qga/commands-posix: Send CCW address on s390x with the fsinfo data
[qemu/ar7.git] / hw / char / serial.c
blob62c627f486f00cf506f4542b6a9bdaeb276175dc
1 /*
2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "qemu/bitops.h"
28 #include "hw/char/serial.h"
29 #include "hw/irq.h"
30 #include "migration/vmstate.h"
31 #include "chardev/char-serial.h"
32 #include "qapi/error.h"
33 #include "qemu/timer.h"
34 #include "sysemu/reset.h"
35 #include "sysemu/runstate.h"
36 #include "qemu/error-report.h"
37 #include "trace.h"
38 #include "hw/qdev-properties.h"
40 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
42 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
43 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
44 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
45 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
47 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
48 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
50 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
51 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
52 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
53 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
54 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
56 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
57 #define UART_IIR_FE 0xC0 /* Fifo enabled */
60 * These are the definitions for the Modem Control Register
62 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
63 #define UART_MCR_OUT2 0x08 /* Out2 complement */
64 #define UART_MCR_OUT1 0x04 /* Out1 complement */
65 #define UART_MCR_RTS 0x02 /* RTS complement */
66 #define UART_MCR_DTR 0x01 /* DTR complement */
69 * These are the definitions for the Modem Status Register
71 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
72 #define UART_MSR_RI 0x40 /* Ring Indicator */
73 #define UART_MSR_DSR 0x20 /* Data Set Ready */
74 #define UART_MSR_CTS 0x10 /* Clear to Send */
75 #define UART_MSR_DDCD 0x08 /* Delta DCD */
76 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
77 #define UART_MSR_DDSR 0x02 /* Delta DSR */
78 #define UART_MSR_DCTS 0x01 /* Delta CTS */
79 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
81 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
82 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
83 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
84 #define UART_LSR_FE 0x08 /* Frame error indicator */
85 #define UART_LSR_PE 0x04 /* Parity error indicator */
86 #define UART_LSR_OE 0x02 /* Overrun error indicator */
87 #define UART_LSR_DR 0x01 /* Receiver data ready */
88 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
90 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
92 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
93 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
94 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
95 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
97 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
98 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
99 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
100 #define UART_FCR_FE 0x01 /* FIFO Enable */
102 #define MAX_XMIT_RETRY 4
104 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
105 static void serial_xmit(SerialState *s);
107 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
109 /* Receive overruns do not overwrite FIFO contents. */
110 if (!fifo8_is_full(&s->recv_fifo)) {
111 fifo8_push(&s->recv_fifo, chr);
112 } else {
113 s->lsr |= UART_LSR_OE;
117 static void serial_update_irq(SerialState *s)
119 uint8_t tmp_iir = UART_IIR_NO_INT;
121 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
122 tmp_iir = UART_IIR_RLSI;
123 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
124 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
125 * this is not in the specification but is observed on existing
126 * hardware. */
127 tmp_iir = UART_IIR_CTI;
