mips/kvm: Sync with newer MIPS KVM headers
[qemu/ar7.git] / block / io.c
blobd4bc83b33b0b7083584ba553efd3ac5501fafd43
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "trace.h"
26 #include "block/blockjob.h"
27 #include "block/block_int.h"
28 #include "block/throttle-groups.h"
29 #include "qemu/error-report.h"
31 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
33 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
34 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
35 BlockCompletionFunc *cb, void *opaque);
36 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
37 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
38 BlockCompletionFunc *cb, void *opaque);
39 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
40 int64_t sector_num, int nb_sectors,
41 QEMUIOVector *iov);
42 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
43 int64_t sector_num, int nb_sectors,
44 QEMUIOVector *iov);
45 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
46 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
47 BdrvRequestFlags flags);
48 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
49 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
50 BdrvRequestFlags flags);
51 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
52 int64_t sector_num,
53 QEMUIOVector *qiov,
54 int nb_sectors,
55 BdrvRequestFlags flags,
56 BlockCompletionFunc *cb,
57 void *opaque,
58 bool is_write);
59 static void coroutine_fn bdrv_co_do_rw(void *opaque);
60 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
61 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
63 /* throttling disk I/O limits */
64 void bdrv_set_io_limits(BlockDriverState *bs,
65 ThrottleConfig *cfg)
67 int i;
69 throttle_group_config(bs, cfg);
71 for (i = 0; i < 2; i++) {
72 qemu_co_enter_next(&bs->throttled_reqs[i]);
76 /* this function drain all the throttled IOs */
77 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
79 bool drained = false;
80 bool enabled = bs->io_limits_enabled;
81 int i;
83 bs->io_limits_enabled = false;
85 for (i = 0; i < 2; i++) {
86 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
87 drained = true;
91 bs->io_limits_enabled = enabled;
93 return drained;
96 void bdrv_io_limits_disable(BlockDriverState *bs)
98 bs->io_limits_enabled = false;
99 bdrv_start_throttled_reqs(bs);
100 throttle_group_unregister_bs(bs);
103 /* should be called before bdrv_set_io_limits if a limit is set */
104 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
106 assert(!bs->io_limits_enabled);
107 throttle_group_register_bs(bs, group);
108 bs->io_limits_enabled = true;
111 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
113 /* this bs is not part of any group */
114 if (!bs->throttle_state) {
115 return;
118 /* this bs is a part of the same group than the one we want */
119 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
120 return;
123 /* need to change the group this bs belong to */
124 bdrv_io_limits_disable(bs);
125 bdrv_io_limits_enable(bs, group);
128 void bdrv_setup_io_funcs(BlockDriver *bdrv)
130 /* Block drivers without coroutine functions need emulation */
131 if (!bdrv->bdrv_co_readv) {
132 bdrv->bdrv_co_readv = bdrv_co_readv_em;
133 bdrv->bdrv_co_writev = bdrv_co_writev_em;
135 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
136 * the block driver lacks aio we need to emulate that too.
138 if (!bdrv->bdrv_aio_readv) {
139 /* add AIO emulation layer */
140 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
141 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
146 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
148 BlockDriver *drv = bs->drv;
149 Error *local_err = NULL;
151 memset(&bs->bl, 0, sizeof(bs->bl));
153 if (!drv) {
154 return;
157 /* Take some limits from the children as a default */
158 if (bs->file) {
159 bdrv_refresh_limits(bs->file, &local_err);
160 if (local_err) {
161 error_propagate(errp, local_err);
162 return;
164 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
165 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
166 bs->bl.min_mem_alignment = bs->file->bl.min_mem_alignment;
167 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
168 } else {
169 bs->bl.min_mem_alignment = 512;
170 bs->bl.opt_mem_alignment = getpagesize();
173 if (bs->backing_hd) {
174 bdrv_refresh_limits(bs->backing_hd, &local_err);
175 if (local_err) {
176 error_propagate(errp, local_err);
177 return;
179 bs->bl.opt_transfer_length =
180 MAX(bs->bl.opt_transfer_length,
181 bs->backing_hd->bl.opt_transfer_length);
182 bs->bl.max_transfer_length =
183 MIN_NON_ZERO(bs->bl.max_transfer_length,
184 bs->backing_hd->bl.max_transfer_length);
185 bs->bl.opt_mem_alignment =
186 MAX(bs->bl.opt_mem_alignment,
187 bs->backing_hd->bl.opt_mem_alignment);
188 bs->bl.min_mem_alignment =
189 MAX(bs->bl.min_mem_alignment,
190 bs->backing_hd->bl.min_mem_alignment);
193 /* Then let the driver override it */
194 if (drv->bdrv_refresh_limits) {
195 drv->bdrv_refresh_limits(bs, errp);
200 * The copy-on-read flag is actually a reference count so multiple users may
201 * use the feature without worrying about clobbering its previous state.
202 * Copy-on-read stays enabled until all users have called to disable it.
204 void bdrv_enable_copy_on_read(BlockDriverState *bs)
206 bs->copy_on_read++;
209 void bdrv_disable_copy_on_read(BlockDriverState *bs)
211 assert(bs->copy_on_read > 0);
212 bs->copy_on_read--;
215 /* Check if any requests are in-flight (including throttled requests) */
216 static bool bdrv_requests_pending(BlockDriverState *bs)
218 if (!QLIST_EMPTY(&bs->tracked_requests)) {
219 return true;
221 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
222 return true;
224 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
225 return true;
227 if (bs->file && bdrv_requests_pending(bs->file)) {
228 return true;
230 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
231 return true;
233 return false;
237 * Wait for pending requests to complete on a single BlockDriverState subtree
239 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
240 * AioContext.
242 * Only this BlockDriverState's AioContext is run, so in-flight requests must
243 * not depend on events in other AioContexts. In that case, use
244 * bdrv_drain_all() instead.
246 void bdrv_drain(BlockDriverState *bs)
248 bool busy = true;
250 while (busy) {
251 /* Keep iterating */
252 bdrv_flush_io_queue(bs);
253 busy = bdrv_requests_pending(bs);
254 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
259 * Wait for pending requests to complete across all BlockDriverStates
261 * This function does not flush data to disk, use bdrv_flush_all() for that
262 * after calling this function.
264 void bdrv_drain_all(void)
266 /* Always run first iteration so any pending completion BHs run */
267 bool busy = true;
268 BlockDriverState *bs = NULL;
269 GSList *aio_ctxs = NULL, *ctx;
271 while ((bs = bdrv_next(bs))) {
272 AioContext *aio_context = bdrv_get_aio_context(bs);
274 aio_context_acquire(aio_context);
275 if (bs->job) {
276 block_job_pause(bs->job);
278 aio_context_release(aio_context);
280 if (!g_slist_find(aio_ctxs, aio_context)) {
281 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
285 /* Note that completion of an asynchronous I/O operation can trigger any
286 * number of other I/O operations on other devices---for example a
287 * coroutine can submit an I/O request to another device in response to
288 * request completion. Therefore we must keep looping until there was no
289 * more activity rather than simply draining each device independently.
291 while (busy) {
292 busy = false;
294 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
295 AioContext *aio_context = ctx->data;
296 bs = NULL;
298 aio_context_acquire(aio_context);
299 while ((bs = bdrv_next(bs))) {
300 if (aio_context == bdrv_get_aio_context(bs)) {
301 bdrv_flush_io_queue(bs);
302 if (bdrv_requests_pending(bs)) {
303 busy = true;
304 aio_poll(aio_context, busy);
308 busy |= aio_poll(aio_context, false);
309 aio_context_release(aio_context);
313 bs = NULL;
314 while ((bs = bdrv_next(bs))) {
315 AioContext *aio_context = bdrv_get_aio_context(bs);
317 aio_context_acquire(aio_context);
318 if (bs->job) {
319 block_job_resume(bs->job);
321 aio_context_release(aio_context);
323 g_slist_free(aio_ctxs);
327 * Remove an active request from the tracked requests list
329 * This function should be called when a tracked request is completing.
