1 /* Support for generating ACPI tables and passing them to Guests
3 * ARM virt ACPI generation
5 * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
6 * Copyright (C) 2006 Fabrice Bellard
7 * Copyright (C) 2013 Red Hat Inc
9 * Author: Michael S. Tsirkin <mst@redhat.com>
11 * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
13 * Author: Shannon Zhao <zhaoshenglong@huawei.com>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, see <http://www.gnu.org/licenses/>.
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu/bitmap.h"
33 #include "hw/core/cpu.h"
34 #include "target/arm/cpu.h"
35 #include "hw/acpi/acpi-defs.h"
36 #include "hw/acpi/acpi.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/acpi/bios-linker-loader.h"
39 #include "hw/acpi/aml-build.h"
40 #include "hw/acpi/utils.h"
41 #include "hw/acpi/pci.h"
42 #include "hw/acpi/memory_hotplug.h"
43 #include "hw/acpi/generic_event_device.h"
44 #include "hw/acpi/tpm.h"
45 #include "hw/pci/pcie_host.h"
46 #include "hw/pci/pci.h"
47 #include "hw/arm/virt.h"
48 #include "hw/mem/nvdimm.h"
49 #include "hw/platform-bus.h"
50 #include "sysemu/numa.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/tpm.h"
54 #include "migration/vmstate.h"
55 #include "hw/acpi/ghes.h"
57 #define ARM_SPI_BASE 32
59 static void acpi_dsdt_add_cpus(Aml
*scope
, int smp_cpus
)
63 for (i
= 0; i
< smp_cpus
; i
++) {
64 Aml
*dev
= aml_device("C%.03X", i
);
65 aml_append(dev
, aml_name_decl("_HID", aml_string("ACPI0007")));
66 aml_append(dev
, aml_name_decl("_UID", aml_int(i
)));
67 aml_append(scope
, dev
);
71 static void acpi_dsdt_add_uart(Aml
*scope
, const MemMapEntry
*uart_memmap
,
74 Aml
*dev
= aml_device("COM0");
75 aml_append(dev
, aml_name_decl("_HID", aml_string("ARMH0011")));
76 aml_append(dev
, aml_name_decl("_UID", aml_int(0)));
78 Aml
*crs
= aml_resource_template();
79 aml_append(crs
, aml_memory32_fixed(uart_memmap
->base
,
80 uart_memmap
->size
, AML_READ_WRITE
));
82 aml_interrupt(AML_CONSUMER
, AML_LEVEL
, AML_ACTIVE_HIGH
,
83 AML_EXCLUSIVE
, &uart_irq
, 1));
84 aml_append(dev
, aml_name_decl("_CRS", crs
));
86 aml_append(scope
, dev
);
89 static void acpi_dsdt_add_fw_cfg(Aml
*scope
, const MemMapEntry
*fw_cfg_memmap
)
91 Aml
*dev
= aml_device("FWCF");
92 aml_append(dev
, aml_name_decl("_HID", aml_string("QEMU0002")));
93 /* device present, functioning, decoding, not shown in UI */
94 aml_append(dev
, aml_name_decl("_STA", aml_int(0xB)));
95 aml_append(dev
, aml_name_decl("_CCA", aml_int(1)));
97 Aml
*crs
= aml_resource_template();
98 aml_append(crs
, aml_memory32_fixed(fw_cfg_memmap
->base
,
99 fw_cfg_memmap
->size
, AML_READ_WRITE
));
100 aml_append(dev
, aml_name_decl("_CRS", crs
));
101 aml_append(scope
, dev
);
104 static void acpi_dsdt_add_flash(Aml
*scope
, const MemMapEntry
*flash_memmap
)
107 hwaddr base
= flash_memmap
->base
;
108 hwaddr size
= flash_memmap
->size
/ 2;
110 dev
= aml_device("FLS0");
111 aml_append(dev
, aml_name_decl("_HID", aml_string("LNRO0015")));
112 aml_append(dev
, aml_name_decl("_UID", aml_int(0)));
114 crs
= aml_resource_template();
115 aml_append(crs
, aml_memory32_fixed(base
, size
, AML_READ_WRITE
));
116 aml_append(dev
, aml_name_decl("_CRS", crs
));
117 aml_append(scope
, dev
);
119 dev
= aml_device("FLS1");
120 aml_append(dev
, aml_name_decl("_HID", aml_string("LNRO0015")));
121 aml_append(dev
, aml_name_decl("_UID", aml_int(1)));
122 crs
= aml_resource_template();
123 aml_append(crs
, aml_memory32_fixed(base
+ size
, size
, AML_READ_WRITE
));
124 aml_append(dev
, aml_name_decl("_CRS", crs
));
125 aml_append(scope
, dev
);
128 static void acpi_dsdt_add_virtio(Aml
*scope
,
129 const MemMapEntry
*virtio_mmio_memmap
,
130 uint32_t mmio_irq
, int num
)
132 hwaddr base
= virtio_mmio_memmap
->base
;
133 hwaddr size
= virtio_mmio_memmap
->size
;
136 for (i
= 0; i
< num
; i
++) {
137 uint32_t irq
= mmio_irq
+ i
;
138 Aml
*dev
= aml_device("VR%02u", i
);
139 aml_append(dev
, aml_name_decl("_HID", aml_string("LNRO0005")));
140 aml_append(dev
, aml_name_decl("_UID", aml_int(i
)));
141 aml_append(dev
, aml_name_decl("_CCA", aml_int(1)));
143 Aml
*crs
= aml_resource_template();
144 aml_append(crs
, aml_memory32_fixed(base
, size
, AML_READ_WRITE
));
146 aml_interrupt(AML_CONSUMER
, AML_LEVEL
, AML_ACTIVE_HIGH
,
147 AML_EXCLUSIVE
, &irq
, 1));
148 aml_append(dev
, aml_name_decl("_CRS", crs
));
149 aml_append(scope
, dev
);
154 static void acpi_dsdt_add_pci(Aml
*scope
, const MemMapEntry
*memmap
,
155 uint32_t irq