128 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
129 (!(s->fcr & UART_FCR_FE) ||
130 s->recv_fifo.num >= s->recv_fifo_itl)) {
131 tmp_iir = UART_IIR_RDI;
132 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
133 tmp_iir = UART_IIR_THRI;
134 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
135 tmp_iir = UART_IIR_MSI;
138 s->iir = tmp_iir | (s->iir & 0xF0);
140 if (tmp_iir != UART_IIR_NO_INT) {
141 qemu_irq_raise(s->irq);
142 } else {
143 qemu_irq_lower(s->irq);
147 static void serial_update_parameters(SerialState *s)
149 float speed;
150 int parity, data_bits, stop_bits, frame_size;
151 QEMUSerialSetParams ssp;
153 /* Start bit. */
154 frame_size = 1;
155 if (s->lcr & 0x08) {
156 /* Parity bit. */
157 frame_size++;
158 if (s->lcr & 0x10)
159 parity = 'E';
160 else
161 parity = 'O';
162 } else {
163 parity = 'N';
165 if (s->lcr & 0x04) {
166 stop_bits = 2;
167 } else {
168 stop_bits = 1;
171 data_bits = (s->lcr & 0x03) + 5;
172 frame_size += data_bits + stop_bits;
173 /* Zero divisor should give about 3500 baud */
174 speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
175 ssp.speed = speed;
176 ssp.parity = parity;
177 ssp.data_bits = data_bits;
178 ssp.stop_bits = stop_bits;
179 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
180 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
181 trace_serial_update_parameters(speed, parity, data_bits, stop_bits);
184 static void serial_update_msl(SerialState *s)
186 uint8_t omsr;
187 int flags;
189 timer_del(s->modem_status_poll);
191 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
192 &flags) == -ENOTSUP) {
193 s->poll_msl = -1;
194 return;
197 omsr = s->msr;
199 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
200 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
201 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
202 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
204 if (s->msr != omsr) {
205 /* Set delta bits */
206 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
207 /* UART_MSR_TERI only if change was from 1 -> 0 */
208 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
209 s->msr &= ~UART_MSR_TERI;
210 serial_update_irq(s);
213 /* The real 16550A apparently has a 250ns response latency to line status changes.
214 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
216 if (s->poll_msl) {
217 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
218 NANOSECONDS_PER_SECOND / 100);
222 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
223 void *opaque)
225 SerialState *s = opaque;
226 s->watch_tag = 0;
227 serial_xmit(s);
228 return FALSE;
231 static void serial_xmit(SerialState *s)
233 do {
234 assert(!(s->lsr & UART_LSR_TEMT));
235 if (s->tsr_retry == 0) {
236 assert(!(s->lsr & UART_LSR_THRE));
238 if (s->fcr & UART_FCR_FE) {
239 assert(!fifo8_is_empty(&s->xmit_fifo));
240 s->tsr = fifo8_pop(&s->xmit_fifo);
241 if (!s->xmit_fifo.num) {
242 s->lsr |= UART_LSR_THRE;
244 } else {
245 s->tsr = s->thr;
246 s->lsr |= UART_LSR_THRE;
248 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
249 s->thr_ipending = 1;
250 serial_update_irq(s);
254 if (s->mcr & UART_MCR_LOOP) {
255 /* in loopback mode, say that we just received a char */
256 serial_receive1(s, &s->tsr, 1);
257 } else {
258 int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
260 if ((rc == 0 ||
261 (rc == -1 && errno == EAGAIN)) &&
262 s->tsr_retry < MAX_XMIT_RETRY) {
263 assert(s->watch_tag == 0);
264 s->watch_tag =
265 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
266 serial_watch_cb, s);
267 if (s->watch_tag > 0) {
268 s->tsr_retry++;
269 return;
273 s->tsr_retry = 0;
275 /* Transmit another byte if it is already available. It is only
276 possible when FIFO is enabled and not empty. */
277 } while (!(s->lsr & UART_LSR_THRE));
279 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
280 s->lsr |= UART_LSR_TEMT;
283 /* Setter for FCR.