331 static void tracked_request_end(BdrvTrackedRequest *req)
333 if (req->serialising) {
334 req->bs->serialising_in_flight--;
337 QLIST_REMOVE(req, list);
338 qemu_co_queue_restart_all(&req->wait_queue);
342 * Add an active request to the tracked requests list
344 static void tracked_request_begin(BdrvTrackedRequest *req,
345 BlockDriverState *bs,
346 int64_t offset,
347 unsigned int bytes, bool is_write)
349 *req = (BdrvTrackedRequest){
350 .bs = bs,
351 .offset = offset,
352 .bytes = bytes,
353 .is_write = is_write,
354 .co = qemu_coroutine_self(),
355 .serialising = false,
356 .overlap_offset = offset,
357 .overlap_bytes = bytes,
360 qemu_co_queue_init(&req->wait_queue);
362 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
365 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
367 int64_t overlap_offset = req->offset & ~(align - 1);
368 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
369 - overlap_offset;
371 if (!req->serialising) {
372 req->bs->serialising_in_flight++;
373 req->serialising = true;
376 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
377 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
381 * Round a region to cluster boundaries
383 void bdrv_round_to_clusters(BlockDriverState *bs,
384 int64_t sector_num, int nb_sectors,
385 int64_t *cluster_sector_num,
386 int *cluster_nb_sectors)
388 BlockDriverInfo bdi;
390 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
391 *cluster_sector_num = sector_num;
392 *cluster_nb_sectors = nb_sectors;
393 } else {
394 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
395 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
396 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
397 nb_sectors, c);
401 static int bdrv_get_cluster_size(BlockDriverState *bs)
403 BlockDriverInfo bdi;
404 int ret;
406 ret = bdrv_get_info(bs, &bdi);
407 if (ret < 0 || bdi.cluster_size == 0) {
408 return bs->request_alignment;
409 } else {
410 return bdi.cluster_size;
414 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
415 int64_t offset, unsigned int bytes)
417 /* aaaa bbbb */
418 if (offset >= req->overlap_offset + req->overlap_bytes) {
419 return false;
421 /* bbbb aaaa */
422 if (req->overlap_offset >= offset + bytes) {
423 return false;
425 return true;
428 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
430 BlockDriverState *bs = self->bs;
431 BdrvTrackedRequest *req;
432 bool retry;
433 bool waited = false;
435 if (!bs->serialising_in_flight) {
436 return false;
439 do {
440 retry = false;
441 QLIST_FOREACH(req, &bs->tracked_requests, list) {
442 if (req == self || (!req->serialising && !self->serialising)) {
443 continue;
445 if (tracked_request_overlaps(req, self->overlap_offset,
446 self->overlap_bytes))
448 /* Hitting this means there was a reentrant request, for
449 * example, a block driver issuing nested requests. This must
450 * never happen since it means deadlock.
452 assert(qemu_coroutine_self() != req->co);
454 /* If the request is already (indirectly) waiting for us, or
455 * will wait for us as soon as it wakes up, then just go on
456 * (instead of producing a deadlock in the former case). */
457 if (!req->waiting_for) {
458 self->waiting_for = req;
459 qemu_co_queue_wait(&req->wait_queue);
460 self->waiting_for = NULL;
461 retry = true;
462 waited = true;
463 break;
467 } while (retry);
469 return waited;
472 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
473 size_t size)
475 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
476 return -EIO;
479 if (!bdrv_is_inserted(bs)) {
480 return -ENOMEDIUM;
483 if (offset < 0) {
484 return -EIO;
487 return 0;
490 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
491 int nb_sectors)
493 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
494 return -EIO;
497 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
498 nb_sectors * BDRV_SECTOR_SIZE);
501 typedef struct RwCo {
502 BlockDriverState *bs;
503 int64_t offset;
504 QEMUIOVector *qiov;
505 bool is_write;
506 int ret;
507 BdrvRequestFlags flags;
508 } RwCo;
510 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
512 RwCo *rwco = opaque;
514 if (!rwco->is_write) {
515 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
516 rwco->qiov->size, rwco->qiov,
517 rwco->flags);
518 } else {
519 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
520 rwco->qiov->size, rwco->qiov,
521 rwco->flags);
526 * Process a vectored synchronous request using coroutines
528 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
529 QEMUIOVector *qiov, bool is_write,
530 BdrvRequestFlags flags)
532 Coroutine *co;
533 RwCo rwco = {
534 .bs = bs,
535 .offset = offset,
536 .qiov = qiov,
537 .is_write = is_write,
538 .ret = NOT_DONE,
539 .flags = flags,
543 * In sync call context, when the vcpu is blocked, this throttling timer
544 * will not fire; so the I/O throttling function has to be disabled here
545 * if it has been enabled.
547 if (bs->io_limits_enabled) {
548 fprintf(stderr, "Disabling I/O throttling on '%s' due "
549 "to synchronous I/O.\n", bdrv_get_device_name(bs));
550 bdrv_io_limits_disable(bs);
553 if (qemu_in_coroutine()) {
554 /* Fast-path if already in coroutine context */
555 bdrv_rw_co_entry(&rwco);
556 } else {
557 AioContext *aio_context = bdrv_get_aio_context(bs);
559 co = qemu_coroutine_create(bdrv_rw_co_entry);
560 qemu_coroutine_enter(co, &rwco);
561 while (rwco.ret == NOT_DONE) {
562 aio_poll(aio_context, true);
565 return rwco.ret;
569 * Process a synchronous request using coroutines
571 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
572 int nb_sectors, bool is_write, BdrvRequestFlags flags)
574 QEMUIOVector qiov;
575 struct iovec iov = {
576 .iov_base = (void *)buf,
577 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
580 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
581 return -EINVAL;
584 qemu_iovec_init_external(&qiov, &iov, 1);
585 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
586 &qiov, is_write, flags);
589 /* return < 0 if error. See bdrv_write() for the return codes */
590 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
591 uint8_t *buf, int nb_sectors)
593 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
596 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
597 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
598 uint8_t *buf, int nb_sectors)
600 bool enabled;
601 int ret;
603 enabled = bs->io_limits_enabled;
604 bs->io_limits_enabled = false;
605 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
606 bs->io_limits_enabled = enabled;
607 return ret;
610 /* Return < 0 if error. Important errors are:
611 -EIO generic I/O error (may happen for all errors)
612 -ENOMEDIUM No media inserted.
613 -EINVAL Invalid sector number or nb_sectors
614 -EACCES Trying to write a read-only device
616 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
617 const uint8_t *buf, int nb_sectors)
619 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
622 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
623 int nb_sectors, BdrvRequestFlags flags)
625 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
626 BDRV_REQ_ZERO_WRITE | flags);
630 * Completely zero out a block device with the help of bdrv_write_zeroes.
