2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu-timer.h"
19 #include "migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB
*blockacb
)
23 QEDAIOCB
*acb
= (QEDAIOCB
*)blockacb
;
24 bool finished
= false;
26 /* Wait for the request to finish */
27 acb
->finished
= &finished
;
33 static AIOPool qed_aio_pool
= {
34 .aiocb_size
= sizeof(QEDAIOCB
),
35 .cancel
= qed_aio_cancel
,
38 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
41 const QEDHeader
*header
= (const QEDHeader
*)buf
;
43 if (buf_size
< sizeof(*header
)) {
46 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt
)
59 return fmt
&& strcmp(fmt
, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
64 cpu
->magic
= le32_to_cpu(le
->magic
);
65 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
66 cpu
->table_size
= le32_to_cpu(le
->table_size
);
67 cpu
->header_size
= le32_to_cpu(le
->header_size
);
68 cpu
->features
= le64_to_cpu(le
->features
);
69 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
70 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
71 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
72 cpu
->image_size
= le64_to_cpu(le
->image_size
);
73 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
74 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
77 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
79 le
->magic
= cpu_to_le32(cpu
->magic
);
80 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
81 le
->table_size
= cpu_to_le32(cpu
->table_size
);
82 le
->header_size
= cpu_to_le32(cpu
->header_size
);
83 le
->features
= cpu_to_le64(cpu
->features
);
84 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
85 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
86 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
87 le
->image_size
= cpu_to_le64(cpu
->image_size
);
88 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
89 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
92 static int qed_write_header_sync(BDRVQEDState
*s
)
97 qed_header_cpu_to_le(&s
->header
, &le
);
98 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
99 if (ret
!= sizeof(le
)) {
114 static void qed_write_header_cb(void *opaque
, int ret
)
116 QEDWriteHeaderCB
*write_header_cb
= opaque
;
118 qemu_vfree(write_header_cb
->buf
);
119 gencb_complete(write_header_cb
, ret
);
122 static void qed_write_header_read_cb(void *opaque
, int ret
)
124 QEDWriteHeaderCB
*write_header_cb
= opaque
;
125 BDRVQEDState
*s
= write_header_cb
->s
;
128 qed_write_header_cb(write_header_cb
, ret
);
133 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*)write_header_cb
->buf
);
135 bdrv_aio_writev(s
->bs
->file
, 0, &write_header_cb
->qiov
,
136 write_header_cb
->nsectors
, qed_write_header_cb
,
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState
*s
, BlockDriverCompletionFunc cb
,
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors
= (sizeof(QEDHeader
) + BDRV_SECTOR_SIZE
- 1) /
157 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
158 QEDWriteHeaderCB
*write_header_cb
= gencb_alloc(sizeof(*write_header_cb
),
161 write_header_cb
->s
= s
;
162 write_header_cb
->nsectors
= nsectors
;
163 write_header_cb
->buf
= qemu_blockalign(s
->bs
, len
);
164 write_header_cb
->iov
.iov_base
= write_header_cb
->buf
;
165 write_header_cb
->iov
.iov_len
= len
;
166 qemu_iovec_init_external(&write_header_cb
->qiov
, &write_header_cb
->iov
, 1);
168 bdrv_aio_readv(s
->bs
->file
, 0, &write_header_cb
->qiov
, nsectors
,
169 qed_write_header_read_cb
, write_header_cb
);
172 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
174 uint64_t table_entries
;
177 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
178 l2_size
= table_entries
* cluster_size
;
180 return l2_size
* table_entries
;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
185 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
186 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
189 if (cluster_size
& (cluster_size
- 1)) {
190 return false; /* not power of 2 */
195 static bool qed_is_table_size_valid(uint32_t table_size
)
197 if (table_size
< QED_MIN_TABLE_SIZE
||
198 table_size
> QED_MAX_TABLE_SIZE
) {
201 if (table_size
& (table_size
- 1)) {
202 return false; /* not power of 2 */
207 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
210 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
211 return false; /* not multiple of sector size */
213 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
214 return false; /* image is too large */
220 * Read a string of known length from the image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState
*file
, uint64_t offset
, size_t n
,
232 char *buf
, size_t buflen
)
238 ret
= bdrv_pread(file
, offset
, buf
, n
);
247 * Allocate new clusters
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
257 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
259 uint64_t offset
= s
->file_size
;
260 s
->file_size
+= n
* s
->header
.cluster_size
;
264 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s
