vnc: make sure we finish disconnect
[qemu/ar7.git] / block / qcow2-refcount.c
blob49b6ce6bfd0995b5533ebeb4abe54ac97b1492e9
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35 int64_t offset, int64_t length, uint64_t addend,
36 bool decrease, enum qcow2_discard_type type);
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47 uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49 uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51 uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53 uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55 uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57 uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59 uint64_t value);
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63 &get_refcount_ro0,
64 &get_refcount_ro1,
65 &get_refcount_ro2,
66 &get_refcount_ro3,
67 &get_refcount_ro4,
68 &get_refcount_ro5,
69 &get_refcount_ro6
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73 &set_refcount_ro0,
74 &set_refcount_ro1,
75 &set_refcount_ro2,
76 &set_refcount_ro3,
77 &set_refcount_ro4,
78 &set_refcount_ro5,
79 &set_refcount_ro6
83 /*********************************************************/
84 /* refcount handling */
86 int qcow2_refcount_init(BlockDriverState *bs)
88 BDRVQcow2State *s = bs->opaque;
89 unsigned int refcount_table_size2, i;
90 int ret;
92 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
94 s->get_refcount = get_refcount_funcs[s->refcount_order];
95 s->set_refcount = set_refcount_funcs[s->refcount_order];
97 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
98 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
99 s->refcount_table = g_try_malloc(refcount_table_size2);
101 if (s->refcount_table_size > 0) {
102 if (s->refcount_table == NULL) {
103 ret = -ENOMEM;
104 goto fail;
106 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
107 ret = bdrv_pread(bs->file, s->refcount_table_offset,
108 s->refcount_table, refcount_table_size2);
109 if (ret < 0) {
110 goto fail;
112 for(i = 0; i < s->refcount_table_size; i++)
113 be64_to_cpus(&s->refcount_table[i]);
115 return 0;
116 fail:
117 return ret;
120 void qcow2_refcount_close(BlockDriverState *bs)
122 BDRVQcow2State *s = bs->opaque;
123 g_free(s->refcount_table);
127 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
129 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
132 static void set_refcount_ro0(void *refcount_array, uint64_t index,
133 uint64_t value)
135 assert(!(value >> 1));
136 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
137 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
140 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
142 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
143 & 0x3;
146 static void set_refcount_ro1(void *refcount_array, uint64_t index,
147 uint64_t value)
149 assert(!(value >> 2));
150 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
151 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
154 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
156 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
157 & 0xf;
160 static void set_refcount_ro2(void *refcount_array, uint64_t index,
161 uint64_t value)
163 assert(!(value >> 4));
164 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
165 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
168 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
170 return ((const uint8_t *)refcount_array)[index];
173 static void set_refcount_ro3(void *refcount_array, uint64_t index,
174 uint64_t value)
176 assert(!(value >> 8));
177 ((uint8_t *)refcount_array)[index] = value;
180 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
182 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
185 static void set_refcount_ro4(void *refcount_array, uint64_t index,
186 uint64_t value)
188 assert(!(value >> 16));
189 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
192 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
194 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
197 static void set_refcount_ro5(void *refcount_array, uint64_t index,
198 uint64_t value)
200 assert(!(value >> 32));
201 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
204 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
206 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
209 static void set_refcount_ro6(void *refcount_array, uint64_t index,
210 uint64_t value)
212 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
216 static int load_refcount_block(BlockDriverState *bs,
217 int64_t refcount_block_offset,
218 void **refcount_block)
220 BDRVQcow2State *s = bs->opaque;
222 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
223 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
224 refcount_block);
228 * Retrieves the refcount of the cluster given by its index and stores it in
229 * *refcount. Returns 0 on success and -errno on failure.
231 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
232 uint64_t *refcount)
234 BDRVQcow2State *s = bs->opaque;
235 uint64_t refcount_table_index, block_index;
236 int64_t refcount_block_offset;
237 int ret;
238 void *refcount_block;
240 refcount_table_index = cluster_index >> s->refcount_block_bits;
241 if (refcount_table_index >= s->refcount_table_size) {
242 *refcount = 0;
243 return 0;
245 refcount_block_offset =
246 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
247 if (!refcount_block_offset) {
248 *refcount = 0;
249 return 0;
252 if (offset_into_cluster(s, refcount_block_offset)) {
253 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
254 " unaligned (reftable index: %#" PRIx64 ")",
255 refcount_block_offset, refcount_table_index);
256 return -EIO;
259 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
260 &refcount_block);
261 if (ret < 0) {
262 return ret;
265 block_index = cluster_index & (s->refcount_block_size - 1);
266 *refcount = s->get_refcount(refcount_block, block_index);
268 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
270 return 0;
274 * Rounds the refcount table size up to avoid growing the table for each single
275 * refcount block that is allocated.
277 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
278 unsigned int min_size)
280 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
281 unsigned int refcount_table_clusters =
282 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
284 while (min_clusters > refcount_table_clusters) {
285 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
288 return refcount_table_clusters << (s->cluster_bits - 3);
292 /* Checks if two offsets are described by the same refcount block */
293 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
294 uint64_t offset_b)
296 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
297 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
299 return (block_a == block_b);
303 * Loads a refcount block. If it doesn't exist yet, it is allocated first
304 * (including growing the refcount table if needed).
306 * Returns 0 on success or -errno in error case
308 static int alloc_refcount_block(BlockDriverState *bs,
309 int64_t cluster_index, void **refcount_block)
311 BDRVQcow2State *s = bs->opaque;
312 unsigned int refcount_table_index;
313 int ret;
315 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
317 /* Find the refcount block for the given cluster */
318 refcount_table_index = cluster_index >> s->refcount_block_bits;
320 if (refcount_table_index < s->refcount_table_size) {
322 uint64_t refcount_block_offset =
323 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
325 /* If it's already there, we're done */
326 if (refcount_block_offset) {
327 if (offset_into_cluster(s, refcount_block_offset)) {
328 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
329 PRIx64 " unaligned (reftable index: "
330 "%#x)", refcount_block_offset,
331 refcount_table_index);
332 return -EIO;
335 return load_refcount_block(bs, refcount_block_offset,
336 refcount_block);
341 * If we came here, we need to allocate something. Something is at least
342 * a cluster for the new refcount block. It may also include a new refcount
343 * table if the old refcount table is too small.
345 * Note that allocating clusters here needs some special care:
347 * - We can't use the normal qcow2_alloc_clusters(), it would try to
348 * increase the refcount and very likely we would end up with an endless
349 * recursion. Instead we must place the refcount blocks in a way that
350 * they can describe them themselves.
352 * - We need to consider that at this point we are inside update_refcounts
353 * and potentially doing an initial refcount increase. This means that
354 * some clusters have already been allocated by the caller, but their
355 * refcount isn't accurate yet. If we allocate clusters for metadata, we
356 * need to return -EAGAIN to signal the caller that it needs to restart
357 * the search for free clusters.
359 * - alloc_clusters_noref and qcow2_free_clusters may load a different
360 * refcount block into the cache
363 *refcount_block = NULL;
365 /* We write to the refcount table, so we might depend on L2 tables */
366 ret = qcow2_cache_flush(bs, s->l2_table_cache);
367 if (ret < 0) {
368 return ret;
371 /* Allocate the refcount block itself and mark it as used */
372 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
373 if (new_block < 0) {
374 return new_block;
377 #ifdef DEBUG_ALLOC2
378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379 " at %" PRIx64 "\n",
380 refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384 /* Zero the new refcount block before updating it */
385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386 refcount_block);
387 if (ret < 0) {
388 goto fail_block;
391 memset(*refcount_block, 0, s->cluster_size);
393 /* The block describes itself, need to update the cache */
394 int block_index = (new_block >> s->cluster_bits) &
395 (s->refcount_block_size - 1);
396 s->set_refcount(*refcount_block, block_index, 1);
397 } else {
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401 QCOW2_DISCARD_NEVER);
402 if (ret < 0) {
403 goto fail_block;
406 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407 if (ret < 0) {
408 goto fail_block;
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414 refcount_block);
415 if (ret < 0) {
416 goto fail_block;
419 memset(*refcount_block, 0, s->cluster_size);
422 /* Now the new refcount block needs to be written to disk */
423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
425 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426 if (ret < 0) {
427 goto fail_block;
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index < s->refcount_table_size) {
432 uint64_t data64 = cpu_to_be64(new_block);
433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434 ret = bdrv_pwrite_sync(bs->file,
435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436 &data64, sizeof(data64));
437 if (ret < 0) {
438 goto fail_block;
441 s->refcount_table[refcount_table_index] = new_block;
443 /* The new refcount block may be where the caller intended to put its
444 * data, so let it restart the search. */
445 return -EAGAIN;
448 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
451 * If we come here, we need to grow the refcount table. Again, a new
452 * refcount table needs some space and we can't simply allocate to avoid
453 * endless recursion.
455 * Therefore let's grab new refcount blocks at the end of the image, which
456 * will describe themselves and the new refcount table. This way we can
457 * reference them only in the new table and do the switch to the new
458 * refcount table at once without producing an inconsistent state in
459 * between.
461 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
463 /* Calculate the number of refcount blocks needed so far; this will be the
464 * basis for calculating the index of the first cluster used for the
465 * self-describing refcount structures which we are about to create.