284 is_load flag means, that value is set while loading VM state
285 and interrupt should not be invoked */
286 static void serial_write_fcr(SerialState *s, uint8_t val)
288 /* Set fcr - val only has the bits that are supposed to "stick" */
289 s->fcr = val;
291 if (val & UART_FCR_FE) {
292 s->iir |= UART_IIR_FE;
293 /* Set recv_fifo trigger Level */
294 switch (val & 0xC0) {
295 case UART_FCR_ITL_1:
296 s->recv_fifo_itl = 1;
297 break;
298 case UART_FCR_ITL_2:
299 s->recv_fifo_itl = 4;
300 break;
301 case UART_FCR_ITL_3:
302 s->recv_fifo_itl = 8;
303 break;
304 case UART_FCR_ITL_4:
305 s->recv_fifo_itl = 14;
306 break;
308 } else {
309 s->iir &= ~UART_IIR_FE;
313 static void serial_update_tiocm(SerialState *s)
315 int flags;
317 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
319 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
321 if (s->mcr & UART_MCR_RTS) {
322 flags |= CHR_TIOCM_RTS;
324 if (s->mcr & UART_MCR_DTR) {
325 flags |= CHR_TIOCM_DTR;
328 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
331 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
332 unsigned size)
334 SerialState *s = opaque;
336 assert(size == 1 && addr < 8);
337 trace_serial_write(addr, val);
338 switch(addr) {
339 default:
340 case 0:
341 if (s->lcr & UART_LCR_DLAB) {
342 s->divider = deposit32(s->divider, 8 * addr, 8, val);
343 serial_update_parameters(s);
344 } else {
345 s->thr = (uint8_t) val;
346 if(s->fcr & UART_FCR_FE) {
347 /* xmit overruns overwrite data, so make space if needed */
348 if (fifo8_is_full(&s->xmit_fifo)) {
349 fifo8_pop(&s->xmit_fifo);
351 fifo8_push(&s->xmit_fifo, s->thr);
353 s->thr_ipending = 0;
354 s->lsr &= ~UART_LSR_THRE;
355 s->lsr &= ~UART_LSR_TEMT;
356 serial_update_irq(s);
357 if (s->tsr_retry == 0) {
358 serial_xmit(s);
361 break;
362 case 1:
363 if (s->lcr & UART_LCR_DLAB) {
364 s->divider = deposit32(s->divider, 8 * addr, 8, val);
365 serial_update_parameters(s);
366 } else {
367 uint8_t changed = (s->ier ^ val) & 0x0f;
368 s->ier = val & 0x0f;
369 /* If the backend device is a real serial port, turn polling of the modem
370 * status lines on physical port on or off depending on UART_IER_MSI state.
372 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
373 if (s->ier & UART_IER_MSI) {
374 s->poll_msl = 1;
375 serial_update_msl(s);
376 } else {
377 timer_del(s->modem_status_poll);
378 s->poll_msl = 0;
382 /* Turning on the THRE interrupt on IER can trigger the interrupt
383 * if LSR.THRE=1, even if it had been masked before by reading IIR.
384 * This is not in the datasheet, but Windows relies on it. It is
385 * unclear if THRE has to be resampled every time THRI becomes
386 * 1, or only on the rising edge. Bochs does the latter, and Windows
387 * always toggles IER to all zeroes and back to all ones, so do the
388 * same.
390 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
391 * so that the thr_ipending subsection is not migrated.
393 if (changed & UART_IER_THRI) {
394 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
395 s->thr_ipending = 1;
396 } else {
397 s->thr_ipending = 0;
401 if (changed) {
402 serial_update_irq(s);
405 break;
406 case 2:
407 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
408 if ((val ^ s->fcr) & UART_FCR_FE) {
409 val |= UART_FCR_XFR | UART_FCR_RFR;
412 /* FIFO clear */
414 if (val & UART_FCR_RFR) {
415 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
416 timer_del(s->fifo_timeout_timer);
417 s->timeout_ipending = 0;
418 fifo8_reset(&s->recv_fifo);
421 if (val & UART_FCR_XFR) {
422 s->lsr |= UART_LSR_THRE;
423 s->thr_ipending = 1;
424 fifo8_reset(&s->xmit_fifo);
427 serial_write_fcr(s, val & 0xC9);
428 serial_update_irq(s);
429 break;
430 case 3:
432 int break_enable;
433 s->lcr = val;
434 serial_update_parameters(s);
435 break_enable = (val >> 6) & 1;
436 if (break_enable != s->last_break_enable) {
437 s->last_break_enable = break_enable;
438 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
439 &break_enable);
442 break;
443 case 4:
445 int old_mcr = s->mcr;
446 s->mcr = val & 0x1f;
447 if (val & UART_MCR_LOOP)
448 break;
450 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
451 serial_update_tiocm(s);
452 /* Update the modem status after a one-character-send wait-time, since there may be a response
453 from the device/computer at the other end of the serial line */
454 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
457 break;
458 case 5:
459 break;
460 case 6:
461 break;
462 case 7:
463 s->scr = val;
464 break;
468 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
470 SerialState *s = opaque;
471 uint32_t ret;
473 assert(size == 1 && addr < 8);
474 switch(addr) {
475 default:
476 case 0:
477 if (s->lcr & UART_LCR_DLAB) {
478 ret = extract16(s->divider, 8 * addr, 8);
479 } else {
480 if(s->fcr & UART_FCR_FE) {
481 ret = fifo8_is_empty(&s->recv_fifo) ?
