hw/virtio/virtio-pci: Avoid compiler warning with -Wshadow
[qemu/ar7.git] / target / arm / arm-powerctl.c
blob326a03153df7df3f5f95d863080f512cde07b210
1 /*
2 * QEMU support -- ARM Power Control specific functions.
4 * Copyright (c) 2016 Jean-Christophe Dubois
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 #include "sysemu/tcg.h"
20 #ifndef DEBUG_ARM_POWERCTL
21 #define DEBUG_ARM_POWERCTL 0
22 #endif
24 #define DPRINTF(fmt, args...) \
25 do { \
26 if (DEBUG_ARM_POWERCTL) { \
27 fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
28 } \
29 } while (0)
31 CPUState *arm_get_cpu_by_id(uint64_t id)
33 CPUState *cpu;
35 DPRINTF("cpu %" PRId64 "\n", id);
37 CPU_FOREACH(cpu) {
38 ARMCPU *armcpu = ARM_CPU(cpu);
40 if (armcpu->mp_affinity == id) {
41 return cpu;
45 qemu_log_mask(LOG_GUEST_ERROR,
46 "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
47 __func__, id);
49 return NULL;
52 struct CpuOnInfo {
53 uint64_t entry;
54 uint64_t context_id;
55 uint32_t target_el;
56 bool target_aa64;
60 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
61 run_on_cpu_data data)
63 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
64 struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
66 /* Initialize the cpu we are turning on */
67 cpu_reset(target_cpu_state);
68 target_cpu_state->halted = 0;
70 if (info->target_aa64) {
71 if ((info->target_el < 3) && arm_feature(&target_cpu->env,
72 ARM_FEATURE_EL3)) {
74 * As target mode is AArch64, we need to set lower
75 * exception level (the requested level 2) to AArch64
77 target_cpu->env.cp15.scr_el3 |= SCR_RW;
80 if ((info->target_el < 2) && arm_feature(&target_cpu->env,
81 ARM_FEATURE_EL2)) {
83 * As target mode is AArch64, we need to set lower
84 * exception level (the requested level 1) to AArch64
86 target_cpu->env.cp15.hcr_el2 |= HCR_RW;
89 target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
90 } else {
91 /* We are requested to boot in AArch32 mode */
92 static const uint32_t mode_for_el[] = { 0,
93 ARM_CPU_MODE_SVC,
94 ARM_CPU_MODE_HYP,
95 ARM_CPU_MODE_SVC };
97 cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
98 CPSRWriteRaw);
101 if (info->target_el == 3) {
102 /* Processor is in secure mode */
103 target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
104 } else {
105 /* Processor is not in secure mode */
106 target_cpu->env.cp15.scr_el3 |= SCR_NS;
108 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
109 target_cpu->env.cp15.nsacr |= 3 << 10;
112 * If QEMU is providing the equivalent of EL3 firmware, then we need
113 * to make sure a CPU targeting EL2 comes out of reset with a
114 * functional HVC insn.
116 if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
117 && info->target_el == 2) {
118 target_cpu->env.cp15.scr_el3 |= SCR_HCE;
122 /* We check if the started CPU is now at the correct level */
123 assert(info->target_el == arm_current_el(&target_cpu->env));
125 if (info->target_aa64) {
126 target_cpu->env.xregs[0] = info->context_id;
127 } else {
128 target_cpu->env.regs[0] = info->context_id;
131 if (tcg_enabled()) {
132 /* CP15 update requires rebuilding hflags */
133 arm_rebuild_hflags(&target_cpu->env);
136 /* Start the new CPU at the requested address */
137 cpu_set_pc(target_cpu_state, info->entry);
139 g_free(info);
141 /* Finally set the power status */
142 assert(qemu_mutex_iothread_locked());
143 target_cpu->power_state = PSCI_ON;
146 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
147 uint32_t target_el, bool target_aa64)
149 CPUState *target_cpu_state;
150 ARMCPU *target_cpu;
151 struct CpuOnInfo *info;
153 assert(qemu_mutex_iothread_locked());
155 DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
156 "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
157 context_id);
159 /* requested EL level need to be in the 1 to 3 range */
160 assert((target_el > 0) && (target_el < 4));
162 if (target_aa64 && (entry & 3)) {
164 * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
165 * aligned.
167 return QEMU_ARM_POWERCTL_INVALID_PARAM;
170 /* Retrieve the cpu we are powering up */
171 target_cpu_state = arm_get_cpu_by_id(cpuid);
172 if (!target_cpu_state) {
173 /* The cpu was not found */
174 return QEMU_ARM_POWERCTL_INVALID_PARAM;
177 target_cpu = ARM_CPU(target_cpu_state);
178 if (target_cpu->power_state == PSCI_ON) {
179 qemu_log_mask(LOG_GUEST_ERROR,
180 "[ARM]%s: CPU %" PRId64 " is already on\n",
181 __func__, cpuid);
182 return QEMU_ARM_POWERCTL_ALREADY_ON;
186 * The newly brought CPU is requested to enter the exception level
187 * "target_el" and be in the requested mode (AArch64 or AArch32).