467 * Because we reached this point, there cannot be any refcount entries for
468 * cluster_index or higher indices yet. However, because new_block has been
469 * allocated to describe that cluster (and it will assume this role later
470 * on), we cannot use that index; also, new_block may actually have a higher
471 * cluster index than cluster_index, so it needs to be taken into account
472 * here (and 1 needs to be added to its value because that cluster is used).
474 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
475 (new_block >> s->cluster_bits) + 1),
476 s->refcount_block_size);
478 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
479 return -EFBIG;
482 /* And now we need at least one block more for the new metadata */
483 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
484 uint64_t last_table_size;
485 uint64_t blocks_clusters;
486 do {
487 uint64_t table_clusters =
488 size_to_clusters(s, table_size * sizeof(uint64_t));
489 blocks_clusters = 1 +
490 DIV_ROUND_UP(table_clusters, s->refcount_block_size);
491 uint64_t meta_clusters = table_clusters + blocks_clusters;
493 last_table_size = table_size;
494 table_size = next_refcount_table_size(s, blocks_used +
495 DIV_ROUND_UP(meta_clusters, s->refcount_block_size));
497 } while (last_table_size != table_size);
499 #ifdef DEBUG_ALLOC2
500 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
501 s->refcount_table_size, table_size);
502 #endif
504 /* Create the new refcount table and blocks */
505 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
506 s->cluster_size;
507 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
508 uint64_t *new_table = g_try_new0(uint64_t, table_size);
509 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
511 assert(table_size > 0 && blocks_clusters > 0);
512 if (new_table == NULL || new_blocks == NULL) {
513 ret = -ENOMEM;
514 goto fail_table;
517 /* Fill the new refcount table */
518 memcpy(new_table, s->refcount_table,
519 s->refcount_table_size * sizeof(uint64_t));
520 new_table[refcount_table_index] = new_block;
522 int i;
523 for (i = 0; i < blocks_clusters; i++) {
524 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
527 /* Fill the refcount blocks */
528 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
529 int block = 0;
530 for (i = 0; i < table_clusters + blocks_clusters; i++) {
531 s->set_refcount(new_blocks, block++, 1);
534 /* Write refcount blocks to disk */
535 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
536 ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
537 blocks_clusters * s->cluster_size);
538 g_free(new_blocks);
539 new_blocks = NULL;
540 if (ret < 0) {
541 goto fail_table;
544 /* Write refcount table to disk */
545 for(i = 0; i < table_size; i++) {
546 cpu_to_be64s(&new_table[i]);
549 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
550 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
551 table_size * sizeof(uint64_t));
552 if (ret < 0) {
553 goto fail_table;
556 for(i = 0; i < table_size; i++) {
557 be64_to_cpus(&new_table[i]);
560 /* Hook up the new refcount table in the qcow2 header */
561 struct QEMU_PACKED {
562 uint64_t d64;
563 uint32_t d32;
564 } data;
565 data.d64 = cpu_to_be64(table_offset);
566 data.d32 = cpu_to_be32(table_clusters);
567 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
568 ret = bdrv_pwrite_sync(bs->file,
569 offsetof(QCowHeader, refcount_table_offset),
570 &data, sizeof(data));
571 if (ret < 0) {
572 goto fail_table;
575 /* And switch it in memory */
576 uint64_t old_table_offset = s->refcount_table_offset;
577 uint64_t old_table_size = s->refcount_table_size;
579 g_free(s->refcount_table);
580 s->refcount_table = new_table;
581 s->refcount_table_size = table_size;
582 s->refcount_table_offset = table_offset;
584 /* Free old table. */
585 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
586 QCOW2_DISCARD_OTHER);
588 ret = load_refcount_block(bs, new_block, refcount_block);
589 if (ret < 0) {
590 return ret;
593 /* If we were trying to do the initial refcount update for some cluster
594 * allocation, we might have used the same clusters to store newly
595 * allocated metadata. Make the caller search some new space. */
596 return -EAGAIN;
598 fail_table:
599 g_free(new_blocks);
600 g_free(new_table);
601 fail_block:
602 if (*refcount_block != NULL) {
603 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
605 return ret;
608 void qcow2_process_discards(BlockDriverState *bs, int ret)
610 BDRVQcow2State *s = bs->opaque;
611 Qcow2DiscardRegion *d, *next;
613 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
614 QTAILQ_REMOVE(&s->discards, d, next);
616 /* Discard is optional, ignore the return value */
617 if (ret >= 0) {
618 bdrv_discard(bs->file->bs,
619 d->offset >> BDRV_SECTOR_BITS,
620 d->bytes >> BDRV_SECTOR_BITS);
623 g_free(d);
627 static void update_refcount_discard(BlockDriverState *bs,
628 uint64_t offset, uint64_t length)
630 BDRVQcow2State *s = bs->opaque;
631 Qcow2DiscardRegion *d, *p, *next;
633 QTAILQ_FOREACH(d, &s->discards, next) {
634 uint64_t new_start = MIN(offset, d->offset);
635 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
637 if (new_end - new_start <= length + d->bytes) {
638 /* There can't be any overlap, areas ending up here have no
639 * references any more and therefore shouldn't get freed another
640 * time. */
641 assert(d->bytes + length == new_end - new_start);
642 d->offset = new_start;
643 d->bytes = new_end - new_start;
644 goto found;
648 d = g_malloc(sizeof(*d));
649 *d = (Qcow2DiscardRegion) {
650 .bs = bs,
651 .offset = offset,
652 .bytes = length,
654 QTAILQ_INSERT_TAIL(&s->discards, d, next);
656 found:
657 /* Merge discard requests if they are adjacent now */
658 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
659 if (p == d
660 || p->offset > d->offset + d->bytes
661 || d->offset > p->offset + p->bytes)
663 continue;
666 /* Still no overlap possible */
667 assert(p->offset == d->offset + d->bytes
668 || d->offset == p->offset + p->bytes);
670 QTAILQ_REMOVE(&s->discards, p, next);
671 d->offset = MIN(d->offset, p->offset);
672 d->bytes += p->bytes;
673 g_free(p);
677 /* XXX: cache several refcount block clusters ? */
678 /* @addend is the absolute value of the addend; if @decrease is set, @addend
679 * will be subtracted from the current refcount, otherwise it will be added */
680 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
681 int64_t offset,
682 int64_t length,
683 uint64_t addend,
684 bool decrease,
685 enum qcow2_discard_type type)
687 BDRVQcow2State *s = bs->opaque;
688 int64_t start, last, cluster_offset;
689 void *refcount_block = NULL;
690 int64_t old_table_index = -1;
691 int ret;
693 #ifdef DEBUG_ALLOC2
694 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
695 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
696 addend);
697 #endif
698 if (length < 0) {
699 return -EINVAL;
700 } else if (length == 0) {
701 return 0;
704 if (decrease) {
705 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
706 s->l2_table_cache);
709 start = start_of_cluster(s, offset);
710 last = start_of_cluster(s, offset + length - 1);
711 for(cluster_offset = start; cluster_offset <= last;
712 cluster_offset += s->cluster_size)
714 int block_index;
715 uint64_t refcount;
716 int64_t cluster_index = cluster_offset >> s->cluster_bits;
717 int64_t table_index = cluster_index >> s->refcount_block_bits;
719 /* Load the refcount block and allocate it if needed */
720 if (table_index != old_table_index) {
721 if (refcount_block) {
722 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
724 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
725 if (ret < 0) {
726 goto fail;
729 old_table_index = table_index;
731 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
732 refcount_block);
734 /* we can update the count and save it */
735 block_index = cluster_index & (s->refcount_block_size - 1);
737 refcount = s->get_refcount(refcount_block, block_index);
738 if (decrease ? (refcount - addend > refcount)
739 : (refcount + addend < refcount ||
740 refcount + addend > s->refcount_max))
742 ret = -EINVAL;
743 goto fail;
745 if (decrease) {
746 refcount -= addend;
747 } else {
748 refcount += addend;
750 if (refcount == 0 && cluster_index < s->free_cluster_index) {
751 s->free_cluster_index = cluster_index;
753 s->set_refcount(refcount_block, block_index, refcount);
755 if (refcount == 0 && s->discard_passthrough[type]) {
756 update_refcount_discard(bs, cluster_offset, s->cluster_size);
760 ret = 0;
761 fail:
762 if (!s->cache_discards) {
763 qcow2_process_discards(bs, ret);
766 /* Write last changed block to disk */
767 if (refcount_block) {
768 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
772 * Try do undo any updates if an error is returned (This may succeed in
773 * some cases like ENOSPC for allocating a new refcount block)
775 if (ret < 0) {
776 int dummy;
777 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
778 !decrease, QCOW2_DISCARD_NEVER);
779 (void)dummy;
782 return ret;
786 * Increases or decreases the refcount of a given cluster.
788 * @addend is the absolute value of the addend; if @decrease is set, @addend
789 * will be subtracted from the current refcount, otherwise it will be added.
791 * On success 0 is returned; on failure -errno is returned.