482 0 : fifo8_pop(&s->recv_fifo);
483 if (s->recv_fifo.num == 0) {
484 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
485 } else {
486 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
488 s->timeout_ipending = 0;
489 } else {
490 ret = s->rbr;
491 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
493 serial_update_irq(s);
494 if (!(s->mcr & UART_MCR_LOOP)) {
495 /* in loopback mode, don't receive any data */
496 qemu_chr_fe_accept_input(&s->chr);
499 break;
500 case 1:
501 if (s->lcr & UART_LCR_DLAB) {
502 ret = extract16(s->divider, 8 * addr, 8);
503 } else {
504 ret = s->ier;
506 break;
507 case 2:
508 ret = s->iir;
509 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
510 s->thr_ipending = 0;
511 serial_update_irq(s);
513 break;
514 case 3:
515 ret = s->lcr;
516 break;
517 case 4:
518 ret = s->mcr;
519 break;
520 case 5:
521 ret = s->lsr;
522 /* Clear break and overrun interrupts */
523 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
524 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
525 serial_update_irq(s);
527 break;
528 case 6:
529 if (s->mcr & UART_MCR_LOOP) {
530 /* in loopback, the modem output pins are connected to the
531 inputs */
532 ret = (s->mcr & 0x0c) << 4;
533 ret |= (s->mcr & 0x02) << 3;
534 ret |= (s->mcr & 0x01) << 5;
535 } else {
536 if (s->poll_msl >= 0)
537 serial_update_msl(s);
538 ret = s->msr;
539 /* Clear delta bits & msr int after read, if they were set */
540 if (s->msr & UART_MSR_ANY_DELTA) {
541 s->msr &= 0xF0;
542 serial_update_irq(s);
545 break;
546 case 7:
547 ret = s->scr;
548 break;
550 trace_serial_read(addr, ret);
551 return ret;
554 static int serial_can_receive(SerialState *s)
556 if(s->fcr & UART_FCR_FE) {
557 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
559 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
560 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
561 * effect will be to almost always fill the fifo completely before
562 * the guest has a chance to respond, effectively overriding the ITL
563 * that the guest has set.