->bs
,
268 s
->header
.cluster_size
* s
->header
.table_size
);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
276 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
278 l2_table
->table
= qed_alloc_table(s
);
279 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
281 memset(l2_table
->table
->offsets
, 0,
282 s
->header
.cluster_size
* s
->header
.table_size
);
286 static void qed_aio_next_io(void *opaque
, int ret
);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
290 assert(!s
->allocating_write_reqs_plugged
);
292 s
->allocating_write_reqs_plugged
= true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
299 assert(s
->allocating_write_reqs_plugged
);
301 s
->allocating_write_reqs_plugged
= false;
303 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
305 qed_aio_next_io(acb
, 0);
309 static void qed_finish_clear_need_check(void *opaque
, int ret
)
314 static void qed_flush_after_clear_need_check(void *opaque
, int ret
)
316 BDRVQEDState
*s
= opaque
;
318 bdrv_aio_flush(s
->bs
, qed_finish_clear_need_check
, s
);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s
);
324 static void qed_clear_need_check(void *opaque
, int ret
)
326 BDRVQEDState
*s
= opaque
;
329 qed_unplug_allocating_write_reqs(s
);
333 s
->header
.features
&= ~QED_F_NEED_CHECK
;
334 qed_write_header(s
, qed_flush_after_clear_need_check
, s
);
337 static void qed_need_check_timer_cb(void *opaque
)
339 BDRVQEDState
*s
= opaque
;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s
->allocating_write_reqs
));
344 trace_qed_need_check_timer_cb(s
);
346 qed_plug_allocating_write_reqs(s
);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s
->bs
, qed_clear_need_check
, s
);
352 static void qed_start_need_check_timer(BDRVQEDState
*s
)
354 trace_qed_start_need_check_timer(s
);
356 /* Use vm_clock so we don't alter the image file while suspended for
359 qemu_mod_timer(s
->need_check_timer
, qemu_get_clock_ns(vm_clock
) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT
);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
366 trace_qed_cancel_need_check_timer(s
);
367 qemu_del_timer(s
->need_check_timer
);
370 static int bdrv_qed_open(BlockDriverState
*bs
, int flags
)
372 BDRVQEDState
*s
= bs
->opaque
;
378 QSIMPLEQ_INIT(&s
->allocating_write_reqs
);
380 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
384 qed_header_le_to_cpu(&le_header
, &s
->header
);
386 if (s
->header
.magic
!= QED_MAGIC
) {
389 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
390 /* image uses unsupported feature bits */
392 snprintf(buf
, sizeof(buf
), "%" PRIx64
,
393 s
->header
.features
& ~QED_FEATURE_MASK
);
394 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE
,
395 bs
->device_name
, "QED", buf
);
398 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
402 /* Round down file size to the last cluster */
403 file_size
= bdrv_getlength(bs
->file
);
407 s
->file_size
= qed_start_of_cluster(s
, file_size
);
409 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
412 if (!qed_is_image_size_valid(s
->header
.image_size
,
413 s
->header
.cluster_size
,
414 s
->header
.table_size
)) {
417 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
421 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
423 s
->l2_shift
= ffs(s
->header
.cluster_size
) - 1;
424 s
->l2_mask
= s
->table_nelems
- 1;
425 s
->l1_shift
= s
->l2_shift
+ ffs(s
->table_nelems
) - 1;
427 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
428 if ((uint64_t)s
->header
.backing_filename_offset
+
429 s
->header
.backing_filename_size
>
430 s
->header
.cluster_size
* s
->header
.header_size
) {
434 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
435 s
->header
.backing_filename_size
, bs
->backing_file
,
436 sizeof(bs
->backing_file
));
441 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
442 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
446 /* Reset unknown autoclear feature bits. This is a backwards
447 * compatibility mechanism that allows images to be opened by older
448 * programs, which "knock out" unknown feature bits. When an image is
449 * opened by a newer program again it can detect that the autoclear
450 * feature is no longer valid.
452 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
453 !bdrv_is_read_only(bs
->file
)) {
454 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
456 ret
= qed_write_header_sync(s
);
461 /* From here on only known autoclear feature bits are valid */
462 bdrv_flush(bs
->file
);
465 s
->l1_table
= qed_alloc_table(s
);
466 qed_init_l2_cache(&s
->l2_cache
);
468 ret
= qed_read_l1_table_sync(s
);
473 /* If image was not closed cleanly, check consistency */
474 if (s
->header
.features
& QED_F_NEED_CHECK
) {
475 /* Read-only images cannot be fixed. There is no risk of corruption
476 * since write operations are not possible. Therefore, allow
477 * potentially inconsistent images to be opened read-only. This can
478 * aid data recovery from an otherwise inconsistent image.
