arm/acpi: Add the TPM2.0 device under the DSDT
[qemu/ar7.git] / target / riscv / cpu_helper.c
blob75d2ae34349808740b54b66f10d9641467899667
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
40 target_ulong irqs;
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
61 if (pending_hs_irq) {
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
66 pending = vspending;
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
71 if (irqs) {
72 return ctz64(irqs); /* since non-zero */
73 } else {
74 return EXCP_NONE; /* indicates no pending interrupt */
77 #endif
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
81 #if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
85 int interruptno = riscv_cpu_local_irq_pending(env);
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
89 return true;
92 #endif
93 return false;
96 #if !defined(CONFIG_USER_ONLY)
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
101 if (env->mstatus & MSTATUS_FS) {
102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
103 return false;
105 return true;
108 return false;
111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
113 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
115 bool current_virt = riscv_cpu_virt_enabled(env);
117 g_assert(riscv_has_ext(env, RVH));
119 #if defined(TARGET_RISCV64)
120 mstatus_mask |= MSTATUS64_UXL;
121 #endif
123 if (current_virt) {
124 /* Current V=1 and we are about to change to V=0 */
125 env->vsstatus = env->mstatus & mstatus_mask;
126 env->mstatus &= ~mstatus_mask;
127 env->mstatus |= env->mstatus_hs;
129 #if defined(TARGET_RISCV32)
130 env->vsstatush = env->mstatush;
131 env->mstatush |= env->mstatush_hs;
132 #endif
134 env->vstvec = env->stvec;
135 env->stvec = env->stvec_hs;
137 env->vsscratch = env->sscratch;
138 env->sscratch = env->sscratch_hs;
140 env->vsepc = env->sepc;
141 env->sepc = env->sepc_hs;
143 env->vscause = env->scause;
144 env->scause = env->scause_hs;
146 env->vstval = env->sbadaddr;
147 env->sbadaddr = env->stval_hs;
149 env->vsatp = env->satp;
150 env->satp = env->satp_hs;
151 } else {
152 /* Current V=0 and we are about to change to V=1 */
153 env->mstatus_hs = env->mstatus & mstatus_mask;
154 env->mstatus &= ~mstatus_mask;
155 env->mstatus |= env->vsstatus;
157 #if defined(TARGET_RISCV32)
158 env->mstatush_hs = env->mstatush;
159 env->mstatush |= env->vsstatush;
160 #endif
162 env->stvec_hs = env->stvec;
163 env->stvec = env->vstvec;
165 env->sscratch_hs = env->sscratch;
166 env->sscratch = env->vsscratch;
168 env->sepc_hs = env->sepc;
169 env->sepc = env->vsepc;
171 env->scause_hs = env->scause;
172 env->scause = env->vscause;
174 env->stval_hs = env->sbadaddr;
175 env->sbadaddr = env->vstval;
177 env->satp_hs = env->satp;
178 env->satp = env->vsatp;
182 bool riscv_cpu_virt_enabled(CPURISCVState *env)
184 if (!riscv_has_ext(env, RVH)) {
185 return false;
188 return get_field(env->virt, VIRT_ONOFF);
191 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
193 if (!riscv_has_ext(env, RVH)) {
194 return;
197 /* Flush the TLB on all virt mode changes. */
198 if (get_field(env->virt, VIRT_ONOFF) != enable) {
199 tlb_flush(env_cpu(env));
202 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
205 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
207 if (!riscv_has_ext(env, RVH)) {
208 return false;
211 return get_field(env->virt, FORCE_HS_EXCEP);
214 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
216 if (!riscv_has_ext(env, RVH)) {
217 return;
220 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
223 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
225 CPURISCVState *env = &cpu->env;
226 if (env->miclaim & interrupts) {
227 return -1;
228 } else {
229 env->miclaim |= interrupts;
230 return 0;
234 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
236 CPURISCVState *env = &cpu->env;
237 CPUState *cs = CPU(cpu);
238 uint32_t old = env->mip;
239 bool locked = false;
241 if (!qemu_mutex_iothread_locked()) {
242 locked = true;
243 qemu_mutex_lock_iothread();
246 env->mip = (env->mip & ~mask) | (value & mask);
248 if (env->mip) {
249 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
250 } else {
251 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
254 if (locked) {
255 qemu_mutex_unlock_iothread();
258 return old;
261 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void))
263 env->rdtime_fn = fn;
266 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
268 if (newpriv > PRV_M) {
269 g_assert_not_reached();
271 if (newpriv == PRV_H) {
272 newpriv = PRV_U;
274 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
275 env->priv = newpriv;
278 * Clear the load reservation - otherwise a reservation placed in one
279 * context/process can be used by another, resulting in an SC succeeding
280 * incorrectly. Version 2.2 of the ISA specification explicitly requires
281 * this behaviour, while later revisions say that the kernel "should" use
282 * an SC instruction to force the yielding of a load reservation on a
283 * preemptive context switch. As a result, do both.
