread_cmd_desc
= {
2544 .handler
= handle_set_thread
,
2546 .cmd_startswith
= 1,
2549 cmd_parser
= &set_thread_cmd_desc
;
2554 static const GdbCmdParseEntry thread_alive_cmd_desc
= {
2555 .handler
= handle_thread_alive
,
2557 .cmd_startswith
= 1,
2560 cmd_parser
= &thread_alive_cmd_desc
;
2565 static const GdbCmdParseEntry gen_query_cmd_desc
= {
2566 .handler
= handle_gen_query
,
2568 .cmd_startswith
= 1,
2571 cmd_parser
= &gen_query_cmd_desc
;
2576 static const GdbCmdParseEntry gen_set_cmd_desc
= {
2577 .handler
= handle_gen_set
,
2579 .cmd_startswith
= 1,
2582 cmd_parser
= &gen_set_cmd_desc
;
2586 /* put empty packet */
2591 run_cmd_parser(s
, line_buf
, cmd_parser
);
2596 void gdb_set_stop_cpu(CPUState
*cpu
)
2598 GDBProcess
*p
= gdb_get_cpu_process(gdbserver_state
, cpu
);
2602 * Having a stop CPU corresponding to a process that is not attached
2603 * confuses GDB. So we ignore the request.
2608 gdbserver_state
->c_cpu
= cpu
;
2609 gdbserver_state
->g_cpu
= cpu
;
2612 #ifndef CONFIG_USER_ONLY
2613 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2615 GDBState
*s
= gdbserver_state
;
2616 CPUState
*cpu
= s
->c_cpu
;
2622 if (running
|| s
->state
== RS_INACTIVE
) {
2625 /* Is there a GDB syscall waiting to be sent? */
2626 if (s
->current_syscall_cb
) {
2627 put_packet(s
, s
->syscall_buf
);
2632 /* No process attached */
2636 gdb_fmt_thread_id(s
, cpu
, thread_id
, sizeof(thread_id
));
2639 case RUN_STATE_DEBUG
:
2640 if (cpu
->watchpoint_hit
) {
2641 switch (cpu
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2652 trace_gdbstub_hit_watchpoint(type
, cpu_gdb_index(cpu
),
2653 (target_ulong
)cpu
->watchpoint_hit
->vaddr
);
2654 snprintf(buf
, sizeof(buf
),
2655 "T%02xthread:%s;%swatch:" TARGET_FMT_lx
";",
2656 GDB_SIGNAL_TRAP
, thread_id
, type
,
2657 (target_ulong
)cpu
->watchpoint_hit
->vaddr
);
2658 cpu
->watchpoint_hit
= NULL
;
2661 trace_gdbstub_hit_break();
2664 ret
= GDB_SIGNAL_TRAP
;
2666 case RUN_STATE_PAUSED
:
2667 trace_gdbstub_hit_paused();
2668 ret
= GDB_SIGNAL_INT
;
2670 case RUN_STATE_SHUTDOWN
:
2671 trace_gdbstub_hit_shutdown();
2672 ret
= GDB_SIGNAL_QUIT
;
2674 case RUN_STATE_IO_ERROR
:
2675 trace_gdbstub_hit_io_error();
2676 ret
= GDB_SIGNAL_IO
;
2678 case RUN_STATE_WATCHDOG
:
2679 trace_gdbstub_hit_watchdog();
2680 ret
= GDB_SIGNAL_ALRM
;
2682 case RUN_STATE_INTERNAL_ERROR
:
2683 trace_gdbstub_hit_internal_error();
2684 ret
= GDB_SIGNAL_ABRT
;
2686 case RUN_STATE_SAVE_VM
:
2687 case RUN_STATE_RESTORE_VM
:
2689 case RUN_STATE_FINISH_MIGRATE
:
2690 ret
= GDB_SIGNAL_XCPU
;
2693 trace_gdbstub_hit_unknown(state
);
2694 ret
= GDB_SIGNAL_UNKNOWN
;
2697 gdb_set_stop_cpu(cpu
);
2698 snprintf(buf
, sizeof(buf
), "T%02xthread:%s;", ret
, thread_id
);
2703 /* disable single step if it was enabled */
2704 cpu_single_step(cpu
, 0);
2708 /* Send a gdb syscall request.