793 int qcow2_update_cluster_refcount(BlockDriverState *bs,
794 int64_t cluster_index,
795 uint64_t addend, bool decrease,
796 enum qcow2_discard_type type)
798 BDRVQcow2State *s = bs->opaque;
799 int ret;
801 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
802 decrease, type);
803 if (ret < 0) {
804 return ret;
807 return 0;
812 /*********************************************************/
813 /* cluster allocation functions */
817 /* return < 0 if error */
818 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
820 BDRVQcow2State *s = bs->opaque;
821 uint64_t i, nb_clusters, refcount;
822 int ret;
824 /* We can't allocate clusters if they may still be queued for discard. */
825 if (s->cache_discards) {
826 qcow2_process_discards(bs, 0);
829 nb_clusters = size_to_clusters(s, size);
830 retry:
831 for(i = 0; i < nb_clusters; i++) {
832 uint64_t next_cluster_index = s->free_cluster_index++;
833 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
835 if (ret < 0) {
836 return ret;
837 } else if (refcount != 0) {
838 goto retry;
842 /* Make sure that all offsets in the "allocated" range are representable
843 * in an int64_t */
844 if (s->free_cluster_index > 0 &&
845 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
847 return -EFBIG;
850 #ifdef DEBUG_ALLOC2
851 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
852 size,
853 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
854 #endif
855 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
858 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
860 int64_t offset;
861 int ret;
863 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
864 do {
865 offset = alloc_clusters_noref(bs, size);
866 if (offset < 0) {
867 return offset;
870 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
871 } while (ret == -EAGAIN);
873 if (ret < 0) {
874 return ret;
877 return offset;
880 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
881 int64_t nb_clusters)
883 BDRVQcow2State *s = bs->opaque;
884 uint64_t cluster_index, refcount;
885 uint64_t i;
886 int ret;
888 assert(nb_clusters >= 0);
889 if (nb_clusters == 0) {
890 return 0;
893 do {
894 /* Check how many clusters there are free */
895 cluster_index = offset >> s->cluster_bits;
896 for(i = 0; i < nb_clusters; i++) {
897 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
898 if (ret < 0) {
899 return ret;
900 } else if (refcount != 0) {
901 break;
905 /* And then allocate them */
906 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
907 QCOW2_DISCARD_NEVER);
908 } while (ret == -EAGAIN);
910 if (ret < 0) {
911 return ret;
914 return i;
917 /* only used to allocate compressed sectors. We try to allocate
918 contiguous sectors. size must be <= cluster_size */
919 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
921 BDRVQcow2State *s = bs->opaque;
922 int64_t offset;
923 size_t free_in_cluster;
924 int ret;
926 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
927 assert(size > 0 && size <= s->cluster_size);
928 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
930 offset = s->free_byte_offset;
932 if (offset) {
933 uint64_t refcount;
934 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
935 if (ret < 0) {
936 return ret;
939 if (refcount == s->refcount_max) {
940 offset = 0;
944 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
945 do {
946 if (!offset || free_in_cluster < size) {
947 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
948 if (new_cluster < 0) {
949 return new_cluster;
952 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
953 offset = new_cluster;
954 free_in_cluster = s->cluster_size;
955 } else {
956 free_in_cluster += s->cluster_size;
960 assert(offset);
961 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
962 if (ret < 0) {
963 offset = 0;
965 } while (ret == -EAGAIN);
966 if (ret < 0) {
967 return ret;
970 /* The cluster refcount was incremented; refcount blocks must be flushed
971 * before the caller's L2 table updates. */
972 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
974 s->free_byte_offset = offset + size;
975 if (!offset_into_cluster(s, s->free_byte_offset)) {
976 s->free_byte_offset = 0;
979 return offset;
982 void qcow2_free_clusters(BlockDriverState *bs,
983 int64_t offset, int64_t size,
984 enum qcow2_discard_type type)
986 int ret;
988 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
989 ret = update_refcount(bs, offset, size, 1, true, type);
990 if (ret < 0) {
991 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
992 /* TODO Remember the clusters to free them later and avoid leaking */
997 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
998 * normal cluster, compressed cluster, etc.)
1000 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1001 int nb_clusters, enum qcow2_discard_type type)
1003 BDRVQcow2State *s = bs->opaque;
1005 switch (qcow2_get_cluster_type(l2_entry)) {
1006 case QCOW2_CLUSTER_COMPRESSED:
1008 int nb_csectors;
1009 nb_csectors = ((l2_entry >> s->csize_shift) &
1010 s->csize_mask) + 1;
1011 qcow2_free_clusters(bs,
1012 (l2_entry & s->cluster_offset_mask) & ~511,
1013 nb_csectors * 512, type);
1015 break;
1016 case QCOW2_CLUSTER_NORMAL:
1017 case QCOW2_CLUSTER_ZERO:
1018 if (l2_entry & L2E_OFFSET_MASK) {
1019 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1020 qcow2_signal_corruption(bs, false, -1, -1,
1021 "Cannot free unaligned cluster %#llx",
1022 l2_entry & L2E_OFFSET_MASK);
1023 } else {
1024 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1025 nb_clusters << s->cluster_bits, type);
1028 break;
1029 case QCOW2_CLUSTER_UNALLOCATED:
1030 break;
1031 default:
1032 abort();
1038 /*********************************************************/
1039 /* snapshots and image creation */
1043 /* update the refcounts of snapshots and the copied flag */
1044 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1045 int64_t l1_table_offset, int l1_size, int addend)
1047 BDRVQcow2State *s = bs->opaque;
1048 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1049 bool l1_allocated = false;
1050 int64_t old_offset, old_l2_offset;
1051 int i, j, l1_modified = 0, nb_csectors;
1052 int ret;
1054 assert(addend >= -1 && addend <= 1);
1056 l2_table = NULL;
1057 l1_table = NULL;
1058 l1_size2 = l1_size * sizeof(uint64_t);
1060 s->cache_discards = true;
1062 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1063 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1064 * when changing this! */
1065 if (l1_table_offset != s->l1_table_offset) {
1066 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1067 if (l1_size2 && l1_table == NULL) {
1068 ret = -ENOMEM;
1069 goto fail;
1071 l1_allocated = true;
1073 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1074 if (ret < 0) {
1075 goto fail;
1078 for(i = 0;i < l1_size; i++)
1079 be64_to_cpus(&l1_table[i]);
1080 } else {
1081 assert(l1_size == s->l1_size);
1082 l1_table = s->l1_table;
1083 l1_allocated = false;
1086 for(i = 0; i < l1_size; i++) {
1087 l2_offset = l1_table[i];
1088 if (l2_offset) {
1089 old_l2_offset = l2_offset;
1090 l2_offset &= L1E_OFFSET_MASK;
1092 if (offset_into_cluster(s, l2_offset)) {
1093 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1094 PRIx64 " unaligned (L1 index: %#x)",
1095 l2_offset, i);
1096 ret = -EIO;
1097 goto fail;
1100 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1101 (void**) &l2_table);
1102 if (ret < 0) {
1103 goto fail;
1106 for(j = 0; j < s->l2_size; j++) {
1107 uint64_t cluster_index;
1109 offset = be64_to_cpu(l2_table[j]);
1110 old_offset = offset;
1111 offset &= ~QCOW_OFLAG_COPIED;
1113 switch (qcow2_get_cluster_type(offset)) {
1114 case QCOW2_CLUSTER_COMPRESSED:
1115 nb_csectors = ((offset >> s->csize_shift) &
1116 s->csize_mask) + 1;
1117 if (addend != 0) {
1118 ret = update_refcount(bs,
1119 (offset & s->cluster_offset_mask) & ~511,
1120 nb_csectors * 512, abs(addend), addend < 0,
1121 QCOW2_DISCARD_SNAPSHOT);
1122 if (ret < 0) {
1123 goto fail;
1126 /* compressed clusters are never modified */
1127 refcount = 2;
1128 break;
1130 case QCOW2_CLUSTER_NORMAL:
1131 case QCOW2_CLUSTER_ZERO:
1132 if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1133 qcow2_signal_corruption(bs, true, -1, -1, "Data "
1134 "cluster offset %#llx "
1135 "unaligned (L2 offset: %#"
1136 PRIx64 ", L2 index: %#x)",
1137 offset & L2E_OFFSET_MASK,
1138 l2_offset, j);
1139 ret = -EIO;
1140 goto fail;
1143 cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1144 if (!cluster_index) {
1145 /* unallocated */
1146 refcount = 0;
1147 break;
1149 if (addend != 0) {
1150 ret = qcow2_update_cluster_refcount(bs,
1151 cluster_index, abs(addend), addend < 0,
1152 QCOW2_DISCARD_SNAPSHOT);
1153 if (ret < 0) {
1154 goto fail;
1158 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1159 if (ret < 0) {
1160 goto fail;
1162 break;
1164 case QCOW2_CLUSTER_UNALLOCATED:
1165 refcount = 0;
1166 break;
1168 default:
1169 abort();
1172 if (refcount == 1) {
1173 offset |= QCOW_OFLAG_COPIED;
1175 if (offset != old_offset) {
1176 if (addend > 0) {
1177 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1178 s->refcount_block_cache);
1180 l2_table[j] = cpu_to_be64(offset);
1181 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1182 l2_table);
1186 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1188 if (addend != 0) {
1189 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1190 s->cluster_bits,
1191 abs(addend), addend < 0,
1192 QCOW2_DISCARD_SNAPSHOT);
1193 if (ret < 0) {
1194 goto fail;
1197 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1198 &refcount);
1199 if (ret < 0) {
1200 goto fail;
1201 } else if (refcount == 1) {
1202 l2_offset |= QCOW_OFLAG_COPIED;
1204 if (l2_offset != old_l2_offset) {
1205 l1_table[i] = l2_offset;
1206 l1_modified = 1;
1211 ret = bdrv_flush(bs);
1212 fail:
1213 if (l2_table) {
1214 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1217 s->cache_discards = false;
1218 qcow2_process_discards(bs, ret);
1220 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1221 if (ret == 0 && addend >= 0 && l1_modified) {
1222 for (i = 0; i < l1_size; i++) {
1223 cpu_to_be64s(&l1_table[i]);
1226 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1227 l1_table, l1_size2);
1229 for (i = 0; i < l1_size; i++) {
1230 be64_to_cpus(&l1_table[i]);
1233 if (l1_allocated)
1234 g_free(l1_table);
1235 return ret;
1241 /*********************************************************/
1242 /* refcount checking functions */
1245 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1247 /* This assertion holds because there is no way we can address more than
1248 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1249 * offsets have to be representable in bytes); due to every cluster
1250 * corresponding to one refcount entry, we are well below that limit */
1251 assert(entries < (UINT64_C(1) << (64 - 9)));
1253 /* Thanks to the assertion this will not overflow, because
1254 * s->refcount_order < 7.
