hw/virtio/virtio-pci: Avoid compiler warning with -Wshadow
[qemu/ar7.git] / target / ppc / kvm.c
blob51112bd3670d5b7c88fca76219621213de8f8188
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
22 #include <linux/kvm.h>
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "sysemu/watchdog.h"
41 #include "trace.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "sysemu/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
52 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
54 #define DEBUG_RETURN_GUEST 0
55 #define DEBUG_RETURN_GDB 1
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_LAST_INFO
61 static int cap_interrupt_unset;
62 static int cap_segstate;
63 static int cap_booke_sregs;
64 static int cap_ppc_smt;
65 static int cap_ppc_smt_possible;
66 static int cap_spapr_tce;
67 static int cap_spapr_tce_64;
68 static int cap_spapr_multitce;
69 static int cap_spapr_vfio;
70 static int cap_hior;
71 static int cap_one_reg;
72 static int cap_epr;
73 static int cap_ppc_watchdog;
74 static int cap_papr;
75 static int cap_htab_fd;
76 static int cap_fixup_hcalls;
77 static int cap_htm; /* Hardware transactional memory support */
78 static int cap_mmu_radix;
79 static int cap_mmu_hash_v3;
80 static int cap_xive;
81 static int cap_resize_hpt;
82 static int cap_ppc_pvr_compat;
83 static int cap_ppc_safe_cache;
84 static int cap_ppc_safe_bounds_check;
85 static int cap_ppc_safe_indirect_branch;
86 static int cap_ppc_count_cache_flush_assist;
87 static int cap_ppc_nested_kvm_hv;
88 static int cap_large_decr;
89 static int cap_fwnmi;
90 static int cap_rpt_invalidate;
91 static int cap_ail_mode_3;
93 static uint32_t debug_inst_opcode;
96 * Check whether we are running with KVM-PR (instead of KVM-HV). This
97 * should only be used for fallback tests - generally we should use
98 * explicit capabilities for the features we want, rather than
99 * assuming what is/isn't available depending on the KVM variant.
101 static bool kvmppc_is_pr(KVMState *ks)
103 /* Assume KVM-PR if the GET_PVINFO capability is available */
104 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState *s);
109 static int kvmppc_get_dec_bits(void);
111 int kvm_arch_get_default_type(MachineState *ms)
113 return 0;
116 int kvm_arch_init(MachineState *ms, KVMState *s)
118 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
119 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
120 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
121 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
122 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
123 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
124 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
125 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
126 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
127 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
128 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
129 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
131 * Note: we don't set cap_papr here, because this capability is
132 * only activated after this by kvmppc_set_papr()
134 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
135 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
136 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
137 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
138 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
139 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
140 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
141 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
142 kvmppc_get_cpu_characteristics(s);
143 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
144 cap_large_decr = kvmppc_get_dec_bits();
145 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
147 * Note: setting it to false because there is not such capability
148 * in KVM at this moment.
150 * TODO: call kvm_vm_check_extension() with the right capability
151 * after the kernel starts implementing it.
153 cap_ppc_pvr_compat = false;
155 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
156 error_report("KVM: Host kernel doesn't have level irq capability");
157 exit(1);
160 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
161 cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
162 kvm_ppc_register_host_cpu_type();
164 return 0;
167 int kvm_arch_irqchip_create(KVMState *s)
169 return 0;
172 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
174 CPUPPCState *cenv = &cpu->env;
175 CPUState *cs = CPU(cpu);
176 struct kvm_sregs sregs;
177 int ret;
179 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
181 * What we're really trying to say is "if we're on BookE, we
182 * use the native PVR for now". This is the only sane way to
183 * check it though, so we potentially confuse users that they
184 * can run BookE guests on BookS. Let's hope nobody dares
185 * enough :)
187 return 0;
188 } else {
189 if (!cap_segstate) {
190 fprintf(stderr, "kvm error: missing PVR setting capability\n");
191 return -ENOSYS;
195 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
196 if (ret) {
197 return ret;
200 sregs.pvr = cenv->spr[SPR_PVR];
201 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
204 /* Set up a shared TLB array with KVM */
205 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
207 CPUPPCState *env = &cpu->env;
208 CPUState *cs = CPU(cpu);
209 struct kvm_book3e_206_tlb_params params = {};
210 struct kvm_config_tlb cfg = {};
211 unsigned int entries = 0;
212 int ret, i;
214 if (!kvm_enabled() ||
215 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
216 return 0;
219 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
221 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
222 params.tlb_sizes[i] = booke206_tlb_size(env, i);
223 params.tlb_ways[i] = booke206_tlb_ways(env, i);
224 entries += params.tlb_sizes[i];
227 assert(entries == env->nb_tlb);
228 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
230 env->tlb_dirty = true;
232 cfg.array = (uintptr_t)env->tlb.tlbm;
233 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
234 cfg.params = (uintptr_t)&params;
235 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
237 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
238 if (ret < 0) {
239 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
240 __func__, strerror(-ret));
241 return ret;
244 env->kvm_sw_tlb = true;
245 return 0;
249 #if defined(TARGET_PPC64)
250 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
252 int ret;
254 assert(kvm_state != NULL);
256 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
257 error_setg(errp, "KVM doesn't expose the MMU features it supports");
258 error_append_hint(errp, "Consider switching to a newer KVM\n");
259 return;
262 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
263 if (ret == 0) {
264 return;
267 error_setg_errno(errp, -ret,
268 "KVM failed to provide the MMU features it supports");
271 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
273 KVMState *s = KVM_STATE(current_accel());
274 struct ppc_radix_page_info *radix_page_info;
275 struct kvm_ppc_rmmu_info rmmu_info = { };
276 int i;
278 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
279 return NULL;
281 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
282 return NULL;
284 radix_page_info = g_malloc0(sizeof(*radix_page_info));
285 radix_page_info->count = 0;
286 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
287 if (rmmu_info.ap_encodings[i]) {
288 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
289 radix_page_info->count++;
292 return radix_page_info;
295 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
296 bool radix, bool gtse,
297 uint64_t proc_tbl)
299 CPUState *cs = CPU(cpu);
300 int ret;
301 uint64_t flags = 0;
302 struct kvm_ppc_mmuv3_cfg cfg = {
303 .process_table = proc_tbl,
306 if (radix) {
307 flags |= KVM_PPC_MMUV3_RADIX;
309 if (gtse) {
310 flags |= KVM_PPC_MMUV3_GTSE;
312 cfg.flags = flags;
313 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
314 switch (ret) {
315 case 0:
316 return H_SUCCESS;
317 case -EINVAL:
318 return H_PARAMETER;
319 case -ENODEV:
320 return H_NOT_AVAILABLE;
321 default:
322 return H_HARDWARE;
326 bool kvmppc_hpt_needs_host_contiguous_pages(void)
328 static struct kvm_ppc_smmu_info smmu_info;
330 if (!kvm_enabled()) {
331 return false;
334 kvm_get_smmu_info(&smmu_info, &error_fatal);
335 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
338 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
340 struct kvm_ppc_smmu_info smmu_info;
341 int iq, ik, jq, jk;
342 Error *local_err = NULL;
344 /* For now, we only have anything to check on hash64 MMUs */
345 if (!cpu->hash64_opts || !kvm_enabled()) {
346 return;
349 kvm_get_smmu_info(&smmu_info, &local_err);
350 if (local_err) {
351 error_propagate(errp, local_err);
352 return;
355 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
356 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
357 error_setg(errp,
358 "KVM does not support 1TiB segments which guest expects");
359 return;
362 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
363 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
364 smmu_info.slb_size, cpu->hash64_opts->slb_size);
365 return;
369 * Verify that every pagesize supported by the cpu model is
370 * supported by KVM with the same encodings
372 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
373 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
374 struct kvm_ppc_one_seg_page_size *ksps;
376 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
377 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
378 break;
381 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
382 error_setg(errp, "KVM doesn't support for base page shift %u",
383 qsps->page_shift);
384 return;
387 ksps = &smmu_info.sps[ik];
388 if (ksps->slb_enc != qsps->slb_enc) {
389 error_setg(errp,
390 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
391 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
392 return;
395 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
396 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
397 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
398 break;
402 if (jk >= ARRAY_SIZE(ksps->enc)) {
403 error_setg(errp, "KVM doesn't support page shift %u/%u",
404 qsps->enc[jq].page_shift, qsps->page_shift);
405 return;
407 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
408 error_setg(errp,
409 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
410 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
411 qsps->page_shift, qsps->enc[jq].pte_enc);
412 return;
417 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
419 * Mostly what guest pagesizes we can use are related to the
420 * host pages used to map guest RAM, which is handled in the
421 * platform code. Cache-Inhibited largepages (64k) however are
422 * used for I/O, so if they're mapped to the host at all it
423 * will be a normal mapping, not a special hugepage one used
424 * for RAM.
