2 * QEMU support -- ARM Power Control specific functions.
4 * Copyright (c) 2016 Jean-Christophe Dubois
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
17 #include "qemu/main-loop.h"
18 #include "sysemu/tcg.h"
20 #ifndef DEBUG_ARM_POWERCTL
21 #define DEBUG_ARM_POWERCTL 0
24 #define DPRINTF(fmt, args...) \
26 if (DEBUG_ARM_POWERCTL) { \
27 fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
31 CPUState
*arm_get_cpu_by_id(uint64_t id
)
35 DPRINTF("cpu %" PRId64
"\n", id
);
38 ARMCPU
*armcpu
= ARM_CPU(cpu
);
40 if (armcpu
->mp_affinity
== id
) {
45 qemu_log_mask(LOG_GUEST_ERROR
,
46 "[ARM]%s: Requesting unknown CPU %" PRId64
"\n",
60 static void arm_set_cpu_on_async_work(CPUState
*target_cpu_state
,
63 ARMCPU
*target_cpu
= ARM_CPU(target_cpu_state
);
64 struct CpuOnInfo
*info
= (struct CpuOnInfo
*) data
.host_ptr
;
66 /* Initialize the cpu we are turning on */
67 cpu_reset(target_cpu_state
);
68 target_cpu_state
->halted
= 0;
70 if (info
->target_aa64
) {
71 if ((info
->target_el
< 3) && arm_feature(&target_cpu
->env
,
74 * As target mode is AArch64, we need to set lower
75 * exception level (the requested level 2) to AArch64
77 target_cpu
->env
.cp15
.scr_el3
|= SCR_RW
;
80 if ((info
->target_el
< 2) && arm_feature(&target_cpu
->env
,
83 * As target mode is AArch64, we need to set lower
84 * exception level (the requested level 1) to AArch64
86 target_cpu
->env
.cp15
.hcr_el2
|= HCR_RW
;
89 target_cpu
->env
.pstate
= aarch64_pstate_mode(info
->target_el
, true);
91 /* We are requested to boot in AArch32 mode */
92 static const uint32_t mode_for_el
[] = { 0,
97 cpsr_write(&target_cpu
->env
, mode_for_el
[info
->target_el
], CPSR_M
,
101 if (info
->target_el
== 3) {
102 /* Processor is in secure mode */
103 target_cpu
->env
.cp15
.scr_el3
&= ~SCR_NS
;
105 /* Processor is not in secure mode */
106 target_cpu
->env
.cp15
.scr_el3
|= SCR_NS
;
108 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
109 target_cpu
->env
.cp15
.nsacr
|= 3 << 10;
112 * If QEMU is providing the equivalent of EL3 firmware, then we need
113 * to make sure a CPU targeting EL2 comes out of reset with a
114 * functional HVC insn.
116 if (arm_feature(&target_cpu
->env
, ARM_FEATURE_EL3
)
117 && info
->target_el
== 2) {
118 target_cpu
->env
.cp15
.scr_el3
|= SCR_HCE
;
122 /* We check if the started CPU is now at the correct level */
123 assert(info
->target_el
== arm_current_el(&target_cpu
->env
));
125 if (info
->target_aa64
) {
126 target_cpu
->env
.xregs
[0] = info
->context_id
;
128 target_cpu
->env
.regs
[0] = info
->context_id
;
132 /* CP15 update requires rebuilding hflags */
133 arm_rebuild_hflags(&target_cpu
->env
);
136 /* Start the new CPU at the requested address */
137 cpu_set_pc(target_cpu_state
, info
->entry
);
141 /* Finally set the power status */
142 assert(qemu_mutex_iothread_locked());
143 target_cpu
->power_state
= PSCI_ON
;
146 int arm_set_cpu_on(uint64_t cpuid
, uint64_t entry
, uint64_t context_id
,
147 uint32_t target_el
, bool target_aa64
)
149 CPUState
*target_cpu_state
;
151 struct CpuOnInfo
*info
;
153 assert(qemu_mutex_iothread_locked());
155 DPRINTF("cpu %" PRId64
" (EL %d, %s) @ 0x%" PRIx64
" with R0 = 0x%" PRIx64
156 "\n", cpuid
, target_el
, target_aa64
? "aarch64" : "aarch32", entry
,
159 /* requested EL level need to be in the 1 to 3 range */
160 assert((target_el
> 0) && (target_el
< 4));
162 if (target_aa64
&& (entry
& 3)) {
164 * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
167 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
170 /* Retrieve the cpu we are powering up */
171 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
172 if (!target_cpu_state
) {
173 /* The cpu was not found */
174 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
177 target_cpu
= ARM_CPU(target_cpu_state
);
178 if (target_cpu
->power_state
== PSCI_ON
) {
179 qemu_log_mask(LOG_GUEST_ERROR
,
180 "[ARM]%s: CPU %" PRId64
" is already on\n",
182 return QEMU_ARM_POWERCTL_ALREADY_ON
;
186 * The newly brought CPU is requested to enter the exception level
187 * "target_el" and be in the requested mode (AArch64 or AArch32).