1255 * (note: x << s->refcount_order == x * s->refcount_bits) */
1256 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1260 * Reallocates *array so that it can hold new_size entries. *size must contain
1261 * the current number of entries in *array. If the reallocation fails, *array
1262 * and *size will not be modified and -errno will be returned. If the
1263 * reallocation is successful, *array will be set to the new buffer, *size
1264 * will be set to new_size and 0 will be returned. The size of the reallocated
1265 * refcount array buffer will be aligned to a cluster boundary, and the newly
1266 * allocated area will be zeroed.
1268 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1269 int64_t *size, int64_t new_size)
1271 int64_t old_byte_size, new_byte_size;
1272 void *new_ptr;
1274 /* Round to clusters so the array can be directly written to disk */
1275 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1276 * s->cluster_size;
1277 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1278 * s->cluster_size;
1280 if (new_byte_size == old_byte_size) {
1281 *size = new_size;
1282 return 0;
1285 assert(new_byte_size > 0);
1287 if (new_byte_size > SIZE_MAX) {
1288 return -ENOMEM;
1291 new_ptr = g_try_realloc(*array, new_byte_size);
1292 if (!new_ptr) {
1293 return -ENOMEM;
1296 if (new_byte_size > old_byte_size) {
1297 memset((char *)new_ptr + old_byte_size, 0,
1298 new_byte_size - old_byte_size);
1301 *array = new_ptr;
1302 *size = new_size;
1304 return 0;
1308 * Increases the refcount for a range of clusters in a given refcount table.
1309 * This is used to construct a temporary refcount table out of L1 and L2 tables
1310 * which can be compared to the refcount table saved in the image.
1312 * Modifies the number of errors in res.
1314 static int inc_refcounts(BlockDriverState *bs,
1315 BdrvCheckResult *res,
1316 void **refcount_table,
1317 int64_t *refcount_table_size,
1318 int64_t offset, int64_t size)
1320 BDRVQcow2State *s = bs->opaque;
1321 uint64_t start, last, cluster_offset, k, refcount;
1322 int ret;
1324 if (size <= 0) {
1325 return 0;
1328 start = start_of_cluster(s, offset);
1329 last = start_of_cluster(s, offset + size - 1);
1330 for(cluster_offset = start; cluster_offset <= last;
1331 cluster_offset += s->cluster_size) {
1332 k = cluster_offset >> s->cluster_bits;
1333 if (k >= *refcount_table_size) {
1334 ret = realloc_refcount_array(s, refcount_table,
1335 refcount_table_size, k + 1);
1336 if (ret < 0) {
1337 res->check_errors++;
1338 return ret;
1342 refcount = s->get_refcount(*refcount_table, k);
1343 if (refcount == s->refcount_max) {
1344 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1345 "\n", cluster_offset);
1346 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1347 "width or qemu-img convert to create a clean copy if the "
1348 "image cannot be opened for writing\n");
1349 res->corruptions++;
1350 continue;
1352 s->set_refcount(*refcount_table, k, refcount + 1);
1355 return 0;
1358 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1359 enum {
1360 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1364 * Increases the refcount in the given refcount table for the all clusters
1365 * referenced in the L2 table. While doing so, performs some checks on L2
1366 * entries.
1368 * Returns the number of errors found by the checks or -errno if an internal
1369 * error occurred.
1371 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1372 void **refcount_table,
1373 int64_t *refcount_table_size, int64_t l2_offset,
1374 int flags)
1376 BDRVQcow2State *s = bs->opaque;
1377 uint64_t *l2_table, l2_entry;
1378 uint64_t next_contiguous_offset = 0;
1379 int i, l2_size, nb_csectors, ret;
1381 /* Read L2 table from disk */
1382 l2_size = s->l2_size * sizeof(uint64_t);
1383 l2_table = g_malloc(l2_size);
1385 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1386 if (ret < 0) {
1387 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1388 res->check_errors++;
1389 goto fail;
1392 /* Do the actual checks */
1393 for(i = 0; i < s->l2_size; i++) {
1394 l2_entry = be64_to_cpu(l2_table[i]);
1396 switch (qcow2_get_cluster_type(l2_entry)) {
1397 case QCOW2_CLUSTER_COMPRESSED:
1398 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1399 if (l2_entry & QCOW_OFLAG_COPIED) {
1400 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1401 "copied flag must never be set for compressed "
1402 "clusters\n", l2_entry >> s->cluster_bits);
1403 l2_entry &= ~QCOW_OFLAG_COPIED;
1404 res->corruptions++;
1407 /* Mark cluster as used */
1408 nb_csectors = ((l2_entry >> s->csize_shift) &
1409 s->csize_mask) + 1;
1410 l2_entry &= s->cluster_offset_mask;
1411 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1412 l2_entry & ~511, nb_csectors * 512);
1413 if (ret < 0) {
1414 goto fail;
1417 if (flags & CHECK_FRAG_INFO) {
1418 res->bfi.allocated_clusters++;
1419 res->bfi.compressed_clusters++;
1421 /* Compressed clusters are fragmented by nature. Since they
1422 * take up sub-sector space but we only have sector granularity
1423 * I/O we need to re-read the same sectors even for adjacent
1424 * compressed clusters.
1426 res->bfi.fragmented_clusters++;
1428 break;
1430 case QCOW2_CLUSTER_ZERO:
1431 if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1432 break;
1434 /* fall through */
1436 case QCOW2_CLUSTER_NORMAL:
1438 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1440 if (flags & CHECK_FRAG_INFO) {
1441 res->bfi.allocated_clusters++;
1442 if (next_contiguous_offset &&
1443 offset != next_contiguous_offset) {
1444 res->bfi.fragmented_clusters++;
1446 next_contiguous_offset = offset + s->cluster_size;
1449 /* Mark cluster as used */
1450 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1451 offset, s->cluster_size);
1452 if (ret < 0) {
1453 goto fail;
1456 /* Correct offsets are cluster aligned */
1457 if (offset_into_cluster(s, offset)) {
1458 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1459 "properly aligned; L2 entry corrupted.\n", offset);
1460 res->corruptions++;
1462 break;
1465 case QCOW2_CLUSTER_UNALLOCATED:
1466 break;
1468 default:
1469 abort();
1473 g_free(l2_table);
1474 return 0;
1476 fail:
1477 g_free(l2_table);
1478 return ret;
1482 * Increases the refcount for the L1 table, its L2 tables and all referenced
1483 * clusters in the given refcount table. While doing so, performs some checks
1484 * on L1 and L2 entries.
1486 * Returns the number of errors found by the checks or -errno if an internal
1487 * error occurred.
1489 static int check_refcounts_l1(BlockDriverState *bs,
1490 BdrvCheckResult *res,
1491 void **refcount_table,
1492 int64_t *refcount_table_size,
1493 int64_t l1_table_offset, int l1_size,
1494 int flags)
1496 BDRVQcow2State *s = bs->opaque;
1497 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1498 int i, ret;
1500 l1_size2 = l1_size * sizeof(uint64_t);
1502 /* Mark L1 table as used */
1503 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1504 l1_table_offset, l1_size2);
1505 if (ret < 0) {
1506 goto fail;
1509 /* Read L1 table entries from disk */
1510 if (l1_size2 > 0) {
1511 l1_table = g_try_malloc(l1_size2);
1512 if (l1_table == NULL) {
1513 ret = -ENOMEM;
1514 res->check_errors++;
1515 goto fail;
1517 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1518 if (ret < 0) {
1519 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1520 res->check_errors++;
1521 goto fail;
1523 for(i = 0;i < l1_size; i++)
1524 be64_to_cpus(&l1_table[i]);
1527 /* Do the actual checks */
1528 for(i = 0; i < l1_size; i++) {
1529 l2_offset = l1_table[i];
1530 if (l2_offset) {
1531 /* Mark L2 table as used */
1532 l2_offset &= L1E_OFFSET_MASK;
1533 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1534 l2_offset, s->cluster_size);
1535 if (ret < 0) {
1536 goto fail;
1539 /* L2 tables are cluster aligned */
1540 if (offset_into_cluster(s, l2_offset)) {
1541 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1542 "cluster aligned; L1 entry corrupted\n", l2_offset);
1543 res->corruptions++;
1546 /* Process and check L2 entries */
1547 ret = check_refcounts_l2(bs, res, refcount_table,
1548 refcount_table_size, l2_offset, flags);
1549 if (ret < 0) {
1550 goto fail;
1554 g_free(l1_table);
1555 return 0;
1557 fail:
1558 g_free(l1_table);
1559 return ret;
1563 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1565 * This function does not print an error message nor does it increment
1566 * check_errors if qcow2_get_refcount fails (this is because such an error will
1567 * have been already detected and sufficiently signaled by the calling function
1568 * (qcow2_check_refcounts) by the time this function is called).