426 if (qemu_real_host_page_size() < 0x10000) {
427 error_setg(errp,
428 "KVM can't supply 64kiB CI pages, which guest expects");
432 #endif /* !defined (TARGET_PPC64) */
434 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
436 return POWERPC_CPU(cpu)->vcpu_id;
440 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
441 * only 1 watchpoint, so array size of 4 is sufficient for now.
443 #define MAX_HW_BKPTS 4
445 static struct HWBreakpoint {
446 target_ulong addr;
447 int type;
448 } hw_debug_points[MAX_HW_BKPTS];
450 static CPUWatchpoint hw_watchpoint;
452 /* Default there is no breakpoint and watchpoint supported */
453 static int max_hw_breakpoint;
454 static int max_hw_watchpoint;
455 static int nb_hw_breakpoint;
456 static int nb_hw_watchpoint;
458 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
460 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
461 max_hw_breakpoint = 2;
462 max_hw_watchpoint = 2;
465 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
466 fprintf(stderr, "Error initializing h/w breakpoints\n");
467 return;
471 int kvm_arch_init_vcpu(CPUState *cs)
473 PowerPCCPU *cpu = POWERPC_CPU(cs);
474 CPUPPCState *cenv = &cpu->env;
475 int ret;
477 /* Synchronize sregs with kvm */
478 ret = kvm_arch_sync_sregs(cpu);
479 if (ret) {
480 if (ret == -EINVAL) {
481 error_report("Register sync failed... If you're using kvm-hv.ko,"
482 " only \"-cpu host\" is possible");
484 return ret;
487 switch (cenv->mmu_model) {
488 case POWERPC_MMU_BOOKE206:
489 /* This target supports access to KVM's guest TLB */
490 ret = kvm_booke206_tlb_init(cpu);
491 break;
492 case POWERPC_MMU_2_07:
493 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
495 * KVM-HV has transactional memory on POWER8 also without
496 * the KVM_CAP_PPC_HTM extension, so enable it here
497 * instead as long as it's available to userspace on the
498 * host.
500 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
501 cap_htm = true;
504 break;
505 default:
506 break;
509 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
510 kvmppc_hw_debug_points_init(cenv);
512 return ret;
515 int kvm_arch_destroy_vcpu(CPUState *cs)
517 return 0;
520 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
522 CPUPPCState *env = &cpu->env;
523 CPUState *cs = CPU(cpu);
524 struct kvm_dirty_tlb dirty_tlb;
525 unsigned char *bitmap;
526 int ret;
528 if (!env->kvm_sw_tlb) {
529 return;
532 bitmap = g_malloc((env->nb_tlb + 7) / 8);
533 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
535 dirty_tlb.bitmap = (uintptr_t)bitmap;
536 dirty_tlb.num_dirty = env->nb_tlb;
538 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
539 if (ret) {
540 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
541 __func__, strerror(-ret));
544 g_free(bitmap);
547 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
549 PowerPCCPU *cpu = POWERPC_CPU(cs);
550 CPUPPCState *env = &cpu->env;
551 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
552 union {
553 uint32_t u32;
554 uint64_t u64;
555 } val = { };
556 struct kvm_one_reg reg = {
557 .id = id,
558 .addr = (uintptr_t) &val,
560 int ret;
562 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
563 if (ret != 0) {
564 trace_kvm_failed_spr_get(spr, strerror(errno));
565 } else {
566 switch (id & KVM_REG_SIZE_MASK) {
567 case KVM_REG_SIZE_U32:
568 env->spr[spr] = val.u32;
569 break;
571 case KVM_REG_SIZE_U64:
572 env->spr[spr] = val.u64;
573 break;
575 default:
576 /* Don't handle this size yet */
577 abort();
582 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
584 PowerPCCPU *cpu = POWERPC_CPU(cs);
585 CPUPPCState *env = &cpu->env;
586 union {
587 uint32_t u32;
588 uint64_t u64;
589 } val;
590 struct kvm_one_reg reg = {
591 .id = id,
592 .addr = (uintptr_t) &val,
594 int ret;
596 switch (id & KVM_REG_SIZE_MASK) {
597 case KVM_REG_SIZE_U32:
598 val.u32 = env->spr[spr];
599 break;
601 case KVM_REG_SIZE_U64:
602 val.u64 = env->spr[spr];
603 break;
605 default:
606 /* Don't handle this size yet */
607 abort();
610 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
611 if (ret != 0) {
612 trace_kvm_failed_spr_set(spr, strerror(errno));
616 static int kvm_put_fp(CPUState *cs)
618 PowerPCCPU *cpu = POWERPC_CPU(cs);
619 CPUPPCState *env = &cpu->env;
620 struct kvm_one_reg reg;
621 int i;
622 int ret;
624 if (env->insns_flags & PPC_FLOAT) {
625 uint64_t fpscr = env->fpscr;
626 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
628 reg.id = KVM_REG_PPC_FPSCR;
629 reg.addr = (uintptr_t)&fpscr;
630 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
631 if (ret < 0) {
632 trace_kvm_failed_fpscr_set(strerror(errno));
633 return ret;
636 for (i = 0; i < 32; i++) {
637 uint64_t vsr[2];
638 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
639 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
641 #if HOST_BIG_ENDIAN
642 vsr[0] = float64_val(*fpr);
643 vsr[1] = *vsrl;
644 #else
645 vsr[0] = *vsrl;
646 vsr[1] = float64_val(*fpr);
647 #endif
648 reg.addr = (uintptr_t) &vsr;
649 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
651 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
652 if (ret < 0) {
653 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
654 strerror(errno));
655 return ret;
660 if (env->insns_flags & PPC_ALTIVEC) {
661 reg.id = KVM_REG_PPC_VSCR;
662 reg.addr = (uintptr_t)&env->vscr;
663 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
664 if (ret < 0) {
665 trace_kvm_failed_vscr_set(strerror(errno));
666 return ret;
669 for (i = 0; i < 32; i++) {
670 reg.id = KVM_REG_PPC_VR(i);
671 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
672 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
673 if (ret < 0) {
674 trace_kvm_failed_vr_set(i, strerror(errno));
675 return ret;
680 return 0;
683 static int kvm_get_fp(CPUState *cs)
685 PowerPCCPU *cpu = POWERPC_CPU(cs);
686 CPUPPCState *env = &cpu->env;
687 struct kvm_one_reg reg;
688 int i;
689 int ret;
691 if (env->insns_flags & PPC_FLOAT) {
692 uint64_t fpscr;
693 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
695 reg.id = KVM_REG_PPC_FPSCR;
696 reg.addr = (uintptr_t)&fpscr;
697 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
698 if (ret < 0) {
699 trace_kvm_failed_fpscr_get(strerror(errno));
700 return ret;
701 } else {
702 env->fpscr = fpscr;
705 for (i = 0; i < 32; i++) {
706 uint64_t vsr[2];
707 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
708 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
710 reg.addr = (uintptr_t) &vsr;
711 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