2709 This accepts limited printf-style format specifiers, specifically:
2710 %x - target_ulong argument printed in hex.
2711 %lx - 64-bit argument printed in hex.
2712 %s - string pointer (target_ulong) and length (int) pair. */
2713 void gdb_do_syscallv(gdb_syscall_complete_cb cb
, const char *fmt
, va_list va
)
2721 s
= gdbserver_state
;
2724 s
->current_syscall_cb
= cb
;
2725 #ifndef CONFIG_USER_ONLY
2726 vm_stop(RUN_STATE_DEBUG
);
2729 p_end
= &s
->syscall_buf
[sizeof(s
->syscall_buf
)];
2736 addr
= va_arg(va
, target_ulong
);
2737 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
, addr
);
2740 if (*(fmt
++) != 'x')
2742 i64
= va_arg(va
, uint64_t);
2743 p
+= snprintf(p
, p_end
- p
, "%" PRIx64
, i64
);
2746 addr
= va_arg(va
, target_ulong
);
2747 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
"/%x",
2748 addr
, va_arg(va
, int));
2752 error_report("gdbstub: Bad syscall format string '%s'",
2761 #ifdef CONFIG_USER_ONLY
2762 put_packet(s
, s
->syscall_buf
);
2763 /* Return control to gdb for it to process the syscall request.
2764 * Since the protocol requires that gdb hands control back to us
2765 * using a "here are the results" F packet, we don't need to check
2766 * gdb_handlesig's return value (which is the signal to deliver if
2767 * execution was resumed via a continue packet).
2769 gdb_handlesig(s
->c_cpu
, 0);
2771 /* In this case wait to send the syscall packet until notification that
2772 the CPU has stopped. This must be done because if the packet is sent
2773 now the reply from the syscall request could be received while the CPU
2774 is still in the running state, which can cause packets to be dropped
2775 and state transition 'T' packets to be sent while the syscall is still
2777 qemu_cpu_kick(s
->c_cpu
);
2781 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2786 gdb_do_syscallv(cb
, fmt
, va
);
2790 static void gdb_read_byte(GDBState
*s
, uint8_t ch
)
2794 #ifndef CONFIG_USER_ONLY
2795 if (s
->last_packet_len
) {
2796 /* Waiting for a response to the last packet. If we see the start
2797 of a new command then abandon the previous response. */
2799 trace_gdbstub_err_got_nack();
2800 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2801 } else if (ch
== '+') {
2802 trace_gdbstub_io_got_ack();
2804 trace_gdbstub_io_got_unexpected(ch
);
2807 if (ch
== '+' || ch
== '$')
2808 s
->last_packet_len
= 0;
2812 if (runstate_is_running()) {
2813 /* when the CPU is running, we cannot do anything except stop
2814 it when receiving a char */
2815 vm_stop(RUN_STATE_PAUSED
);
2822 /* start of command packet */
2823 s
->line_buf_index
= 0;
2825 s
->state
= RS_GETLINE
;
2827 trace_gdbstub_err_garbage(ch
);
2832 /* start escape sequence */
2833 s
->state
= RS_GETLINE_ESC
;
2835 } else if (ch
== '*') {
2836 /* start run length encoding sequence */
2837 s
->state
= RS_GETLINE_RLE
;
2839 } else if (ch
== '#') {
2840 /* end of command, start of checksum*/
2841 s
->state
= RS_CHKSUM1
;
2842 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2843 trace_gdbstub_err_overrun();
2846 /* unescaped command character */
2847 s
->line_buf
[s
->line_buf_index
++] = ch
;
2851 case RS_GETLINE_ESC
:
2853 /* unexpected end of command in escape sequence */
2854 s
->state
= RS_CHKSUM1
;
2855 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2856 /* command buffer overrun */
2857 trace_gdbstub_err_overrun();
2860 /* parse escaped character and leave escape state */
2861 s
->line_buf
[s
->line_buf_index
++] = ch
^ 0x20;
2863 s
->state
= RS_GETLINE
;
2866 case RS_GETLINE_RLE
:
2868 * Run-length encoding is explained in "Debugging with GDB /
2869 * Appendix E GDB Remote Serial Protocol / Overview".