1570 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1571 BdrvCheckMode fix)
1573 BDRVQcow2State *s = bs->opaque;
1574 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1575 int ret;
1576 uint64_t refcount;
1577 int i, j;
1579 for (i = 0; i < s->l1_size; i++) {
1580 uint64_t l1_entry = s->l1_table[i];
1581 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1582 bool l2_dirty = false;
1584 if (!l2_offset) {
1585 continue;
1588 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1589 &refcount);
1590 if (ret < 0) {
1591 /* don't print message nor increment check_errors */
1592 continue;
1594 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1595 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1596 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1597 fix & BDRV_FIX_ERRORS ? "Repairing" :
1598 "ERROR",
1599 i, l1_entry, refcount);
1600 if (fix & BDRV_FIX_ERRORS) {
1601 s->l1_table[i] = refcount == 1
1602 ? l1_entry | QCOW_OFLAG_COPIED
1603 : l1_entry & ~QCOW_OFLAG_COPIED;
1604 ret = qcow2_write_l1_entry(bs, i);
1605 if (ret < 0) {
1606 res->check_errors++;
1607 goto fail;
1609 res->corruptions_fixed++;
1610 } else {
1611 res->corruptions++;
1615 ret = bdrv_pread(bs->file, l2_offset, l2_table,
1616 s->l2_size * sizeof(uint64_t));
1617 if (ret < 0) {
1618 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1619 strerror(-ret));
1620 res->check_errors++;
1621 goto fail;
1624 for (j = 0; j < s->l2_size; j++) {
1625 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1626 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1627 int cluster_type = qcow2_get_cluster_type(l2_entry);
1629 if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1630 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1631 ret = qcow2_get_refcount(bs,
1632 data_offset >> s->cluster_bits,
1633 &refcount);
1634 if (ret < 0) {
1635 /* don't print message nor increment check_errors */
1636 continue;
1638 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1639 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1640 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1641 fix & BDRV_FIX_ERRORS ? "Repairing" :
1642 "ERROR",
1643 l2_entry, refcount);
1644 if (fix & BDRV_FIX_ERRORS) {
1645 l2_table[j] = cpu_to_be64(refcount == 1
1646 ? l2_entry | QCOW_OFLAG_COPIED
1647 : l2_entry & ~QCOW_OFLAG_COPIED);
1648 l2_dirty = true;
1649 res->corruptions_fixed++;
1650 } else {
1651 res->corruptions++;
1657 if (l2_dirty) {
1658 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1659 l2_offset, s->cluster_size);
1660 if (ret < 0) {
1661 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1662 "overlap check failed: %s\n", strerror(-ret));
1663 res->check_errors++;
1664 goto fail;
1667 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1668 s->cluster_size);
1669 if (ret < 0) {
1670 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1671 strerror(-ret));
1672 res->check_errors++;
1673 goto fail;
1678 ret = 0;
1680 fail:
1681 qemu_vfree(l2_table);
1682 return ret;
1686 * Checks consistency of refblocks and accounts for each refblock in
1687 * *refcount_table.
1689 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1690 BdrvCheckMode fix, bool *rebuild,
1691 void **refcount_table, int64_t *nb_clusters)
1693 BDRVQcow2State *s = bs->opaque;
1694 int64_t i, size;
1695 int ret;
1697 for(i = 0; i < s->refcount_table_size; i++) {
1698 uint64_t offset, cluster;
1699 offset = s->refcount_table[i];
1700 cluster = offset >> s->cluster_bits;
1702 /* Refcount blocks are cluster aligned */
1703 if (offset_into_cluster(s, offset)) {
1704 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1705 "cluster aligned; refcount table entry corrupted\n", i);
1706 res->corruptions++;
1707 *rebuild = true;
1708 continue;
1711 if (cluster >= *nb_clusters) {
1712 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1713 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1715 if (fix & BDRV_FIX_ERRORS) {
1716 int64_t new_nb_clusters;
1718 if (offset > INT64_MAX - s->cluster_size) {
1719 ret = -EINVAL;
1720 goto resize_fail;
1723 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
1724 if (ret < 0) {
1725 goto resize_fail;
1727 size = bdrv_getlength(bs->file->bs);
1728 if (size < 0) {
1729 ret = size;
1730 goto resize_fail;
1733 new_nb_clusters = size_to_clusters(s, size);
1734 assert(new_nb_clusters >= *nb_clusters);
1736 ret = realloc_refcount_array(s, refcount_table,
1737 nb_clusters, new_nb_clusters);
1738 if (ret < 0) {
1739 res->check_errors++;
1740 return ret;
1743 if (cluster >= *nb_clusters) {
1744 ret = -EINVAL;
1745 goto resize_fail;
1748 res->corruptions_fixed++;
1749 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1750 offset, s->cluster_size);
1751 if (ret < 0) {
1752 return ret;
1754 /* No need to check whether the refcount is now greater than 1:
1755 * This area was just allocated and zeroed, so it can only be
1756 * exactly 1 after inc_refcounts() */
1757 continue;
1759 resize_fail:
1760 res->corruptions++;
1761 *rebuild = true;
1762 fprintf(stderr, "ERROR could not resize image: %s\n",
1763 strerror(-ret));
1764 } else {
1765 res->corruptions++;
1767 continue;
1770 if (offset != 0) {
1771 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1772 offset, s->cluster_size);
1773 if (ret < 0) {
1774 return ret;
1776 if (s->get_refcount(*refcount_table, cluster) != 1) {
1777 fprintf(stderr, "ERROR refcount block %" PRId64
1778 " refcount=%" PRIu64 "\n", i,
1779 s->get_refcount(*refcount_table, cluster));
1780 res->corruptions++;
1781 *rebuild = true;
1786 return 0;
1790 * Calculates an in-memory refcount table.
1792 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1793 BdrvCheckMode fix, bool *rebuild,
1794 void **refcount_table, int64_t *nb_clusters)
1796 BDRVQcow2State *s = bs->opaque;
1797 int64_t i;
1798 QCowSnapshot *sn;
1799 int ret;
1801 if (!*refcount_table) {
1802 int64_t old_size = 0;
1803 ret = realloc_refcount_array(s, refcount_table,
1804 &old_size, *nb_clusters);
1805 if (ret < 0) {
1806 res->check_errors++;
1807 return ret;
1811 /* header */
1812 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1813 0, s->cluster_size);
1814 if (ret < 0) {
1815 return ret;
1818 /* current L1 table */
1819 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1820 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1821 if (ret < 0) {
1822 return ret;
1825 /* snapshots */
1826 for (i = 0; i < s->nb_snapshots; i++) {
1827 sn = s->snapshots + i;
1828 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1829 sn->l1_table_offset, sn->l1_size, 0);
1830 if (ret < 0) {
1831 return ret;
1834 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1835 s->snapshots_offset, s->snapshots_size);
1836 if (ret < 0) {
1837 return ret;
1840 /* refcount data */
1841 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1842 s->refcount_table_offset,
1843 s->refcount_table_size * sizeof(uint64_t));
1844 if (ret < 0) {
1845 return ret;
1848 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1852 * Compares the actual reference count for each cluster in the image against the
1853 * refcount as reported by the refcount structures on-disk.
1855 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1856 BdrvCheckMode fix, bool *rebuild,
1857 int64_t *highest_cluster,
1858 void *refcount_table, int64_t nb_clusters)
1860 BDRVQcow2State *s = bs->opaque;
1861 int64_t i;
1862 uint64_t refcount1, refcount2;
1863 int ret;
1865 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1866 ret = qcow2_get_refcount(bs, i, &refcount1);
1867 if (ret < 0) {
1868 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1869 i, strerror(-ret));
1870 res->check_errors++;
1871 continue;
1874 refcount2 = s->get_refcount(refcount_table, i);
1876 if (refcount1 > 0 || refcount2 > 0) {
1877 *highest_cluster = i;
1880 if (refcount1 != refcount2) {
1881 /* Check if we're allowed to fix the mismatch */
1882 int *num_fixed = NULL;
1883 if (refcount1 == 0) {
1884 *rebuild = true;
1885 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1886 num_fixed = &res->leaks_fixed;
1887 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1888 num_fixed = &res->corruptions_fixed;
1891 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1892 " reference=%" PRIu64 "\n",
1893 num_fixed != NULL ? "Repairing" :
1894 refcount1 < refcount2 ? "ERROR" :
1895 "Leaked",
1896 i, refcount1, refcount2);
1898 if (num_fixed) {
1899 ret = update_refcount(bs, i << s->cluster_bits, 1,
1900 refcount_diff(refcount1, refcount2),
1901 refcount1 > refcount2,
1902 QCOW2_DISCARD_ALWAYS);
1903 if (ret >= 0) {
1904 (*num_fixed)++;
1905 continue;
1909 /* And if we couldn't, print an error */
1910 if (refcount1 < refcount2) {
1911 res->corruptions++;
1912 } else {
1913 res->leaks++;
1920 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1921 * the on-disk refcount structures.