285 env->load_res = -1;
288 /* get_physical_address - get the physical address for this virtual address
290 * Do a page table walk to obtain the physical address corresponding to a
291 * virtual address. Returns 0 if the translation was successful
293 * Adapted from Spike's mmu_t::translate and mmu_t::walk
295 * @env: CPURISCVState
296 * @physical: This will be set to the calculated physical address
297 * @prot: The returned protection attributes
298 * @addr: The virtual address to be translated
299 * @access_type: The type of MMU access
300 * @mmu_idx: Indicates current privilege level
301 * @first_stage: Are we in first stage translation?
302 * Second stage is used for hypervisor guest translation
303 * @two_stage: Are we going to perform two stage translation
305 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
306 int *prot, target_ulong addr,
307 int access_type, int mmu_idx,
308 bool first_stage, bool two_stage)
310 /* NOTE: the env->pc value visible here will not be
311 * correct, but the value visible to the exception handler
312 * (riscv_cpu_do_interrupt) is correct */
313 MemTxResult res;
314 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
315 int mode = mmu_idx;
316 bool use_background = false;
319 * Check if we should use the background registers for the two
320 * stage translation. We don't need to check if we actually need
321 * two stage translation as that happened before this function
322 * was called. Background registers will be used if the guest has
323 * forced a two stage translation to be on (in HS or M mode).
325 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
326 if (get_field(env->mstatus, MSTATUS_MPRV)) {
327 mode = get_field(env->mstatus, MSTATUS_MPP);
329 if (riscv_has_ext(env, RVH) &&
330 MSTATUS_MPV_ISSET(env)) {
331 use_background = true;
336 if (mode == PRV_S && access_type != MMU_INST_FETCH &&
337 riscv_has_ext(env, RVH) && !riscv_cpu_virt_enabled(env)) {
338 if (get_field(env->hstatus, HSTATUS_SPRV)) {
339 mode = get_field(env->mstatus, SSTATUS_SPP);
340 use_background = true;
344 if (first_stage == false) {
345 /* We are in stage 2 translation, this is similar to stage 1. */
346 /* Stage 2 is always taken as U-mode */
347 mode = PRV_U;
350 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
351 *physical = addr;
352 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
353 return TRANSLATE_SUCCESS;
356 *prot = 0;
358 hwaddr base;
359 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
361 if (first_stage == true) {
362 mxr = get_field(env->mstatus, MSTATUS_MXR);
363 } else {
364 mxr = get_field(env->vsstatus, MSTATUS_MXR);
367 if (first_stage == true) {
368 if (use_background) {
369 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
370 vm = get_field(env->vsatp, SATP_MODE);
371 } else {
372 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
373 vm = get_field(env->satp, SATP_MODE);
375 widened = 0;
376 } else {
377 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
378 vm = get_field(env->hgatp, HGATP_MODE);
379 widened = 2;
381 sum = get_field(env->mstatus, MSTATUS_SUM);
382 switch (vm) {
383 case VM_1_10_SV32:
384 levels = 2; ptidxbits = 10; ptesize = 4; break;
385 case VM_1_10_SV39:
386 levels = 3; ptidxbits = 9; ptesize = 8; break;
387 case VM_1_10_SV48:
388 levels = 4; ptidxbits = 9; ptesize = 8; break;
389 case VM_1_10_SV57:
390 levels = 5; ptidxbits = 9; ptesize = 8; break;
391 case VM_1_10_MBARE:
392 *physical = addr;
393 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
394 return TRANSLATE_SUCCESS;
395 default:
396 g_assert_not_reached();
399 CPUState *cs = env_cpu(env);