190 if (((target_el
== 3) && !arm_feature(&target_cpu
->env
, ARM_FEATURE_EL3
)) ||
191 ((target_el
== 2) && !arm_feature(&target_cpu
->env
, ARM_FEATURE_EL2
))) {
193 * The CPU does not support requested level
195 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
198 if (!target_aa64
&& arm_feature(&target_cpu
->env
, ARM_FEATURE_AARCH64
)) {
200 * For now we don't support booting an AArch64 CPU in AArch32 mode
201 * TODO: We should add this support later
203 qemu_log_mask(LOG_UNIMP
,
204 "[ARM]%s: Starting AArch64 CPU %" PRId64
205 " in AArch32 mode is not supported yet\n",
207 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
211 * If another CPU has powered the target on we are in the state
212 * ON_PENDING and additional attempts to power on the CPU should
213 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
216 if (target_cpu
->power_state
== PSCI_ON_PENDING
) {
217 qemu_log_mask(LOG_GUEST_ERROR
,
218 "[ARM]%s: CPU %" PRId64
" is already powering on\n",
220 return QEMU_ARM_POWERCTL_ON_PENDING
;
223 /* To avoid racing with a CPU we are just kicking off we do the
224 * final bit of preparation for the work in the target CPUs
227 info
= g_new(struct CpuOnInfo
, 1);
229 info
->context_id
= context_id
;
230 info
->target_el
= target_el
;
231 info
->target_aa64
= target_aa64
;
233 async_run_on_cpu(target_cpu_state
, arm_set_cpu_on_async_work
,
234 RUN_ON_CPU_HOST_PTR(info
));
236 /* We are good to go */
237 return QEMU_ARM_POWERCTL_RET_SUCCESS
;
240 static void arm_set_cpu_on_and_reset_async_work(CPUState
*target_cpu_state
,
241 run_on_cpu_data data
)
243 ARMCPU
*target_cpu
= ARM_CPU(target_cpu_state
);
245 /* Initialize the cpu we are turning on */
246 cpu_reset(target_cpu_state
);
247 target_cpu_state
->halted
= 0;
249 /* Finally set the power status */
250 assert(qemu_mutex_iothread_locked());
251 target_cpu
->power_state
= PSCI_ON
;
254 int arm_set_cpu_on_and_reset(uint64_t cpuid
)
256 CPUState
*target_cpu_state
;
259 assert(qemu_mutex_iothread_locked());
261 /* Retrieve the cpu we are powering up */
262 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
263 if (!target_cpu_state
) {
264 /* The cpu was not found */
265 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
268 target_cpu
= ARM_CPU(target_cpu_state
);
269 if (target_cpu
->power_state
== PSCI_ON
) {
270 qemu_log_mask(LOG_GUEST_ERROR
,
271 "[ARM]%s: CPU %" PRId64
" is already on\n",
273 return QEMU_ARM_POWERCTL_ALREADY_ON
;
277 * If another CPU has powered the target on we are in the state
278 * ON_PENDING and additional attempts to power on the CPU should
279 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
282 if (target_cpu
->power_state
== PSCI_ON_PENDING
) {
283 qemu_log_mask(LOG_GUEST_ERROR
,
284 "[ARM]%s: CPU %" PRId64
" is already powering on\n",
286 return QEMU_ARM_POWERCTL_ON_PENDING
;
289 async_run_on_cpu(target_cpu_state
, arm_set_cpu_on_and_reset_async_work
,
292 /* We are good to go */
293 return QEMU_ARM_POWERCTL_RET_SUCCESS
;
296 static void arm_set_cpu_off_async_work(CPUState
*target_cpu_state
,
297 run_on_cpu_data data
)
299 ARMCPU
*target_cpu
= ARM_CPU(target_cpu_state
);
301 assert(qemu_mutex_iothread_locked());
302 target_cpu
->power_state
= PSCI_OFF
;
303 target_cpu_state
->halted
= 1;
304 target_cpu_state
->exception_index
= EXCP_HLT
;
307 int arm_set_cpu_off(uint64_t cpuid
)
309 CPUState
*target_cpu_state
;
312 assert(qemu_mutex_iothread_locked());
314 DPRINTF("cpu %" PRId64
"\n", cpuid
);
316 /* change to the cpu we are powering up */
317 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
318 if (!target_cpu_state
) {
319 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
321 target_cpu
= ARM_CPU(target_cpu_state
);
322 if (target_cpu
->power_state
== PSCI_OFF
) {
323 qemu_log_mask(LOG_GUEST_ERROR
,
324 "[ARM]%s: CPU %" PRId64
" is already off\n",
326 return QEMU_ARM_POWERCTL_IS_OFF
;
329 /* Queue work to run under the target vCPUs context */
330 async_run_on_cpu(target_cpu_state
, arm_set_cpu_off_async_work
,
333 return QEMU_ARM_POWERCTL_RET_SUCCESS
;
336 static void arm_reset_cpu_async_work(CPUState
*target_cpu_state
,
337 run_on_cpu_data data
)
340 cpu_reset(target_cpu_state
);
343 int arm_reset_cpu(uint64_t cpuid
)
345 CPUState
*target_cpu_state
;
348 assert(qemu_mutex_iothread_locked());
350 DPRINTF("cpu %" PRId64
"\n", cpuid
);
352 /* change to the cpu we are resetting */
353 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
354 if (!target_cpu_state
) {
355 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
357 target_cpu
= ARM_CPU(target_cpu_state
);
359 if (target_cpu
->power_state
== PSCI_OFF
) {
360 qemu_log_mask(LOG_GUEST_ERROR
,
361 "[ARM]%s: CPU %" PRId64
" is off\n",
363 return QEMU_ARM_POWERCTL_IS_OFF
;
366 /* Queue work to run under the target vCPUs context */
367 async_run_on_cpu(target_cpu_state
, arm_reset_cpu_async_work
,
370 return QEMU_ARM_POWERCTL_RET_SUCCESS
;