480 if (!bdrv_is_read_only(bs
->file
)) {
481 BdrvCheckResult result
= {0};
483 ret
= qed_check(s
, &result
, true);
487 if (!result
.corruptions
&& !result
.check_errors
) {
488 /* Ensure fixes reach storage before clearing check bit */
491 s
->header
.features
&= ~QED_F_NEED_CHECK
;
492 qed_write_header_sync(s
);
497 s
->need_check_timer
= qemu_new_timer_ns(vm_clock
,
498 qed_need_check_timer_cb
, s
);
500 error_set(&s
->migration_blocker
,
501 QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED
,
502 "qed", bs
->device_name
, "live migration");
503 migrate_add_blocker(s
->migration_blocker
);
508 qed_free_l2_cache(&s
->l2_cache
);
509 qemu_vfree(s
->l1_table
);
514 static void bdrv_qed_close(BlockDriverState
*bs
)
516 BDRVQEDState
*s
= bs
->opaque
;
518 migrate_del_blocker(s
->migration_blocker
);
519 error_free(s
->migration_blocker
);
521 qed_cancel_need_check_timer(s
);
522 qemu_free_timer(s
->need_check_timer
);
524 /* Ensure writes reach stable storage */
525 bdrv_flush(bs
->file
);
527 /* Clean shutdown, no check required on next open */
528 if (s
->header
.features
& QED_F_NEED_CHECK
) {
529 s
->header
.features
&= ~QED_F_NEED_CHECK
;
530 qed_write_header_sync(s
);
533 qed_free_l2_cache(&s
->l2_cache
);
534 qemu_vfree(s
->l1_table
);
537 static int qed_create(const char *filename
, uint32_t cluster_size
,
538 uint64_t image_size
, uint32_t table_size
,
539 const char *backing_file
, const char *backing_fmt
)
543 .cluster_size
= cluster_size
,
544 .table_size
= table_size
,
547 .compat_features
= 0,
548 .l1_table_offset
= cluster_size
,
549 .image_size
= image_size
,
552 uint8_t *l1_table
= NULL
;
553 size_t l1_size
= header
.cluster_size
* header
.table_size
;
555 BlockDriverState
*bs
= NULL
;
557 ret
= bdrv_create_file(filename
, NULL
);
562 ret
= bdrv_file_open(&bs
, filename
, BDRV_O_RDWR
| BDRV_O_CACHE_WB
);
567 /* File must start empty and grow, check truncate is supported */
568 ret
= bdrv_truncate(bs
, 0);
574 header
.features
|= QED_F_BACKING_FILE
;
575 header
.backing_filename_offset
= sizeof(le_header
);
576 header
.backing_filename_size
= strlen(backing_file
);
578 if (qed_fmt_is_raw(backing_fmt
)) {
579 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
583 qed_header_cpu_to_le(&header
, &le_header
);
584 ret
= bdrv_pwrite(bs
, 0, &le_header
, sizeof(le_header
));
588 ret
= bdrv_pwrite(bs
, sizeof(le_header
), backing_file
,
589 header
.backing_filename_size
);
594 l1_table
= g_malloc0(l1_size
);
595 ret
= bdrv_pwrite(bs
, header
.l1_table_offset
, l1_table
, l1_size
);
600 ret
= 0; /* success */
607 static int bdrv_qed_create(const char *filename
, QEMUOptionParameter
*options
)
609 uint64_t image_size
= 0;
610 uint32_t cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
611 uint32_t table_size
= QED_DEFAULT_TABLE_SIZE
;
612 const char *backing_file
= NULL
;
613 const char *backing_fmt
= NULL
;
615 while (options
&& options
->name
) {
616 if (!strcmp(options
->name
, BLOCK_OPT_SIZE
)) {
617 image_size
= options
->value
.n
;
618 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FILE
)) {
619 backing_file
= options
->value
.s
;
620 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FMT
)) {
621 backing_fmt
= options
->value
.s
;
622 } else if (!strcmp(options
->name
, BLOCK_OPT_CLUSTER_SIZE
)) {
623 if (options
->value
.n
) {
624 cluster_size
= options
->value
.n
;
626 } else if (!strcmp(options
->name
, BLOCK_OPT_TABLE_SIZE
)) {
627 if (options
->value
.n
) {
628 table_size
= options
->value
.n
;
634 if (!qed_is_cluster_size_valid(cluster_size
)) {
635 fprintf(stderr
, "QED cluster size must be within range [%u, %u] and power of 2\n",
636 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
639 if (!qed_is_table_size_valid(table_size
)) {
640 fprintf(stderr
, "QED table size must be within range [%u, %u] and power of 2\n",
641 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
644 if (!qed_is_image_size_valid(image_size
, cluster_size
, table_size
)) {
645 fprintf(stderr
, "QED image size must be a non-zero multiple of "
646 "cluster size and less than %" PRIu64
" bytes\n",
647 qed_max_image_size(cluster_size
, table_size
));
651 return qed_create(filename
, cluster_size
, image_size
, table_size
,
652 backing_file
, backing_fmt
);
661 static void qed_is_allocated_cb(void *opaque
, int ret
, uint64_t offset
, size_t len
)
663 QEDIsAllocatedCB
*cb
= opaque
;
664 *cb
->pnum
= len
/ BDRV_SECTOR_SIZE
;
665 cb
->is_allocated
= (ret
== QED_CLUSTER_FOUND
|| ret
== QED_CLUSTER_ZERO
);
667 qemu_coroutine_enter(cb
->co
, NULL
);
671 static int coroutine_fn
bdrv_qed_co_is_allocated(BlockDriverState
*bs
,
673 int nb_sectors
, int *pnum
)
675 BDRVQEDState
*s
= bs
->opaque
;
676 uint64_t pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
677 size_t len
= (size_t)nb_sectors
* BDRV_SECTOR_SIZE
;
678 QEDIsAllocatedCB cb
= {
682 QEDRequest request
= { .l2_table
= NULL
};
684 qed_find_cluster(s
, &request
, pos
, len
, qed_is_allocated_cb
, &cb
);
686 /* Now sleep if the callback wasn't invoked immediately */
687 while (cb
.is_allocated
== -1) {
688 cb
.co
= qemu_coroutine_self();
689 qemu_coroutine_yield();
692 qed_unref_l2_cache_entry(request
.l2_table
);
694 return cb
.is_allocated
;
697 static int bdrv_qed_make_empty(BlockDriverState
*bs
)
702 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
704 return acb
->common
.bs
->opaque
;
708 * Read from the backing file or zero-fill if no backing file
711 * @pos: Byte position in device
712 * @qiov: Destination I/O vector
713 * @cb: Completion function
714 * @opaque: User data for completion function
716 * This function reads qiov->size bytes starting at pos from the backing file.