400 int va_bits = PGSHIFT + levels * ptidxbits + widened;
401 target_ulong mask, masked_msbs;
403 if (TARGET_LONG_BITS > (va_bits - 1)) {
404 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
405 } else {
406 mask = 0;
408 masked_msbs = (addr >> (va_bits - 1)) & mask;
410 if (masked_msbs != 0 && masked_msbs != mask) {
411 return TRANSLATE_FAIL;
414 int ptshift = (levels - 1) * ptidxbits;
415 int i;
417 #if !TCG_OVERSIZED_GUEST
418 restart:
419 #endif
420 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
421 target_ulong idx;
422 if (i == 0) {
423 idx = (addr >> (PGSHIFT + ptshift)) &
424 ((1 << (ptidxbits + widened)) - 1);
425 } else {
426 idx = (addr >> (PGSHIFT + ptshift)) &
427 ((1 << ptidxbits) - 1);
430 /* check that physical address of PTE is legal */
431 hwaddr pte_addr;
433 if (two_stage && first_stage) {
434 int vbase_prot;
435 hwaddr vbase;
437 /* Do the second stage translation on the base PTE address. */
438 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
439 base, MMU_DATA_LOAD,
440 mmu_idx, false, true);
442 if (vbase_ret != TRANSLATE_SUCCESS) {
443 return vbase_ret;
446 pte_addr = vbase + idx * ptesize;
447 } else {
448 pte_addr = base + idx * ptesize;
451 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
452 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
453 1 << MMU_DATA_LOAD, PRV_S)) {
454 return TRANSLATE_PMP_FAIL;
457 #if defined(TARGET_RISCV32)
458 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
459 #elif defined(TARGET_RISCV64)
460 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
461 #endif
462 if (res != MEMTX_OK) {
463 return TRANSLATE_FAIL;
466 hwaddr ppn = pte >> PTE_PPN_SHIFT;
468 if (!(pte & PTE_V)) {
469 /* Invalid PTE */
470 return TRANSLATE_FAIL;
471 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
472 /* Inner PTE, continue walking */
473 base = ppn << PGSHIFT;
474 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
475 /* Reserved leaf PTE flags: PTE_W */
476 return TRANSLATE_FAIL;
477 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
478 /* Reserved leaf PTE flags: PTE_W + PTE_X */
479 return TRANSLATE_FAIL;
480 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
481 (!sum || access_type == MMU_INST_FETCH))) {
482 /* User PTE flags when not U mode and mstatus.SUM is not set,
483 or the access type is an instruction fetch */
484 return TRANSLATE_FAIL;
485 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
486 /* Supervisor PTE flags when not S mode */
487 return TRANSLATE_FAIL;
488 } else if (ppn & ((1ULL << ptshift) - 1)) {
489 /* Misaligned PPN */
490 return TRANSLATE_FAIL;
491 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
492 ((pte & PTE_X) && mxr))) {
493 /* Read access check failed */
494 return TRANSLATE_FAIL;
495 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
496 /* Write access check failed */
497 return TRANSLATE_FAIL;
498 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
499 /* Fetch access check failed */
500 return TRANSLATE_FAIL;
501 } else {
502 /* if necessary, set accessed and dirty bits. */
503 target_ulong updated_pte = pte | PTE_A |
504 (access_type == MMU_DATA_STORE ? PTE_D : 0);
506 /* Page table updates need to be atomic with MTTCG enabled */
507 if (updated_pte != pte) {
509 * - if accessed or dirty bits need updating, and the PTE is
510 * in RAM, then we do so atomically with a compare and swap.
511 * - if the PTE is in IO space or ROM, then it can't be updated
512 * and we return TRANSLATE_FAIL.
513 * - if the PTE changed by the time we went to update it, then
514 * it is no longer valid and we must re-walk the page table.
