target/arm: Check V7VE as well as LPAE in arm_pamax
[qemu/ar7.git] / target / arm / ptw.c
blobda478104f05c88a535c4d82f3bdc6d6b4dc5b63a
1 /*
2 * ARM page table walking.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "idau.h"
17 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
18 MMUAccessType access_type, ARMMMUIdx mmu_idx,
19 bool s1_is_el0, hwaddr *phys_ptr,
20 MemTxAttrs *txattrs, int *prot,
21 target_ulong *page_size_ptr,
22 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
23 __attribute__((nonnull));
25 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
26 static const uint8_t pamax_map[] = {
27 [0] = 32,
28 [1] = 36,
29 [2] = 40,
30 [3] = 42,
31 [4] = 44,
32 [5] = 48,
33 [6] = 52,
36 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
37 unsigned int arm_pamax(ARMCPU *cpu)
39 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
40 unsigned int parange =
41 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
44 * id_aa64mmfr0 is a read-only register so values outside of the
45 * supported mappings can be considered an implementation error.
47 assert(parange < ARRAY_SIZE(pamax_map));
48 return pamax_map[parange];
52 * In machvirt_init, we call arm_pamax on a cpu that is not fully
53 * initialized, so we can't rely on the propagation done in realize.
55 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
56 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
57 /* v7 with LPAE */
58 return 40;
60 /* Anything else */
61 return 32;
65 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
67 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
69 switch (mmu_idx) {
70 case ARMMMUIdx_SE10_0:
71 return ARMMMUIdx_Stage1_SE0;
72 case ARMMMUIdx_SE10_1:
73 return ARMMMUIdx_Stage1_SE1;
74 case ARMMMUIdx_SE10_1_PAN:
75 return ARMMMUIdx_Stage1_SE1_PAN;
76 case ARMMMUIdx_E10_0:
77 return ARMMMUIdx_Stage1_E0;
78 case ARMMMUIdx_E10_1:
79 return ARMMMUIdx_Stage1_E1;
80 case ARMMMUIdx_E10_1_PAN:
81 return ARMMMUIdx_Stage1_E1_PAN;
82 default:
83 return mmu_idx;
87 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
89 return stage_1_mmu_idx(arm_mmu_idx(env));
92 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
94 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
97 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
99 switch (mmu_idx) {
100 case ARMMMUIdx_SE10_0:
101 case ARMMMUIdx_E20_0:
102 case ARMMMUIdx_SE20_0:
103 case ARMMMUIdx_Stage1_E0:
104 case ARMMMUIdx_Stage1_SE0:
105 case ARMMMUIdx_MUser:
106 case ARMMMUIdx_MSUser:
107 case ARMMMUIdx_MUserNegPri:
108 case ARMMMUIdx_MSUserNegPri:
109 return true;
110 default:
111 return false;
112 case ARMMMUIdx_E10_0:
113 case ARMMMUIdx_E10_1:
114 case ARMMMUIdx_E10_1_PAN:
115 g_assert_not_reached();
119 /* Return the TTBR associated with this translation regime */
120 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
122 if (mmu_idx == ARMMMUIdx_Stage2) {
123 return env->cp15.vttbr_el2;
125 if (mmu_idx == ARMMMUIdx_Stage2_S) {
126 return env->cp15.vsttbr_el2;
128 if (ttbrn == 0) {
129 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
130 } else {
131 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
135 /* Return true if the specified stage of address translation is disabled */
136 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
138 uint64_t hcr_el2;
140 if (arm_feature(env, ARM_FEATURE_M)) {
141 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
142 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
143 case R_V7M_MPU_CTRL_ENABLE_MASK:
144 /* Enabled, but not for HardFault and NMI */
145 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
146 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
147 /* Enabled for all cases */
148 return false;
149 case 0:
150 default:
152 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
153 * we warned about that in armv7m_nvic.c when the guest set it.