2871 if (ch
< ' ' || ch
== '#' || ch
== '$' || ch
> 126) {
2872 /* invalid RLE count encoding */
2873 trace_gdbstub_err_invalid_repeat(ch
);
2874 s
->state
= RS_GETLINE
;
2876 /* decode repeat length */
2877 int repeat
= ch
- ' ' + 3;
2878 if (s
->line_buf_index
+ repeat
>= sizeof(s
->line_buf
) - 1) {
2879 /* that many repeats would overrun the command buffer */
2880 trace_gdbstub_err_overrun();
2882 } else if (s
->line_buf_index
< 1) {
2883 /* got a repeat but we have nothing to repeat */
2884 trace_gdbstub_err_invalid_rle();
2885 s
->state
= RS_GETLINE
;
2887 /* repeat the last character */
2888 memset(s
->line_buf
+ s
->line_buf_index
,
2889 s
->line_buf
[s
->line_buf_index
- 1], repeat
);
2890 s
->line_buf_index
+= repeat
;
2892 s
->state
= RS_GETLINE
;
2897 /* get high hex digit of checksum */
2898 if (!isxdigit(ch
)) {
2899 trace_gdbstub_err_checksum_invalid(ch
);
2900 s
->state
= RS_GETLINE
;
2903 s
->line_buf
[s
->line_buf_index
] = '\0';
2904 s
->line_csum
= fromhex(ch
) << 4;
2905 s
->state
= RS_CHKSUM2
;
2908 /* get low hex digit of checksum */
2909 if (!isxdigit(ch
)) {
2910 trace_gdbstub_err_checksum_invalid(ch
);
2911 s
->state
= RS_GETLINE
;
2914 s
->line_csum
|= fromhex(ch
);
2916 if (s
->line_csum
!= (s
->line_sum
& 0xff)) {
2917 trace_gdbstub_err_checksum_incorrect(s
->line_sum
, s
->line_csum
);
2918 /* send NAK reply */
2920 put_buffer(s
, &reply
, 1);
2923 /* send ACK reply */
2925 put_buffer(s
, &reply
, 1);
2926 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2935 /* Tell the remote gdb that the process has exited. */
2936 void gdb_exit(CPUArchState
*env
, int code
)
2941 s
= gdbserver_state
;
2945 #ifdef CONFIG_USER_ONLY
2946 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2951 trace_gdbstub_op_exiting((uint8_t)code
);
2953 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2956 #ifndef CONFIG_USER_ONLY
2957 qemu_chr_fe_deinit(&s
->chr
, true);
2962 * Create the process that will contain all the "orphan" CPUs (that are not
2963 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2964 * be attachable and thus will be invisible to the user.
2966 static void create_default_process(GDBState
*s
)
2968 GDBProcess
*process
;
2971 if (s
->process_num
) {
2972 max_pid
= s
->processes
[s
->process_num
- 1].pid
;
2975 s
->processes
= g_renew(GDBProcess
, s
->processes
, ++s
->process_num
);
2976 process
= &s
->processes
[s
->process_num
- 1];
2978 /* We need an available PID slot for this process */
2979 assert(max_pid
< UINT32_MAX
);
2981 process
->pid
= max_pid
+ 1;
2982 process
->attached
= false;
2983 process
->target_xml
[0] = '\0';
2986 #ifdef CONFIG_USER_ONLY
2988 gdb_handlesig(CPUState
*cpu
, int sig
)
2994 s
= gdbserver_state
;
2995 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2999 /* disable single step if it was enabled */
3000 cpu_single_step(cpu
, 0);
3004 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb(sig
));
3007 /* put_packet() might have detected that the peer terminated the
3015 s
->running_state
= 0;
3016 while (s
->running_state
== 0) {
3017 n
= read(s
->fd
, buf
, 256);
3021 for (i
= 0; i
< n
; i
++) {
3022 gdb_read_byte(s
, buf
[i
]);
3025 /* XXX: Connection closed. Should probably wait for another
3026 connection before continuing. */
3039 /* Tell the remote gdb that the process has exited due to SIG. */
3040 void gdb_signalled(CPUArchState
*env
, int sig
)
3045 s
= gdbserver_state
;
3046 if (gdbserver_fd
< 0 || s
->fd
< 0) {
3050 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb(sig
));
3054 static bool gdb_accept(void)
3057 struct sockaddr_in sockaddr
;
3062 len
= sizeof(sockaddr
);
3063 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
3064 if (fd
< 0 && errno
!= EINTR
) {
3067 } else if (fd