631 * The operation is sped up by checking the block status and only writing
632 * zeroes to the device if they currently do not return zeroes. Optional
633 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
635 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
637 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
639 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
640 int n;
642 target_sectors = bdrv_nb_sectors(bs);
643 if (target_sectors < 0) {
644 return target_sectors;
647 for (;;) {
648 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
649 if (nb_sectors <= 0) {
650 return 0;
652 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
653 if (ret < 0) {
654 error_report("error getting block status at sector %" PRId64 ": %s",
655 sector_num, strerror(-ret));
656 return ret;
658 if (ret & BDRV_BLOCK_ZERO) {
659 sector_num += n;
660 continue;
662 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
663 if (ret < 0) {
664 error_report("error writing zeroes at sector %" PRId64 ": %s",
665 sector_num, strerror(-ret));
666 return ret;
668 sector_num += n;
672 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
674 QEMUIOVector qiov;
675 struct iovec iov = {
676 .iov_base = (void *)buf,
677 .iov_len = bytes,
679 int ret;
681 if (bytes < 0) {
682 return -EINVAL;
685 qemu_iovec_init_external(&qiov, &iov, 1);
686 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
687 if (ret < 0) {
688 return ret;
691 return bytes;
694 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
696 int ret;
698 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
699 if (ret < 0) {
700 return ret;
703 return qiov->size;
706 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
707 const void *buf, int bytes)
709 QEMUIOVector qiov;
710 struct iovec iov = {
711 .iov_base = (void *) buf,
712 .iov_len = bytes,
715 if (bytes < 0) {
716 return -EINVAL;
719 qemu_iovec_init_external(&qiov, &iov, 1);
720 return bdrv_pwritev(bs, offset, &qiov);
724 * Writes to the file and ensures that no writes are reordered across this
725 * request (acts as a barrier)
727 * Returns 0 on success, -errno in error cases.
729 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
730 const void *buf, int count)
732 int ret;
734 ret = bdrv_pwrite(bs, offset, buf, count);
735 if (ret < 0) {
736 return ret;
739 /* No flush needed for cache modes that already do it */
740 if (bs->enable_write_cache) {
741 bdrv_flush(bs);
744 return 0;
747 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
748 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
750 /* Perform I/O through a temporary buffer so that users who scribble over
751 * their read buffer while the operation is in progress do not end up
752 * modifying the image file. This is critical for zero-copy guest I/O
753 * where anything might happen inside guest memory.
755 void *bounce_buffer;
757 BlockDriver *drv = bs->drv;
758 struct iovec iov;
759 QEMUIOVector bounce_qiov;
760 int64_t cluster_sector_num;
761 int cluster_nb_sectors;
762 size_t skip_bytes;
763 int ret;
765 /* Cover entire cluster so no additional backing file I/O is required when
766 * allocating cluster in the image file.
768 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
769 &cluster_sector_num, &cluster_nb_sectors);
771 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
772 cluster_sector_num, cluster_nb_sectors);
774 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
775 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
776 if (bounce_buffer == NULL) {
777 ret = -ENOMEM;
778 goto err;
781 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
783 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
784 &bounce_qiov);
785 if (ret < 0) {
786 goto err;
789 if (drv->bdrv_co_write_zeroes &&
790 buffer_is_zero(bounce_buffer, iov.iov_len)) {
791 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
792 cluster_nb_sectors, 0);
793 } else {
794 /* This does not change the data on the disk, it is not necessary
795 * to flush even in cache=writethrough mode.
797 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
798 &bounce_qiov);
801 if (ret < 0) {
802 /* It might be okay to ignore write errors for guest requests. If this
803 * is a deliberate copy-on-read then we don't want to ignore the error.
804 * Simply report it in all cases.
806 goto err;
809 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
810 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
811 nb_sectors * BDRV_SECTOR_SIZE);
813 err:
814 qemu_vfree(bounce_buffer);
815 return ret;
819 * Forwards an already correctly aligned request to the BlockDriver. This
820 * handles copy on read and zeroing after EOF; any other features must be
821 * implemented by the caller.
823 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
824 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
825 int64_t align, QEMUIOVector *qiov, int flags)
827 BlockDriver *drv = bs->drv;
828 int ret;
830 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
831 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
833 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
834 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
835 assert(!qiov || bytes == qiov->size);
837 /* Handle Copy on Read and associated serialisation */
838 if (flags & BDRV_REQ_COPY_ON_READ) {
839 /* If we touch the same cluster it counts as an overlap. This
840 * guarantees that allocating writes will be serialized and not race
841 * with each other for the same cluster. For example, in copy-on-read
842 * it ensures that the CoR read and write operations are atomic and
843 * guest writes cannot interleave between them. */
844 mark_request_serialising(req, bdrv_get_cluster_size(bs));
847 wait_serialising_requests(req);
849 if (flags & BDRV_REQ_COPY_ON_READ) {
850 int pnum;
852 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
853 if (ret < 0) {
854 goto out;
857 if (!ret || pnum != nb_sectors) {
858 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
859 goto out;
863 /* Forward the request to the BlockDriver */
864 if (!bs->zero_beyond_eof) {
865 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
866 } else {
867 /* Read zeros after EOF */
868 int64_t total_sectors, max_nb_sectors;
870 total_sectors = bdrv_nb_sectors(bs);
871 if (total_sectors < 0) {
872 ret = total_sectors;
873 goto out;
876 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
877 align >> BDRV_SECTOR_BITS);
878 if (nb_sectors < max_nb_sectors) {
879 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
880 } else if (max_nb_sectors > 0) {
881 QEMUIOVector local_qiov;
883 qemu_iovec_init(&local_qiov, qiov->niov);
884 qemu_iovec_concat(&local_qiov, qiov, 0,
885 max_nb_sectors * BDRV_SECTOR_SIZE);
887 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
888 &local_qiov);
890 qemu_iovec_destroy(&local_qiov);
891 } else {
892 ret = 0;
895 /* Reading beyond end of file is supposed to produce zeroes */
896 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
897 uint64_t offset = MAX(0, total_sectors - sector_num);
898 uint64_t bytes = (sector_num + nb_sectors - offset) *
899 BDRV_SECTOR_SIZE;
900 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
904 out:
905 return ret;
909 * Handle a read request in coroutine context
911 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
912 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
913 BdrvRequestFlags flags)
915 BlockDriver *drv = bs->drv;
916 BdrvTrackedRequest req;
918 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
919 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
920 uint8_t *head_buf = NULL;
921 uint8_t *tail_buf = NULL;
922 QEMUIOVector local_qiov;
923 bool use_local_qiov = false;
924 int ret;
926 if (!drv) {
927 return -ENOMEDIUM;
930 ret = bdrv_check_byte_request(bs, offset, bytes);
931 if (ret < 0) {
932 return ret;
935 if (bs->copy_on_read) {
936 flags |= BDRV_REQ_COPY_ON_READ;
939 /* throttling disk I/O */
940 if (bs->io_limits_enabled) {
941 throttle_group_co_io_limits_intercept(bs, bytes, false);
944 /* Align read if necessary by padding qiov */
945 if (offset & (align - 1)) {
946 head_buf = qemu_blockalign(bs, align);
947 qemu_iovec_init(&local_qiov, qiov->niov + 2);
948 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
949 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
950 use_local_qiov = true;
952 bytes += offset & (align - 1);
953 offset = offset & ~(align - 1);
956 if ((offset + bytes) & (align - 1)) {
957 if (!use_local_qiov) {
958 qemu_iovec_init(&local_qiov, qiov->niov + 1);
959 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
960 use_local_qiov = true;
962 tail_buf = qemu_blockalign(bs, align);
963 qemu_iovec_add(&local_qiov, tail_buf,
964 align - ((offset + bytes) & (align - 1)));
966 bytes = ROUND_UP(bytes, align);
969 tracked_request_begin(&req, bs, offset, bytes, false);
970 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
971 use_local_qiov ? &local_qiov : qiov,
972 flags);
973 tracked_request_end(&req);
975 if (use_local_qiov) {
976 qemu_iovec_destroy(&local_qiov);
977 qemu_vfree(head_buf);
978 qemu_vfree(tail_buf);
981 return ret;
984 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
985 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
986 BdrvRequestFlags flags)
988 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
989 return -EINVAL;
992 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
993 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
996 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
997 int nb_sectors, QEMUIOVector *qiov)
999 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1001 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1004 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1005 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1007 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1009 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1010 BDRV_REQ_COPY_ON_READ);
1013 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1015 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1016 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1018 BlockDriver *drv = bs->drv;
1019 QEMUIOVector qiov;
1020 struct iovec iov = {0};
1021 int ret = 0;
1023 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1024 BDRV_REQUEST_MAX_SECTORS);
1026 while (nb_sectors > 0 && !ret) {
1027 int num = nb_sectors;
1029 /* Align request. Block drivers can expect the "bulk" of the request
1030 * to be aligned.