1923 * On input, *first_free_cluster tells where to start looking, and need not
1924 * actually be a free cluster; the returned offset will not be before that
1925 * cluster. On output, *first_free_cluster points to the first gap found, even
1926 * if that gap was too small to be used as the returned offset.
1928 * Note that *first_free_cluster is a cluster index whereas the return value is
1929 * an offset.
1931 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1932 int cluster_count,
1933 void **refcount_table,
1934 int64_t *imrt_nb_clusters,
1935 int64_t *first_free_cluster)
1937 BDRVQcow2State *s = bs->opaque;
1938 int64_t cluster = *first_free_cluster, i;
1939 bool first_gap = true;
1940 int contiguous_free_clusters;
1941 int ret;
1943 /* Starting at *first_free_cluster, find a range of at least cluster_count
1944 * continuously free clusters */
1945 for (contiguous_free_clusters = 0;
1946 cluster < *imrt_nb_clusters &&
1947 contiguous_free_clusters < cluster_count;
1948 cluster++)
1950 if (!s->get_refcount(*refcount_table, cluster)) {
1951 contiguous_free_clusters++;
1952 if (first_gap) {
1953 /* If this is the first free cluster found, update
1954 * *first_free_cluster accordingly */
1955 *first_free_cluster = cluster;
1956 first_gap = false;
1958 } else if (contiguous_free_clusters) {
1959 contiguous_free_clusters = 0;
1963 /* If contiguous_free_clusters is greater than zero, it contains the number
1964 * of continuously free clusters until the current cluster; the first free
1965 * cluster in the current "gap" is therefore
1966 * cluster - contiguous_free_clusters */
1968 /* If no such range could be found, grow the in-memory refcount table
1969 * accordingly to append free clusters at the end of the image */
1970 if (contiguous_free_clusters < cluster_count) {
1971 /* contiguous_free_clusters clusters are already empty at the image end;
1972 * we need cluster_count clusters; therefore, we have to allocate
1973 * cluster_count - contiguous_free_clusters new clusters at the end of
1974 * the image (which is the current value of cluster; note that cluster
1975 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1976 * the image end) */
1977 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1978 cluster + cluster_count
1979 - contiguous_free_clusters);
1980 if (ret < 0) {
1981 return ret;
1985 /* Go back to the first free cluster */
1986 cluster -= contiguous_free_clusters;
1987 for (i = 0; i < cluster_count; i++) {
1988 s->set_refcount(*refcount_table, cluster + i, 1);
1991 return cluster << s->cluster_bits;
1995 * Creates a new refcount structure based solely on the in-memory information
1996 * given through *refcount_table. All necessary allocations will be reflected
1997 * in that array.
1999 * On success, the old refcount structure is leaked (it will be covered by the
2000 * new refcount structure).
2002 static int rebuild_refcount_structure(BlockDriverState *bs,
2003 BdrvCheckResult *res,
2004 void **refcount_table,
2005 int64_t *nb_clusters)
2007 BDRVQcow2State *s = bs->opaque;
2008 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2009 int64_t refblock_offset, refblock_start, refblock_index;
2010 uint32_t reftable_size = 0;
2011 uint64_t *on_disk_reftable = NULL;
2012 void *on_disk_refblock;
2013 int ret = 0;
2014 struct {
2015 uint64_t reftable_offset;
2016 uint32_t reftable_clusters;
2017 } QEMU_PACKED reftable_offset_and_clusters;
2019 qcow2_cache_empty(bs, s->refcount_block_cache);
2021 write_refblocks:
2022 for (; cluster < *nb_clusters; cluster++) {
2023 if (!s->get_refcount(*refcount_table, cluster)) {
2024 continue;
2027 refblock_index = cluster >> s->refcount_block_bits;
2028 refblock_start = refblock_index << s->refcount_block_bits;
2030 /* Don't allocate a cluster in a refblock already written to disk */
2031 if (first_free_cluster < refblock_start) {
2032 first_free_cluster = refblock_start;
2034 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2035 nb_clusters, &first_free_cluster);
2036 if (refblock_offset < 0) {
2037 fprintf(stderr, "ERROR allocating refblock: %s\n",
2038 strerror(-refblock_offset));
2039 res->check_errors++;
2040 ret = refblock_offset;
2041 goto fail;
2044 if (reftable_size <= refblock_index) {
2045 uint32_t old_reftable_size = reftable_size;
2046 uint64_t *new_on_disk_reftable;
2048 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2049 s->cluster_size) / sizeof(uint64_t);
2050 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2051 reftable_size *
2052 sizeof(uint64_t));
2053 if (!new_on_disk_reftable) {
2054 res->check_errors++;
2055 ret = -ENOMEM;
2056 goto fail;
2058 on_disk_reftable = new_on_disk_reftable;
2060 memset(on_disk_reftable + old_reftable_size, 0,
2061 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2063 /* The offset we have for the reftable is now no longer valid;
2064 * this will leak that range, but we can easily fix that by running
2065 * a leak-fixing check after this rebuild operation */
2066 reftable_offset = -1;
2068 on_disk_reftable[refblock_index] = refblock_offset;
2070 /* If this is apparently the last refblock (for now), try to squeeze the
2071 * reftable in */
2072 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2073 reftable_offset < 0)
2075 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2076 sizeof(uint64_t));
2077 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2078 refcount_table, nb_clusters,
2079 &first_free_cluster);
2080 if (reftable_offset < 0) {
2081 fprintf(stderr, "ERROR allocating reftable: %s\n",
2082 strerror(-reftable_offset));
2083 res->check_errors++;
2084 ret = reftable_offset;
2085 goto fail;
2089 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2090 s->cluster_size);
2091 if (ret < 0) {
2092 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2093 goto fail;
2096 /* The size of *refcount_table is always cluster-aligned, therefore the
2097 * write operation will not overflow */
2098 on_disk_refblock = (void *)((char *) *refcount_table +
2099 refblock_index * s->cluster_size);
2101 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2102 on_disk_refblock, s->cluster_sectors);
2103 if (ret < 0) {
2104 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2105 goto fail;
2108 /* Go to the end of this refblock */
2109 cluster = refblock_start + s->refcount_block_size - 1;
2112 if (reftable_offset < 0) {
2113 uint64_t post_refblock_start, reftable_clusters;
2115 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2116 reftable_clusters = size_to_clusters(s,
2117 reftable_size * sizeof(uint64_t));
2118 /* Not pretty but simple */
2119 if (first_free_cluster < post_refblock_start) {
2120 first_free_cluster = post_refblock_start;
2122 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2123 refcount_table, nb_clusters,
2124 &first_free_cluster);
2125 if (reftable_offset < 0) {
2126 fprintf(stderr, "ERROR allocating reftable: %s\n",
2127 strerror(-reftable_offset));
2128 res->check_errors++;
2129 ret = reftable_offset;
2130 goto fail;
2133 goto write_refblocks;
2136 assert(on_disk_reftable);
2138 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2139 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2142 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2143 reftable_size * sizeof(uint64_t));
2144 if (ret < 0) {
2145 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2146 goto fail;
2149 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2150 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2151 reftable_size * sizeof(uint64_t));
2152 if (ret < 0) {
2153 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2154 goto fail;
2157 /* Enter new reftable into the image header */
2158 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2159 reftable_offset_and_clusters.reftable_clusters =
2160 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2161 ret = bdrv_pwrite_sync(bs->file,
2162 offsetof(QCowHeader, refcount_table_offset),
2163 &reftable_offset_and_clusters,
2164 sizeof(reftable_offset_and_clusters));
2165 if (ret < 0) {
2166 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2167 goto fail;
2170 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2171 be64_to_cpus(&on_disk_reftable[refblock_index]);
2173 s->refcount_table = on_disk_reftable;
2174 s->refcount_table_offset = reftable_offset;
2175 s->refcount_table_size = reftable_size;
2177 return 0;
2179 fail:
2180 g_free(on_disk_reftable);
2181 return ret;
2185 * Checks an image for refcount consistency.
2187 * Returns 0 if no errors are found, the number of errors in case the image is
2188 * detected as corrupted, and -errno when an internal error occurred.