713 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
714 if (ret < 0) {
715 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
716 strerror(errno));
717 return ret;
718 } else {
719 #if HOST_BIG_ENDIAN
720 *fpr = vsr[0];
721 if (vsx) {
722 *vsrl = vsr[1];
724 #else
725 *fpr = vsr[1];
726 if (vsx) {
727 *vsrl = vsr[0];
729 #endif
734 if (env->insns_flags & PPC_ALTIVEC) {
735 reg.id = KVM_REG_PPC_VSCR;
736 reg.addr = (uintptr_t)&env->vscr;
737 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
738 if (ret < 0) {
739 trace_kvm_failed_vscr_get(strerror(errno));
740 return ret;
743 for (i = 0; i < 32; i++) {
744 reg.id = KVM_REG_PPC_VR(i);
745 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
746 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
747 if (ret < 0) {
748 trace_kvm_failed_vr_get(i, strerror(errno));
749 return ret;
754 return 0;
757 #if defined(TARGET_PPC64)
758 static int kvm_get_vpa(CPUState *cs)
760 PowerPCCPU *cpu = POWERPC_CPU(cs);
761 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
762 struct kvm_one_reg reg;
763 int ret;
765 reg.id = KVM_REG_PPC_VPA_ADDR;
766 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
767 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
768 if (ret < 0) {
769 trace_kvm_failed_vpa_addr_get(strerror(errno));
770 return ret;
773 assert((uintptr_t)&spapr_cpu->slb_shadow_size
774 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
775 reg.id = KVM_REG_PPC_VPA_SLB;
776 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
777 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
778 if (ret < 0) {
779 trace_kvm_failed_slb_get(strerror(errno));
780 return ret;
783 assert((uintptr_t)&spapr_cpu->dtl_size
784 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
785 reg.id = KVM_REG_PPC_VPA_DTL;
786 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
787 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
788 if (ret < 0) {
789 trace_kvm_failed_dtl_get(strerror(errno));
790 return ret;
793 return 0;
796 static int kvm_put_vpa(CPUState *cs)
798 PowerPCCPU *cpu = POWERPC_CPU(cs);
799 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
800 struct kvm_one_reg reg;
801 int ret;
804 * SLB shadow or DTL can't be registered unless a master VPA is
805 * registered. That means when restoring state, if a VPA *is*
806 * registered, we need to set that up first. If not, we need to
807 * deregister the others before deregistering the master VPA
809 assert(spapr_cpu->vpa_addr
810 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
812 if (spapr_cpu->vpa_addr) {
813 reg.id = KVM_REG_PPC_VPA_ADDR;
814 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
815 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
816 if (ret < 0) {
817 trace_kvm_failed_vpa_addr_set(strerror(errno));
818 return ret;
822 assert((uintptr_t)&spapr_cpu->slb_shadow_size
823 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
824 reg.id = KVM_REG_PPC_VPA_SLB;
825 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
826 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
827 if (ret < 0) {
828 trace_kvm_failed_slb_set(strerror(errno));
829 return ret;
832 assert((uintptr_t)&spapr_cpu->dtl_size
833 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
834 reg.id = KVM_REG_PPC_VPA_DTL;
835 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
836 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
837 if (ret < 0) {
838 trace_kvm_failed_dtl_set(strerror(errno));
839 return ret;
842 if (!spapr_cpu->vpa_addr) {
843 reg.id = KVM_REG_PPC_VPA_ADDR;
844 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
845 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
846 if (ret < 0) {
847 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
848 return ret;
852 return 0;
854 #endif /* TARGET_PPC64 */
856 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
858 CPUPPCState *env = &cpu->env;
859 struct kvm_sregs sregs = { };
860 int i;
862 sregs.pvr = env->spr[SPR_PVR];
864 if (cpu->vhyp) {
865 PPCVirtualHypervisorClass *vhc =
866 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
867 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
868 } else {
869 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
872 /* Sync SLB */
873 #ifdef TARGET_PPC64
874 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
875 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
876 if (env->slb[i].esid & SLB_ESID_V) {
877 sregs.u.s.ppc64.slb[i].slbe |= i;
879 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
881 #endif
883 /* Sync SRs */
884 for (i = 0; i < 16; i++) {
885 sregs.u.s.ppc32.sr[i] = env->sr[i];
888 /* Sync BATs */
889 for (i = 0; i < 8; i++) {
890 /* Beware. We have to swap upper and lower bits here */
891 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
892 | env->DBAT[1][i];
893 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
894 | env->IBAT[1][i];
897 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
900 int kvm_arch_put_registers(CPUState *cs, int level)
902 PowerPCCPU *cpu = POWERPC_CPU(cs);
903 CPUPPCState *env = &cpu->env;
904 struct kvm_regs regs;
905 int ret;
906 int i;
908 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
909 if (ret < 0) {
910 return ret;
913 regs.ctr = env->ctr;
914 regs.lr = env->lr;
915 regs.xer = cpu_read_xer(env);
916 regs.msr = env->msr;
917 regs.pc = env->nip;
919 regs.srr0 = env->spr[SPR_SRR0];
920 regs.srr1 = env->spr[SPR_SRR1];
922 regs.sprg0 = env->spr[SPR_SPRG0];
923 regs.sprg1 = env->spr[SPR_SPRG1];
924 regs.sprg2 = env->spr[SPR_SPRG2];
925 regs.sprg3 = env->spr[SPR_SPRG3];
926 regs.sprg4 = env->spr[SPR_SPRG4];
927 regs.sprg5 = env->spr[SPR_SPRG5];
928 regs.sprg6 = env->spr[SPR_SPRG6];
929 regs.sprg7 = env->spr[SPR_SPRG7];
931 regs.pid = env->spr[SPR_BOOKE_PID];
933 for (i = 0; i < 32; i++) {
934 regs.gpr[i] = env->gpr[i];
937 regs.cr = ppc_get_cr(env);
939 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
940 if (ret < 0) {
941 return ret;
944 kvm_put_fp(cs);
946 if (env->tlb_dirty) {
947 kvm_sw_tlb_put(cpu);
948 env->tlb_dirty = false;
951 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
952 ret = kvmppc_put_books_sregs(cpu);
953 if (ret < 0) {
954 return ret;
958 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
959 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
962 if (cap_one_reg) {
963 int i;
966 * We deliberately ignore errors here, for kernels which have
967 * the ONE_REG calls, but don't support the specific
968 * registers, there's a reasonable chance things will still
969 * work, at least until we try to migrate.