717 * If there is no backing file then zeroes are read.
719 static void qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
721 BlockDriverCompletionFunc
*cb
, void *opaque
)
723 uint64_t backing_length
= 0;
726 /* If there is a backing file, get its length. Treat the absence of a
727 * backing file like a zero length backing file.
729 if (s
->bs
->backing_hd
) {
730 int64_t l
= bdrv_getlength(s
->bs
->backing_hd
);
738 /* Zero all sectors if reading beyond the end of the backing file */
739 if (pos
>= backing_length
||
740 pos
+ qiov
->size
> backing_length
) {
741 qemu_iovec_memset(qiov
, 0, qiov
->size
);
744 /* Complete now if there are no backing file sectors to read */
745 if (pos
>= backing_length
) {
750 /* If the read straddles the end of the backing file, shorten it */
751 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
753 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING
);
754 bdrv_aio_readv(s
->bs
->backing_hd
, pos
/ BDRV_SECTOR_SIZE
,
755 qiov
, size
/ BDRV_SECTOR_SIZE
, cb
, opaque
);
764 } CopyFromBackingFileCB
;
766 static void qed_copy_from_backing_file_cb(void *opaque
, int ret
)
768 CopyFromBackingFileCB
*copy_cb
= opaque
;
769 qemu_vfree(copy_cb
->iov
.iov_base
);
770 gencb_complete(©_cb
->gencb
, ret
);
773 static void qed_copy_from_backing_file_write(void *opaque
, int ret
)
775 CopyFromBackingFileCB
*copy_cb
= opaque
;
776 BDRVQEDState
*s
= copy_cb
->s
;
779 qed_copy_from_backing_file_cb(copy_cb
, ret
);
783 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
784 bdrv_aio_writev(s
->bs
->file
, copy_cb
->offset
/ BDRV_SECTOR_SIZE
,
785 ©_cb
->qiov
, copy_cb
->qiov
.size
/ BDRV_SECTOR_SIZE
,
786 qed_copy_from_backing_file_cb
, copy_cb
);
790 * Copy data from backing file into the image
793 * @pos: Byte position in device
794 * @len: Number of bytes
795 * @offset: Byte offset in image file
796 * @cb: Completion function
797 * @opaque: User data for completion function
799 static void qed_copy_from_backing_file(BDRVQEDState
*s
, uint64_t pos
,
800 uint64_t len
, uint64_t offset
,
801 BlockDriverCompletionFunc
*cb
,
804 CopyFromBackingFileCB
*copy_cb
;
806 /* Skip copy entirely if there is no work to do */
812 copy_cb
= gencb_alloc(sizeof(*copy_cb
), cb
, opaque
);
814 copy_cb
->offset
= offset
;
815 copy_cb
->iov
.iov_base
= qemu_blockalign(s
->bs
, len
);
816 copy_cb
->iov
.iov_len
= len
;
817 qemu_iovec_init_external(©_cb
->qiov
, ©_cb
->iov
, 1);
819 qed_read_backing_file(s
, pos
, ©_cb
->qiov
,
820 qed_copy_from_backing_file_write
, copy_cb
);
824 * Link one or more contiguous clusters into a table
828 * @index: First cluster index
829 * @n: Number of contiguous clusters
830 * @cluster: First cluster offset
832 * The cluster offset may be an allocated byte offset in the image file, the
833 * zero cluster marker, or the unallocated cluster marker.