1032 if (bs->bl.write_zeroes_alignment
1033 && num > bs->bl.write_zeroes_alignment) {
1034 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1035 /* Make a small request up to the first aligned sector. */
1036 num = bs->bl.write_zeroes_alignment;
1037 num -= sector_num % bs->bl.write_zeroes_alignment;
1038 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1039 /* Shorten the request to the last aligned sector. num cannot
1040 * underflow because num > bs->bl.write_zeroes_alignment.
1042 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1046 /* limit request size */
1047 if (num > max_write_zeroes) {
1048 num = max_write_zeroes;
1051 ret = -ENOTSUP;
1052 /* First try the efficient write zeroes operation */
1053 if (drv->bdrv_co_write_zeroes) {
1054 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1057 if (ret == -ENOTSUP) {
1058 /* Fall back to bounce buffer if write zeroes is unsupported */
1059 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1060 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1061 num = MIN(num, max_xfer_len);
1062 iov.iov_len = num * BDRV_SECTOR_SIZE;
1063 if (iov.iov_base == NULL) {
1064 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1065 if (iov.iov_base == NULL) {
1066 ret = -ENOMEM;
1067 goto fail;
1069 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1071 qemu_iovec_init_external(&qiov, &iov, 1);
1073 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1075 /* Keep bounce buffer around if it is big enough for all
1076 * all future requests.
1078 if (num < max_xfer_len) {
1079 qemu_vfree(iov.iov_base);
1080 iov.iov_base = NULL;
1084 sector_num += num;
1085 nb_sectors -= num;
1088 fail:
1089 qemu_vfree(iov.iov_base);
1090 return ret;
1094 * Forwards an already correctly aligned write request to the BlockDriver.
1096 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1097 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1098 QEMUIOVector *qiov, int flags)
1100 BlockDriver *drv = bs->drv;
1101 bool waited;
1102 int ret;
1104 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1105 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1107 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1108 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1109 assert(!qiov || bytes == qiov->size);
1111 waited = wait_serialising_requests(req);
1112 assert(!waited || !req->serialising);
1113 assert(req->overlap_offset <= offset);
1114 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1116 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1118 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1119 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1120 qemu_iovec_is_zero(qiov)) {
1121 flags |= BDRV_REQ_ZERO_WRITE;
1122 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1123 flags |= BDRV_REQ_MAY_UNMAP;
1127 if (ret < 0) {
1128 /* Do nothing, write notifier decided to fail this request */
1129 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1130 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1131 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1132 } else {
1133 BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1134 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1136 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1138 if (ret == 0 && !bs->enable_write_cache) {
1139 ret = bdrv_co_flush(bs);
1142 bdrv_set_dirty(bs, sector_num, nb_sectors);
1144 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1146 if (ret >= 0) {
1147 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1150 return ret;
1153 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1154 int64_t offset,
1155 unsigned int bytes,
1156 BdrvRequestFlags flags,
1157 BdrvTrackedRequest *req)
1159 uint8_t *buf = NULL;
1160 QEMUIOVector local_qiov;
1161 struct iovec iov;
1162 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1163 unsigned int head_padding_bytes, tail_padding_bytes;
1164 int ret = 0;
1166 head_padding_bytes = offset & (align - 1);
1167 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1170 assert(flags & BDRV_REQ_ZERO_WRITE);
1171 if (head_padding_bytes || tail_padding_bytes) {
1172 buf = qemu_blockalign(bs, align);
1173 iov = (struct iovec) {
1174 .iov_base = buf,
1175 .iov_len = align,
1177 qemu_iovec_init_external(&local_qiov, &iov, 1);
1179 if (head_padding_bytes) {
1180 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1182 /* RMW the unaligned part before head. */
1183 mark_request_serialising(req, align);
1184 wait_serialising_requests(req);
1185 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1186 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1187 align, &local_qiov, 0);
1188 if (ret < 0) {
1189 goto fail;
1191 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1193 memset(buf + head_padding_bytes, 0, zero_bytes);
1194 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1195 &local_qiov,
1196 flags & ~BDRV_REQ_ZERO_WRITE);
1197 if (ret < 0) {
1198 goto fail;
1200 offset += zero_bytes;
1201 bytes -= zero_bytes;
1204 assert(!bytes || (offset & (align - 1)) == 0);
1205 if (bytes >= align) {
1206 /* Write the aligned part in the middle. */
1207 uint64_t aligned_bytes = bytes & ~(align - 1);
1208 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1209 NULL, flags);
1210 if (ret < 0) {
1211 goto fail;
1213 bytes -= aligned_bytes;
1214 offset += aligned_bytes;
1217 assert(!bytes || (offset & (align - 1)) == 0);
1218 if (bytes) {
1219 assert(align == tail_padding_bytes + bytes);
1220 /* RMW the unaligned part after tail. */
1221 mark_request_serialising(req, align);
1222 wait_serialising_requests(req);
1223 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1224 ret = bdrv_aligned_preadv(bs, req, offset, align,
1225 align, &local_qiov, 0);
1226 if (ret < 0) {
1227 goto fail;
1229 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1231 memset(buf, 0, bytes);
1232 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1233 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1235 fail:
1236 qemu_vfree(buf);
1237 return ret;
1242 * Handle a write request in coroutine context
1244 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1245 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1246 BdrvRequestFlags flags)
1248 BdrvTrackedRequest req;
1249 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1250 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1251 uint8_t *head_buf = NULL;
1252 uint8_t *tail_buf = NULL;
1253 QEMUIOVector local_qiov;
1254 bool use_local_qiov = false;
1255 int ret;
1257 if (!bs->drv) {
1258 return -ENOMEDIUM;
1260 if (bs->read_only) {
1261 return -EPERM;
1264 ret = bdrv_check_byte_request(bs, offset, bytes);
1265 if (ret < 0) {
1266 return ret;
1269 /* throttling disk I/O */
1270 if (bs->io_limits_enabled) {
1271 throttle_group_co_io_limits_intercept(bs, bytes, true);
1275 * Align write if necessary by performing a read-modify-write cycle.