516 MemoryRegion *mr;
517 hwaddr l = sizeof(target_ulong), addr1;
518 mr = address_space_translate(cs->as, pte_addr,
519 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
520 if (memory_region_is_ram(mr)) {
521 target_ulong *pte_pa =
522 qemu_map_ram_ptr(mr->ram_block, addr1);
523 #if TCG_OVERSIZED_GUEST
524 /* MTTCG is not enabled on oversized TCG guests so
525 * page table updates do not need to be atomic */
526 *pte_pa = pte = updated_pte;
527 #else
528 target_ulong old_pte =
529 atomic_cmpxchg(pte_pa, pte, updated_pte);
530 if (old_pte != pte) {
531 goto restart;
532 } else {
533 pte = updated_pte;
535 #endif
536 } else {
537 /* misconfigured PTE in ROM (AD bits are not preset) or
538 * PTE is in IO space and can't be updated atomically */
539 return TRANSLATE_FAIL;
543 /* for superpage mappings, make a fake leaf PTE for the TLB's
544 benefit. */
545 target_ulong vpn = addr >> PGSHIFT;
546 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
548 /* set permissions on the TLB entry */
549 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
550 *prot |= PAGE_READ;
552 if ((pte & PTE_X)) {
553 *prot |= PAGE_EXEC;
555 /* add write permission on stores or if the page is already dirty,
556 so that we TLB miss on later writes to update the dirty bit */
557 if ((pte & PTE_W) &&
558 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
559 *prot |= PAGE_WRITE;
561 return TRANSLATE_SUCCESS;
564 return TRANSLATE_FAIL;
567 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
568 MMUAccessType access_type, bool pmp_violation,
569 bool first_stage)
571 CPUState *cs = env_cpu(env);
572 int page_fault_exceptions;
573 if (first_stage) {
574 page_fault_exceptions =
575 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
576 !pmp_violation;
577 } else {
578 page_fault_exceptions =
579 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
580 !pmp_violation;
582 switch (access_type) {
583 case MMU_INST_FETCH:
584 if (riscv_cpu_virt_enabled(env) && !first_stage) {
585 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
586 } else {
587 cs->exception_index = page_fault_exceptions ?
588 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
590 break;
591 case MMU_DATA_LOAD:
592 if (riscv_cpu_virt_enabled(env) && !first_stage) {
593 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
594 } else {
595 cs->exception_index = page_fault_exceptions ?
596 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
598 break;
599 case MMU_DATA_STORE:
600 if (riscv_cpu_virt_enabled(env) && !first_stage) {
601 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
602 } else {
603 cs->exception_index = page_fault_exceptions ?
604 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
606 break;
607 default:
608 g_assert_not_reached();
610 env->badaddr = address;
613 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
615 RISCVCPU *cpu = RISCV_CPU(cs);
616 CPURISCVState *env = &cpu->env;
617 hwaddr phys_addr;
618 int prot;
619 int mmu_idx = cpu_mmu_index(&cpu->env, false);
621 if (get_physical_address(env, &phys_addr, &prot, addr, 0, mmu_idx,
622 true, riscv_cpu_virt_enabled(env))) {
623 return -1;
626 if (riscv_cpu_virt_enabled(env)) {
627 if (get_physical_address(env, &phys_addr, &prot, phys_addr,
628 0, mmu_idx, false, true)) {
629 return -1;
633 return phys_addr;
636 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
637 vaddr addr, unsigned size,
638 MMUAccessType access_type,
639 int mmu_idx, MemTxAttrs attrs,
640 MemTxResult response, uintptr_t retaddr)
642 RISCVCPU *cpu = RISCV_CPU(cs);
643 CPURISCVState *env = &cpu->env;
645 if (access_type == MMU_DATA_STORE) {
646 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
647 } else {
648 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
651 env->badaddr = addr;
652 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
655 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
656 MMUAccessType access_type, int mmu_idx,
657 uintptr_t retaddr)
659 RISCVCPU *cpu = RISCV_CPU(cs);
660 CPURISCVState *env = &cpu->env;
661 switch (access_type) {
662 case MMU_INST_FETCH:
663 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
664 break;
665 case MMU_DATA_LOAD:
666 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
667 break;
668 case MMU_DATA_STORE:
669 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
670 break;
671 default:
672 g_assert_not_reached();
674 env->badaddr = addr;
675 riscv_raise_exception(env, cs->exception_index, retaddr);
677 #endif
679 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
680 MMUAccessType access_type, int mmu_idx,
681 bool probe, uintptr_t retaddr)
683 RISCVCPU *cpu = RISCV_CPU(cs);
684 CPURISCVState *env = &cpu->env;
685 #ifndef CONFIG_USER_ONLY
686 vaddr im_address;
687 hwaddr pa = 0;
688 int prot, prot2;
689 bool pmp_violation = false;
690 bool m_mode_two_stage = false;
691 bool hs_mode_two_stage = false;
692 bool first_stage_error = true;
693 int ret = TRANSLATE_FAIL;
694 int mode = mmu_idx;
696 env->guest_phys_fault_addr = 0;
698 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
699 __func__, address, access_type, mmu_idx);
702 * Determine if we are in M mode and MPRV is set or in HS mode and SPRV is
703 * set and we want to access a virtulisation address.