565 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
566 s->recv_fifo_itl - s->recv_fifo.num : 1;
567 } else {
568 return 0;
570 } else {
571 return !(s->lsr & UART_LSR_DR);
575 static void serial_receive_break(SerialState *s)
577 s->rbr = 0;
578 /* When the LSR_DR is set a null byte is pushed into the fifo */
579 recv_fifo_put(s, '\0');
580 s->lsr |= UART_LSR_BI | UART_LSR_DR;
581 serial_update_irq(s);
584 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
585 static void fifo_timeout_int (void *opaque) {
586 SerialState *s = opaque;
587 if (s->recv_fifo.num) {
588 s->timeout_ipending = 1;
589 serial_update_irq(s);
593 static int serial_can_receive1(void *opaque)
595 SerialState *s = opaque;
596 return serial_can_receive(s);
599 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
601 SerialState *s = opaque;
603 if (s->wakeup) {
604 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
606 if(s->fcr & UART_FCR_FE) {
607 int i;
608 for (i = 0; i < size; i++) {
609 recv_fifo_put(s, buf[i]);
611 s->lsr |= UART_LSR_DR;
612 /* call the timeout receive callback in 4 char transmit time */
613 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
614 } else {
615 if (s->lsr & UART_LSR_DR)
616 s->lsr |= UART_LSR_OE;
617 s->rbr = buf[0];
618 s->lsr |= UART_LSR_DR;
620 serial_update_irq(s);
623 static void serial_event(void *opaque, QEMUChrEvent event)
625 SerialState *s = opaque;
626 if (event == CHR_EVENT_BREAK)
627 serial_receive_break(s);
630 static int serial_pre_save(void *opaque)
632 SerialState *s = opaque;
633 s->fcr_vmstate = s->fcr;
635 return 0;
638 static int serial_pre_load(void *opaque)
640 SerialState *s = opaque;
641 s->thr_ipending = -1;
642 s->poll_msl = -1;
643 return 0;
646 static int serial_post_load(void *opaque, int version_id)
648 SerialState *s = opaque;
650 if (version_id < 3) {
651 s->fcr_vmstate = 0;
653 if (s->thr_ipending == -1) {
654 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
657 if (s->tsr_retry > 0) {
658 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
659 if (s->lsr & UART_LSR_TEMT) {
660 error_report("inconsistent state in serial device "
661 "(tsr empty, tsr_retry=%d", s->tsr_retry);
662 return -1;
665 if (s->tsr_retry > MAX_XMIT_RETRY) {
666 s->tsr_retry = MAX_XMIT_RETRY;
669 assert(s->watch_tag == 0);
670 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
671 serial_watch_cb, s);
672 } else {
673 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
674 if (!(s->lsr & UART_LSR_TEMT)) {
675 error_report("inconsistent state in serial device "
676 "(tsr not empty, tsr_retry=0");
677 return -1;
681 s->last_break_enable = (s->lcr >> 6) & 1;
682 /* Initialize fcr via setter to perform essential side-effects */
683 serial_write_fcr(s, s->fcr_vmstate);
684 serial_update_parameters(s);
685 return 0;
688 static bool serial_thr_ipending_needed(void *opaque)
690 SerialState *s = opaque;
692 if (s->ier & UART_IER_THRI) {
693 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
694 return s->thr_ipending != expected_value;
695 } else {
696 /* LSR.THRE will be sampled again when the interrupt is
697 * enabled. thr_ipending is not used in this case, do
698 * not migrate it.
700 return false;
704 static const VMStateDescription vmstate_serial_thr_ipending = {
705 .name = "serial/thr_ipending",
706 .version_id = 1,
707 .minimum_version_id = 1,
708 .needed = serial_thr_ipending_needed,
709 .fields = (VMStateField[]) {
710 VMSTATE_INT32(thr_ipending, SerialState),
711 VMSTATE_END_OF_LIST()
715 static bool serial_tsr_needed(void *opaque)
717 SerialState *s = (SerialState *)opaque;
718 return s->tsr_retry != 0;
721 static const VMStateDescription vmstate_serial_tsr = {