1276 * Pad qiov with the read parts and be sure to have a tracked request not
1277 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1279 tracked_request_begin(&req, bs, offset, bytes, true);
1281 if (!qiov) {
1282 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1283 goto out;
1286 if (offset & (align - 1)) {
1287 QEMUIOVector head_qiov;
1288 struct iovec head_iov;
1290 mark_request_serialising(&req, align);
1291 wait_serialising_requests(&req);
1293 head_buf = qemu_blockalign(bs, align);
1294 head_iov = (struct iovec) {
1295 .iov_base = head_buf,
1296 .iov_len = align,
1298 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1300 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1301 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1302 align, &head_qiov, 0);
1303 if (ret < 0) {
1304 goto fail;
1306 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1308 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1309 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1310 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1311 use_local_qiov = true;
1313 bytes += offset & (align - 1);
1314 offset = offset & ~(align - 1);
1317 if ((offset + bytes) & (align - 1)) {
1318 QEMUIOVector tail_qiov;
1319 struct iovec tail_iov;
1320 size_t tail_bytes;
1321 bool waited;
1323 mark_request_serialising(&req, align);
1324 waited = wait_serialising_requests(&req);
1325 assert(!waited || !use_local_qiov);
1327 tail_buf = qemu_blockalign(bs, align);
1328 tail_iov = (struct iovec) {
1329 .iov_base = tail_buf,
1330 .iov_len = align,
1332 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1334 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1335 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1336 align, &tail_qiov, 0);
1337 if (ret < 0) {
1338 goto fail;
1340 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1342 if (!use_local_qiov) {
1343 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1344 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1345 use_local_qiov = true;
1348 tail_bytes = (offset + bytes) & (align - 1);
1349 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1351 bytes = ROUND_UP(bytes, align);
1354 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1355 use_local_qiov ? &local_qiov : qiov,
1356 flags);
1358 fail:
1360 if (use_local_qiov) {
1361 qemu_iovec_destroy(&local_qiov);
1363 qemu_vfree(head_buf);
1364 qemu_vfree(tail_buf);
1365 out:
1366 tracked_request_end(&req);
1367 return ret;
1370 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1371 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1372 BdrvRequestFlags flags)
1374 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1375 return -EINVAL;
1378 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1379 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1382 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1383 int nb_sectors, QEMUIOVector *qiov)
1385 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1387 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1390 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1391 int64_t sector_num, int nb_sectors,
1392 BdrvRequestFlags flags)
1394 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1396 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1397 flags &= ~BDRV_REQ_MAY_UNMAP;
1400 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1401 BDRV_REQ_ZERO_WRITE | flags);
1404 int bdrv_flush_all(void)
1406 BlockDriverState *bs = NULL;
1407 int result = 0;
1409 while ((bs = bdrv_next(bs))) {
1410 AioContext *aio_context = bdrv_get_aio_context(bs);
1411 int ret;
1413 aio_context_acquire(aio_context);
1414 ret = bdrv_flush(bs);
1415 if (ret < 0 && !result) {
1416 result = ret;
1418 aio_context_release(aio_context);
1421 return result;
1424 typedef struct BdrvCoGetBlockStatusData {
1425 BlockDriverState *bs;
1426 BlockDriverState *base;
1427 int64_t sector_num;
1428 int nb_sectors;
1429 int *pnum;
1430 int64_t ret;
1431 bool done;
1432 } BdrvCoGetBlockStatusData;
1435 * Returns the allocation status of the specified sectors.
1436 * Drivers not implementing the functionality are assumed to not support
1437 * backing files, hence all their sectors are reported as allocated.
1439 * If 'sector_num' is beyond the end of the disk image the return value is 0
1440 * and 'pnum' is set to 0.
1442 * 'pnum' is set to the number of sectors (including and immediately following
1443 * the specified sector) that are known to be in the same
1444 * allocated/unallocated state.
1446 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1447 * beyond the end of the disk image it will be clamped.
1449 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1450 int64_t sector_num,
1451 int nb_sectors, int *pnum)
1453 int64_t total_sectors;
1454 int64_t n;
1455 int64_t ret, ret2;
1457 total_sectors = bdrv_nb_sectors(bs);
1458 if (total_sectors < 0) {
1459 return total_sectors;
1462 if (sector_num >= total_sectors) {
1463 *pnum = 0;
1464 return 0;
1467 n = total_sectors - sector_num;
1468 if (n < nb_sectors) {
1469 nb_sectors = n;
1472 if (!bs->drv->bdrv_co_get_block_status) {
1473 *pnum = nb_sectors;
1474 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1475 if (bs->drv->protocol_name) {
1476 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1478 return ret;
1481 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1482 if (ret < 0) {
1483 *pnum = 0;
1484 return ret;
1487 if (ret & BDRV_BLOCK_RAW) {
1488 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1489 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1490 *pnum, pnum);
1493 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1494 ret |= BDRV_BLOCK_ALLOCATED;
1495 } else {
1496 if (bdrv_unallocated_blocks_are_zero(bs)) {
1497 ret |= BDRV_BLOCK_ZERO;
1498 } else if (bs->backing_hd) {
1499 BlockDriverState *bs2 = bs->backing_hd;
1500 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1501 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1502 ret |= BDRV_BLOCK_ZERO;
1507 if (bs->file &&
1508 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1509 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1510 int file_pnum;
1512 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1513 *pnum, &file_pnum);
1514 if (ret2 >= 0) {
1515 /* Ignore errors. This is just providing extra information, it
1516 * is useful but not necessary.
1518 if (!file_pnum) {
1519 /* !file_pnum indicates an offset at or beyond the EOF; it is
1520 * perfectly valid for the format block driver to point to such
1521 * offsets, so catch it and mark everything as zero */
1522 ret |= BDRV_BLOCK_ZERO;
1523 } else {
1524 /* Limit request to the range reported by the protocol driver */
1525 *pnum = file_pnum;
1526 ret |= (ret2 & BDRV_BLOCK_ZERO);
1531 return ret;
1534 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1535 BlockDriverState *base,
1536 int64_t sector_num,
1537 int nb_sectors,
1538 int *pnum)
1540 BlockDriverState *p;
1541 int64_t ret = 0;
1543 assert(bs != base);
1544 for (p = bs; p != base; p = p->backing_hd) {
1545 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum);
1546 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1547 break;
1549 /* [sector_num, pnum] unallocated on this layer, which could be only
1550 * the first part of [sector_num, nb_sectors]. */
1551 nb_sectors = MIN(nb_sectors, *pnum);
1553 return ret;
1556 /* Coroutine wrapper for bdrv_get_block_status_above() */
1557 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1559 BdrvCoGetBlockStatusData *data = opaque;
1561 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1562 data->sector_num,
1563 data->nb_sectors,
1564 data->pnum);
1565 data->done = true;
1569 * Synchronous wrapper around bdrv_co_get_block_status_above().
1571 * See bdrv_co_get_block_status_above() for details.
1573 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1574 BlockDriverState *base,
1575 int64_t sector_num,
1576 int nb_sectors, int *pnum)
1578 Coroutine *co;
1579 BdrvCoGetBlockStatusData data = {
1580 .bs = bs,
1581 .base = base,
1582 .sector_num = sector_num,
1583 .nb_sectors = nb_sectors,
1584 .pnum = pnum,
1585 .done = false,
1588 if (qemu_in_coroutine()) {
1589 /* Fast-path if already in coroutine context */
1590 bdrv_get_block_status_above_co_entry(&data);
1591 } else {
1592 AioContext *aio_context = bdrv_get_aio_context(bs);
1594 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1595 qemu_coroutine_enter(co, &data);
1596 while (!data.done) {
1597 aio_poll(aio_context, true);
1600 return data.ret;
1603 int64_t bdrv_get_block_status(BlockDriverState *bs,
1604 int64_t sector_num,
1605 int nb_sectors, int *pnum)
1607 return bdrv_get_block_status_above(bs, bs->backing_hd,
1608 sector_num, nb_sectors, pnum);
1611 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1612 int nb_sectors, int *pnum)
1614 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1615 if (ret < 0) {
1616 return ret;
1618 return !!(ret & BDRV_BLOCK_ALLOCATED);
1622 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1624 * Return true if the given sector is allocated in any image between
1625 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1626 * sector is allocated in any image of the chain. Return false otherwise.
1628 * 'pnum' is set to the number of sectors (including and immediately following
1629 * the specified sector) that are known to be in the same
1630 * allocated/unallocated state.