155 return true;
159 hcr_el2 = arm_hcr_el2_eff(env);
161 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
162 /* HCR.DC means HCR.VM behaves as 1 */
163 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
166 if (hcr_el2 & HCR_TGE) {
167 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
168 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
169 return true;
173 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
174 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
175 return true;
178 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
181 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
184 * For an S1 page table walk, the stage 1 attributes are always
185 * some form of "this is Normal memory". The combined S1+S2
186 * attributes are therefore only Device if stage 2 specifies Device.
187 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
188 * ie when cacheattrs.attrs bits [3:2] are 0b00.
189 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
190 * when cacheattrs.attrs bit [2] is 0.
192 assert(cacheattrs.is_s2_format);
193 if (arm_hcr_el2_eff(env) & HCR_FWB) {
194 return (cacheattrs.attrs & 0x4) == 0;
195 } else {
196 return (cacheattrs.attrs & 0xc) == 0;
200 /* Translate a S1 pagetable walk through S2 if needed. */
201 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
202 hwaddr addr, bool *is_secure,
203 ARMMMUFaultInfo *fi)
205 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
206 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
207 target_ulong s2size;
208 hwaddr s2pa;
209 int s2prot;
210 int ret;
211 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
212 : ARMMMUIdx_Stage2;
213 ARMCacheAttrs cacheattrs = {};
214 MemTxAttrs txattrs = {};
216 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
217 &s2pa, &txattrs, &s2prot, &s2size, fi,
218 &cacheattrs);
219 if (ret) {
220 assert(fi->type != ARMFault_None);
221 fi->s2addr = addr;
222 fi->stage2 = true;
223 fi->s1ptw = true;
224 fi->s1ns = !*is_secure;
225 return ~0;
227 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
228 ptw_attrs_are_device(env, cacheattrs)) {
230 * PTW set and S1 walk touched S2 Device memory:
231 * generate Permission fault.
233 fi->type = ARMFault_Permission;
234 fi->s2addr = addr;
235 fi->stage2 = true;
236 fi->s1ptw = true;
237 fi->s1ns = !*is_secure;
238 return ~0;
241 if (arm_is_secure_below_el3(env)) {
242 /* Check if page table walk is to secure or non-secure PA space. */
243 if (*is_secure) {
244 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
245 } else {
246 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
248 } else {
249 assert(!*is_secure);
252 addr = s2pa;
254 return addr;
257 /* All loads done in the course of a page table walk go through here. */
258 static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
259 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
261 CPUState *cs = env_cpu(env);
262 MemTxAttrs attrs = {};
263 MemTxResult result = MEMTX_OK;
264 AddressSpace *as;
265 uint32_t data;
267 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
268 attrs.secure = is_secure;
269 as = arm_addressspace(cs, attrs);
270 if (fi->s1ptw) {
271 return 0;
273 if (regime_translation_big_endian(env, mmu_idx)) {
274 data = address_space_ldl_be(as, addr, attrs, &result);
275 } else {
276 data = address_space_ldl_le(as, addr, attrs, &result);
278 if (result == MEMTX_OK) {
279 return data;
281 fi->type = ARMFault_SyncExternalOnWalk;
282 fi->ea = arm_extabort_type(result);
283 return 0;
286 static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
287 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
289 CPUState *cs = env_cpu(env);
290 MemTxAttrs attrs = {};
291 MemTxResult result = MEMTX_OK;
292 AddressSpace *as;
293 uint64_t data;
295 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
296 attrs.secure = is_secure;
297 as = arm_addressspace(cs, attrs);
298 if (fi->s1ptw) {
299 return 0;
301 if (regime_translation_big_endian(env, mmu_idx)) {
302 data = address_space_ldq_be(as, addr, attrs, &result);
303 } else {
304 data = address_space_ldq_le(as, addr, attrs, &result);
306 if (result == MEMTX_OK) {
307 return data;
309 fi->type = ARMFault_SyncExternalOnWalk;
310 fi->ea = arm_extabort_type(result);
311 return 0;
314 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
315 uint32_t *table, uint32_t address)
317 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
318 TCR *tcr = regime_tcr(env, mmu_idx);
320 if (address & tcr->mask) {
321 if (tcr->raw_tcr & TTBCR_PD1) {
322 /* Translation table walk disabled for TTBR1 */
323 return false;
325 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