971 for (i = 0; i < 1024; i++) {
972 uint64_t id = env->spr_cb[i].one_reg_id;
974 if (id != 0) {
975 kvm_put_one_spr(cs, id, i);
979 #ifdef TARGET_PPC64
980 if (FIELD_EX64(env->msr, MSR, TS)) {
981 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
984 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
992 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
994 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
995 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
996 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
999 if (cap_papr) {
1000 if (kvm_put_vpa(cs) < 0) {
1001 trace_kvm_failed_put_vpa();
1005 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1007 if (level > KVM_PUT_RUNTIME_STATE) {
1008 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1010 #endif /* TARGET_PPC64 */
1013 return ret;
1016 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1018 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1021 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1023 CPUPPCState *env = &cpu->env;
1024 struct kvm_sregs sregs;
1025 int ret;
1027 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1028 if (ret < 0) {
1029 return ret;
1032 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1033 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1034 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1035 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1036 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1037 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1038 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1039 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1040 env->spr[SPR_DECR] = sregs.u.e.dec;
1041 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1042 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1043 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1046 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1047 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1048 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1049 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1050 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1051 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1054 if (sregs.u.e.features & KVM_SREGS_E_64) {
1055 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1058 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1059 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1062 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1063 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1064 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1065 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1066 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1067 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1068 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1069 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1070 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1071 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1072 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1073 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1074 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1075 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1076 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1077 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1078 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1079 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1080 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1081 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1082 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1083 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1084 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1085 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1086 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1087 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1088 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1089 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1090 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1091 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1092 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1093 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1094 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1096 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1097 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1098 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1099 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1100 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1101 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1102 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1105 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1106 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1107 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1110 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1111 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1112 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1113 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1114 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1118 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1119 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1120 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1121 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1122 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1123 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1124 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1125 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1126 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1127 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1128 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1131 if (sregs.u.e.features & KVM_SREGS_EXP) {
1132 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1135 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1136 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1137 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1140 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1141 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1142 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1143 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1145 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1146 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1147 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1151 return 0;
1154 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1156 CPUPPCState *env = &cpu->env;
1157 struct kvm_sregs sregs;
1158 int ret;
1159 int i;
1161 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1162 if (ret < 0) {
1163 return ret;
1166 if (!cpu->vhyp) {
1167 ppc_store_sdr1(env, sregs.u.s.sdr1);
1170 /* Sync SLB */
1171 #ifdef TARGET_PPC64
1173 * The packed SLB array we get from KVM_GET_SREGS only contains
1174 * information about valid entries. So we flush our internal copy
1175 * to get rid of stale ones, then put all valid SLB entries back
1176 * in.
1178 memset(env->slb, 0, sizeof(env->slb));
1179 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1180 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1181 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1183 * Only restore valid entries
1185 if (rb & SLB_ESID_V) {
1186 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1189 #endif
1191 /* Sync SRs */
1192 for (i = 0; i < 16; i++) {
1193 env->sr[i] = sregs.u.s.ppc32.sr[i];
1196 /* Sync BATs */
1197 for (i = 0; i < 8; i++) {
1198 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1199 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1200 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1201 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1204 return 0;
1207 int kvm_arch_get_registers(CPUState *cs)
1209 PowerPCCPU *cpu = POWERPC_CPU(cs);
1210 CPUPPCState *env = &cpu->env;
1211 struct kvm_regs regs;
1212 int i, ret;
1214 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1215 if (ret < 0) {
1216 return ret;
1219 ppc_set_cr(env, regs.cr);
1220 env->ctr = regs.ctr;
1221 env->lr = regs.lr;
1222 cpu_write_xer(env, regs.xer);
1223 env->msr = regs.msr;
1224 env->nip = regs.pc;
1226 env->spr[SPR_SRR0] = regs.srr0;
1227 env->spr[SPR_SRR1] = regs.srr1;
1229 env->spr[SPR_SPRG0] = regs.sprg0;
1230 env->spr[SPR_SPRG1] = regs.sprg1;
1231 env->spr[SPR_SPRG2] = regs.sprg2;
1232 env->spr[SPR_SPRG3] = regs.sprg3;
1233 env->spr[SPR_SPRG4] = regs.sprg4;
1234 env->spr[SPR_SPRG5] = regs.sprg5;
1235 env->spr[SPR_SPRG6] = regs.sprg6;
1236 env->spr[SPR_SPRG7] = regs.sprg7;
1238 env->spr[SPR_BOOKE_PID] = regs.pid;
1240 for (i = 0; i < 32; i++) {
1241 env->gpr[i] = regs.gpr[i];
1244 kvm_get_fp(cs);
1246 if (cap_booke_sregs) {
1247 ret = kvmppc_get_booke_sregs(cpu);
1248 if (ret < 0) {
1249 return ret;
1253 if (cap_segstate) {
1254 ret = kvmppc_get_books_sregs(cpu);
1255 if (ret < 0) {
1256 return ret;
1260 if (cap_hior) {
1261 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1264 if (cap_one_reg) {
1265 int i;
1268 * We deliberately ignore errors here, for kernels which have
1269 * the ONE_REG calls, but don't support the specific
1270 * registers, there's a reasonable chance things will still
1271 * work, at least until we try to migrate.
1273 for (i = 0; i < 1024; i++) {
1274 uint64_t id = env->spr_cb[i].one_reg_id;
1276 if (id != 0) {
1277 kvm_get_one_spr(cs, id, i);
1281 #ifdef TARGET_PPC64
1282 if (FIELD_EX64(env->msr, MSR, TS)) {
1283 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1284 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1286 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1298 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1301 if (cap_papr) {
1302 if (kvm_get_vpa(cs) < 0) {
1303 trace_kvm_failed_get_vpa();
1307 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1308 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1309 #endif
1312 return 0;
1315 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1317 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1319 if (irq != PPC_INTERRUPT_EXT) {
1320 return 0;
1323 if (!cap_interrupt_unset) {
1324 return 0;
1327 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1329 return 0;
1332 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1334 return;
1337 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1339 return MEMTXATTRS_UNSPECIFIED;
1342 int kvm_arch_process_async_events(CPUState *cs)
1344 return cs->halted;
1347 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1349 CPUState *cs = CPU(cpu);