2190 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2191 BdrvCheckMode fix)
2193 BDRVQcow2State *s = bs->opaque;
2194 BdrvCheckResult pre_compare_res;
2195 int64_t size, highest_cluster, nb_clusters;
2196 void *refcount_table = NULL;
2197 bool rebuild = false;
2198 int ret;
2200 size = bdrv_getlength(bs->file->bs);
2201 if (size < 0) {
2202 res->check_errors++;
2203 return size;
2206 nb_clusters = size_to_clusters(s, size);
2207 if (nb_clusters > INT_MAX) {
2208 res->check_errors++;
2209 return -EFBIG;
2212 res->bfi.total_clusters =
2213 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2215 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2216 &nb_clusters);
2217 if (ret < 0) {
2218 goto fail;
2221 /* In case we don't need to rebuild the refcount structure (but want to fix
2222 * something), this function is immediately called again, in which case the
2223 * result should be ignored */
2224 pre_compare_res = *res;
2225 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2226 nb_clusters);
2228 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2229 BdrvCheckResult old_res = *res;
2230 int fresh_leaks = 0;
2232 fprintf(stderr, "Rebuilding refcount structure\n");
2233 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2234 &nb_clusters);
2235 if (ret < 0) {
2236 goto fail;
2239 res->corruptions = 0;
2240 res->leaks = 0;
2242 /* Because the old reftable has been exchanged for a new one the
2243 * references have to be recalculated */
2244 rebuild = false;
2245 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2246 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2247 &nb_clusters);
2248 if (ret < 0) {
2249 goto fail;
2252 if (fix & BDRV_FIX_LEAKS) {
2253 /* The old refcount structures are now leaked, fix it; the result
2254 * can be ignored, aside from leaks which were introduced by
2255 * rebuild_refcount_structure() that could not be fixed */
2256 BdrvCheckResult saved_res = *res;
2257 *res = (BdrvCheckResult){ 0 };
2259 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2260 &highest_cluster, refcount_table, nb_clusters);
2261 if (rebuild) {
2262 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2263 "broken\n");
2266 /* Any leaks accounted for here were introduced by
2267 * rebuild_refcount_structure() because that function has created a
2268 * new refcount structure from scratch */
2269 fresh_leaks = res->leaks;
2270 *res = saved_res;
2273 if (res->corruptions < old_res.corruptions) {
2274 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2276 if (res->leaks < old_res.leaks) {
2277 res->leaks_fixed += old_res.leaks - res->leaks;
2279 res->leaks += fresh_leaks;
2280 } else if (fix) {
2281 if (rebuild) {
2282 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2283 res->check_errors++;
2284 ret = -EIO;
2285 goto fail;
2288 if (res->leaks || res->corruptions) {
2289 *res = pre_compare_res;
2290 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2291 refcount_table, nb_clusters);
2295 /* check OFLAG_COPIED */
2296 ret = check_oflag_copied(bs, res, fix);
2297 if (ret < 0) {
2298 goto fail;
2301 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2302 ret = 0;
2304 fail:
2305 g_free(refcount_table);
2307 return ret;
2310 #define overlaps_with(ofs, sz) \
2311 ranges_overlap(offset, size, ofs, sz)
2314 * Checks if the given offset into the image file is actually free to use by
2315 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2316 * i.e. a sanity check without relying on the refcount tables.
2318 * The ign parameter specifies what checks not to perform (being a bitmask of
2319 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2321 * Returns:
2322 * - 0 if writing to this offset will not affect the mentioned metadata
2323 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2324 * - a negative value (-errno) indicating an error while performing a check,
2325 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2327 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2328 int64_t size)
2330 BDRVQcow2State *s = bs->opaque;
2331 int chk = s->overlap_check & ~ign;
2332 int i, j;
2334 if (!size) {
2335 return 0;
2338 if (chk & QCOW2_OL_MAIN_HEADER) {
2339 if (offset < s->cluster_size) {
2340 return QCOW2_OL_MAIN_HEADER;
2344 /* align range to test to cluster boundaries */
2345 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2346 offset = start_of_cluster(s, offset);
2348 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2349 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2350 return QCOW2_OL_ACTIVE_L1;
2354 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2355 if (overlaps_with(s->refcount_table_offset,
2356 s->refcount_table_size * sizeof(uint64_t))) {
2357 return QCOW2_OL_REFCOUNT_TABLE;
2361 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2362 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2363 return QCOW2_OL_SNAPSHOT_TABLE;
2367 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2368 for (i = 0; i < s->nb_snapshots; i++) {
2369 if (s->snapshots[i].l1_size &&
2370 overlaps_with(s->snapshots[i].l1_table_offset,
2371 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2372 return QCOW2_OL_INACTIVE_L1;
2377 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2378 for (i = 0; i < s->l1_size; i++) {
2379 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2380 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2381 s->cluster_size)) {
2382 return QCOW2_OL_ACTIVE_L2;
2387 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2388 for (i = 0; i < s->refcount_table_size; i++) {
2389 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2390 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2391 s->cluster_size)) {
2392 return QCOW2_OL_REFCOUNT_BLOCK;
2397 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2398 for (i = 0; i < s->nb_snapshots; i++) {
2399 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2400 uint32_t l1_sz = s->snapshots[i].l1_size;
2401 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2402 uint64_t *l1 = g_try_malloc(l1_sz2);
2403 int ret;
2405 if (l1_sz2 && l1 == NULL) {
2406 return -ENOMEM;
2409 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2410 if (ret < 0) {
2411 g_free(l1);
2412 return ret;
2415 for (j = 0; j < l1_sz; j++) {
2416 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2417 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2418 g_free(l1);
2419 return QCOW2_OL_INACTIVE_L2;
2423 g_free(l1);
2427 return 0;
2430 static const char *metadata_ol_names[] = {
2431 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2432 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2433 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2434 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2435 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2436 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2437 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2438 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2442 * First performs a check for metadata overlaps (through
2443 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2444 * while performing a check), that value is returned. If an impending overlap
2445 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2446 * and -EIO returned.
2448 * Returns 0 if there were neither overlaps nor errors while checking for
2449 * overlaps; or a negative value (-errno) on error.
2451 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2452 int64_t size)
2454 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2456 if (ret < 0) {
2457 return ret;
2458 } else if (ret > 0) {
2459 int metadata_ol_bitnr = ctz32(ret);
2460 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2462 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2463 "write on metadata (overlaps with %s)",
2464 metadata_ol_names[metadata_ol_bitnr]);
2465 return -EIO;
2468 return 0;
2471 /* A pointer to a function of this type is given to walk_over_reftable(). That
2472 * function will create refblocks and pass them to a RefblockFinishOp once they
2473 * are completed (@refblock). @refblock_empty is set if the refblock is
2474 * completely empty.
2476 * Along with the refblock, a corresponding reftable entry is passed, in the
2477 * reftable @reftable (which may be reallocated) at @reftable_index.
2479 * @allocated should be set to true if a new cluster has been allocated.
2481 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2482 uint64_t reftable_index, uint64_t *reftable_size,
2483 void *refblock, bool refblock_empty,
2484 bool *allocated, Error **errp);
2487 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2488 * it is not empty) and inserts its offset into the new reftable. The size of
2489 * this new reftable is increased as required.
2491 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2492 uint64_t reftable_index, uint64_t *reftable_size,
2493 void *refblock, bool refblock_empty, bool *allocated,
2494 Error **errp)
2496 BDRVQcow2State *s = bs->opaque;
2497 int64_t offset;
2499 if (!refblock_empty && reftable_index >= *reftable_size) {
2500 uint64_t *new_reftable;
2501 uint64_t new_reftable_size;
2503 new_reftable_size = ROUND_UP(reftable_index + 1,
2504 s->cluster_size / sizeof(uint64_t));
2505 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2506 error_setg(errp,
2507 "This operation would make the refcount table grow "
2508 "beyond the maximum size supported by QEMU, aborting");
2509 return -ENOTSUP;
2512 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2513 sizeof(uint64_t));
2514 if (!new_reftable) {
2515 error_setg(errp, "Failed to increase reftable buffer size");
2516 return -ENOMEM;
2519 memset(new_reftable + *reftable_size, 0,
2520 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2522 *reftable = new_reftable;
2523 *reftable_size = new_reftable_size;
2526 if (!refblock_empty && !(*reftable)[reftable_index]) {
2527 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2528 if (offset < 0) {
2529 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2530 return offset;
2532 (*reftable)[reftable_index] = offset;
2533 *allocated = true;
2536 return 0;
2540 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2541 * offset specified by the new reftable's entry. It does not modify the new
2542 * reftable or change any refcounts.
2544 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2545 uint64_t reftable_index, uint64_t *reftable_size,
2546 void *refblock, bool refblock_empty, bool *allocated,
2547 Error **errp)
2549 BDRVQcow2State *s = bs->opaque;
2550 int64_t offset;
2551 int ret;
2553 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2554 offset = (*reftable)[reftable_index];
2556 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2557 if (ret < 0) {
2558 error_setg_errno(errp, -ret, "Overlap check failed");
2559 return ret;
2562 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2563 if (ret < 0) {
2564 error_setg_errno(errp, -ret, "Failed to write refblock");
2565 return ret;
2567 } else {
2568 assert(refblock_empty);
2571 return 0;
2575 * This function walks over the existing reftable and every referenced refblock;
2576 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2577 * create an equal new entry in the passed @new_refblock. Once that
2578 * @new_refblock is completely filled, @operation will be called.
2580 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2581 * @index is the index of the walk_over_reftable() calls and @total is the total
2582 * number of walk_over_reftable() calls per amend operation. Both are used for
2583 * calculating the parameters for the status callback.
2585 * @allocated is set to true if a new cluster has been allocated.