326 } else {
327 if (tcr->raw_tcr & TTBCR_PD0) {
328 /* Translation table walk disabled for TTBR0 */
329 return false;
331 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
333 *table |= (address >> 18) & 0x3ffc;
334 return true;
338 * Translate section/page access permissions to page R/W protection flags
339 * @env: CPUARMState
340 * @mmu_idx: MMU index indicating required translation regime
341 * @ap: The 3-bit access permissions (AP[2:0])
342 * @domain_prot: The 2-bit domain access permissions
344 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
345 int ap, int domain_prot)
347 bool is_user = regime_is_user(env, mmu_idx);
349 if (domain_prot == 3) {
350 return PAGE_READ | PAGE_WRITE;
353 switch (ap) {
354 case 0:
355 if (arm_feature(env, ARM_FEATURE_V7)) {
356 return 0;
358 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
359 case SCTLR_S:
360 return is_user ? 0 : PAGE_READ;
361 case SCTLR_R:
362 return PAGE_READ;
363 default:
364 return 0;
366 case 1:
367 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
368 case 2:
369 if (is_user) {
370 return PAGE_READ;
371 } else {
372 return PAGE_READ | PAGE_WRITE;
374 case 3:
375 return PAGE_READ | PAGE_WRITE;
376 case 4: /* Reserved. */
377 return 0;
378 case 5:
379 return is_user ? 0 : PAGE_READ;
380 case 6:
381 return PAGE_READ;
382 case 7:
383 if (!arm_feature(env, ARM_FEATURE_V6K)) {
384 return 0;
386 return PAGE_READ;
387 default:
388 g_assert_not_reached();
393 * Translate section/page access permissions to page R/W protection flags.
394 * @ap: The 2-bit simple AP (AP[2:1])
395 * @is_user: TRUE if accessing from PL0
397 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
399 switch (ap) {
400 case 0:
401 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
402 case 1:
403 return PAGE_READ | PAGE_WRITE;
404 case 2:
405 return is_user ? 0 : PAGE_READ;
406 case 3:
407 return PAGE_READ;
408 default:
409 g_assert_not_reached();
413 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
415 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
418 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
419 MMUAccessType access_type, ARMMMUIdx mmu_idx,
420 hwaddr *phys_ptr, int *prot,
421 target_ulong *page_size,
422 ARMMMUFaultInfo *fi)
424 int level = 1;
425 uint32_t table;
426 uint32_t desc;
427 int type;
428 int ap;
429 int domain = 0;
430 int domain_prot;
431 hwaddr phys_addr;
432 uint32_t dacr;
434 /* Pagetable walk. */
435 /* Lookup l1 descriptor. */
436 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
437 /* Section translation fault if page walk is disabled by PD0 or PD1 */
438 fi->type = ARMFault_Translation;
439 goto do_fault;
441 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
442 mmu_idx, fi);
443 if (fi->type != ARMFault_None) {
444 goto do_fault;
446 type = (desc & 3);
447 domain = (desc >> 5) & 0x0f;
448 if (regime_el(env, mmu_idx) == 1) {
449 dacr = env->cp15.dacr_ns;
450 } else {
451 dacr = env->cp15.dacr_s;
453 domain_prot = (dacr >> (domain * 2)) & 3;
454 if (type == 0) {
455 /* Section translation fault. */
456 fi->type = ARMFault_Translation;
457 goto do_fault;
459 if (type != 2) {
460 level = 2;
462 if (domain_prot == 0 || domain_prot == 2) {
463 fi->type = ARMFault_Domain;
464 goto do_fault;
466 if (type == 2) {
467 /* 1Mb section. */
468 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
469 ap = (desc >> 10) & 3;
470 *page_size = 1024 * 1024;
471 } else {
472 /* Lookup l2 entry. */
473 if (type == 1) {
474 /* Coarse pagetable. */
475 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
476 } else {
477 /* Fine pagetable. */
478 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
480 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
481 mmu_idx, fi);
482 if (fi->type != ARMFault_None) {
483 goto do_fault;
485 switch (desc & 3) {
486 case 0: /* Page translation fault. */
487 fi->type = ARMFault_Translation;
488 goto do_fault;
489 case 1: /* 64k page. */
490 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
491 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
492 *page_size = 0x10000;
493 break;
494 case 2: /* 4k page. */
495 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
496 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
497 *page_size = 0x1000;
498 break;
499 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
500 if (type == 1) {
501 /* ARMv6/XScale extended small page format */
502 if (arm_feature(env, ARM_FEATURE_XSCALE)
503 || arm_feature(env, ARM_FEATURE_V6)) {
504 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
505 *page_size = 0x1000;
506 } else {
508 * UNPREDICTABLE in ARMv5; we choose to take a
509 * page translation fault.