1350 CPUPPCState *env = &cpu->env;
1352 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1353 FIELD_EX64(env->msr, MSR, EE)) {
1354 cs->halted = 1;
1355 cs->exception_index = EXCP_HLT;
1358 return 0;
1361 /* map dcr access to existing qemu dcr emulation */
1362 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1363 uint32_t dcrn, uint32_t *data)
1365 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1366 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1369 return 0;
1372 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1373 uint32_t dcrn, uint32_t data)
1375 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1376 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1379 return 0;
1382 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1384 /* Mixed endian case is not handled */
1385 uint32_t sc = debug_inst_opcode;
1387 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1388 sizeof(sc), 0) ||
1389 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1390 return -EINVAL;
1393 return 0;
1396 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1398 uint32_t sc;
1400 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1401 sc != debug_inst_opcode ||
1402 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1403 sizeof(sc), 1)) {
1404 return -EINVAL;
1407 return 0;
1410 static int find_hw_breakpoint(target_ulong addr, int type)
1412 int n;
1414 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1415 <= ARRAY_SIZE(hw_debug_points));
1417 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1418 if (hw_debug_points[n].addr == addr &&
1419 hw_debug_points[n].type == type) {
1420 return n;
1424 return -1;
1427 static int find_hw_watchpoint(target_ulong addr, int *flag)
1429 int n;
1431 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1432 if (n >= 0) {
1433 *flag = BP_MEM_ACCESS;
1434 return n;
1437 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1438 if (n >= 0) {
1439 *flag = BP_MEM_WRITE;
1440 return n;
1443 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1444 if (n >= 0) {
1445 *flag = BP_MEM_READ;
1446 return n;
1449 return -1;
1452 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1454 const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1455 if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1456 return -ENOBUFS;
1459 hw_debug_points[breakpoint_index].addr = addr;
1460 hw_debug_points[breakpoint_index].type = type;
1462 switch (type) {
1463 case GDB_BREAKPOINT_HW:
1464 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1465 return -ENOBUFS;
1468 if (find_hw_breakpoint(addr, type) >= 0) {
1469 return -EEXIST;
1472 nb_hw_breakpoint++;
1473 break;
1475 case GDB_WATCHPOINT_WRITE:
1476 case GDB_WATCHPOINT_READ:
1477 case GDB_WATCHPOINT_ACCESS:
1478 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1479 return -ENOBUFS;
1482 if (find_hw_breakpoint(addr, type) >= 0) {
1483 return -EEXIST;
1486 nb_hw_watchpoint++;
1487 break;
1489 default:
1490 return -ENOSYS;
1493 return 0;
1496 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1498 int n;
1500 n = find_hw_breakpoint(addr, type);
1501 if (n < 0) {
1502 return -ENOENT;
1505 switch (type) {
1506 case GDB_BREAKPOINT_HW:
1507 nb_hw_breakpoint--;
1508 break;
1510 case GDB_WATCHPOINT_WRITE:
1511 case GDB_WATCHPOINT_READ:
1512 case GDB_WATCHPOINT_ACCESS:
1513 nb_hw_watchpoint--;
1514 break;
1516 default:
1517 return -ENOSYS;
1519 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1521 return 0;
1524 void kvm_arch_remove_all_hw_breakpoints(void)
1526 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1529 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1531 int n;
1533 /* Software Breakpoint updates */
1534 if (kvm_sw_breakpoints_active(cs)) {
1535 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1538 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1539 <= ARRAY_SIZE(hw_debug_points));
1540 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1542 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1543 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1544 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1545 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1546 switch (hw_debug_points[n].type) {
1547 case GDB_BREAKPOINT_HW:
1548 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1549 break;
1550 case GDB_WATCHPOINT_WRITE:
1551 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1552 break;
1553 case GDB_WATCHPOINT_READ:
1554 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1555 break;
1556 case GDB_WATCHPOINT_ACCESS:
1557 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1558 KVMPPC_DEBUG_WATCH_READ;
1559 break;
1560 default:
1561 cpu_abort(cs, "Unsupported breakpoint type\n");
1563 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1568 static int kvm_handle_hw_breakpoint(CPUState *cs,
1569 struct kvm_debug_exit_arch *arch_info)
1571 int handle = DEBUG_RETURN_GUEST;
1572 int n;
1573 int flag = 0;
1575 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1576 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1577 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1578 if (n >= 0) {
1579 handle = DEBUG_RETURN_GDB;
1581 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1582 KVMPPC_DEBUG_WATCH_WRITE)) {
1583 n = find_hw_watchpoint(arch_info->address, &flag);
1584 if (n >= 0) {
1585 handle = DEBUG_RETURN_GDB;
1586 cs->watchpoint_hit = &hw_watchpoint;
1587 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1588 hw_watchpoint.flags = flag;
1592 return handle;
1595 static int kvm_handle_singlestep(void)
1597 return DEBUG_RETURN_GDB;
1600 static int kvm_handle_sw_breakpoint(void)
1602 return DEBUG_RETURN_GDB;
1605 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1607 CPUState *cs = CPU(cpu);
1608 CPUPPCState *env = &cpu->env;
1609 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1611 if (cs->singlestep_enabled) {
1612 return kvm_handle_singlestep();
1615 if (arch_info->status) {
1616 return kvm_handle_hw_breakpoint(cs, arch_info);
1619 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1620 return kvm_handle_sw_breakpoint();
1624 * QEMU is not able to handle debug exception, so inject
1625 * program exception to guest;
1626 * Yes program exception NOT debug exception !!
1627 * When QEMU is using debug resources then debug exception must
1628 * be always set. To achieve this we set MSR_DE and also set
1629 * MSRP_DEP so guest cannot change MSR_DE.
1630 * When emulating debug resource for guest we want guest
1631 * to control MSR_DE (enable/disable debug interrupt on need).
1632 * Supporting both configurations are NOT possible.
1633 * So the result is that we cannot share debug resources
1634 * between QEMU and Guest on BOOKE architecture.
1635 * In the current design QEMU gets the priority over guest,
1636 * this means that if QEMU is using debug resources then guest
1637 * cannot use them;
1638 * For software breakpoint QEMU uses a privileged instruction;
1639 * So there cannot be any reason that we are here for guest
1640 * set debug exception, only possibility is guest executed a
1641 * privileged / illegal instruction and that's why we are
1642 * injecting a program interrupt.
1644 cpu_synchronize_state(cs);
1646 * env->nip is PC, so increment this by 4 to use
1647 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1649 env->nip += 4;
1650 cs->exception_index = POWERPC_EXCP_PROGRAM;
1651 env->error_code = POWERPC_EXCP_INVAL;
1652 ppc_cpu_do_interrupt(cs);
1654 return DEBUG_RETURN_GUEST;
1657 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1659 PowerPCCPU *cpu = POWERPC_CPU(cs);
1660 CPUPPCState *env = &cpu->env;
1661 int ret;
1663 qemu_mutex_lock_iothread();
1665 switch (run->exit_reason) {
1666 case KVM_EXIT_DCR:
1667 if (run->dcr.is_write) {
1668 trace_kvm_handle_dcr_write();
1669 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1670 } else {
1671 trace_kvm_handle_dcr_read();
1672 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1674 break;
1675 case KVM_EXIT_HLT:
1676 trace_kvm_handle_halt();
1677 ret = kvmppc_handle_halt(cpu);
1678 break;
1679 #if defined(TARGET_PPC64)
1680 case KVM_EXIT_PAPR_HCALL:
1681 trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1682 run->papr_hcall.ret = spapr_hypercall(cpu,
1683 run->papr_hcall.nr,
1684 run->papr_hcall.args);
1685 ret = 0;
1686 break;
1687 #endif
1688 case KVM_EXIT_EPR:
1689 trace_kvm_handle_epr();
1690 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1691 ret = 0;
1692 break;
1693 case KVM_EXIT_WATCHDOG:
1694 trace_kvm_handle_watchdog_expiry();
1695 watchdog_perform_action();
1696 ret = 0;
1697 break;
1699 case KVM_EXIT_DEBUG:
1700 trace_kvm_handle_debug_exception();
1701 if (kvm_handle_debug(cpu, run)) {
1702 ret = EXCP_DEBUG;
1703 break;
1705 /* re-enter, this exception was guest-internal */
1706 ret = 0;
1707 break;
1709 #if defined(TARGET_PPC64)
1710 case KVM_EXIT_NMI:
1711 trace_kvm_handle_nmi_exception();
1712 ret = kvm_handle_nmi(cpu, run);
1713 break;
1714 #endif
1716 default:
1717 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1718 ret = -1;
1719 break;
1722 qemu_mutex_unlock_iothread();
1723 return ret;
1726 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1728 CPUState *cs = CPU(cpu);
1729 uint32_t bits = tsr_bits;
1730 struct kvm_one_reg reg = {
1731 .id = KVM_REG_PPC_OR_TSR,
1732 .addr = (uintptr_t) &bits,
1735 if (!kvm_enabled()) {
1736 return 0;
1739 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1742 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1745 CPUState *cs = CPU(cpu);
1746 uint32_t bits = tsr_bits;
1747 struct kvm_one_reg reg = {
1748 .id = KVM_REG_PPC_CLEAR_TSR,
1749 .addr = (uintptr_t) &bits,
1752 if (!kvm_enabled()) {
1753 return 0;
1756 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1759 int kvmppc_set_tcr(PowerPCCPU *cpu)
1761 CPUState *cs = CPU(cpu);
1762 CPUPPCState *env = &cpu->env;
1763 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1765 struct kvm_one_reg reg = {
1766 .id = KVM_REG_PPC_TCR,
1767 .addr = (uintptr_t) &tcr,
1770 if (!kvm_enabled()) {
1771 return 0;
1774 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1777 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1779 CPUState *cs = CPU(cpu);
1780 int ret;
1782 if (!kvm_enabled()) {
1783 return -1;
1786 if (!cap_ppc_watchdog) {
1787 printf("warning: KVM does not support watchdog");
1788 return -1;
1791 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1792 if (ret < 0) {
1793 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1794 __func__, strerror(-ret));
1795 return ret;
1798 return ret;
1801 static int read_cpuinfo(const char *field, char *value, int len)
1803 FILE *f;
1804 int ret = -1;