722 .name = "serial/tsr",
723 .version_id = 1,
724 .minimum_version_id = 1,
725 .needed = serial_tsr_needed,
726 .fields = (VMStateField[]) {
727 VMSTATE_UINT32(tsr_retry, SerialState),
728 VMSTATE_UINT8(thr, SerialState),
729 VMSTATE_UINT8(tsr, SerialState),
730 VMSTATE_END_OF_LIST()
734 static bool serial_recv_fifo_needed(void *opaque)
736 SerialState *s = (SerialState *)opaque;
737 return !fifo8_is_empty(&s->recv_fifo);
741 static const VMStateDescription vmstate_serial_recv_fifo = {
742 .name = "serial/recv_fifo",
743 .version_id = 1,
744 .minimum_version_id = 1,
745 .needed = serial_recv_fifo_needed,
746 .fields = (VMStateField[]) {
747 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
748 VMSTATE_END_OF_LIST()
752 static bool serial_xmit_fifo_needed(void *opaque)
754 SerialState *s = (SerialState *)opaque;
755 return !fifo8_is_empty(&s->xmit_fifo);
758 static const VMStateDescription vmstate_serial_xmit_fifo = {
759 .name = "serial/xmit_fifo",
760 .version_id = 1,
761 .minimum_version_id = 1,
762 .needed = serial_xmit_fifo_needed,
763 .fields = (VMStateField[]) {
764 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
765 VMSTATE_END_OF_LIST()
769 static bool serial_fifo_timeout_timer_needed(void *opaque)
771 SerialState *s = (SerialState *)opaque;
772 return timer_pending(s->fifo_timeout_timer);
775 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
776 .name = "serial/fifo_timeout_timer",
777 .version_id = 1,
778 .minimum_version_id = 1,
779 .needed = serial_fifo_timeout_timer_needed,
780 .fields = (VMStateField[]) {
781 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
782 VMSTATE_END_OF_LIST()
786 static bool serial_timeout_ipending_needed(void *opaque)
788 SerialState *s = (SerialState *)opaque;
789 return s->timeout_ipending != 0;
792 static const VMStateDescription vmstate_serial_timeout_ipending = {
793 .name = "serial/timeout_ipending",
794 .version_id = 1,
795 .minimum_version_id = 1,
796 .needed = serial_timeout_ipending_needed,
797 .fields = (VMStateField[]) {
798 VMSTATE_INT32(timeout_ipending, SerialState),
799 VMSTATE_END_OF_LIST()
803 static bool serial_poll_needed(void *opaque)
805 SerialState *s = (SerialState *)opaque;
806 return s->poll_msl >= 0;
809 static const VMStateDescription vmstate_serial_poll = {
810 .name = "serial/poll",
811 .version_id = 1,
812 .needed = serial_poll_needed,
813 .minimum_version_id = 1,
814 .fields = (VMStateField[]) {
815 VMSTATE_INT32(poll_msl, SerialState),
816 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
817 VMSTATE_END_OF_LIST()
821 const VMStateDescription vmstate_serial = {
822 .name = "serial",
823 .version_id = 3,
824 .minimum_version_id = 2,
825 .pre_save = serial_pre_save,
826 .pre_load = serial_pre_load,
827 .post_load = serial_post_load,
828 .fields = (VMStateField[]) {
829 VMSTATE_UINT16_V(divider, SerialState, 2),
830 VMSTATE_UINT8(rbr, SerialState),
831 VMSTATE_UINT8(ier, SerialState),
832 VMSTATE_UINT8(iir, SerialState),
833 VMSTATE_UINT8(lcr, SerialState),
834 VMSTATE_UINT8(mcr, SerialState),
835 VMSTATE_UINT8(lsr, SerialState),
836 VMSTATE_UINT8(msr, SerialState),
837 VMSTATE_UINT8(scr, SerialState),
838 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
839 VMSTATE_END_OF_LIST()
841 .subsections = (const VMStateDescription*[]) {
842 &vmstate_serial_thr_ipending,
843 &vmstate_serial_tsr,
844 &vmstate_serial_recv_fifo,
845 &vmstate_serial_xmit_fifo,
846 &vmstate_serial_fifo_timeout_timer,
847 &vmstate_serial_timeout_ipending,
848 &vmstate_serial_poll,
849 NULL
853 static void serial_reset(void *opaque)
855 SerialState *s = opaque;
857 if (s->watch_tag > 0) {
858 g_source_remove(s->watch_tag);