, bool use_highmem
, bool highmem_ecam
)
157 int ecam_id
= VIRT_ECAM_ID(highmem_ecam
);
158 Aml
*method
, *crs
, *ifctx
, *UUID
, *ifctx1
, *elsectx
, *buf
;
160 hwaddr base_mmio
= memmap
[VIRT_PCIE_MMIO
].base
;
161 hwaddr size_mmio
= memmap
[VIRT_PCIE_MMIO
].size
;
162 hwaddr base_pio
= memmap
[VIRT_PCIE_PIO
].base
;
163 hwaddr size_pio
= memmap
[VIRT_PCIE_PIO
].size
;
164 hwaddr base_ecam
= memmap
[ecam_id
].base
;
165 hwaddr size_ecam
= memmap
[ecam_id
].size
;
166 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
168 Aml
*dev
= aml_device("%s", "PCI0");
169 aml_append(dev
, aml_name_decl("_HID", aml_string("PNP0A08")));
170 aml_append(dev
, aml_name_decl("_CID", aml_string("PNP0A03")));
171 aml_append(dev
, aml_name_decl("_SEG", aml_int(0)));
172 aml_append(dev
, aml_name_decl("_BBN", aml_int(0)));
173 aml_append(dev
, aml_name_decl("_UID", aml_string("PCI0")));
174 aml_append(dev
, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
175 aml_append(dev
, aml_name_decl("_CCA", aml_int(1)));
177 /* Declare the PCI Routing Table. */
178 Aml
*rt_pkg
= aml_varpackage(PCI_SLOT_MAX
* PCI_NUM_PINS
);
179 for (slot_no
= 0; slot_no
< PCI_SLOT_MAX
; slot_no
++) {
180 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
181 int gsi
= (i
+ slot_no
) % PCI_NUM_PINS
;
182 Aml
*pkg
= aml_package(4);
183 aml_append(pkg
, aml_int((slot_no
<< 16) | 0xFFFF));
184 aml_append(pkg
, aml_int(i
));
185 aml_append(pkg
, aml_name("GSI%d", gsi
));
186 aml_append(pkg
, aml_int(0));
187 aml_append(rt_pkg
, pkg
);
190 aml_append(dev
, aml_name_decl("_PRT", rt_pkg
));
192 /* Create GSI link device */
193 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
194 uint32_t irqs
= irq
+ i
;
195 Aml
*dev_gsi
= aml_device("GSI%d", i
);
196 aml_append(dev_gsi
, aml_name_decl("_HID", aml_string("PNP0C0F")));
197 aml_append(dev_gsi
, aml_name_decl("_UID", aml_int(i
)));
198 crs
= aml_resource_template();
200 aml_interrupt(AML_CONSUMER
, AML_LEVEL
, AML_ACTIVE_HIGH
,
201 AML_EXCLUSIVE
, &irqs
, 1));
202 aml_append(dev_gsi
, aml_name_decl("_PRS", crs
));
203 crs
= aml_resource_template();
205 aml_interrupt(AML_CONSUMER
, AML_LEVEL
, AML_ACTIVE_HIGH
,
206 AML_EXCLUSIVE
, &irqs
, 1));
207 aml_append(dev_gsi
, aml_name_decl("_CRS", crs
));
208 method
= aml_method("_SRS", 1, AML_NOTSERIALIZED
);
209 aml_append(dev_gsi
, method
);
210 aml_append(dev
, dev_gsi
);
213 method
= aml_method("_CBA", 0, AML_NOTSERIALIZED
);
214 aml_append(method
, aml_return(aml_int(base_ecam
)));
215 aml_append(dev
, method
);
217 method
= aml_method("_CRS", 0, AML_NOTSERIALIZED
);
218 Aml
*rbuf
= aml_resource_template();
220 aml_word_bus_number(AML_MIN_FIXED
, AML_MAX_FIXED
, AML_POS_DECODE
,
221 0x0000, 0x0000, nr_pcie_buses
- 1, 0x0000,
224 aml_dword_memory(AML_POS_DECODE
, AML_MIN_FIXED
, AML_MAX_FIXED
,
225 AML_NON_CACHEABLE
, AML_READ_WRITE
, 0x0000, base_mmio
,
226 base_mmio
+ size_mmio
- 1, 0x0000, size_mmio
));
228 aml_dword_io(AML_MIN_FIXED
, AML_MAX_FIXED
, AML_POS_DECODE
,
229 AML_ENTIRE_RANGE
, 0x0000, 0x0000, size_pio
- 1, base_pio
,
233 hwaddr base_mmio_high
= memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
234 hwaddr size_mmio_high
= memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
237 aml_qword_memory(AML_POS_DECODE
, AML_MIN_FIXED
, AML_MAX_FIXED
,
238 AML_NON_CACHEABLE
, AML_READ_WRITE
, 0x0000,
240 base_mmio_high
+ size_mmio_high
- 1, 0x0000,
244 aml_append(method
, aml_return(rbuf
));
245 aml_append(dev
, method
);
247 /* Declare an _OSC (OS Control Handoff) method */
248 aml_append(dev
, aml_name_decl("SUPP", aml_int(0)));
249 aml_append(dev
, aml_name_decl("CTRL", aml_int(0)));
250 method
= aml_method("_OSC", 4, AML_NOTSERIALIZED
);
252 aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
254 /* PCI Firmware Specification 3.0
255 * 4.5.1. _OSC Interface for PCI Host Bridge Devices
256 * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
257 * identified by the Universal Unique IDentifier (UUID)
258 * 33DB4D5B-1FF7-401C-9657-7441C03DD766
260 UUID
= aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
261 ifctx
= aml_if(aml_equal(aml_arg(0), UUID
));
263 aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
265 aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
266 aml_append(ifctx
, aml_store(aml_name("CDW2"), aml_name("SUPP")));
267 aml_append(ifctx
, aml_store(aml_name("CDW3"), aml_name("CTRL")));
270 * Allow OS control for all 5 features:
271 * PCIeHotplug SHPCHotplug PME AER PCIeCapability.