1805 int field_len = strlen(field);
1806 char line[512];
1808 f = fopen("/proc/cpuinfo", "r");
1809 if (!f) {
1810 return -1;
1813 do {
1814 if (!fgets(line, sizeof(line), f)) {
1815 break;
1817 if (!strncmp(line, field, field_len)) {
1818 pstrcpy(value, len, line);
1819 ret = 0;
1820 break;
1822 } while (*line);
1824 fclose(f);
1826 return ret;
1829 static uint32_t kvmppc_get_tbfreq_procfs(void)
1831 char line[512];
1832 char *ns;
1833 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1834 uint32_t tbfreq_procfs;
1836 if (read_cpuinfo("timebase", line, sizeof(line))) {
1837 return tbfreq_fallback;
1840 ns = strchr(line, ':');
1841 if (!ns) {
1842 return tbfreq_fallback;
1845 tbfreq_procfs = atoi(++ns);
1847 /* 0 is certainly not acceptable by the guest, return fallback value */
1848 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1851 uint32_t kvmppc_get_tbfreq(void)
1853 static uint32_t cached_tbfreq;
1855 if (!cached_tbfreq) {
1856 cached_tbfreq = kvmppc_get_tbfreq_procfs();
1859 return cached_tbfreq;
1862 bool kvmppc_get_host_serial(char **value)
1864 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1865 NULL);
1868 bool kvmppc_get_host_model(char **value)
1870 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1873 /* Try to find a device tree node for a CPU with clock-frequency property */
1874 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1876 struct dirent *dirp;
1877 DIR *dp;
1879 dp = opendir(PROC_DEVTREE_CPU);
1880 if (!dp) {
1881 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1882 return -1;
1885 buf[0] = '\0';
1886 while ((dirp = readdir(dp)) != NULL) {
1887 FILE *f;
1889 /* Don't accidentally read from the current and parent directories */
1890 if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1891 continue;
1894 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1895 dirp->d_name);
1896 f = fopen(buf, "r");
1897 if (f) {
1898 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1899 fclose(f);
1900 break;
1902 buf[0] = '\0';
1904 closedir(dp);
1905 if (buf[0] == '\0') {
1906 printf("Unknown host!\n");
1907 return -1;
1910 return 0;
1913 static uint64_t kvmppc_read_int_dt(const char *filename)
1915 union {
1916 uint32_t v32;
1917 uint64_t v64;
1918 } u;
1919 FILE *f;
1920 int len;
1922 f = fopen(filename, "rb");
1923 if (!f) {
1924 return -1;
1927 len = fread(&u, 1, sizeof(u), f);
1928 fclose(f);
1929 switch (len) {
1930 case 4:
1931 /* property is a 32-bit quantity */
1932 return be32_to_cpu(u.v32);
1933 case 8:
1934 return be64_to_cpu(u.v64);
1937 return 0;
1941 * Read a CPU node property from the host device tree that's a single
1942 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1943 * (can't find or open the property, or doesn't understand the format)
1945 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1947 char buf[PATH_MAX], *tmp;
1948 uint64_t val;
1950 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1951 return -1;
1954 tmp = g_strdup_printf("%s/%s", buf, propname);
1955 val = kvmppc_read_int_dt(tmp);
1956 g_free(tmp);
1958 return val;
1961 uint64_t kvmppc_get_clockfreq(void)
1963 return kvmppc_read_int_cpu_dt("clock-frequency");
1966 static int kvmppc_get_dec_bits(void)
1968 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1970 if (nr_bits > 0) {
1971 return nr_bits;
1973 return 0;
1976 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1978 CPUState *cs = env_cpu(env);
1980 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1981 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1982 return 0;
1985 return 1;
1988 int kvmppc_get_hasidle(CPUPPCState *env)
1990 struct kvm_ppc_pvinfo pvinfo;
1992 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1993 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1994 return 1;
1997 return 0;
2000 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2002 uint32_t *hc = (uint32_t *)buf;
2003 struct kvm_ppc_pvinfo pvinfo;
2005 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2006 memcpy(buf, pvinfo.hcall, buf_len);
2007 return 0;
2011 * Fallback to always fail hypercalls regardless of endianness:
2013 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2014 * li r3, -1
2015 * b .+8 (becomes nop in wrong endian)
2016 * bswap32(li r3, -1)
2019 hc[0] = cpu_to_be32(0x08000048);
2020 hc[1] = cpu_to_be32(0x3860ffff);
2021 hc[2] = cpu_to_be32(0x48000008);
2022 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2024 return 1;
2027 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2029 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2032 void kvmppc_enable_logical_ci_hcalls(void)
2035 * FIXME: it would be nice if we could detect the cases where
2036 * we're using a device which requires the in kernel
2037 * implementation of these hcalls, but the kernel lacks them and
2038 * produce a warning.
2040 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2041 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2044 void kvmppc_enable_set_mode_hcall(void)
2046 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2049 void kvmppc_enable_clear_ref_mod_hcalls(void)
2051 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2052 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2055 void kvmppc_enable_h_page_init(void)
2057 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2060 void kvmppc_enable_h_rpt_invalidate(void)
2062 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2065 void kvmppc_set_papr(PowerPCCPU *cpu)
2067 CPUState *cs = CPU(cpu);
2068 int ret;
2070 if (!kvm_enabled()) {
2071 return;
2074 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2075 if (ret) {
2076 error_report("This vCPU type or KVM version does not support PAPR");
2077 exit(1);
2081 * Update the capability flag so we sync the right information
2082 * with kvm
2084 cap_papr = 1;
2087 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2089 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2092 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2094 CPUState *cs = CPU(cpu);
2095 int ret;
2097 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2098 if (ret && mpic_proxy) {
2099 error_report("This KVM version does not support EPR");
2100 exit(1);
2104 bool kvmppc_get_fwnmi(void)
2106 return cap_fwnmi;
2109 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2111 CPUState *cs = CPU(cpu);
2113 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2116 int kvmppc_smt_threads(void)
2118 return cap_ppc_smt ? cap_ppc_smt : 1;
2121 int kvmppc_set_smt_threads(int smt)
2123 int ret;
2125 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2126 if (!ret) {
2127 cap_ppc_smt = smt;
2129 return ret;
2132 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2134 int i;
2135 GString *g;
2136 char *s;
2138 assert(kvm_enabled());
2139 if (cap_ppc_smt_possible) {
2140 g = g_string_new("Available VSMT modes:");
2141 for (i = 63; i >= 0; i--) {
2142 if ((1UL << i) & cap_ppc_smt_possible) {
2143 g_string_append_printf(g, " %lu", (1UL << i));
2146 s = g_string_free(g, false);
2147 error_append_hint(errp, "%s.\n", s);
2148 g_free(s);
2149 } else {
2150 error_append_hint(errp,
2151 "This KVM seems to be too old to support VSMT.\n");
2156 #ifdef TARGET_PPC64
2157 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2159 struct kvm_ppc_smmu_info info;
2160 long rampagesize, best_page_shift;
2161 int i;
2164 * Find the largest hardware supported page size that's less than
2165 * or equal to the (logical) backing page size of guest RAM
2167 kvm_get_smmu_info(&info, &error_fatal);
2168 rampagesize = qemu_minrampagesize();
2169 best_page_shift = 0;
2171 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2172 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2174 if (!sps->page_shift) {
2175 continue;
2178 if ((sps->page_shift > best_page_shift)
2179 && ((1UL << sps->page_shift) <= rampagesize)) {
2180 best_page_shift = sps->page_shift;
2184 return 1ULL << (best_page_shift + hash_shift - 7);
2186 #endif
2188 bool kvmppc_spapr_use_multitce(void)
2190 return cap_spapr_multitce;
2193 int kvmppc_spapr_enable_inkernel_multitce(void)
2195 int ret;
2197 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2198 H_PUT_TCE_INDIRECT, 1);
2199 if (!ret) {
2200 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2201 H_STUFF_TCE, 1);
2204 return ret;
2207 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2208 uint64_t bus_offset, uint32_t nb_table,
2209 int *pfd, bool need_vfio)
2211 long len;
2212 int fd;
2213 void *table;
2216 * Must set fd to -1 so we don't try to munmap when called for
2217 * destroying the table, which the upper layers -will- do
2219 *pfd = -1;
2220 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2221 return NULL;
2224 if (cap_spapr_tce_64) {
2225 struct kvm_create_spapr_tce_64 args = {
2226 .liobn = liobn,
2227 .page_shift = page_shift,
2228 .offset = bus_offset >> page_shift,
2229 .size = nb_table,
2230 .flags = 0
2232 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2233 if (fd < 0) {
2234 fprintf(stderr,
2235 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2236 liobn);
2237 return NULL;
2239 } else if (cap_spapr_tce) {
2240 uint64_t window_size = (uint64_t) nb_table << page_shift;
2241 struct kvm_create_spapr_tce args = {
2242 .liobn = liobn,
2243 .window_size = window_size,
2245 if ((window_size != args.window_size) || bus_offset) {
2246 return NULL;
2248 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2249 if (fd < 0) {
2250 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2251 liobn);
2252 return NULL;
2254 } else {
2255 return NULL;
2258 len = nb_table * sizeof(uint64_t);
2259 /* FIXME: round this up to page size */
2261 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2262 if (table == MAP_FAILED) {
2263 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2264 liobn);
2265 close(fd);
2266 return NULL;
2269 *pfd = fd;
2270 return table;
2273 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2275 long len;
2277 if (fd < 0) {
2278 return -1;
2281 len = nb_table * sizeof(uint64_t);
2282 if ((munmap(table, len) < 0) ||
2283 (close(fd) < 0)) {
2284 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2285 strerror(errno));
2286 /* Leak the table */
2289 return 0;
2292 int kvmppc_reset_htab(int shift_hint)
2294 uint32_t shift = shift_hint;
2296 if (!kvm_enabled()) {
2297 /* Full emulation, tell caller to allocate htab itself */
2298 return 0;
2300 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2301 int ret;
2302 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2303 if (ret == -ENOTTY) {
2305 * At least some versions of PR KVM advertise the
2306 * capability, but don't implement the ioctl(). Oops.