>= 0) {
3068 qemu_set_cloexec(fd
);
3073 /* set short latency */
3074 if (socket_set_nodelay(fd
)) {
3075 perror("setsockopt");
3080 s
= g_malloc0(sizeof(GDBState
));
3081 create_default_process(s
);
3082 s
->processes
[0].attached
= true;
3083 s
->c_cpu
= gdb_first_attached_cpu(s
);
3084 s
->g_cpu
= s
->c_cpu
;
3086 gdb_has_xml
= false;
3088 gdbserver_state
= s
;
3092 static int gdbserver_open(int port
)
3094 struct sockaddr_in sockaddr
;
3097 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
3102 qemu_set_cloexec(fd
);
3104 socket_set_fast_reuse(fd
);
3106 sockaddr
.sin_family
= AF_INET
;
3107 sockaddr
.sin_port
= htons(port
);
3108 sockaddr
.sin_addr
.s_addr
= 0;
3109 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
3115 ret
= listen(fd
, 1);
3124 int gdbserver_start(int port
)
3126 gdbserver_fd
= gdbserver_open(port
);
3127 if (gdbserver_fd
< 0)
3129 /* accept connections */
3130 if (!gdb_accept()) {
3131 close(gdbserver_fd
);
3138 /* Disable gdb stub for child processes. */
3139 void gdbserver_fork(CPUState
*cpu
)
3141 GDBState
*s
= gdbserver_state
;
3143 if (gdbserver_fd
< 0 || s
->fd
< 0) {
3148 cpu_breakpoint_remove_all(cpu
, BP_GDB
);
3149 cpu_watchpoint_remove_all(cpu
, BP_GDB
);
3152 static int gdb_chr_can_receive(void *opaque
)
3154 /* We can handle an arbitrarily large amount of data.
3155 Pick the maximum packet size, which is as good as anything. */
3156 return MAX_PACKET_LENGTH
;
3159 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
3163 for (i
= 0; i
< size
; i
++) {
3164 gdb_read_byte(gdbserver_state
, buf
[i
]);
3168 static void gdb_chr_event(void *opaque
, int event
)
3171 GDBState
*s
= (GDBState
*) opaque
;
3174 case CHR_EVENT_OPENED
:
3175 /* Start with first process attached, others detached */
3176 for (i
= 0; i
< s
->process_num
; i
++) {
3177 s
->processes
[i
].attached
= !i
;
3180 s
->c_cpu
= gdb_first_attached_cpu(s
);
3181 s
->g_cpu
= s
->c_cpu
;
3183 vm_stop(RUN_STATE_PAUSED
);
3184 gdb_has_xml
= false;
3191 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
3193 char buf
[MAX_PACKET_LENGTH
];
3196 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
3197 len
= (MAX_PACKET_LENGTH
/2) - 1;
3198 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
3202 static int gdb_monitor_write(Chardev
*chr
, const uint8_t *buf
, int len
)
3204 const char *p
= (const char *)buf
;
3207 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
3209 if (len
<= max_sz
) {
3210 gdb_monitor_output(gdbserver_state
, p
, len
);
3213 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
3221 static void gdb_sigterm_handler(int signal
)
3223 if (runstate_is_running()) {
3224 vm_stop(RUN_STATE_PAUSED
);
3229 static void gdb_monitor_open(Chardev
*chr
, ChardevBackend
*backend
,
3230 bool *be_opened
, Error
**errp
)
3235 static void char_gdb_class_init(ObjectClass
*oc
, void *data
)
3237 ChardevClass
*cc
= CHARDEV_CLASS(oc
);
3239 cc
->internal
= true;
3240 cc
->open
= gdb_monitor_open
;
3241 cc
->chr_write
= gdb_monitor_write
;
3244 #define TYPE_CHARDEV_GDB "chardev-gdb"
3246 static const TypeInfo char_gdb_type_info
= {
3247 .name
= TYPE_CHARDEV_GDB
,
3248 .parent
= TYPE_CHARDEV
,
3249 .class_init
= char_gdb_class_init
,
3252 static int find_cpu_clusters(Object
*child
, void *opaque
)
3254 if (object_dynamic_cast(child
, TYPE_CPU_CLUSTER
)) {
3255 GDBState
*s
= (GDBState
*) opaque
;
3256 CPUClusterState
*cluster
= CPU_CLUSTER(child
);
3257 GDBProcess
*process
;
3259 s
->processes
= g_renew(GDBProcess
, s
->processes
, ++s
->process_num
);
3261 process
= &s
->processes
[s
->process_num
- 1];
3264 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3265 * runtime, we enforce here that the machine does not use a cluster ID
3266 * that would lead to PID 0.