273 aml_append(ifctx
, aml_and(aml_name("CTRL"), aml_int(0x1F),
276 ifctx1
= aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
277 aml_append(ifctx1
, aml_or(aml_name("CDW1"), aml_int(0x08),
279 aml_append(ifctx
, ifctx1
);
281 ifctx1
= aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
282 aml_append(ifctx1
, aml_or(aml_name("CDW1"), aml_int(0x10),
284 aml_append(ifctx
, ifctx1
);
286 aml_append(ifctx
, aml_store(aml_name("CTRL"), aml_name("CDW3")));
287 aml_append(ifctx
, aml_return(aml_arg(3)));
288 aml_append(method
, ifctx
);
290 elsectx
= aml_else();
291 aml_append(elsectx
, aml_or(aml_name("CDW1"), aml_int(4),
293 aml_append(elsectx
, aml_return(aml_arg(3)));
294 aml_append(method
, elsectx
);
295 aml_append(dev
, method
);
297 method
= aml_method("_DSM", 4, AML_NOTSERIALIZED
);
299 /* PCI Firmware Specification 3.0
300 * 4.6.1. _DSM for PCI Express Slot Information
301 * The UUID in _DSM in this context is
302 * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
304 UUID
= aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
305 ifctx
= aml_if(aml_equal(aml_arg(0), UUID
));
306 ifctx1
= aml_if(aml_equal(aml_arg(2), aml_int(0)));
307 uint8_t byte_list
[1] = {1};
308 buf
= aml_buffer(1, byte_list
);
309 aml_append(ifctx1
, aml_return(buf
));
310 aml_append(ifctx
, ifctx1
);
311 aml_append(method
, ifctx
);
314 buf
= aml_buffer(1, byte_list
);
315 aml_append(method
, aml_return(buf
));
316 aml_append(dev
, method
);
318 Aml
*dev_res0
= aml_device("%s", "RES0");
319 aml_append(dev_res0
, aml_name_decl("_HID", aml_string("PNP0C02")));
320 crs
= aml_resource_template();
322 aml_qword_memory(AML_POS_DECODE
, AML_MIN_FIXED
, AML_MAX_FIXED
,
323 AML_NON_CACHEABLE
, AML_READ_WRITE
, 0x0000, base_ecam
,
324 base_ecam
+ size_ecam
- 1, 0x0000, size_ecam
));
325 aml_append(dev_res0
, aml_name_decl("_CRS", crs
));
326 aml_append(dev
, dev_res0
);
327 aml_append(scope
, dev
);
330 static void acpi_dsdt_add_gpio(Aml
*scope
, const MemMapEntry
*gpio_memmap
,
333 Aml
*dev
= aml_device("GPO0");
334 aml_append(dev
, aml_name_decl("_HID", aml_string("ARMH0061")));
335 aml_append(dev
, aml_name_decl("_UID", aml_int(0)));
337 Aml
*crs
= aml_resource_template();
338 aml_append(crs
, aml_memory32_fixed(gpio_memmap
->base
, gpio_memmap
->size
,
340 aml_append(crs
, aml_interrupt(AML_CONSUMER
, AML_LEVEL
, AML_ACTIVE_HIGH
,
341 AML_EXCLUSIVE
, &gpio_irq
, 1));
342 aml_append(dev
, aml_name_decl("_CRS", crs
));
344 Aml
*aei
= aml_resource_template();
345 /* Pin 3 for power button */
346 const uint32_t pin_list
[1] = {3};
347 aml_append(aei
, aml_gpio_int(AML_CONSUMER
, AML_EDGE
, AML_ACTIVE_HIGH
,
348 AML_EXCLUSIVE
, AML_PULL_UP
, 0, pin_list
, 1,
350 aml_append(dev
, aml_name_decl("_AEI", aei
));
352 /* _E03 is handle for power button */
353 Aml
*method
= aml_method("_E03", 0, AML_NOTSERIALIZED
);
354 aml_append(method
, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE
),
356 aml_append(dev
, method
);
357 aml_append(scope
, dev
);
360 static void acpi_dsdt_add_power_button(Aml
*scope
)
362 Aml
*dev
= aml_device(ACPI_POWER_BUTTON_DEVICE
);
363 aml_append(dev
, aml_name_decl("_HID", aml_string("PNP0C0C")));
364 aml_append(dev
, aml_name_decl("_UID", aml_int(0)));
365 aml_append(scope
, dev
);
368 static void acpi_dsdt_add_tpm(Aml
*scope
, VirtMachineState
*vms
)
370 PlatformBusDevice
*pbus
= PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
);
371 hwaddr pbus_base
= vms
->memmap
[VIRT_PLATFORM_BUS
].base
;
372 SysBusDevice
*sbdev
= SYS_BUS_DEVICE(tpm_find());
373 MemoryRegion
*sbdev_mr
;
380 tpm_base
= platform_bus_get_mmio_addr(pbus
, sbdev
, 0);
381 assert(tpm_base
!= -1);
383 tpm_base
+= pbus_base
;
385 sbdev_mr