2307 * Return 0 so that we allocate the htab in qemu, as is
2308 * correct for PR.
2310 return 0;
2311 } else if (ret < 0) {
2312 return ret;
2314 return shift;
2318 * We have a kernel that predates the htab reset calls. For PR
2319 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2320 * this era, it has allocated a 16MB fixed size hash table
2321 * already.
2323 if (kvmppc_is_pr(kvm_state)) {
2324 /* PR - tell caller to allocate htab */
2325 return 0;
2326 } else {
2327 /* HV - assume 16MB kernel allocated htab */
2328 return 24;
2332 static inline uint32_t mfpvr(void)
2334 uint32_t pvr;
2336 asm ("mfpvr %0"
2337 : "=r"(pvr));
2338 return pvr;
2341 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2343 if (on) {
2344 *word |= flags;
2345 } else {
2346 *word &= ~flags;
2350 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2352 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2353 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2354 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2356 /* Now fix up the class with information we can query from the host */
2357 pcc->pvr = mfpvr();
2359 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2360 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2361 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2362 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2363 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2364 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2366 if (dcache_size != -1) {
2367 pcc->l1_dcache_size = dcache_size;
2370 if (icache_size != -1) {
2371 pcc->l1_icache_size = icache_size;
2374 #if defined(TARGET_PPC64)
2375 pcc->radix_page_info = kvm_get_radix_page_info();
2377 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2379 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2380 * compliant. More importantly, advertising ISA 3.00
2381 * architected mode may prevent guests from activating
2382 * necessary DD1 workarounds.
2384 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2385 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2387 #endif /* defined(TARGET_PPC64) */
2390 bool kvmppc_has_cap_epr(void)
2392 return cap_epr;
2395 bool kvmppc_has_cap_fixup_hcalls(void)
2397 return cap_fixup_hcalls;
2400 bool kvmppc_has_cap_htm(void)
2402 return cap_htm;
2405 bool kvmppc_has_cap_mmu_radix(void)
2407 return cap_mmu_radix;
2410 bool kvmppc_has_cap_mmu_hash_v3(void)
2412 return cap_mmu_hash_v3;
2415 static bool kvmppc_power8_host(void)
2417 bool ret = false;
2418 #ifdef TARGET_PPC64
2420 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2421 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2422 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2423 (base_pvr == CPU_POWERPC_POWER8_BASE);
2425 #endif /* TARGET_PPC64 */
2426 return ret;
2429 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2431 bool l1d_thread_priv_req = !kvmppc_power8_host();
2433 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2434 return 2;
2435 } else if ((!l1d_thread_priv_req ||
2436 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2437 (c.character & c.character_mask
2438 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2439 return 1;
2442 return 0;
2445 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2447 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2448 return 2;
2449 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2450 return 1;
2453 return 0;
2456 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2458 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2459 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2460 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2461 return SPAPR_CAP_FIXED_NA;
2462 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2463 return SPAPR_CAP_WORKAROUND;
2464 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2465 return SPAPR_CAP_FIXED_CCD;
2466 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2467 return SPAPR_CAP_FIXED_IBS;
2470 return 0;
2473 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2475 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2476 return 1;
2478 return 0;
2481 bool kvmppc_has_cap_xive(void)
2483 return cap_xive;
2486 static void kvmppc_get_cpu_characteristics(KVMState *s)
2488 struct kvm_ppc_cpu_char c;
2489 int ret;
2491 /* Assume broken */
2492 cap_ppc_safe_cache = 0;
2493 cap_ppc_safe_bounds_check = 0;
2494 cap_ppc_safe_indirect_branch = 0;
2496 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2497 if (!ret) {
2498 return;
2500 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2501 if (ret < 0) {
2502 return;
2505 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2506 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2507 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2508 cap_ppc_count_cache_flush_assist =
2509 parse_cap_ppc_count_cache_flush_assist(c);
2512 int kvmppc_get_cap_safe_cache(void)
2514 return cap_ppc_safe_cache;
2517 int kvmppc_get_cap_safe_bounds_check(void)
2519 return cap_ppc_safe_bounds_check;
2522 int kvmppc_get_cap_safe_indirect_branch(void)
2524 return cap_ppc_safe_indirect_branch;
2527 int kvmppc_get_cap_count_cache_flush_assist(void)
2529 return cap_ppc_count_cache_flush_assist;
2532 bool kvmppc_has_cap_nested_kvm_hv(void)
2534 return !!cap_ppc_nested_kvm_hv;
2537 int kvmppc_set_cap_nested_kvm_hv(int enable)
2539 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2542 bool kvmppc_has_cap_spapr_vfio(void)
2544 return cap_spapr_vfio;
2547 int kvmppc_get_cap_large_decr(void)
2549 return cap_large_decr;
2552 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2554 CPUState *cs = CPU(cpu);
2555 uint64_t lpcr = 0;
2557 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2558 /* Do we need to modify the LPCR? */
2559 if (!!(lpcr & LPCR_LD) != !!enable) {
2560 if (enable) {
2561 lpcr |= LPCR_LD;
2562 } else {
2563 lpcr &= ~LPCR_LD;
2565 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2566 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2568 if (!!(lpcr & LPCR_LD) != !!enable) {
2569 return -1;
2573 return 0;
2576 int kvmppc_has_cap_rpt_invalidate(void)
2578 return cap_rpt_invalidate;
2581 bool kvmppc_supports_ail_3(void)
2583 return cap_ail_mode_3;
2586 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2588 uint32_t host_pvr = mfpvr();
2589 PowerPCCPUClass *pvr_pcc;
2591 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2592 if (pvr_pcc == NULL) {
2593 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2596 return pvr_pcc;
2599 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2601 MachineClass *mc = MACHINE_CLASS(oc);
2603 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2606 static int kvm_ppc_register_host_cpu_type(void)
2608 TypeInfo type_info = {
2609 .name = TYPE_HOST_POWERPC_CPU,
2610 .class_init = kvmppc_host_cpu_class_init,
2612 PowerPCCPUClass *pvr_pcc;
2613 ObjectClass *oc;
2614 DeviceClass *dc;
2615 int i;
2617 pvr_pcc = kvm_ppc_get_host_cpu_class();
2618 if (pvr_pcc == NULL) {
2619 return -1;
2621 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2622 type_register(&type_info);
2623 /* override TCG default cpu type with 'host' cpu model */
2624 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2625 false, NULL);
2627 oc = object_class_by_name(type_info.name);
2628 g_assert(oc);
2631 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2632 * we want "POWER8" to be a "family" alias that points to the current
2633 * host CPU type, too)
2635 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2636 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2637 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2638 char *suffix;