1633 int bdrv_is_allocated_above(BlockDriverState *top,
1634 BlockDriverState *base,
1635 int64_t sector_num,
1636 int nb_sectors, int *pnum)
1638 BlockDriverState *intermediate;
1639 int ret, n = nb_sectors;
1641 intermediate = top;
1642 while (intermediate && intermediate != base) {
1643 int pnum_inter;
1644 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1645 &pnum_inter);
1646 if (ret < 0) {
1647 return ret;
1648 } else if (ret) {
1649 *pnum = pnum_inter;
1650 return 1;
1654 * [sector_num, nb_sectors] is unallocated on top but intermediate
1655 * might have
1657 * [sector_num+x, nr_sectors] allocated.
1659 if (n > pnum_inter &&
1660 (intermediate == top ||
1661 sector_num + pnum_inter < intermediate->total_sectors)) {
1662 n = pnum_inter;
1665 intermediate = intermediate->backing_hd;
1668 *pnum = n;
1669 return 0;
1672 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1673 const uint8_t *buf, int nb_sectors)
1675 BlockDriver *drv = bs->drv;
1676 int ret;
1678 if (!drv) {
1679 return -ENOMEDIUM;
1681 if (!drv->bdrv_write_compressed) {
1682 return -ENOTSUP;
1684 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1685 if (ret < 0) {
1686 return ret;
1689 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1691 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1694 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1695 int64_t pos, int size)
1697 QEMUIOVector qiov;
1698 struct iovec iov = {
1699 .iov_base = (void *) buf,
1700 .iov_len = size,
1703 qemu_iovec_init_external(&qiov, &iov, 1);
1704 return bdrv_writev_vmstate(bs, &qiov, pos);
1707 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1709 BlockDriver *drv = bs->drv;
1711 if (!drv) {
1712 return -ENOMEDIUM;
1713 } else if (drv->bdrv_save_vmstate) {
1714 return drv->bdrv_save_vmstate(bs, qiov, pos);
1715 } else if (bs->file) {
1716 return bdrv_writev_vmstate(bs->file, qiov, pos);
1719 return -ENOTSUP;
1722 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1723 int64_t pos, int size)
1725 BlockDriver *drv = bs->drv;
1726 if (!drv)
1727 return -ENOMEDIUM;
1728 if (drv->bdrv_load_vmstate)
1729 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1730 if (bs->file)
1731 return bdrv_load_vmstate(bs->file, buf, pos, size);
1732 return -ENOTSUP;
1735 /**************************************************************/
1736 /* async I/Os */
1738 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1739 QEMUIOVector *qiov, int nb_sectors,
1740 BlockCompletionFunc *cb, void *opaque)
1742 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1744 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1745 cb, opaque, false);
1748 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1749 QEMUIOVector *qiov, int nb_sectors,
1750 BlockCompletionFunc *cb, void *opaque)
1752 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1754 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1755 cb, opaque, true);
1758 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1759 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1760 BlockCompletionFunc *cb, void *opaque)
1762 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1764 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1765 BDRV_REQ_ZERO_WRITE | flags,
1766 cb, opaque, true);
1770 typedef struct MultiwriteCB {
1771 int error;
1772 int num_requests;
1773 int num_callbacks;
1774 struct {
1775 BlockCompletionFunc *cb;
1776 void *opaque;
1777 QEMUIOVector *free_qiov;
1778 } callbacks[];
1779 } MultiwriteCB;
1781 static void multiwrite_user_cb(MultiwriteCB *mcb)
1783 int i;
1785 for (i = 0; i < mcb->num_callbacks; i++) {
1786 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1787 if (mcb->callbacks[i].free_qiov) {
1788 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1790 g_free(mcb->callbacks[i].free_qiov);
1794 static void multiwrite_cb(void *opaque, int ret)
1796 MultiwriteCB *mcb = opaque;
1798 trace_multiwrite_cb(mcb, ret);
1800 if (ret < 0 && !mcb->error) {
1801 mcb->error = ret;
1804 mcb->num_requests--;
1805 if (mcb->num_requests == 0) {
1806 multiwrite_user_cb(mcb);
1807 g_free(mcb);
1811 static int multiwrite_req_compare(const void *a, const void *b)
1813 const BlockRequest *req1 = a, *req2 = b;
1816 * Note that we can't simply subtract req2->sector from req1->sector
1817 * here as that could overflow the return value.
1819 if (req1->sector > req2->sector) {
1820 return 1;
1821 } else if (req1->sector < req2->sector) {
1822 return -1;
1823 } else {
1824 return 0;
1829 * Takes a bunch of requests and tries to merge them. Returns the number of
1830 * requests that remain after merging.
1832 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1833 int num_reqs, MultiwriteCB *mcb)
1835 int i, outidx;
1837 // Sort requests by start sector
1838 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1840 // Check if adjacent requests touch the same clusters. If so, combine them,
1841 // filling up gaps with zero sectors.
1842 outidx = 0;
1843 for (i = 1; i < num_reqs; i++) {
1844 int merge = 0;
1845 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1847 // Handle exactly sequential writes and overlapping writes.
1848 if (reqs[i].sector <= oldreq_last) {
1849 merge = 1;
1852 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1853 merge = 0;
1856 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1857 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1858 merge = 0;
1861 if (merge) {
1862 size_t size;
1863 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1864 qemu_iovec_init(qiov,
1865 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1867 // Add the first request to the merged one. If the requests are
1868 // overlapping, drop the last sectors of the first request.
1869 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1870 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1872 // We should need to add any zeros between the two requests
1873 assert (reqs[i].sector <= oldreq_last);
1875 // Add the second request
1876 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1878 // Add tail of first request, if necessary
1879 if (qiov->size < reqs[outidx].qiov->size) {
1880 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1881 reqs[outidx].qiov->size - qiov->size);
1884 reqs[outidx].nb_sectors = qiov->size >> 9;
1885 reqs[outidx].qiov = qiov;
1887 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1888 } else {
1889 outidx++;
1890 reqs[outidx].sector = reqs[i].sector;
1891 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1892 reqs[outidx].qiov = reqs[i].qiov;
1896 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1898 return outidx + 1;
1902 * Submit multiple AIO write requests at once.
1904 * On success, the function returns 0 and all requests in the reqs array have
1905 * been submitted. In error case this function returns -1, and any of the
1906 * requests may or may not be submitted yet. In particular, this means that the
1907 * callback will be called for some of the requests, for others it won't. The
1908 * caller must check the error field of the BlockRequest to wait for the right
1909 * callbacks (if error != 0, no callback will be called).
1911 * The implementation may modify the contents of the reqs array, e.g. to merge
1912 * requests. However, the fields opaque and error are left unmodified as they
1913 * are used to signal failure for a single request to the caller.
1915 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1917 MultiwriteCB *mcb;
1918 int i;
1920 /* don't submit writes if we don't have a medium */
1921 if (bs->drv == NULL) {
1922 for (i = 0; i < num_reqs; i++) {
1923 reqs[i].error = -ENOMEDIUM;
1925 return -1;
1928 if (num_reqs == 0) {
1929 return 0;
1932 // Create MultiwriteCB structure
1933 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1934 mcb->num_requests = 0;
1935 mcb->num_callbacks = num_reqs;
1937 for (i = 0; i < num_reqs; i++) {
1938 mcb->callbacks[i].cb = reqs[i].cb;
1939 mcb->callbacks[i].opaque = reqs[i].opaque;
1942 // Check for mergable requests
1943 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1945 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1947 /* Run the aio requests. */
1948 mcb->num_requests = num_reqs;
1949 for (i = 0; i < num_reqs; i++) {
1950 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1951 reqs[i].nb_sectors, reqs[i].flags,
1952 multiwrite_cb, mcb,
1953 true);
1956 return 0;
1959 void bdrv_aio_cancel(BlockAIOCB *acb)
1961 qemu_aio_ref(acb);
1962 bdrv_aio_cancel_async(acb);
1963 while (acb->refcnt > 1) {
1964 if (acb->aiocb_info->get_aio_context) {
1965 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1966 } else if (acb->bs) {
1967 aio_poll(bdrv_get_aio_context(acb->bs), true);
1968 } else {
1969 abort();
1972 qemu_aio_unref(acb);
1975 /* Async version of aio cancel. The caller is not blocked if the acb implements
1976 * cancel_async, otherwise we do nothing and let the request normally complete.