190 if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
191 ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
193 * The CPU does not support requested level
195 return QEMU_ARM_POWERCTL_INVALID_PARAM;
198 if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
200 * For now we don't support booting an AArch64 CPU in AArch32 mode
201 * TODO: We should add this support later
203 qemu_log_mask(LOG_UNIMP,
204 "[ARM]%s: Starting AArch64 CPU %" PRId64
205 " in AArch32 mode is not supported yet\n",
206 __func__, cpuid);
207 return QEMU_ARM_POWERCTL_INVALID_PARAM;
211 * If another CPU has powered the target on we are in the state
212 * ON_PENDING and additional attempts to power on the CPU should
213 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
214 * spec)
216 if (target_cpu->power_state == PSCI_ON_PENDING) {
217 qemu_log_mask(LOG_GUEST_ERROR,
218 "[ARM]%s: CPU %" PRId64 " is already powering on\n",
219 __func__, cpuid);
220 return QEMU_ARM_POWERCTL_ON_PENDING;
223 /* To avoid racing with a CPU we are just kicking off we do the
224 * final bit of preparation for the work in the target CPUs
225 * context.
227 info = g_new(struct CpuOnInfo, 1);
228 info->entry = entry;
229 info->context_id = context_id;
230 info->target_el = target_el;
231 info->target_aa64 = target_aa64;
233 async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
234 RUN_ON_CPU_HOST_PTR(info));
236 /* We are good to go */
237 return QEMU_ARM_POWERCTL_RET_SUCCESS;
240 static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
241 run_on_cpu_data data)
243 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
245 /* Initialize the cpu we are turning on */
246 cpu_reset(target_cpu_state);
247 target_cpu_state->halted = 0;
249 /* Finally set the power status */
250 assert(qemu_mutex_iothread_locked());
251 target_cpu->power_state = PSCI_ON;
254 int arm_set_cpu_on_and_reset(uint64_t cpuid)
256 CPUState *target_cpu_state;
257 ARMCPU *target_cpu;
259 assert(qemu_mutex_iothread_locked());
261 /* Retrieve the cpu we are powering up */
262 target_cpu_state = arm_get_cpu_by_id(cpuid);
263 if (!target_cpu_state) {
264 /* The cpu was not found */
265 return QEMU_ARM_POWERCTL_INVALID_PARAM;
268 target_cpu = ARM_CPU(target_cpu_state);
269 if (target_cpu->power_state == PSCI_ON) {
270 qemu_log_mask(LOG_GUEST_ERROR,
271 "[ARM]%s: CPU %" PRId64 " is already on\n",
272 __func__, cpuid);
273 return QEMU_ARM_POWERCTL_ALREADY_ON;
277 * If another CPU has powered the target on we are in the state
278 * ON_PENDING and additional attempts to power on the CPU should
279 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
280 * spec)
282 if (target_cpu->power_state == PSCI_ON_PENDING) {
283 qemu_log_mask(LOG_GUEST_ERROR,
284 "[ARM]%s: CPU %" PRId64 " is already powering on\n",
285 __func__, cpuid);
286 return QEMU_ARM_POWERCTL_ON_PENDING;
289 async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
290 RUN_ON_CPU_NULL);
292 /* We are good to go */
293 return QEMU_ARM_POWERCTL_RET_SUCCESS;
296 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
297 run_on_cpu_data data)
299 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
301 assert(qemu_mutex_iothread_locked());
302 target_cpu->power_state = PSCI_OFF;
303 target_cpu_state->halted = 1;
304 target_cpu_state->exception_index = EXCP_HLT;
307 int arm_set_cpu_off(uint64_t cpuid)
309 CPUState *target_cpu_state;
310 ARMCPU *target_cpu;
312 assert(qemu_mutex_iothread_locked());
314 DPRINTF("cpu %" PRId64 "\n", cpuid);
316 /* change to the cpu we are powering up */
317 target_cpu_state = arm_get_cpu_by_id(cpuid);
318 if (!target_cpu_state) {
319 return QEMU_ARM_POWERCTL_INVALID_PARAM;
321 target_cpu = ARM_CPU(target_cpu_state);
322 if (target_cpu->power_state == PSCI_OFF) {
323 qemu_log_mask(LOG_GUEST_ERROR,
324 "[ARM]%s: CPU %" PRId64 " is already off\n",
325 __func__, cpuid);
326 return QEMU_ARM_POWERCTL_IS_OFF;
329 /* Queue work to run under the target vCPUs context */
330 async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
331 RUN_ON_CPU_NULL);
333 return QEMU_ARM_POWERCTL_RET_SUCCESS;
336 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
337 run_on_cpu_data data)
339 /* Reset the cpu */
340 cpu_reset(target_cpu_state);
343 int arm_reset_cpu(uint64_t cpuid)
345 CPUState *target_cpu_state;
346 ARMCPU *target_cpu;
348 assert(qemu_mutex_iothread_locked());
350 DPRINTF("cpu %" PRId64 "\n", cpuid);
352 /* change to the cpu we are resetting */
353 target_cpu_state = arm_get_cpu_by_id(cpuid);
354 if (!target_cpu_state) {
355 return QEMU_ARM_POWERCTL_INVALID_PARAM;
357 target_cpu = ARM_CPU(target_cpu_state);
359 if (target_cpu->power_state == PSCI_OFF) {
360 qemu_log_mask(LOG_GUEST_ERROR,
361 "[ARM]%s: CPU %" PRId64 " is off\n",
362 __func__, cpuid);
363 return QEMU_ARM_POWERCTL_IS_OFF;
366 /* Queue work to run under the target vCPUs context */
367 async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
368 RUN_ON_CPU_NULL);
370 return QEMU_ARM_POWERCTL_RET_SUCCESS;