2640 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2641 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2642 if (suffix) {
2643 *suffix = 0;
2645 break;
2649 return 0;
2652 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2654 struct kvm_rtas_token_args args = {
2655 .token = token,
2658 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2659 return -ENOENT;
2662 strncpy(args.name, function, sizeof(args.name) - 1);
2664 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2667 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2669 struct kvm_get_htab_fd s = {
2670 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2671 .start_index = index,
2673 int ret;
2675 if (!cap_htab_fd) {
2676 error_setg(errp, "KVM version doesn't support %s the HPT",
2677 write ? "writing" : "reading");
2678 return -ENOTSUP;
2681 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2682 if (ret < 0) {
2683 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2684 write ? "writing" : "reading", write ? "to" : "from",
2685 strerror(errno));
2686 return -errno;
2689 return ret;
2692 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2694 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2695 uint8_t buf[bufsize];
2696 ssize_t rc;
2698 do {
2699 rc = read(fd, buf, bufsize);
2700 if (rc < 0) {
2701 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2702 strerror(errno));
2703 return rc;
2704 } else if (rc) {
2705 uint8_t *buffer = buf;
2706 ssize_t n = rc;
2707 while (n) {
2708 struct kvm_get_htab_header *head =
2709 (struct kvm_get_htab_header *) buffer;
2710 size_t chunksize = sizeof(*head) +
2711 HASH_PTE_SIZE_64 * head->n_valid;
2713 qemu_put_be32(f, head->index);
2714 qemu_put_be16(f, head->n_valid);
2715 qemu_put_be16(f, head->n_invalid);
2716 qemu_put_buffer(f, (void *)(head + 1),
2717 HASH_PTE_SIZE_64 * head->n_valid);
2719 buffer += chunksize;
2720 n -= chunksize;
2723 } while ((rc != 0)
2724 && ((max_ns < 0) ||
2725 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2727 return (rc == 0) ? 1 : 0;
2730 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2731 uint16_t n_valid, uint16_t n_invalid, Error **errp)
2733 struct kvm_get_htab_header *buf;
2734 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2735 ssize_t rc;
2737 buf = alloca(chunksize);
2738 buf->index = index;
2739 buf->n_valid = n_valid;
2740 buf->n_invalid = n_invalid;
2742 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2744 rc = write(fd, buf, chunksize);
2745 if (rc < 0) {
2746 error_setg_errno(errp, errno, "Error writing the KVM hash table");
2747 return -errno;
2749 if (rc != chunksize) {
2750 /* We should never get a short write on a single chunk */
2751 error_setg(errp, "Short write while restoring the KVM hash table");
2752 return -ENOSPC;
2754 return 0;
2757 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2759 return true;
2762 void kvm_arch_init_irq_routing(KVMState *s)
2766 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2768 int fd, rc;
2769 int i;
2771 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2773 i = 0;
2774 while (i < n) {
2775 struct kvm_get_htab_header *hdr;
2776 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2777 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2779 rc = read(fd, buf, sizeof(buf));
2780 if (rc < 0) {
2781 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2784 hdr = (struct kvm_get_htab_header *)buf;
2785 while ((i < n) && ((char *)hdr < (buf + rc))) {
2786 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2788 if (hdr->index != (ptex + i)) {
2789 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2790 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2793 if (n - i < valid) {
2794 valid = n - i;
2796 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2797 i += valid;
2799 if ((n - i) < invalid) {
2800 invalid = n - i;
2802 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2803 i += invalid;
2805 hdr = (struct kvm_get_htab_header *)
2806 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2810 close(fd);
2813 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2815 int fd, rc;
2816 struct {
2817 struct kvm_get_htab_header hdr;
2818 uint64_t pte0;
2819 uint64_t pte1;
2820 } buf;
2822 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2824 buf.hdr.n_valid = 1;
2825 buf.hdr.n_invalid = 0;
2826 buf.hdr.index = ptex;
2827 buf.pte0 = cpu_to_be64(pte0);
2828 buf.pte1 = cpu_to_be64(pte1);
2830 rc = write(fd, &buf, sizeof(buf));
2831 if (rc != sizeof(buf)) {
2832 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2834 close(fd);
2837 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2838 uint64_t address, uint32_t data, PCIDevice *dev)
2840 return 0;
2843 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2844 int vector, PCIDevice *dev)
2846 return 0;
2849 int kvm_arch_release_virq_post(int virq)
2851 return 0;
2854 int kvm_arch_msi_data_to_gsi(uint32_t data)
2856 return data & 0xffff;
2859 #if defined(TARGET_PPC64)
2860 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2862 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2864 cpu_synchronize_state(CPU(cpu));
2866 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2868 return 0;
2870 #endif
2872 int kvmppc_enable_hwrng(void)
2874 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2875 return -1;
2878 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2881 void kvmppc_check_papr_resize_hpt(Error **errp)
2883 if (!kvm_enabled()) {
2884 return; /* No KVM, we're good */
2887 if (cap_resize_hpt) {
2888 return; /* Kernel has explicit support, we're good */
2891 /* Otherwise fallback on looking for PR KVM */
2892 if (kvmppc_is_pr(kvm_state)) {
2893 return;
2896 error_setg(errp,
2897 "Hash page table resizing not available with this KVM version");
2900 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2902 CPUState *cs = CPU(cpu);
2903 struct kvm_ppc_resize_hpt rhpt = {
2904 .flags = flags,
2905 .shift = shift,
2908 if (!cap_resize_hpt) {
2909 return -ENOSYS;
2912 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2915 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2917 CPUState *cs = CPU(cpu);
2918 struct kvm_ppc_resize_hpt rhpt = {
2919 .flags = flags,
2920 .shift = shift,
2923 if (!cap_resize_hpt) {
2924 return -ENOSYS;
2927 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2931 * This is a helper function to detect a post migration scenario
2932 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2933 * the guest kernel can't handle a PVR value other than the actual host
2934 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2936 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2937 * (so, we're HV), return true. The workaround itself is done in
2938 * cpu_post_load.
2940 * The order here is important: we'll only check for KVM PR as a
2941 * fallback if the guest kernel can't handle the situation itself.
2942 * We need to avoid as much as possible querying the running KVM type
2943 * in QEMU level.
2945 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2947 CPUState *cs = CPU(cpu);
2949 if (!kvm_enabled()) {
2950 return false;
2953 if (cap_ppc_pvr_compat) {
2954 return false;
2957 return !kvmppc_is_pr(cs->kvm_state);
2960 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2962 CPUState *cs = CPU(cpu);
2964 if (kvm_enabled()) {
2965 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2969 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2971 CPUState *cs = CPU(cpu);
2973 if (kvm_enabled()) {
2974 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2978 bool kvm_arch_cpu_check_are_resettable(void)
2980 return true;
2983 void kvm_arch_accel_class_init(ObjectClass *oc)