511 fi->type = ARMFault_Translation;
512 goto do_fault;
514 } else {
515 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
516 *page_size = 0x400;
518 ap = (desc >> 4) & 3;
519 break;
520 default:
521 /* Never happens, but compiler isn't smart enough to tell. */
522 g_assert_not_reached();
525 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
526 *prot |= *prot ? PAGE_EXEC : 0;
527 if (!(*prot & (1 << access_type))) {
528 /* Access permission fault. */
529 fi->type = ARMFault_Permission;
530 goto do_fault;
532 *phys_ptr = phys_addr;
533 return false;
534 do_fault:
535 fi->domain = domain;
536 fi->level = level;
537 return true;
540 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
541 MMUAccessType access_type, ARMMMUIdx mmu_idx,
542 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
543 target_ulong *page_size, ARMMMUFaultInfo *fi)
545 ARMCPU *cpu = env_archcpu(env);
546 int level = 1;
547 uint32_t table;
548 uint32_t desc;
549 uint32_t xn;
550 uint32_t pxn = 0;
551 int type;
552 int ap;
553 int domain = 0;
554 int domain_prot;
555 hwaddr phys_addr;
556 uint32_t dacr;
557 bool ns;
559 /* Pagetable walk. */
560 /* Lookup l1 descriptor. */
561 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
562 /* Section translation fault if page walk is disabled by PD0 or PD1 */
563 fi->type = ARMFault_Translation;
564 goto do_fault;
566 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
567 mmu_idx, fi);
568 if (fi->type != ARMFault_None) {
569 goto do_fault;
571 type = (desc & 3);
572 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
573 /* Section translation fault, or attempt to use the encoding
574 * which is Reserved on implementations without PXN.
576 fi->type = ARMFault_Translation;
577 goto do_fault;
579 if ((type == 1) || !(desc & (1 << 18))) {
580 /* Page or Section. */
581 domain = (desc >> 5) & 0x0f;
583 if (regime_el(env, mmu_idx) == 1) {
584 dacr = env->cp15.dacr_ns;
585 } else {
586 dacr = env->cp15.dacr_s;
588 if (type == 1) {
589 level = 2;
591 domain_prot = (dacr >> (domain * 2)) & 3;
592 if (domain_prot == 0 || domain_prot == 2) {
593 /* Section or Page domain fault */
594 fi->type = ARMFault_Domain;
595 goto do_fault;
597 if (type != 1) {
598 if (desc & (1 << 18)) {
599 /* Supersection. */
600 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
601 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
602 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
603 *page_size = 0x1000000;
604 } else {
605 /* Section. */
606 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
607 *page_size = 0x100000;
609 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
610 xn = desc & (1 << 4);
611 pxn = desc & 1;
612 ns = extract32(desc, 19, 1);
613 } else {
614 if (cpu_isar_feature(aa32_pxn, cpu)) {
615 pxn = (desc >> 2) & 1;
617 ns = extract32(desc, 3, 1);
618 /* Lookup l2 entry. */
619 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
620 desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
621 mmu_idx, fi);
622 if (fi->type != ARMFault_None) {
623 goto do_fault;
625 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
626 switch (desc & 3) {
627 case 0: /* Page translation fault. */
628 fi->type = ARMFault_Translation;
629 goto do_fault;
630 case 1: /* 64k page. */
631 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
632 xn = desc & (1 << 15);
633 *page_size = 0x10000;
634 break;
635 case 2: case 3: /* 4k page. */
636 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
637 xn = desc & 1;