835 static void qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
, int index
,
836 unsigned int n
, uint64_t cluster
)
839 for (i
= index
; i
< index
+ n
; i
++) {
840 table
->offsets
[i
] = cluster
;
841 if (!qed_offset_is_unalloc_cluster(cluster
) &&
842 !qed_offset_is_zero_cluster(cluster
)) {
843 cluster
+= s
->header
.cluster_size
;
848 static void qed_aio_complete_bh(void *opaque
)
850 QEDAIOCB
*acb
= opaque
;
851 BlockDriverCompletionFunc
*cb
= acb
->common
.cb
;
852 void *user_opaque
= acb
->common
.opaque
;
853 int ret
= acb
->bh_ret
;
854 bool *finished
= acb
->finished
;
856 qemu_bh_delete(acb
->bh
);
857 qemu_aio_release(acb
);
859 /* Invoke callback */
860 cb(user_opaque
, ret
);
862 /* Signal cancel completion */
868 static void qed_aio_complete(QEDAIOCB
*acb
, int ret
)
870 BDRVQEDState
*s
= acb_to_s(acb
);
872 trace_qed_aio_complete(s
, acb
, ret
);
875 qemu_iovec_destroy(&acb
->cur_qiov
);
876 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
878 /* Free the buffer we may have allocated for zero writes */
879 if (acb
->flags
& QED_AIOCB_ZERO
) {
880 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
881 acb
->qiov
->iov
[0].iov_base
= NULL
;
884 /* Arrange for a bh to invoke the completion function */
886 acb
->bh
= qemu_bh_new(qed_aio_complete_bh
, acb
);
887 qemu_bh_schedule(acb
->bh
);
889 /* Start next allocating write request waiting behind this one. Note that
890 * requests enqueue themselves when they first hit an unallocated cluster
891 * but they wait until the entire request is finished before waking up the
892 * next request in the queue. This ensures that we don't cycle through
893 * requests multiple times but rather finish one at a time completely.
895 if (acb
== QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
896 QSIMPLEQ_REMOVE_HEAD(&s
->allocating_write_reqs
, next
);
897 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
899 qed_aio_next_io(acb
, 0);
900 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
901 qed_start_need_check_timer(s
);
907 * Commit the current L2 table to the cache
909 static void qed_commit_l2_update(void *opaque
, int ret
)
911 QEDAIOCB
*acb
= opaque
;
912 BDRVQEDState
*s
= acb_to_s(acb
);
913 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
914 uint64_t l2_offset
= l2_table
->offset
;
916 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
918 /* This is guaranteed to succeed because we just committed the entry to the
921 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
922 assert(acb
->request
.l2_table
!= NULL
);
924 qed_aio_next_io(opaque
, ret
);
928 * Update L1 table with new L2 table offset and write it out
930 static void qed_aio_write_l1_update(void *opaque
, int ret
)
932 QEDAIOCB
*acb
= opaque
;
933 BDRVQEDState
*s
= acb_to_s(acb
);
937 qed_aio_complete(acb
, ret
);
941 index
= qed_l1_index(s
, acb
->cur_pos
);
942 s
->l1_table
->offsets
[index
] = acb
->request
.l2_table
->offset
;
944 qed_write_l1_table(s
, index
, 1, qed_commit_l2_update
, acb
);
948 * Update L2 table with new cluster offsets and write them out
950 static void qed_aio_write_l2_update(QEDAIOCB
*acb
, int ret
, uint64_t offset
)
952 BDRVQEDState
*s
= acb_to_s(acb
);
953 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
961 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
962 acb
->request
.l2_table
= qed_new_l2_table(s
);
965 index
= qed_l2_index(s
, acb
->cur_pos
);
966 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
970 /* Write out the whole new L2 table */
971 qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true,
972 qed_aio_write_l1_update
, acb
);
974 /* Write out only the updated part of the L2 table */
975 qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
, false,
976 qed_aio_next_io
, acb
);
981 qed_aio_complete(acb
, ret
);
984 static void qed_aio_write_l2_update_cb(void *opaque
, int ret
)
986 QEDAIOCB
*acb
= opaque
;
987 qed_aio_write_l2_update(acb
, ret
, acb
->cur_cluster
);
991 * Flush new data clusters before updating the L2 table
993 * This flush is necessary when a backing file is in use. A crash during an
994 * allocating write could result in empty clusters in the image. If the write
995 * only touched a subregion of the cluster, then backing image sectors have
996 * been lost in the untouched region. The solution is to flush after writing a
997 * new data cluster and before updating the L2 table.