2587 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2588 uint64_t *new_reftable_index,
2589 uint64_t *new_reftable_size,
2590 void *new_refblock, int new_refblock_size,
2591 int new_refcount_bits,
2592 RefblockFinishOp *operation, bool *allocated,
2593 Qcow2SetRefcountFunc *new_set_refcount,
2594 BlockDriverAmendStatusCB *status_cb,
2595 void *cb_opaque, int index, int total,
2596 Error **errp)
2598 BDRVQcow2State *s = bs->opaque;
2599 uint64_t reftable_index;
2600 bool new_refblock_empty = true;
2601 int refblock_index;
2602 int new_refblock_index = 0;
2603 int ret;
2605 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2606 reftable_index++)
2608 uint64_t refblock_offset = s->refcount_table[reftable_index]
2609 & REFT_OFFSET_MASK;
2611 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2612 (uint64_t)total * s->refcount_table_size, cb_opaque);
2614 if (refblock_offset) {
2615 void *refblock;
2617 if (offset_into_cluster(s, refblock_offset)) {
2618 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2619 PRIx64 " unaligned (reftable index: %#"
2620 PRIx64 ")", refblock_offset,
2621 reftable_index);
2622 error_setg(errp,
2623 "Image is corrupt (unaligned refblock offset)");
2624 return -EIO;
2627 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2628 &refblock);
2629 if (ret < 0) {
2630 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2631 return ret;
2634 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2635 refblock_index++)
2637 uint64_t refcount;
2639 if (new_refblock_index >= new_refblock_size) {
2640 /* new_refblock is now complete */
2641 ret = operation(bs, new_reftable, *new_reftable_index,
2642 new_reftable_size, new_refblock,
2643 new_refblock_empty, allocated, errp);
2644 if (ret < 0) {
2645 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2646 return ret;
2649 (*new_reftable_index)++;
2650 new_refblock_index = 0;
2651 new_refblock_empty = true;
2654 refcount = s->get_refcount(refblock, refblock_index);
2655 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2656 uint64_t offset;
2658 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2660 offset = ((reftable_index << s->refcount_block_bits)
2661 + refblock_index) << s->cluster_bits;
2663 error_setg(errp, "Cannot decrease refcount entry width to "
2664 "%i bits: Cluster at offset %#" PRIx64 " has a "
2665 "refcount of %" PRIu64, new_refcount_bits,
2666 offset, refcount);
2667 return -EINVAL;
2670 if (new_set_refcount) {
2671 new_set_refcount(new_refblock, new_refblock_index++,
2672 refcount);
2673 } else {
2674 new_refblock_index++;
2676 new_refblock_empty = new_refblock_empty && refcount == 0;
2679 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2680 } else {
2681 /* No refblock means every refcount is 0 */
2682 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2683 refblock_index++)
2685 if (new_refblock_index >= new_refblock_size) {
2686 /* new_refblock is now complete */
2687 ret = operation(bs, new_reftable, *new_reftable_index,
2688 new_reftable_size, new_refblock,
2689 new_refblock_empty, allocated, errp);
2690 if (ret < 0) {
2691 return ret;
2694 (*new_reftable_index)++;
2695 new_refblock_index = 0;
2696 new_refblock_empty = true;
2699 if (new_set_refcount) {
2700 new_set_refcount(new_refblock, new_refblock_index++, 0);
2701 } else {
2702 new_refblock_index++;
2708 if (new_refblock_index > 0) {
2709 /* Complete the potentially existing partially filled final refblock */
2710 if (new_set_refcount) {
2711 for (; new_refblock_index < new_refblock_size;
2712 new_refblock_index++)
2714 new_set_refcount(new_refblock, new_refblock_index, 0);
2718 ret = operation(bs, new_reftable, *new_reftable_index,
2719 new_reftable_size, new_refblock, new_refblock_empty,
2720 allocated, errp);
2721 if (ret < 0) {
2722 return ret;
2725 (*new_reftable_index)++;
2728 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2729 (uint64_t)total * s->refcount_table_size, cb_opaque);
2731 return 0;
2734 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2735 BlockDriverAmendStatusCB *status_cb,
2736 void *cb_opaque, Error **errp)
2738 BDRVQcow2State *s = bs->opaque;
2739 Qcow2GetRefcountFunc *new_get_refcount;
2740 Qcow2SetRefcountFunc *new_set_refcount;
2741 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2742 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2743 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2744 uint64_t new_reftable_index = 0;
2745 uint64_t i;
2746 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2747 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2748 int old_refcount_order;
2749 int walk_index = 0;
2750 int ret;
2751 bool new_allocation;
2753 assert(s->qcow_version >= 3);
2754 assert(refcount_order >= 0 && refcount_order <= 6);
2756 /* see qcow2_open() */
2757 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2759 new_get_refcount = get_refcount_funcs[refcount_order];
2760 new_set_refcount = set_refcount_funcs[refcount_order];
2763 do {
2764 int total_walks;
2766 new_allocation = false;
2768 /* At least we have to do this walk and the one which writes the
2769 * refblocks; also, at least we have to do this loop here at least
2770 * twice (normally), first to do the allocations, and second to
2771 * determine that everything is correctly allocated, this then makes
2772 * three walks in total */
2773 total_walks = MAX(walk_index + 2, 3);
2775 /* First, allocate the structures so they are present in the refcount
2776 * structures */
2777 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2778 &new_reftable_size, NULL, new_refblock_size,
2779 new_refcount_bits, &alloc_refblock,
2780 &new_allocation, NULL, status_cb, cb_opaque,
2781 walk_index++, total_walks, errp);
2782 if (ret < 0) {
2783 goto done;
2786 new_reftable_index = 0;
2788 if (new_allocation) {
2789 if (new_reftable_offset) {
2790 qcow2_free_clusters(bs, new_reftable_offset,
2791 allocated_reftable_size * sizeof(uint64_t),
2792 QCOW2_DISCARD_NEVER);
2795 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2796 sizeof(uint64_t));
2797 if (new_reftable_offset < 0) {
2798 error_setg_errno(errp, -new_reftable_offset,
2799 "Failed to allocate the new reftable");
2800 ret = new_reftable_offset;
2801 goto done;
2803 allocated_reftable_size = new_reftable_size;
2805 } while (new_allocation);
2807 /* Second, write the new refblocks */
2808 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2809 &new_reftable_size, new_refblock,
2810 new_refblock_size, new_refcount_bits,
2811 &flush_refblock, &new_allocation, new_set_refcount,
2812 status_cb, cb_opaque, walk_index, walk_index + 1,
2813 errp);
2814 if (ret < 0) {
2815 goto done;
2817 assert(!new_allocation);
2820 /* Write the new reftable */
2821 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2822 new_reftable_size * sizeof(uint64_t));
2823 if (ret < 0) {
2824 error_setg_errno(errp, -ret, "Overlap check failed");
2825 goto done;
2828 for (i = 0; i < new_reftable_size; i++) {
2829 cpu_to_be64s(&new_reftable[i]);
2832 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2833 new_reftable_size * sizeof(uint64_t));
2835 for (i = 0; i < new_reftable_size; i++) {
2836 be64_to_cpus(&new_reftable[i]);
2839 if (ret < 0) {
2840 error_setg_errno(errp, -ret, "Failed to write the new reftable");
2841 goto done;
2845 /* Empty the refcount cache */
2846 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2847 if (ret < 0) {
2848 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2849 goto done;
2852 /* Update the image header to point to the new reftable; this only updates
2853 * the fields which are relevant to qcow2_update_header(); other fields
2854 * such as s->refcount_table or s->refcount_bits stay stale for now
2855 * (because we have to restore everything if qcow2_update_header() fails) */
2856 old_refcount_order = s->refcount_order;
2857 old_reftable_size = s->refcount_table_size;
2858 old_reftable_offset = s->refcount_table_offset;
2860 s->refcount_order = refcount_order;
2861 s->refcount_table_size = new_reftable_size;
2862 s->refcount_table_offset = new_reftable_offset;
2864 ret = qcow2_update_header(bs);
2865 if (ret < 0) {
2866 s->refcount_order = old_refcount_order;
2867 s->refcount_table_size = old_reftable_size;
2868 s->refcount_table_offset = old_reftable_offset;
2869 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2870 goto done;
2873 /* Now update the rest of the in-memory information */
2874 old_reftable = s->refcount_table;
2875 s->refcount_table = new_reftable;
2877 s->refcount_bits = 1 << refcount_order;
2878 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2879 s->refcount_max += s->refcount_max - 1;
2881 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2882 s->refcount_block_size = 1 << s->refcount_block_bits;
2884 s->get_refcount = new_get_refcount;
2885 s->set_refcount = new_set_refcount;
2887 /* For cleaning up all old refblocks and the old reftable below the "done"
2888 * label */
2889 new_reftable = old_reftable;
2890 new_reftable_size = old_reftable_size;
2891 new_reftable_offset = old_reftable_offset;
2893 done:
2894 if (new_reftable) {
2895 /* On success, new_reftable actually points to the old reftable (and
2896 * new_reftable_size is the old reftable's size); but that is just
2897 * fine */
2898 for (i = 0; i < new_reftable_size; i++) {
2899 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2900 if (offset) {
2901 qcow2_free_clusters(bs, offset, s->cluster_size,
2902 QCOW2_DISCARD_OTHER);
2905 g_free(new_reftable);
2907 if (new_reftable_offset > 0) {
2908 qcow2_free_clusters(bs, new_reftable_offset,
2909 new_reftable_size * sizeof(uint64_t),
2910 QCOW2_DISCARD_OTHER);
2914 qemu_vfree(new_refblock);
2915 return ret;