638 *page_size = 0x1000;
639 break;
640 default:
641 /* Never happens, but compiler isn't smart enough to tell. */
642 g_assert_not_reached();
645 if (domain_prot == 3) {
646 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
647 } else {
648 if (pxn && !regime_is_user(env, mmu_idx)) {
649 xn = 1;
651 if (xn && access_type == MMU_INST_FETCH) {
652 fi->type = ARMFault_Permission;
653 goto do_fault;
656 if (arm_feature(env, ARM_FEATURE_V6K) &&
657 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
658 /* The simplified model uses AP[0] as an access control bit. */
659 if ((ap & 1) == 0) {
660 /* Access flag fault. */
661 fi->type = ARMFault_AccessFlag;
662 goto do_fault;
664 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
665 } else {
666 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
668 if (*prot && !xn) {
669 *prot |= PAGE_EXEC;
671 if (!(*prot & (1 << access_type))) {
672 /* Access permission fault. */
673 fi->type = ARMFault_Permission;
674 goto do_fault;
677 if (ns) {
678 /* The NS bit will (as required by the architecture) have no effect if
679 * the CPU doesn't support TZ or this is a non-secure translation
680 * regime, because the attribute will already be non-secure.
682 attrs->secure = false;
684 *phys_ptr = phys_addr;
685 return false;
686 do_fault:
687 fi->domain = domain;
688 fi->level = level;
689 return true;
693 * Translate S2 section/page access permissions to protection flags
694 * @env: CPUARMState
695 * @s2ap: The 2-bit stage2 access permissions (S2AP)
696 * @xn: XN (execute-never) bits
697 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
699 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
701 int prot = 0;
703 if (s2ap & 1) {
704 prot |= PAGE_READ;
706 if (s2ap & 2) {
707 prot |= PAGE_WRITE;
710 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
711 switch (xn) {
712 case 0:
713 prot |= PAGE_EXEC;
714 break;
715 case 1:
716 if (s1_is_el0) {
717 prot |= PAGE_EXEC;
719 break;
720 case 2:
721 break;
722 case 3:
723 if (!s1_is_el0) {
724 prot |= PAGE_EXEC;
726 break;
727 default:
728 g_assert_not_reached();
730 } else {
731 if (!extract32(xn, 1, 1)) {
732 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
733 prot |= PAGE_EXEC;
737 return prot;
741 * Translate section/page access permissions to protection flags
742 * @env: CPUARMState
743 * @mmu_idx: MMU index indicating required translation regime
744 * @is_aa64: TRUE if AArch64
745 * @ap: The 2-bit simple AP (AP[2:1])
746 * @ns: NS (non-secure) bit
747 * @xn: XN (execute-never) bit
748 * @pxn: PXN (privileged execute-never) bit
750 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
751 int ap, int ns, int xn, int pxn)
753 bool is_user = regime_is_user(env, mmu_idx);
754 int prot_rw, user_rw;
755 bool have_wxn;
756 int wxn = 0;
758 assert(mmu_idx != ARMMMUIdx_Stage2);
759 assert(mmu_idx != ARMMMUIdx_Stage2_S);
761 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
762 if (is_user) {
763 prot_rw = user_rw;
764 } else {
765 if (user_rw && regime_is_pan(env, mmu_idx)) {
766 /* PAN forbids data accesses but doesn't affect insn fetch */
767 prot_rw = 0;
768 } else {
769 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
773 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
774 return prot_rw;
777 /* TODO have_wxn should be replaced with
778 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
779 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
780 * compatible processors have EL2, which is required for [U]WXN.