999 static void qed_aio_write_flush_before_l2_update(void *opaque
, int ret
)
1001 QEDAIOCB
*acb
= opaque
;
1002 BDRVQEDState
*s
= acb_to_s(acb
);
1004 if (!bdrv_aio_flush(s
->bs
->file
, qed_aio_write_l2_update_cb
, opaque
)) {
1005 qed_aio_complete(acb
, -EIO
);
1010 * Write data to the image file
1012 static void qed_aio_write_main(void *opaque
, int ret
)
1014 QEDAIOCB
*acb
= opaque
;
1015 BDRVQEDState
*s
= acb_to_s(acb
);
1016 uint64_t offset
= acb
->cur_cluster
+
1017 qed_offset_into_cluster(s
, acb
->cur_pos
);
1018 BlockDriverCompletionFunc
*next_fn
;
1020 trace_qed_aio_write_main(s
, acb
, ret
, offset
, acb
->cur_qiov
.size
);
1023 qed_aio_complete(acb
, ret
);
1027 if (acb
->find_cluster_ret
== QED_CLUSTER_FOUND
) {
1028 next_fn
= qed_aio_next_io
;
1030 if (s
->bs
->backing_hd
) {
1031 next_fn
= qed_aio_write_flush_before_l2_update
;
1033 next_fn
= qed_aio_write_l2_update_cb
;
1037 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1038 bdrv_aio_writev(s
->bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1039 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1044 * Populate back untouched region of new data cluster
1046 static void qed_aio_write_postfill(void *opaque
, int ret
)
1048 QEDAIOCB
*acb
= opaque
;
1049 BDRVQEDState
*s
= acb_to_s(acb
);
1050 uint64_t start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1052 qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1053 uint64_t offset
= acb
->cur_cluster
+
1054 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1058 qed_aio_complete(acb
, ret
);
1062 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1063 qed_copy_from_backing_file(s
, start
, len
, offset
,
1064 qed_aio_write_main
, acb
);
1068 * Populate front untouched region of new data cluster
1070 static void qed_aio_write_prefill(void *opaque
, int ret
)
1072 QEDAIOCB
*acb
= opaque
;
1073 BDRVQEDState
*s
= acb_to_s(acb
);
1074 uint64_t start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1075 uint64_t len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1077 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1078 qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
,
1079 qed_aio_write_postfill
, acb
);
1083 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1085 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1087 /* The flush before L2 update path ensures consistency */
1088 if (s
->bs
->backing_hd
) {
1092 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1095 static void qed_aio_write_zero_cluster(void *opaque
, int ret
)
1097 QEDAIOCB
*acb
= opaque
;
1100 qed_aio_complete(acb
, ret
);
1104 qed_aio_write_l2_update(acb
, 0, 1);
1108 * Write new data cluster
1110 * @acb: Write request
1111 * @len: Length in bytes
1113 * This path is taken when writing to previously unallocated clusters.
1115 static void qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1117 BDRVQEDState
*s
= acb_to_s(acb
);
1118 BlockDriverCompletionFunc
*cb
;
1120 /* Cancel timer when the first allocating request comes in */
1121 if (QSIMPLEQ_EMPTY(&s
->allocating_write_reqs
)) {
1122 qed_cancel_need_check_timer(s
);
1125 /* Freeze this request if another allocating write is in progress */
1126 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
1127 QSIMPLEQ_INSERT_TAIL(&s
->allocating_write_reqs
, acb
, next
);
1129 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
) ||
1130 s
->allocating_write_reqs_plugged
) {
1131 return; /* wait for existing request to finish */
1134 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1135 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1136 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1138 if (acb
->flags
& QED_AIOCB_ZERO
) {
1139 /* Skip ahead if the clusters are already zero */
1140 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1141 qed_aio_next_io(acb
, 0);
1145 cb
= qed_aio_write_zero_cluster
;
1147 cb
= qed_aio_write_prefill
;
1148 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1151 if (qed_should_set_need_check(s
)) {
1152 s
->header
.features
|= QED_F_NEED_CHECK
;
1153 qed_write_header(s
, cb
, acb
);
1160 * Write data cluster in place
1162 * @acb: Write request
1163 * @offset: Cluster offset in bytes
1164 * @len: Length in bytes
1166 * This path is taken when writing to already allocated clusters.
1168 static void qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
, size_t len
)
1170 /* Allocate buffer for zero writes */
1171 if (acb
->flags
& QED_AIOCB_ZERO
) {
1172 struct iovec
*iov
= acb
->qiov
->iov
;
1174 if (!iov
->iov_base
) {
1175 iov
->iov_base
= qemu_blockalign(acb
->common
.bs
, iov
->iov_len
);
1176 memset(iov
->iov_base
, 0, iov
->iov_len
);
1180 /* Calculate the I/O vector */
1181 acb
->cur_cluster
= offset
;
1182 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1184 /* Do the actual write */
1185 qed_aio_write_main(acb
, 0);
1189 * Write data cluster
1191 * @opaque: Write request
1192 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1194 * @offset: Cluster offset in bytes
1195 * @len: Length in bytes
1197 * Callback from qed_find_cluster().
1199 static void qed_aio_write_data(void *opaque
, int ret
,
1200 uint64_t offset
, size_t len
)
1202 QEDAIOCB
*acb
= opaque
;
1204 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1206 acb
->find_cluster_ret
= ret
;
1209 case QED_CLUSTER_FOUND
:
1210 qed_aio_write_inplace(acb
, offset
, len
);
1213 case QED_CLUSTER_L2
:
1214 case QED_CLUSTER_L1
:
1215 case QED_CLUSTER_ZERO
:
1216 qed_aio_write_alloc(acb
, len
);
1220 qed_aio_complete(acb
, ret
);
1228 * @opaque: Read request
1229 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1231 * @offset: Cluster offset in bytes
1232 * @len: Length in bytes
1234 * Callback from qed_find_cluster().