3268 assert(cluster
->cluster_id
!= UINT32_MAX
);
3269 process
->pid
= cluster
->cluster_id
+ 1;
3270 process
->attached
= false;
3271 process
->target_xml
[0] = '\0';
3276 return object_child_foreach(child
, find_cpu_clusters
, opaque
);
3279 static int pid_order(const void *a
, const void *b
)
3281 GDBProcess
*pa
= (GDBProcess
*) a
;
3282 GDBProcess
*pb
= (GDBProcess
*) b
;
3284 if (pa
->pid
< pb
->pid
) {
3286 } else if (pa
->pid
> pb
->pid
) {
3293 static void create_processes(GDBState
*s
)
3295 object_child_foreach(object_get_root(), find_cpu_clusters
, s
);
3299 qsort(s
->processes
, s
->process_num
, sizeof(s
->processes
[0]), pid_order
);
3302 create_default_process(s
);
3305 static void cleanup_processes(GDBState
*s
)
3307 g_free(s
->processes
);
3309 s
->processes
= NULL
;
3312 int gdbserver_start(const char *device
)
3314 trace_gdbstub_op_start(device
);
3317 char gdbstub_device_name
[128];
3318 Chardev
*chr
= NULL
;
3322 error_report("gdbstub: meaningless to attach gdb to a "
3323 "machine without any CPU.");
3329 if (strcmp(device
, "none") != 0) {
3330 if (strstart(device
, "tcp:", NULL
)) {
3331 /* enforce required TCP attributes */
3332 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
3333 "%s,nowait,nodelay,server", device
);
3334 device
= gdbstub_device_name
;
3337 else if (strcmp(device
, "stdio") == 0) {
3338 struct sigaction act
;
3340 memset(&act
, 0, sizeof(act
));
3341 act
.sa_handler
= gdb_sigterm_handler
;
3342 sigaction(SIGINT
, &act
, NULL
);
3346 * FIXME: it's a bit weird to allow using a mux chardev here
3347 * and implicitly setup a monitor. We may want to break this.
3349 chr
= qemu_chr_new_noreplay("gdb", device
, true, NULL
);
3354 s
= gdbserver_state
;
3356 s
= g_malloc0(sizeof(GDBState
));
3357 gdbserver_state
= s
;
3359 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
3361 /* Initialize a monitor terminal for gdb */
3362 mon_chr
= qemu_chardev_new(NULL
, TYPE_CHARDEV_GDB
,
3363 NULL
, NULL
, &error_abort
);
3364 monitor_init_hmp(mon_chr
, false);
3366 qemu_chr_fe_deinit(&s
->chr
, true);
3367 mon_chr
= s
->mon_chr
;
3368 cleanup_processes(s
);
3369 memset(s
, 0, sizeof(GDBState
));
3370 s
->mon_chr
= mon_chr
;
3373 create_processes(s
);
3376 qemu_chr_fe_init(&s
->chr
, chr
, &error_abort
);
3377 qemu_chr_fe_set_handlers(&s
->chr
, gdb_chr_can_receive
, gdb_chr_receive
,
3378 gdb_chr_event
, NULL
, s
, NULL
, true);
3380 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
3381 s
->mon_chr
= mon_chr
;
3382 s
->current_syscall_cb
= NULL
;
3387 void gdbserver_cleanup(void)
3389 if (gdbserver_state
) {
3390 put_packet(gdbserver_state
, "W00");
3394 static void register_types(void)
3396 type_register_static(&char_gdb_type_info
);
3399 type_init(register_types
);