859 s->watch_tag = 0;
862 s->rbr = 0;
863 s->ier = 0;
864 s->iir = UART_IIR_NO_INT;
865 s->lcr = 0;
866 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
867 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
868 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
869 s->divider = 0x0C;
870 s->mcr = UART_MCR_OUT2;
871 s->scr = 0;
872 s->tsr_retry = 0;
873 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
874 s->poll_msl = 0;
876 s->timeout_ipending = 0;
877 timer_del(s->fifo_timeout_timer);
878 timer_del(s->modem_status_poll);
880 fifo8_reset(&s->recv_fifo);
881 fifo8_reset(&s->xmit_fifo);
883 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
885 s->thr_ipending = 0;
886 s->last_break_enable = 0;
887 qemu_irq_lower(s->irq);
889 serial_update_msl(s);
890 s->msr &= ~UART_MSR_ANY_DELTA;
893 static int serial_be_change(void *opaque)
895 SerialState *s = opaque;
897 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
898 serial_event, serial_be_change, s, NULL, true);
900 serial_update_parameters(s);
902 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
903 &s->last_break_enable);
905 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
906 serial_update_msl(s);
908 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
909 serial_update_tiocm(s);
912 if (s->watch_tag > 0) {
913 g_source_remove(s->watch_tag);
914 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
915 serial_watch_cb, s);
918 return 0;
921 static void serial_realize(DeviceState *dev, Error **errp)
923 SerialState *s = SERIAL(dev);
925 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
927 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
928 qemu_register_reset(serial_reset, s);
930 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
931 serial_event, serial_be_change, s, NULL, true);
932 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
933 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
934 serial_reset(s);
937 static void serial_unrealize(DeviceState *dev)
939 SerialState *s = SERIAL(dev);
941 qemu_chr_fe_deinit(&s->chr, false);
943 timer_del(s->modem_status_poll);
944 timer_free(s->modem_status_poll);
946 timer_del(s->fifo_timeout_timer);
947 timer_free(s->fifo_timeout_timer);
949 fifo8_destroy(&s->recv_fifo);
950 fifo8_destroy(&s->xmit_fifo);
952 qemu_unregister_reset(serial_reset, s);
955 /* Change the main reference oscillator frequency. */
956 void serial_set_frequency(SerialState *s, uint32_t frequency)
958 s->baudbase = frequency;
959 serial_update_parameters(s);
962 const MemoryRegionOps serial_io_ops = {
963 .read = serial_ioport_read,
964 .write = serial_ioport_write,
965 .impl = {
966 .min_access_size = 1,
967 .max_access_size = 1,
969 .endianness = DEVICE_LITTLE_ENDIAN,
972 static Property serial_properties[] = {
973 DEFINE_PROP_CHR("chardev", SerialState, chr),
974 DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200),
975 DEFINE_PROP_BOOL("wakeup", SerialState, wakeup, false),
976 DEFINE_PROP_END_OF_LIST(),
979 static void serial_class_init(ObjectClass *klass, void* data)
981 DeviceClass *dc = DEVICE_CLASS(klass);
983 /* internal device for serialio/serialmm, not user-creatable */
984 dc->user_creatable = false;
985 dc->realize = serial_realize;
986 dc->unrealize = serial_unrealize;
987 device_class_set_props(dc, serial_properties);
990 static const TypeInfo serial_info = {
991 .name = TYPE_SERIAL,
992 .parent = TYPE_DEVICE,
993 .instance_size = sizeof(SerialState),
994 .class_init = serial_class_init,
997 /* Memory mapped interface */
998 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
999 unsigned size)
1001 SerialMM *s = SERIAL_MM(opaque);