1977 * In either case the completion callback must be called. */
1978 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1980 if (acb->aiocb_info->cancel_async) {
1981 acb->aiocb_info->cancel_async(acb);
1985 /**************************************************************/
1986 /* async block device emulation */
1988 typedef struct BlockAIOCBSync {
1989 BlockAIOCB common;
1990 QEMUBH *bh;
1991 int ret;
1992 /* vector translation state */
1993 QEMUIOVector *qiov;
1994 uint8_t *bounce;
1995 int is_write;
1996 } BlockAIOCBSync;
1998 static const AIOCBInfo bdrv_em_aiocb_info = {
1999 .aiocb_size = sizeof(BlockAIOCBSync),
2002 static void bdrv_aio_bh_cb(void *opaque)
2004 BlockAIOCBSync *acb = opaque;
2006 if (!acb->is_write && acb->ret >= 0) {
2007 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2009 qemu_vfree(acb->bounce);
2010 acb->common.cb(acb->common.opaque, acb->ret);
2011 qemu_bh_delete(acb->bh);
2012 acb->bh = NULL;
2013 qemu_aio_unref(acb);
2016 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2017 int64_t sector_num,
2018 QEMUIOVector *qiov,
2019 int nb_sectors,
2020 BlockCompletionFunc *cb,
2021 void *opaque,
2022 int is_write)
2025 BlockAIOCBSync *acb;
2027 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2028 acb->is_write = is_write;
2029 acb->qiov = qiov;
2030 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2031 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2033 if (acb->bounce == NULL) {
2034 acb->ret = -ENOMEM;
2035 } else if (is_write) {
2036 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2037 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2038 } else {
2039 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2042 qemu_bh_schedule(acb->bh);
2044 return &acb->common;
2047 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2048 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2049 BlockCompletionFunc *cb, void *opaque)
2051 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2054 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2055 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2056 BlockCompletionFunc *cb, void *opaque)
2058 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2062 typedef struct BlockAIOCBCoroutine {
2063 BlockAIOCB common;
2064 BlockRequest req;
2065 bool is_write;
2066 bool need_bh;
2067 bool *done;
2068 QEMUBH* bh;
2069 } BlockAIOCBCoroutine;
2071 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2072 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2075 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2077 if (!acb->need_bh) {
2078 acb->common.cb(acb->common.opaque, acb->req.error);
2079 qemu_aio_unref(acb);
2083 static void bdrv_co_em_bh(void *opaque)
2085 BlockAIOCBCoroutine *acb = opaque;
2087 assert(!acb->need_bh);
2088 qemu_bh_delete(acb->bh);
2089 bdrv_co_complete(acb);
2092 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2094 acb->need_bh = false;
2095 if (acb->req.error != -EINPROGRESS) {
2096 BlockDriverState *bs = acb->common.bs;
2098 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2099 qemu_bh_schedule(acb->bh);
2103 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2104 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2106 BlockAIOCBCoroutine *acb = opaque;
2107 BlockDriverState *bs = acb->common.bs;
2109 if (!acb->is_write) {
2110 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2111 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2112 } else {
2113 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2114 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2117 bdrv_co_complete(acb);
2120 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2121 int64_t sector_num,
2122 QEMUIOVector *qiov,
2123 int nb_sectors,
2124 BdrvRequestFlags flags,
2125 BlockCompletionFunc *cb,
2126 void *opaque,
2127 bool is_write)
2129 Coroutine *co;
2130 BlockAIOCBCoroutine *acb;
2132 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2133 acb->need_bh = true;
2134 acb->req.error = -EINPROGRESS;
2135 acb->req.sector = sector_num;
2136 acb->req.nb_sectors = nb_sectors;
2137 acb->req.qiov = qiov;
2138 acb->req.flags = flags;
2139 acb->is_write = is_write;
2141 co = qemu_coroutine_create(bdrv_co_do_rw);
2142 qemu_coroutine_enter(co, acb);
2144 bdrv_co_maybe_schedule_bh(acb);
2145 return &acb->common;
2148 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2150 BlockAIOCBCoroutine *acb = opaque;
2151 BlockDriverState *bs = acb->common.bs;
2153 acb->req.error = bdrv_co_flush(bs);
2154 bdrv_co_complete(acb);
2157 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2158 BlockCompletionFunc *cb, void *opaque)
2160 trace_bdrv_aio_flush(bs, opaque);
2162 Coroutine *co;
2163 BlockAIOCBCoroutine *acb;
2165 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2166 acb->need_bh = true;
2167 acb->req.error = -EINPROGRESS;
2169 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2170 qemu_coroutine_enter(co, acb);
2172 bdrv_co_maybe_schedule_bh(acb);
2173 return &acb->common;
2176 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2178 BlockAIOCBCoroutine *acb = opaque;
2179 BlockDriverState *bs = acb->common.bs;
2181 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2182 bdrv_co_complete(acb);
2185 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2186 int64_t sector_num, int nb_sectors,
2187 BlockCompletionFunc *cb, void *opaque)
2189 Coroutine *co;
2190 BlockAIOCBCoroutine *acb;
2192 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2194 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2195 acb->need_bh = true;
2196 acb->req.error = -EINPROGRESS;
2197 acb->req.sector = sector_num;
2198 acb->req.nb_sectors = nb_sectors;
2199 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2200 qemu_coroutine_enter(co, acb);
2202 bdrv_co_maybe_schedule_bh(acb);
2203 return &acb->common;
2206 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2207 BlockCompletionFunc *cb, void *opaque)
2209 BlockAIOCB *acb;
2211 acb = g_slice_alloc(aiocb_info->aiocb_size);
2212 acb->aiocb_info = aiocb_info;
2213 acb->bs = bs;
2214 acb->cb = cb;
2215 acb->opaque = opaque;
2216 acb->refcnt = 1;
2217 return acb;
2220 void qemu_aio_ref(void *p)
2222 BlockAIOCB *acb = p;
2223 acb->refcnt++;
2226 void qemu_aio_unref(void *p)
2228 BlockAIOCB *acb = p;
2229 assert(acb->refcnt > 0);
2230 if (--acb->refcnt == 0) {
2231 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2235 /**************************************************************/
2236 /* Coroutine block device emulation */
2238 typedef struct CoroutineIOCompletion {
2239 Coroutine *coroutine;
2240 int ret;
2241 } CoroutineIOCompletion;
2243 static void bdrv_co_io_em_complete(void *opaque, int ret)
2245 CoroutineIOCompletion *co = opaque;
2247 co->ret = ret;
2248 qemu_coroutine_enter(co->coroutine, NULL);
2251 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2252 int nb_sectors, QEMUIOVector *iov,
2253 bool is_write)
2255 CoroutineIOCompletion co = {
2256 .coroutine = qemu_coroutine_self(),
2258 BlockAIOCB *acb;
2260 if (is_write) {
2261 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2262 bdrv_co_io_em_complete, &co);
2263 } else {
2264 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2265 bdrv_co_io_em_complete, &co);
2268 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2269 if (!acb) {
2270 return -EIO;
2272 qemu_coroutine_yield();
2274 return co.ret;
2277 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2278 int64_t sector_num, int nb_sectors,
2279 QEMUIOVector *iov)
2281 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2284 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2285 int64_t sector_num, int nb_sectors,
2286 QEMUIOVector *iov)
2288 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2291 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2293 RwCo *rwco = opaque;
2295 rwco->ret = bdrv_co_flush(rwco->bs);
2298 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2300 int ret;
2302 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2303 bdrv_is_sg(bs)) {
2304 return 0;
2307 /* Write back cached data to the OS even with cache=unsafe */
2308 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2309 if (bs->drv->bdrv_co_flush_to_os) {
2310 ret = bs->drv->bdrv_co_flush_to_os(bs);
2311 if (ret < 0) {
2312 return ret;
2316 /* But don't actually force it to the disk with cache=unsafe */
2317 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2318 goto flush_parent;
2321 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2322 if (bs->drv->bdrv_co_flush_to_disk) {
2323 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2324 } else if (bs->drv->bdrv_aio_flush) {
2325 BlockAIOCB *acb;
2326 CoroutineIOCompletion co = {
2327 .coroutine = qemu_coroutine_self(),
2330 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2331 if (acb == NULL) {
2332 ret = -EIO;
2333 } else {
2334 qemu_coroutine_yield();
2335 ret = co.ret;
2337 } else {
2339 * Some block drivers always operate in either writethrough or unsafe
2340 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2341 * know how the server works (because the behaviour is hardcoded or
2342 * depends on server-side configuration), so we can't ensure that
2343 * everything is safe on disk. Returning an error doesn't work because
2344 * that would break guests even if the server operates in writethrough
2345 * mode.