705 if (riscv_has_ext(env, RVH)) {
706 m_mode_two_stage = env->priv == PRV_M &&
707 access_type != MMU_INST_FETCH &&
708 get_field(env->mstatus, MSTATUS_MPRV) &&
709 MSTATUS_MPV_ISSET(env);
711 hs_mode_two_stage = env->priv == PRV_S &&
712 !riscv_cpu_virt_enabled(env) &&
713 access_type != MMU_INST_FETCH &&
714 get_field(env->hstatus, HSTATUS_SPRV) &&
715 get_field(env->hstatus, HSTATUS_SPV);
718 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
719 if (get_field(env->mstatus, MSTATUS_MPRV)) {
720 mode = get_field(env->mstatus, MSTATUS_MPP);
724 if (riscv_cpu_virt_enabled(env) || m_mode_two_stage || hs_mode_two_stage) {
725 /* Two stage lookup */
726 ret = get_physical_address(env, &pa, &prot, address, access_type,
727 mmu_idx, true, true);
729 qemu_log_mask(CPU_LOG_MMU,
730 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
731 TARGET_FMT_plx " prot %d\n",
732 __func__, address, ret, pa, prot);
734 if (ret != TRANSLATE_FAIL) {
735 /* Second stage lookup */
736 im_address = pa;
738 ret = get_physical_address(env, &pa, &prot2, im_address,
739 access_type, mmu_idx, false, true);
741 qemu_log_mask(CPU_LOG_MMU,
742 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
743 TARGET_FMT_plx " prot %d\n",
744 __func__, im_address, ret, pa, prot2);
746 prot &= prot2;
748 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
749 (ret == TRANSLATE_SUCCESS) &&
750 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
751 ret = TRANSLATE_PMP_FAIL;
754 if (ret != TRANSLATE_SUCCESS) {
756 * Guest physical address translation failed, this is a HS
757 * level exception
759 first_stage_error = false;
760 env->guest_phys_fault_addr = (im_address |
761 (address &
762 (TARGET_PAGE_SIZE - 1))) >> 2;
765 } else {
766 /* Single stage lookup */
767 ret = get_physical_address(env, &pa, &prot, address, access_type,
768 mmu_idx, true, false);
770 qemu_log_mask(CPU_LOG_MMU,
771 "%s address=%" VADDR_PRIx " ret %d physical "
772 TARGET_FMT_plx " prot %d\n",
773 __func__, address, ret, pa, prot);
776 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
777 (ret == TRANSLATE_SUCCESS) &&
778 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
779 ret = TRANSLATE_PMP_FAIL;
781 if (ret == TRANSLATE_PMP_FAIL) {
782 pmp_violation = true;
785 if (ret == TRANSLATE_SUCCESS) {
786 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
787 prot, mmu_idx, TARGET_PAGE_SIZE);
788 return true;
789 } else if (probe) {
790 return false;
791 } else {
792 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error);
793 riscv_raise_exception(env, cs->exception_index, retaddr);
796 return true;
798 #else
799 switch (access_type) {
800 case MMU_INST_FETCH:
801 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
802 break;
803 case MMU_DATA_LOAD:
804 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
805 break;
806 case MMU_DATA_STORE:
807 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
808 break;
809 default:
810 g_assert_not_reached();
812 env->badaddr = address;
813 cpu_loop_exit_restore(cs, retaddr);
814 #endif
818 * Handle Traps
820 * Adapted from Spike's processor_t::take_trap.
823 void riscv_cpu_do_interrupt(CPUState *cs)
825 #if !defined(CONFIG_USER_ONLY)
827 RISCVCPU *cpu = RISCV_CPU(cs);
828 CPURISCVState *env = &cpu->env;
829 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
830 target_ulong s;
832 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
833 * so we mask off the MSB and separate into trap type and cause.