= sysbus_mmio_get_region(sbdev
, 0);
387 Aml
*dev
= aml_device("TPM0");
388 aml_append(dev
, aml_name_decl("_HID", aml_string("MSFT0101")));
389 aml_append(dev
, aml_name_decl("_UID", aml_int(0)));
391 Aml
*crs
= aml_resource_template();
393 aml_memory32_fixed(tpm_base
,
394 (uint32_t)memory_region_size(sbdev_mr
),
396 aml_append(dev
, aml_name_decl("_CRS", crs
));
397 aml_append(scope
, dev
);
401 build_iort(GArray
*table_data
, BIOSLinker
*linker
, VirtMachineState
*vms
)
403 int nb_nodes
, iort_start
= table_data
->len
;
404 AcpiIortIdMapping
*idmap
;
405 AcpiIortItsGroup
*its
;
408 size_t node_size
, iort_node_offset
, iort_length
, smmu_offset
= 0;
411 iort
= acpi_data_push(table_data
, sizeof(*iort
));
413 if (vms
->iommu
== VIRT_IOMMU_SMMUV3
) {
414 nb_nodes
= 3; /* RC, ITS, SMMUv3 */
416 nb_nodes
= 2; /* RC, ITS */
419 iort_length
= sizeof(*iort
);
420 iort
->node_count
= cpu_to_le32(nb_nodes
);
422 * Use a copy in case table_data->data moves during acpi_data_push
425 iort_node_offset
= sizeof(*iort
);
426 iort
->node_offset
= cpu_to_le32(iort_node_offset
);
429 node_size
= sizeof(*its
) + sizeof(uint32_t);
430 iort_length
+= node_size
;
431 its
= acpi_data_push(table_data
, node_size
);
433 its
->type
= ACPI_IORT_NODE_ITS_GROUP
;
434 its
->length
= cpu_to_le16(node_size
);
435 its
->its_count
= cpu_to_le32(1);
436 its
->identifiers
[0] = 0; /* MADT translation_id */
438 if (vms
->iommu
== VIRT_IOMMU_SMMUV3
) {
439 int irq
= vms
->irqmap
[VIRT_SMMU
] + ARM_SPI_BASE
;
442 smmu_offset
= iort_node_offset
+ node_size
;
443 node_size
= sizeof(*smmu
) + sizeof(*idmap
);
444 iort_length
+= node_size
;
445 smmu
= acpi_data_push(table_data
, node_size
);
447 smmu
->type
= ACPI_IORT_NODE_SMMU_V3
;
448 smmu
->length
= cpu_to_le16(node_size
);
449 smmu
->mapping_count
= cpu_to_le32(1);
450 smmu
->mapping_offset
= cpu_to_le32(sizeof(*smmu
));
451 smmu
->base_address
= cpu_to_le64(vms
->memmap
[VIRT_SMMU
].base
);
452 smmu
->flags
= cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE
);
453 smmu
->event_gsiv
= cpu_to_le32(irq
);
454 smmu
->pri_gsiv
= cpu_to_le32(irq
+ 1);
455 smmu
->gerr_gsiv
= cpu_to_le32(irq
+ 2);
456 smmu
->sync_gsiv
= cpu_to_le32(irq
+ 3);
458 /* Identity RID mapping covering the whole input RID range */
459 idmap
= &smmu
->id_mapping_array
[0];
460 idmap
->input_base
= 0;
461 idmap
->id_count
= cpu_to_le32(0xFFFF);
462 idmap
->output_base
= 0;
463 /* output IORT node is the ITS group node (the first node) */
464 idmap
->output_reference
= cpu_to_le32(iort_node_offset
);
467 /* Root Complex Node */
468 node_size
= sizeof(*rc
) + sizeof(*idmap
);
469 iort_length
+= node_size
;
470 rc
= acpi_data_push(table_data
, node_size
);
472 rc
->type
= ACPI_IORT_NODE_PCI_ROOT_COMPLEX
;
473 rc
->length
= cpu_to_le16(node_size
);
474 rc
->mapping_count
= cpu_to_le32(1);
475 rc
->mapping_offset
= cpu_to_le32(sizeof(*rc
));
477 /* fully coherent device */
478 rc
->memory_properties
.cache_coherency
= cpu_to_le32(1);
479 rc
->memory_properties
.memory_flags
= 0x3; /* CCA = CPM = DCAS = 1 */
480 rc
->pci_segment_number
= 0; /* MCFG pci_segment */
482 /* Identity RID mapping covering the whole input RID range */
483 idmap
= &rc
->id_mapping_array
[0];
484 idmap
->input_base
= 0;
485 idmap
->id_count
= cpu_to_le32(0xFFFF);
486 idmap
->output_base
= 0;
488 if (vms
->iommu
== VIRT_IOMMU_SMMUV3
) {
489 /* output IORT node is the smmuv3 node */
490 idmap
->output_reference
= cpu_to_le32(smmu_offset
);
492 /* output IORT node is the ITS group node (the first node) */
493 idmap
->output_reference
= cpu_to_le32(iort_node_offset
);
497 * Update the pointer address in case table_data->data moves during above
498 * acpi_data_push operations.