1002 return serial_ioport_read(&s->serial, addr >> s->regshift, 1);
1005 static void serial_mm_write(void *opaque, hwaddr addr,
1006 uint64_t value, unsigned size)
1008 SerialMM *s = SERIAL_MM(opaque);
1009 value &= 255;
1010 serial_ioport_write(&s->serial, addr >> s->regshift, value, 1);
1013 static const MemoryRegionOps serial_mm_ops[3] = {
1014 [DEVICE_NATIVE_ENDIAN] = {
1015 .read = serial_mm_read,
1016 .write = serial_mm_write,
1017 .endianness = DEVICE_NATIVE_ENDIAN,
1018 .valid.max_access_size = 8,
1019 .impl.max_access_size = 8,
1021 [DEVICE_LITTLE_ENDIAN] = {
1022 .read = serial_mm_read,
1023 .write = serial_mm_write,
1024 .endianness = DEVICE_LITTLE_ENDIAN,
1025 .valid.max_access_size = 8,
1026 .impl.max_access_size = 8,
1028 [DEVICE_BIG_ENDIAN] = {
1029 .read = serial_mm_read,
1030 .write = serial_mm_write,
1031 .endianness = DEVICE_BIG_ENDIAN,
1032 .valid.max_access_size = 8,
1033 .impl.max_access_size = 8,
1037 static void serial_mm_realize(DeviceState *dev, Error **errp)
1039 SerialMM *smm = SERIAL_MM(dev);
1040 SerialState *s = &smm->serial;
1042 if (!qdev_realize(DEVICE(s), NULL, errp)) {
1043 return;
1046 memory_region_init_io(&s->io, OBJECT(dev),
1047 &serial_mm_ops[smm->endianness], smm, "serial",
1048 8 << smm->regshift);
1049 sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io);
1050 sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq);
1053 static const VMStateDescription vmstate_serial_mm = {
1054 .name = "serial",
1055 .version_id = 3,
1056 .minimum_version_id = 2,
1057 .fields = (VMStateField[]) {
1058 VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState),
1059 VMSTATE_END_OF_LIST()
1063 SerialMM *serial_mm_init(MemoryRegion *address_space,
1064 hwaddr base, int regshift,
1065 qemu_irq irq, int baudbase,
1066 Chardev *chr, enum device_endian end)
1068 SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM));
1069 MemoryRegion *mr;
1071 qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift);
1072 qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase);
1073 qdev_prop_set_chr(DEVICE(smm), "chardev", chr);
1074 qdev_set_legacy_instance_id(DEVICE(smm), base, 2);
1075 qdev_prop_set_uint8(DEVICE(smm), "endianness", end);
1076 sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal);
1078 sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq);
1079 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0);
1080 memory_region_add_subregion(address_space, base, mr);
1082 return smm;
1085 static void serial_mm_instance_init(Object *o)
1087 SerialMM *smm = SERIAL_MM(o);
1089 object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL);
1091 qdev_alias_all_properties(DEVICE(&smm->serial), o);
1094 static Property serial_mm_properties[] = {
1096 * Set the spacing between adjacent memory-mapped UART registers.
1097 * Each register will be at (1 << regshift) bytes after the
1098 * previous one.
1100 DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0),
1101 DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN),
1102 DEFINE_PROP_END_OF_LIST(),
1105 static void serial_mm_class_init(ObjectClass *oc, void *data)
1107 DeviceClass *dc = DEVICE_CLASS(oc);
1109 device_class_set_props(dc, serial_mm_properties);
1110 dc->realize = serial_mm_realize;
1111 dc->vmsd = &vmstate_serial_mm;
1114 static const TypeInfo serial_mm_info = {
1115 .name = TYPE_SERIAL_MM,
1116 .parent = TYPE_SYS_BUS_DEVICE,
1117 .class_init = serial_mm_class_init,
1118 .instance_init = serial_mm_instance_init,
1119 .instance_size = sizeof(SerialMM),
1122 static void serial_register_types(void)
1124 type_register_static(&serial_info);
1125 type_register_static(&serial_mm_info);
1128 type_init(serial_register_types)