835 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
836 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
837 target_ulong deleg = async ? env->mideleg : env->medeleg;
838 target_ulong tval = 0;
839 target_ulong htval = 0;
840 target_ulong mtval2 = 0;
842 if (!async) {
843 /* set tval to badaddr for traps with address information */
844 switch (cause) {
845 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
846 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
847 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
848 force_hs_execp = true;
849 /* fallthrough */
850 case RISCV_EXCP_INST_ADDR_MIS:
851 case RISCV_EXCP_INST_ACCESS_FAULT:
852 case RISCV_EXCP_LOAD_ADDR_MIS:
853 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
854 case RISCV_EXCP_LOAD_ACCESS_FAULT:
855 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
856 case RISCV_EXCP_INST_PAGE_FAULT:
857 case RISCV_EXCP_LOAD_PAGE_FAULT:
858 case RISCV_EXCP_STORE_PAGE_FAULT:
859 tval = env->badaddr;
860 break;
861 default:
862 break;
864 /* ecall is dispatched as one cause so translate based on mode */
865 if (cause == RISCV_EXCP_U_ECALL) {
866 assert(env->priv <= 3);
868 if (env->priv == PRV_M) {
869 cause = RISCV_EXCP_M_ECALL;
870 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
871 cause = RISCV_EXCP_VS_ECALL;
872 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
873 cause = RISCV_EXCP_S_ECALL;
874 } else if (env->priv == PRV_U) {
875 cause = RISCV_EXCP_U_ECALL;
880 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
881 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
883 if (env->priv <= PRV_S &&
884 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
885 /* handle the trap in S-mode */
886 if (riscv_has_ext(env, RVH)) {
887 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
889 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
890 !force_hs_execp) {
892 * See if we need to adjust cause. Yes if its VS mode interrupt
893 * no if hypervisor has delegated one of hs mode's interrupt
895 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
896 cause == IRQ_VS_EXT)
897 cause = cause - 1;
898 /* Trap to VS mode */
899 } else if (riscv_cpu_virt_enabled(env)) {
900 /* Trap into HS mode, from virt */
901 riscv_cpu_swap_hypervisor_regs(env);
902 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
903 get_field(env->hstatus, HSTATUS_SPV));
904 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
905 get_field(env->mstatus, SSTATUS_SPP));
906 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
907 riscv_cpu_virt_enabled(env));
909 htval = env->guest_phys_fault_addr;
911 riscv_cpu_set_virt_enabled(env, 0);
912 riscv_cpu_set_force_hs_excep(env, 0);
913 } else {
914 /* Trap into HS mode */
915 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
916 get_field(env->hstatus, HSTATUS_SPV));
917 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
918 get_field(env->mstatus, SSTATUS_SPP));
919 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
920 riscv_cpu_virt_enabled(env));
922 htval = env->guest_phys_fault_addr;
926 s = env->mstatus;
927 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
928 s = set_field(s, MSTATUS_SPP, env->priv);
929 s = set_field(s, MSTATUS_SIE, 0);
930 env->mstatus = s;
931 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
932 env->sepc = env->pc;
933 env->sbadaddr = tval;
934 env->htval = htval;
935 env->pc = (env->stvec >> 2 << 2) +
936 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
937 riscv_cpu_set_mode(env, PRV_S);
938 } else {
939 /* handle the trap in M-mode */
940 if (riscv_has_ext(env, RVH)) {
941 if (riscv_cpu_virt_enabled(env)) {
942 riscv_cpu_swap_hypervisor_regs(env);
944 #ifdef TARGET_RISCV32
945 env->mstatush = set_field(env->mstatush, MSTATUS_MPV,
946 riscv_cpu_virt_enabled(env));
947 env->mstatush = set_field(env->mstatush, MSTATUS_MTL,
948 riscv_cpu_force_hs_excep_enabled(env));
949 #else
950 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
951 riscv_cpu_virt_enabled(env));
952 env->mstatus = set_field(env->mstatus, MSTATUS_MTL,
953 riscv_cpu_force_hs_excep_enabled(env));
954 #endif
956 mtval2 = env->guest_phys_fault_addr;
958 /* Trapping to M mode, virt is disabled */
959 riscv_cpu_set_virt_enabled(env, 0);
960 riscv_cpu_set_force_hs_excep(env, 0);
963 s = env->mstatus;
964 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
965 s = set_field(s, MSTATUS_MPP, env->priv);
966 s = set_field(s, MSTATUS_MIE, 0);
967 env->mstatus = s;
968 env->mcause = cause | ~(((target_ulong)-1) >> async);
969 env->mepc = env->pc;
970 env->mbadaddr = tval;
971 env->mtval2 = mtval2;
972 env->pc = (env->mtvec >> 2 << 2) +
973 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
974 riscv_cpu_set_mode(env, PRV_M);
977 /* NOTE: it is not necessary to yield load reservations here. It is only
978 * necessary for an SC from "another hart" to cause a load reservation
979 * to be yielded. Refer to the memory consistency model section of the
980 * RISC-V ISA Specification.
983 #endif
984 cs->exception_index = EXCP_NONE; /* mark handled to qemu */