500 iort
= (AcpiIortTable
*)(table_data
->data
+ iort_start
);
501 iort
->length
= cpu_to_le32(iort_length
);
503 build_header(linker
, table_data
, (void *)(table_data
->data
+ iort_start
),
504 "IORT", table_data
->len
- iort_start
, 0, NULL
, NULL
);
508 build_spcr(GArray
*table_data
, BIOSLinker
*linker
, VirtMachineState
*vms
)
510 AcpiSerialPortConsoleRedirection
*spcr
;
511 const MemMapEntry
*uart_memmap
= &vms
->memmap
[VIRT_UART
];
512 int irq
= vms
->irqmap
[VIRT_UART
] + ARM_SPI_BASE
;
513 int spcr_start
= table_data
->len
;
515 spcr
= acpi_data_push(table_data
, sizeof(*spcr
));
517 spcr
->interface_type
= 0x3; /* ARM PL011 UART */
519 spcr
->base_address
.space_id
= AML_SYSTEM_MEMORY
;
520 spcr
->base_address
.bit_width
= 8;
521 spcr
->base_address
.bit_offset
= 0;
522 spcr
->base_address
.access_width
= 1;
523 spcr
->base_address
.address
= cpu_to_le64(uart_memmap
->base
);
525 spcr
->interrupt_types
= (1 << 3); /* Bit[3] ARMH GIC interrupt */
526 spcr
->gsi
= cpu_to_le32(irq
); /* Global System Interrupt */
528 spcr
->baud
= 3; /* Baud Rate: 3 = 9600 */
529 spcr
->parity
= 0; /* No Parity */
530 spcr
->stopbits
= 1; /* 1 Stop bit */
531 spcr
->flowctrl
= (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */
532 spcr
->term_type
= 0; /* Terminal Type: 0 = VT100 */
534 spcr
->pci_device_id
= 0xffff; /* PCI Device ID: not a PCI device */
535 spcr
->pci_vendor_id
= 0xffff; /* PCI Vendor ID: not a PCI device */
537 build_header(linker
, table_data
, (void *)(table_data
->data
+ spcr_start
),
538 "SPCR", table_data
->len
- spcr_start
, 2, NULL
, NULL
);
542 build_srat(GArray
*table_data
, BIOSLinker
*linker
, VirtMachineState
*vms
)
544 AcpiSystemResourceAffinityTable
*srat
;
545 AcpiSratProcessorGiccAffinity
*core
;
546 AcpiSratMemoryAffinity
*numamem
;
549 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
550 MachineState
*ms
= MACHINE(vms
);
551 const CPUArchIdList
*cpu_list
= mc
->possible_cpu_arch_ids(ms
);
553 srat_start
= table_data
->len
;
554 srat
= acpi_data_push(table_data
, sizeof(*srat
));
555 srat
->reserved1
= cpu_to_le32(1);
557 for (i
= 0; i
< cpu_list
->len
; ++i
) {
558 core
= acpi_data_push(table_data
, sizeof(*core
));
559 core
->type
= ACPI_SRAT_PROCESSOR_GICC
;
560 core
->length
= sizeof(*core
);
561 core
->proximity
= cpu_to_le32(cpu_list
->cpus
[i
].props
.node_id
);
562 core
->acpi_processor_uid
= cpu_to_le32(i
);
563 core
->flags
= cpu_to_le32(1);
566 mem_base
= vms
->memmap
[VIRT_MEM
].base
;
567 for (i
= 0; i
< ms
->numa_state
->num_nodes
; ++i
) {
568 if (ms
->numa_state
->nodes
[i
].node_mem
> 0) {
569 numamem
= acpi_data_push(table_data
, sizeof(*numamem
));
570 build_srat_memory(numamem
, mem_base
,
571 ms
->numa_state
->nodes
[i
].node_mem
, i
,
572 MEM_AFFINITY_ENABLED
);
573 mem_base
+= ms
->numa_state
->nodes
[i
].node_mem
;
577 if (ms
->nvdimms_state
->is_enabled
) {
578 nvdimm_build_srat(table_data
);
581 if (ms
->device_memory
) {
582 numamem
= acpi_data_push(table_data
, sizeof *numamem
);
583 build_srat_memory(numamem
, ms
->device_memory
->base
,
584 memory_region_size(&ms
->device_memory
->mr
),
585 ms
->numa_state
->num_nodes
- 1,
586 MEM_AFFINITY_HOTPLUGGABLE
| MEM_AFFINITY_ENABLED
);
589 build_header(linker
, table_data
, (void *)(table_data
->data
+ srat_start
),
590 "SRAT", table_data
->len
- srat_start
, 3, NULL
, NULL
);
595 build_gtdt(GArray
*table_data
, BIOSLinker
*linker
, VirtMachineState
*vms
)
597 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
598 int gtdt_start
= table_data
->len
;
599 AcpiGenericTimerTable
*gtdt
;
602 if (vmc
->claim_edge_triggered_timers
) {
603 irqflags
= ACPI_GTDT_INTERRUPT_MODE_EDGE
;
605 irqflags
= ACPI_GTDT_INTERRUPT_MODE_LEVEL
;
608 gtdt
= acpi_data_push(table_data
, sizeof *gtdt
);
609 /* The interrupt values are the same with the device tree when adding 16 */
610 gtdt
->secure_el1_interrupt
= cpu_to_le32(ARCH_TIMER_S_EL1_IRQ
+ 16);
611 gtdt
->secure_el1_flags
= cpu_to_le32(irqflags
);
613 gtdt
->non_secure_el1_interrupt
= cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ
+ 16);
614 gtdt
->non_secure_el1_flags
= cpu_to_le32(irqflags
|
615 ACPI_GTDT_CAP_ALWAYS_ON
);
617 gtdt
->virtual_timer_interrupt
= cpu_to_le32(ARCH_TIMER_VIRT_IRQ
+ 16);
618 gtdt
->virtual_timer_flags
= cpu_to_le32(irqflags
);
620 gtdt
->non_secure_el2_interrupt
= cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ
+ 16);
621 gtdt
->non_secure_el2_flags
= cpu_to_le32(irqflags
);
623 build_header(linker
, table_data
,
624 (void *)(table_data
->data
+ gtdt_start
), "GTDT",
625 table_data