1236 static void qed_aio_read_data(void *opaque
, int ret
,
1237 uint64_t offset
, size_t len
)
1239 QEDAIOCB
*acb
= opaque
;
1240 BDRVQEDState
*s
= acb_to_s(acb
);
1241 BlockDriverState
*bs
= acb
->common
.bs
;
1243 /* Adjust offset into cluster */
1244 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1246 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1252 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1254 /* Handle zero cluster and backing file reads */
1255 if (ret
== QED_CLUSTER_ZERO
) {
1256 qemu_iovec_memset(&acb
->cur_qiov
, 0, acb
->cur_qiov
.size
);
1257 qed_aio_next_io(acb
, 0);
1259 } else if (ret
!= QED_CLUSTER_FOUND
) {
1260 qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1261 qed_aio_next_io
, acb
);
1265 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1266 bdrv_aio_readv(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1267 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1268 qed_aio_next_io
, acb
);
1272 qed_aio_complete(acb
, ret
);
1276 * Begin next I/O or complete the request
1278 static void qed_aio_next_io(void *opaque
, int ret
)
1280 QEDAIOCB
*acb
= opaque
;
1281 BDRVQEDState
*s
= acb_to_s(acb
);
1282 QEDFindClusterFunc
*io_fn
= (acb
->flags
& QED_AIOCB_WRITE
) ?
1283 qed_aio_write_data
: qed_aio_read_data
;
1285 trace_qed_aio_next_io(s
, acb
, ret
, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1287 /* Handle I/O error */
1289 qed_aio_complete(acb
, ret
);
1293 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1294 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1295 qemu_iovec_reset(&acb
->cur_qiov
);
1297 /* Complete request */
1298 if (acb
->cur_pos
>= acb
->end_pos
) {
1299 qed_aio_complete(acb
, 0);
1303 /* Find next cluster and start I/O */
1304 qed_find_cluster(s
, &acb
->request
,
1305 acb
->cur_pos
, acb
->end_pos
- acb
->cur_pos
,
1309 static BlockDriverAIOCB
*qed_aio_setup(BlockDriverState
*bs
,
1311 QEMUIOVector
*qiov
, int nb_sectors
,
1312 BlockDriverCompletionFunc
*cb
,
1313 void *opaque
, int flags
)
1315 QEDAIOCB
*acb
= qemu_aio_get(&qed_aio_pool
, bs
, cb
, opaque
);
1317 trace_qed_aio_setup(bs
->opaque
, acb
, sector_num
, nb_sectors
,
1321 acb
->finished
= NULL
;
1323 acb
->qiov_offset
= 0;
1324 acb
->cur_pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
1325 acb
->end_pos
= acb
->cur_pos
+ nb_sectors
* BDRV_SECTOR_SIZE
;
1326 acb
->request
.l2_table
= NULL
;
1327 qemu_iovec_init(&acb
->cur_qiov
, qiov
->niov
);
1330 qed_aio_next_io(acb
, 0);
1331 return &acb
->common
;
1334 static BlockDriverAIOCB
*bdrv_qed_aio_readv(BlockDriverState
*bs
,
1336 QEMUIOVector
*qiov
, int nb_sectors
,
1337 BlockDriverCompletionFunc
*cb
,
1340 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, 0);
1343 static BlockDriverAIOCB
*bdrv_qed_aio_writev(BlockDriverState
*bs
,
1345 QEMUIOVector
*qiov
, int nb_sectors
,
1346 BlockDriverCompletionFunc
*cb
,
1349 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
,
1350 opaque
, QED_AIOCB_WRITE
);
1353 static BlockDriverAIOCB
*bdrv_qed_aio_flush(BlockDriverState
*bs
,
1354 BlockDriverCompletionFunc
*cb
,
1357 return bdrv_aio_flush(bs
->file
, cb
, opaque
);
1366 static void coroutine_fn
qed_co_write_zeroes_cb(void *opaque
, int ret
)
1368 QEDWriteZeroesCB
*cb
= opaque
;
1373 qemu_coroutine_enter(cb
->co
, NULL
);
1377 static int coroutine_fn
bdrv_qed_co_write_zeroes(BlockDriverState
*bs
,
1381 BlockDriverAIOCB
*blockacb
;
1382 QEDWriteZeroesCB cb
= { .done
= false };
1386 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1387 * then it will be allocated during request processing.