2347 * Let's hope the user knows what he's doing.
2349 ret = 0;
2351 if (ret < 0) {
2352 return ret;
2355 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2356 * in the case of cache=unsafe, so there are no useless flushes.
2358 flush_parent:
2359 return bdrv_co_flush(bs->file);
2362 int bdrv_flush(BlockDriverState *bs)
2364 Coroutine *co;
2365 RwCo rwco = {
2366 .bs = bs,
2367 .ret = NOT_DONE,
2370 if (qemu_in_coroutine()) {
2371 /* Fast-path if already in coroutine context */
2372 bdrv_flush_co_entry(&rwco);
2373 } else {
2374 AioContext *aio_context = bdrv_get_aio_context(bs);
2376 co = qemu_coroutine_create(bdrv_flush_co_entry);
2377 qemu_coroutine_enter(co, &rwco);
2378 while (rwco.ret == NOT_DONE) {
2379 aio_poll(aio_context, true);
2383 return rwco.ret;
2386 typedef struct DiscardCo {
2387 BlockDriverState *bs;
2388 int64_t sector_num;
2389 int nb_sectors;
2390 int ret;
2391 } DiscardCo;
2392 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2394 DiscardCo *rwco = opaque;
2396 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2399 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2400 int nb_sectors)
2402 int max_discard, ret;
2404 if (!bs->drv) {
2405 return -ENOMEDIUM;
2408 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2409 if (ret < 0) {
2410 return ret;
2411 } else if (bs->read_only) {
2412 return -EPERM;
2415 /* Do nothing if disabled. */
2416 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2417 return 0;
2420 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2421 return 0;
2424 bdrv_set_dirty(bs, sector_num, nb_sectors);
2426 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2427 while (nb_sectors > 0) {
2428 int ret;
2429 int num = nb_sectors;
2431 /* align request */
2432 if (bs->bl.discard_alignment &&
2433 num >= bs->bl.discard_alignment &&
2434 sector_num % bs->bl.discard_alignment) {
2435 if (num > bs->bl.discard_alignment) {
2436 num = bs->bl.discard_alignment;
2438 num -= sector_num % bs->bl.discard_alignment;
2441 /* limit request size */
2442 if (num > max_discard) {
2443 num = max_discard;
2446 if (bs->drv->bdrv_co_discard) {
2447 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2448 } else {
2449 BlockAIOCB *acb;
2450 CoroutineIOCompletion co = {
2451 .coroutine = qemu_coroutine_self(),
2454 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2455 bdrv_co_io_em_complete, &co);
2456 if (acb == NULL) {
2457 return -EIO;
2458 } else {
2459 qemu_coroutine_yield();
2460 ret = co.ret;
2463 if (ret && ret != -ENOTSUP) {
2464 return ret;
2467 sector_num += num;
2468 nb_sectors -= num;
2470 return 0;
2473 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2475 Coroutine *co;
2476 DiscardCo rwco = {
2477 .bs = bs,
2478 .sector_num = sector_num,
2479 .nb_sectors = nb_sectors,
2480 .ret = NOT_DONE,
2483 if (qemu_in_coroutine()) {
2484 /* Fast-path if already in coroutine context */
2485 bdrv_discard_co_entry(&rwco);
2486 } else {
2487 AioContext *aio_context = bdrv_get_aio_context(bs);
2489 co = qemu_coroutine_create(bdrv_discard_co_entry);
2490 qemu_coroutine_enter(co, &rwco);
2491 while (rwco.ret == NOT_DONE) {
2492 aio_poll(aio_context, true);
2496 return rwco.ret;
2499 /* needed for generic scsi interface */
2501 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2503 BlockDriver *drv = bs->drv;
2505 if (drv && drv->bdrv_ioctl)
2506 return drv->bdrv_ioctl(bs, req, buf);
2507 return -ENOTSUP;
2510 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2511 unsigned long int req, void *buf,
2512 BlockCompletionFunc *cb, void *opaque)
2514 BlockDriver *drv = bs->drv;
2516 if (drv && drv->bdrv_aio_ioctl)
2517 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2518 return NULL;
2521 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2523 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2526 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2528 return memset(qemu_blockalign(bs, size), 0, size);
2531 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2533 size_t align = bdrv_opt_mem_align(bs);
2535 /* Ensure that NULL is never returned on success */
2536 assert(align > 0);
2537 if (size == 0) {
2538 size = align;
2541 return qemu_try_memalign(align, size);
2544 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2546 void *mem = qemu_try_blockalign(bs, size);
2548 if (mem) {
2549 memset(mem, 0, size);
2552 return mem;
2556 * Check if all memory in this vector is sector aligned.
2558 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2560 int i;
2561 size_t alignment = bdrv_min_mem_align(bs);
2563 for (i = 0; i < qiov->niov; i++) {
2564 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2565 return false;
2567 if (qiov->iov[i].iov_len % alignment) {
2568 return false;
2572 return true;
2575 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2576 NotifierWithReturn *notifier)
2578 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2581 void bdrv_io_plug(BlockDriverState *bs)
2583 BlockDriver *drv = bs->drv;
2584 if (drv && drv->bdrv_io_plug) {
2585 drv->bdrv_io_plug(bs);
2586 } else if (bs->file) {
2587 bdrv_io_plug(bs->file);
2591 void bdrv_io_unplug(BlockDriverState *bs)
2593 BlockDriver *drv = bs->drv;
2594 if (drv && drv->bdrv_io_unplug) {
2595 drv->bdrv_io_unplug(bs);
2596 } else if (bs->file) {
2597 bdrv_io_unplug(bs->file);
2601 void bdrv_flush_io_queue(BlockDriverState *bs)
2603 BlockDriver *drv = bs->drv;
2604 if (drv && drv->bdrv_flush_io_queue) {
2605 drv->bdrv_flush_io_queue(bs);
2606 } else if (bs->file) {
2607 bdrv_flush_io_queue(bs->file);
2609 bdrv_start_throttled_reqs(bs);