->len
- gtdt_start
, 2, NULL
, NULL
);
630 build_madt(GArray
*table_data
, BIOSLinker
*linker
, VirtMachineState
*vms
)
632 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
633 int madt_start
= table_data
->len
;
634 const MemMapEntry
*memmap
= vms
->memmap
;
635 const int *irqmap
= vms
->irqmap
;
636 AcpiMultipleApicTable
*madt
;
637 AcpiMadtGenericDistributor
*gicd
;
638 AcpiMadtGenericMsiFrame
*gic_msi
;
641 madt
= acpi_data_push(table_data
, sizeof *madt
);
643 gicd
= acpi_data_push(table_data
, sizeof *gicd
);
644 gicd
->type
= ACPI_APIC_GENERIC_DISTRIBUTOR
;
645 gicd
->length
= sizeof(*gicd
);
646 gicd
->base_address
= cpu_to_le64(memmap
[VIRT_GIC_DIST
].base
);
647 gicd
->version
= vms
->gic_version
;
649 for (i
= 0; i
< vms
->smp_cpus
; i
++) {
650 AcpiMadtGenericCpuInterface
*gicc
= acpi_data_push(table_data
,
652 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(i
));
654 gicc
->type
= ACPI_APIC_GENERIC_CPU_INTERFACE
;
655 gicc
->length
= sizeof(*gicc
);
656 if (vms
->gic_version
== 2) {
657 gicc
->base_address
= cpu_to_le64(memmap
[VIRT_GIC_CPU
].base
);
658 gicc
->gich_base_address
= cpu_to_le64(memmap
[VIRT_GIC_HYP
].base
);
659 gicc
->gicv_base_address
= cpu_to_le64(memmap
[VIRT_GIC_VCPU
].base
);
661 gicc
->cpu_interface_number
= cpu_to_le32(i
);
662 gicc
->arm_mpidr
= cpu_to_le64(armcpu
->mp_affinity
);
663 gicc
->uid
= cpu_to_le32(i
);
664 gicc
->flags
= cpu_to_le32(ACPI_MADT_GICC_ENABLED
);
666 if (arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
667 gicc
->performance_interrupt
= cpu_to_le32(PPI(VIRTUAL_PMU_IRQ
));
670 gicc
->vgic_interrupt
= cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ
));
674 if (vms
->gic_version
== 3) {
675 AcpiMadtGenericTranslator
*gic_its
;
676 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
677 AcpiMadtGenericRedistributor
*gicr
= acpi_data_push(table_data
,
680 gicr
->type
= ACPI_APIC_GENERIC_REDISTRIBUTOR
;
681 gicr
->length
= sizeof(*gicr
);
682 gicr
->base_address
= cpu_to_le64(memmap
[VIRT_GIC_REDIST
].base
);
683 gicr
->range_length
= cpu_to_le32(memmap
[VIRT_GIC_REDIST
].size
);
685 if (nb_redist_regions
== 2) {
686 gicr
= acpi_data_push(table_data
, sizeof(*gicr
));
687 gicr
->type
= ACPI_APIC_GENERIC_REDISTRIBUTOR
;
688 gicr
->length
= sizeof(*gicr
);
690 cpu_to_le64(memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
692 cpu_to_le32(memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
695 if (its_class_name() && !vmc
->no_its
) {
696 gic_its
= acpi_data_push(table_data
, sizeof *gic_its
);
697 gic_its
->type
= ACPI_APIC_GENERIC_TRANSLATOR
;
698 gic_its
->length
= sizeof(*gic_its
);
699 gic_its
->translation_id
= 0;
700 gic_its
->base_address
= cpu_to_le64(memmap
[VIRT_GIC_ITS
].base
);
703 gic_msi
= acpi_data_push(table_data
, sizeof *gic_msi
);
704 gic_msi
->type
= ACPI_APIC_GENERIC_MSI_FRAME
;
705 gic_msi
->length
= sizeof(*gic_msi
);
706 gic_msi
->gic_msi_frame_id
= 0;
707 gic_msi
->base_address
= cpu_to_le64(memmap
[VIRT_GIC_V2M
].base
);
708 gic_msi
->flags
= cpu_to_le32(1);
709 gic_msi
->spi_count
= cpu_to_le16(NUM_GICV2M_SPIS
);
710 gic_msi
->spi_base
= cpu_to_le16(irqmap
[VIRT_GIC_V2M
] + ARM_SPI_BASE
);
713 build_header(linker
, table_data
,
714 (void *)(table_data
->data
+ madt_start
), "APIC",
715 table_data
->len
- madt_start
, 3, NULL
, NULL
);
719 static void build_fadt_rev5(GArray
*table_data
, BIOSLinker
*linker
,
720 VirtMachineState
*vms
, unsigned dsdt_tbl_offset
)
723 AcpiFadtData fadt
= {
726 .flags
= 1 << ACPI_FADT_F_HW_REDUCED_ACPI
,
727 .xdsdt_tbl_offset
= &dsdt_tbl_offset
,
730 switch (vms
->psci_conduit
) {
731 case QEMU_PSCI_CONDUIT_DISABLED
:
732 fadt
.arm_boot_arch
= 0;
734 case QEMU_PSCI_CONDUIT_HVC
:
735 fadt
.arm_boot_arch
= ACPI_FADT_ARM_PSCI_COMPLIANT
|
736 ACPI_FADT_ARM_PSCI_USE_HVC
;
738 case QEMU_PSCI_CONDUIT_SMC
:
739 fadt
.arm_boot_arch
= ACPI_FADT_ARM_PSCI_COMPLIANT
;
742 g_assert_not_reached();
745 build_fadt(table_data
, linker
, &fadt
, NULL
, NULL
);
750 build_dsdt(GArray
*table_data
, BIOSLinker
*linker
, VirtMachineState
*vms
)
753 MachineState
*ms
= MACHINE(vms
);
754 const MemMapEntry
*memmap
= vms
->memmap
;
755 const int *irqmap
= vms
->irqmap
;
757 dsdt
= init_aml_allocator();
758 /* Reserve space for header */
759 acpi_data_push(dsdt
->buf
, sizeof(AcpiTableHeader
));
761 /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
762 * While UEFI can use libfdt to disable the RTC device node in the DTB that
763 * it passes to the OS, it cannot modify AML. Therefore, we won't generate
764 * the RTC ACPI device at all when using UEFI.