1389 iov
.iov_base
= NULL
,
1390 iov
.iov_len
= nb_sectors
* BDRV_SECTOR_SIZE
,
1392 qemu_iovec_init_external(&qiov
, &iov
, 1);
1393 blockacb
= qed_aio_setup(bs
, sector_num
, &qiov
, nb_sectors
,
1394 qed_co_write_zeroes_cb
, &cb
,
1395 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1400 cb
.co
= qemu_coroutine_self();
1401 qemu_coroutine_yield();
1407 static int bdrv_qed_truncate(BlockDriverState
*bs
, int64_t offset
)
1409 BDRVQEDState
*s
= bs
->opaque
;
1410 uint64_t old_image_size
;
1413 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1414 s
->header
.table_size
)) {
1418 /* Shrinking is currently not supported */
1419 if ((uint64_t)offset
< s
->header
.image_size
) {
1423 old_image_size
= s
->header
.image_size
;
1424 s
->header
.image_size
= offset
;
1425 ret
= qed_write_header_sync(s
);
1427 s
->header
.image_size
= old_image_size
;
1432 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1434 BDRVQEDState
*s
= bs
->opaque
;
1435 return s
->header
.image_size
;
1438 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1440 BDRVQEDState
*s
= bs
->opaque
;
1442 memset(bdi
, 0, sizeof(*bdi
));
1443 bdi
->cluster_size
= s
->header
.cluster_size
;
1447 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1448 const char *backing_file
,
1449 const char *backing_fmt
)
1451 BDRVQEDState
*s
= bs
->opaque
;
1452 QEDHeader new_header
, le_header
;
1454 size_t buffer_len
, backing_file_len
;
1457 /* Refuse to set backing filename if unknown compat feature bits are
1458 * active. If the image uses an unknown compat feature then we may not
1459 * know the layout of data following the header structure and cannot safely
1462 if (backing_file
&& (s
->header
.compat_features
&
1463 ~QED_COMPAT_FEATURE_MASK
)) {
1467 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1469 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1470 QED_F_BACKING_FORMAT_NO_PROBE
);
1472 /* Adjust feature flags */
1474 new_header
.features
|= QED_F_BACKING_FILE
;
1476 if (qed_fmt_is_raw(backing_fmt
)) {
1477 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1481 /* Calculate new header size */
1482 backing_file_len
= 0;
1485 backing_file_len
= strlen(backing_file
);
1488 buffer_len
= sizeof(new_header
);
1489 new_header
.backing_filename_offset
= buffer_len
;
1490 new_header
.backing_filename_size
= backing_file_len
;
1491 buffer_len
+= backing_file_len
;
1493 /* Make sure we can rewrite header without failing */
1494 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1498 /* Prepare new header */
1499 buffer
= g_malloc(buffer_len
);
1501 qed_header_cpu_to_le(&new_header
, &le_header
);
1502 memcpy(buffer
, &le_header
, sizeof(le_header
));
1503 buffer_len
= sizeof(le_header
);
1506 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1507 buffer_len
+= backing_file_len
;
1510 /* Write new header */
1511 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1514 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1519 static int bdrv_qed_check(BlockDriverState
*bs
, BdrvCheckResult
*result
)
1521 BDRVQEDState
*s
= bs
->opaque
;
1523 return qed_check(s
, result
, false);
1526 static QEMUOptionParameter qed_create_options
[] = {
1528 .name
= BLOCK_OPT_SIZE
,
1530 .help
= "Virtual disk size (in bytes)"
1532 .name
= BLOCK_OPT_BACKING_FILE
,
1534 .help
= "File name of a base image"
1536 .name
= BLOCK_OPT_BACKING_FMT
,
1538 .help
= "Image format of the base image"
1540 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1542 .help
= "Cluster size (in bytes)",
1543 .value
= { .n
= QED_DEFAULT_CLUSTER_SIZE
},
1545 .name
= BLOCK_OPT_TABLE_SIZE
,
1547 .help
= "L1/L2 table size (in clusters)"
1549 { /* end of list */ }
1552 static BlockDriver bdrv_qed
= {
1553 .format_name
= "qed",
1554 .instance_size
= sizeof(BDRVQEDState
),
1555 .create_options
= qed_create_options
,
1557 .bdrv_probe
= bdrv_qed_probe
,
1558 .bdrv_open
= bdrv_qed_open
,
1559 .bdrv_close
= bdrv_qed_close
,
1560 .bdrv_create
= bdrv_qed_create
,
1561 .bdrv_co_is_allocated
= bdrv_qed_co_is_allocated
,
1562 .bdrv_make_empty
= bdrv_qed_make_empty
,
1563 .bdrv_aio_readv
= bdrv_qed_aio_readv
,
1564 .bdrv_aio_writev
= bdrv_qed_aio_writev
,
1565 .bdrv_aio_flush
= bdrv_qed_aio_flush
,
1566 .bdrv_co_write_zeroes
= bdrv_qed_co_write_zeroes
,
1567 .bdrv_truncate
= bdrv_qed_truncate
,
1568 .bdrv_getlength
= bdrv_qed_getlength
,
1569 .bdrv_get_info
= bdrv_qed_get_info
,
1570 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1571 .bdrv_check
= bdrv_qed_check
,
1574 static void bdrv_qed_init(void)
1576 bdrv_register(&bdrv_qed
);
1579 block_init(bdrv_qed_init
);