766 scope
= aml_scope("\\_SB");
767 acpi_dsdt_add_cpus(scope
, vms
->smp_cpus
);
768 acpi_dsdt_add_uart(scope
, &memmap
[VIRT_UART
],
769 (irqmap
[VIRT_UART
] + ARM_SPI_BASE
));
770 acpi_dsdt_add_flash(scope
, &memmap
[VIRT_FLASH
]);
771 acpi_dsdt_add_fw_cfg(scope
, &memmap
[VIRT_FW_CFG
]);
772 acpi_dsdt_add_virtio(scope
, &memmap
[VIRT_MMIO
],
773 (irqmap
[VIRT_MMIO
] + ARM_SPI_BASE
), NUM_VIRTIO_TRANSPORTS
);
774 acpi_dsdt_add_pci(scope
, memmap
, (irqmap
[VIRT_PCIE
] + ARM_SPI_BASE
),
775 vms
->highmem
, vms
->highmem_ecam
);
777 build_ged_aml(scope
, "\\_SB."GED_DEVICE
,
778 HOTPLUG_HANDLER(vms
->acpi_dev
),
779 irqmap
[VIRT_ACPI_GED
] + ARM_SPI_BASE
, AML_SYSTEM_MEMORY
,
780 memmap
[VIRT_ACPI_GED
].base
);
782 acpi_dsdt_add_gpio(scope
, &memmap
[VIRT_GPIO
],
783 (irqmap
[VIRT_GPIO
] + ARM_SPI_BASE
));
787 uint32_t event
= object_property_get_uint(OBJECT(vms
->acpi_dev
),
788 "ged-event", &error_abort
);
790 if (event
& ACPI_GED_MEM_HOTPLUG_EVT
) {
791 build_memory_hotplug_aml(scope
, ms
->ram_slots
, "\\_SB", NULL
,
793 memmap
[VIRT_PCDIMM_ACPI
].base
);
797 acpi_dsdt_add_power_button(scope
);
798 acpi_dsdt_add_tpm(scope
, vms
);
800 aml_append(dsdt
, scope
);
802 /* copy AML table into ACPI tables blob and patch header there */
803 g_array_append_vals(table_data
, dsdt
->buf
->data
, dsdt
->buf
->len
);
804 build_header(linker
, table_data
,
805 (void *)(table_data
->data
+ table_data
->len
- dsdt
->buf
->len
),
806 "DSDT", dsdt
->buf
->len
, 2, NULL
, NULL
);
807 free_aml_allocator();
811 struct AcpiBuildState
{
812 /* Copy of table in RAM (for patching). */
813 MemoryRegion
*table_mr
;
814 MemoryRegion
*rsdp_mr
;
815 MemoryRegion
*linker_mr
;
816 /* Is table patched? */
821 void virt_acpi_build(VirtMachineState
*vms
, AcpiBuildTables
*tables
)
823 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
824 GArray
*table_offsets
;
826 GArray
*tables_blob
= tables
->table_data
;
827 MachineState
*ms
= MACHINE(vms
);
829 table_offsets
= g_array_new(false, true /* clear */,
832 bios_linker_loader_alloc(tables
->linker
,
833 ACPI_BUILD_TABLE_FILE
, tables_blob
,
834 64, false /* high memory */);
836 /* DSDT is pointed to by FADT */
837 dsdt
= tables_blob
->len
;
838 build_dsdt(tables_blob
, tables
->linker
, vms
);
840 /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
841 acpi_add_table(table_offsets
, tables_blob
);
842 build_fadt_rev5(tables_blob
, tables
->linker
, vms
, dsdt
);
844 acpi_add_table(table_offsets
, tables_blob
);
845 build_madt(tables_blob
, tables
->linker
, vms
);
847 acpi_add_table(table_offsets
, tables_blob
);
848 build_gtdt(tables_blob
, tables
->linker
, vms
);
850 acpi_add_table(table_offsets
, tables_blob
);
852 AcpiMcfgInfo mcfg
= {
853 .base
= vms
->memmap
[VIRT_ECAM_ID(vms
->highmem_ecam
)].base
,
854 .size
= vms
->memmap
[VIRT_ECAM_ID(vms
->highmem_ecam
)].size
,
856 build_mcfg(tables_blob
, tables
->linker
, &mcfg
);
859 acpi_add_table(table_offsets
, tables_blob
);
860 build_spcr(tables_blob
, tables
->linker
, vms
);
863 build_ghes_error_table(tables
->hardware_errors
, tables
->linker
);
864 acpi_add_table(table_offsets
, tables_blob
);
865 acpi_build_hest(tables_blob
, tables
->linker
);
868 if (ms
->numa_state
->num_nodes
> 0) {
869 acpi_add_table(table_offsets
, tables_blob
);
870 build_srat(tables_blob
, tables
->linker
, vms
);
871 if (ms
->numa_state
->have_numa_distance
) {
872 acpi_add_table(table_offsets
, tables_blob
);
873 build_slit(tables_blob
, tables
->linker
, ms
);
877 if (ms
->nvdimms_state
->is_enabled
) {
878 nvdimm_build_acpi(table_offsets
, tables_blob
, tables
->linker
,
879 ms
->nvdimms_state
, ms
->ram_slots
);
882 if (its_class_name() && !vmc
->no_its
) {
883 acpi_add_table(table_offsets
, tables_blob
);
884 build_iort(tables_blob
, tables
->linker
, vms
);
887 if (tpm_get_version(tpm_find()) == TPM_VERSION_2_0
) {
888 acpi_add_table(table_offsets
, tables_blob
);
889 build_tpm2(tables_blob
, tables
->linker
, tables
->tcpalog
);
892 /* XSDT is pointed to by RSDP */
893 xsdt
= tables_blob
->len
;
894 build_xsdt(tables_blob
, tables
->linker
, table_offsets
, NULL
, NULL
);
896 /* RSDP is in FSEG memory, so allocate it separately */
898 AcpiRsdpData rsdp_data
= {
900 .oem_id
= ACPI_BUILD_APPNAME6
,
901 .xsdt_tbl_offset
= &xsdt
,
902 .rsdt_tbl_offset
= NULL
,
904 build_rsdp(tables
->rsdp
, tables
->linker
, &rsdp_data
);
907 /* Cleanup memory that's no longer used. */
908 g_array_free(table_offsets
, true);
911 static void acpi_ram_update(MemoryRegion
*mr
, GArray
*data
)
913 uint32_t size
= acpi_data_len(data
);
915 /* Make sure RAM size is correct - in case it got changed
916 * e.g. by migration */
917 memory_region_ram_resize(mr
, size
, &error_abort
);
919 memcpy(memory_region_get_ram_ptr(mr
), data
->data
, size
);
920 memory_region_set_dirty(mr
, 0, size
);
923 static void virt_acpi_build_update(void *build_opaque
)
925 AcpiBuildState
*build_state
= build_opaque
;
926 AcpiBuildTables tables
;
928 /* No state to update or already patched? Nothing to do. */
929 if (!build_state
|| build_state
->patched
) {
932 build_state
->patched
= true;
934 acpi_build_tables_init(&tables
);
936 virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables
);
938 acpi_ram_update(build_state
->table_mr
, tables
.table_data
);
939 acpi_ram_update(build_state
->rsdp_mr
, tables
.rsdp
);
940 acpi_ram_update(build_state
->linker_mr
, tables
.linker
->cmd_blob
);
942 acpi_build_tables_cleanup(&tables
, true);
945 static void virt_acpi_build_reset(void *build_opaque
)
947 AcpiBuildState
*build_state
= build_opaque
;
948 build_state
->patched
= false;
951 static const VMStateDescription vmstate_virt_acpi_build
= {
952 .name
= "virt_acpi_build",
954 .minimum_version_id
= 1,
955 .fields
= (VMStateField
[]) {
956 VMSTATE_BOOL(patched
, AcpiBuildState
),
957 VMSTATE_END_OF_LIST()
961 void virt_acpi_setup(VirtMachineState
*vms
)
963 AcpiBuildTables tables
;
964 AcpiBuildState
*build_state
;
965 AcpiGedState
*acpi_ged_state
;
968 trace_virt_acpi_setup();
972 if (!virt_is_acpi_enabled(vms
)) {
973 trace_virt_acpi_setup();
977 build_state
= g_malloc0(sizeof *build_state
);
979 acpi_build_tables_init(&tables
);
980 virt_acpi_build(vms
, &tables
);
982 /* Now expose it all to Guest */
983 build_state
->table_mr
= acpi_add_rom_blob(virt_acpi_build_update
,
984 build_state
, tables
.table_data
,
985 ACPI_BUILD_TABLE_FILE
,
986 ACPI_BUILD_TABLE_MAX_SIZE
);
987 assert(build_state
->table_mr
!= NULL
);
989 build_state
->linker_mr
=
990 acpi_add_rom_blob(virt_acpi_build_update
, build_state
,
991 tables
.linker
->cmd_blob
, ACPI_BUILD_LOADER_FILE
, 0);
993 fw_cfg_add_file(vms
->fw_cfg
, ACPI_BUILD_TPMLOG_FILE
, tables
.tcpalog
->data
,
994 acpi_data_len(tables
.tcpalog
));
997 assert(vms
->acpi_dev
);
998 acpi_ged_state
= ACPI_GED(vms
->acpi_dev
);
999 acpi_ghes_add_fw_cfg(&acpi_ged_state
->ghes_state
,
1000 vms
->fw_cfg
, tables
.hardware_errors
);
1003 build_state
->rsdp_mr
= acpi_add_rom_blob(virt_acpi_build_update
,
1004 build_state
, tables
.rsdp
,
1005 ACPI_BUILD_RSDP_FILE
, 0);
1007 qemu_register_reset(virt_acpi_build_reset
, build_state
);
1008 virt_acpi_build_reset(build_state
);
1009 vmstate_register(NULL
, 0, &vmstate_virt_acpi_build
, build_state
);
1011 /* Cleanup tables but don't free the memory: we track it
1014 acpi_build_tables_cleanup(&tables
, false);