782 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
784 if (have_wxn) {
785 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
788 if (is_aa64) {
789 if (regime_has_2_ranges(mmu_idx) && !is_user) {
790 xn = pxn || (user_rw & PAGE_WRITE);
792 } else if (arm_feature(env, ARM_FEATURE_V7)) {
793 switch (regime_el(env, mmu_idx)) {
794 case 1:
795 case 3:
796 if (is_user) {
797 xn = xn || !(user_rw & PAGE_READ);
798 } else {
799 int uwxn = 0;
800 if (have_wxn) {
801 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
803 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
804 (uwxn && (user_rw & PAGE_WRITE));
806 break;
807 case 2:
808 break;
810 } else {
811 xn = wxn = 0;
814 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
815 return prot_rw;
817 return prot_rw | PAGE_EXEC;
820 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
821 ARMMMUIdx mmu_idx)
823 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
824 uint32_t el = regime_el(env, mmu_idx);
825 int select, tsz;
826 bool epd, hpd;
828 assert(mmu_idx != ARMMMUIdx_Stage2_S);
830 if (mmu_idx == ARMMMUIdx_Stage2) {
831 /* VTCR */
832 bool sext = extract32(tcr, 4, 1);
833 bool sign = extract32(tcr, 3, 1);
836 * If the sign-extend bit is not the same as t0sz[3], the result
837 * is unpredictable. Flag this as a guest error.
839 if (sign != sext) {
840 qemu_log_mask(LOG_GUEST_ERROR,
841 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
843 tsz = sextract32(tcr, 0, 4) + 8;
844 select = 0;
845 hpd = false;
846 epd = false;
847 } else if (el == 2) {
848 /* HTCR */
849 tsz = extract32(tcr, 0, 3);
850 select = 0;
851 hpd = extract64(tcr, 24, 1);
852 epd = false;
853 } else {
854 int t0sz = extract32(tcr, 0, 3);
855 int t1sz = extract32(tcr, 16, 3);
857 if (t1sz == 0) {
858 select = va > (0xffffffffu >> t0sz);
859 } else {
860 /* Note that we will detect errors later. */
861 select = va >= ~(0xffffffffu >> t1sz);
863 if (!select) {
864 tsz = t0sz;
865 epd = extract32(tcr, 7, 1);
866 hpd = extract64(tcr, 41, 1);
867 } else {
868 tsz = t1sz;
869 epd = extract32(tcr, 23, 1);
870 hpd = extract64(tcr, 42, 1);
872 /* For aarch32, hpd0 is not enabled without t2e as well. */
873 hpd &= extract32(tcr, 6, 1);
876 return (ARMVAParameters) {
877 .tsz = tsz,
878 .select = select,
879 .epd = epd,
880 .hpd = hpd,
885 * check_s2_mmu_setup
886 * @cpu: ARMCPU
887 * @is_aa64: True if the translation regime is in AArch64 state
888 * @startlevel: Suggested starting level
889 * @inputsize: Bitsize of IPAs
890 * @stride: Page-table stride (See the ARM ARM)
892 * Returns true if the suggested S2 translation parameters are OK and
893 * false otherwise.
895 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
896 int inputsize, int stride, int outputsize)
898 const int grainsize = stride + 3;
899 int startsizecheck;
902 * Negative levels are usually not allowed...
903 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
904 * begins with level -1. Note that previous feature tests will have
905 * eliminated this combination if it is not enabled.
907 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
908 return false;
911 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
912 if (startsizecheck < 1 || startsizecheck > stride + 4) {
913 return false;
916 if (is_aa64) {
917 switch (stride) {
918 case 13: /* 64KB Pages. */
919 if (level == 0 || (level == 1 && outputsize <= 42)) {
920 return false;
922 break;
923 case 11: /* 16KB Pages. */
924 if (level == 0 || (level == 1 && outputsize <= 40)) {
925 return false;
927 break;
928 case 9: /* 4KB Pages. */
929 if (level == 0 && outputsize <= 42) {
930 return false;
932 break;
933 default:
934 g_assert_not_reached();
937 /* Inputsize checks. */
938 if (inputsize > outputsize &&
939 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
940 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
941 return false;
943 } else {
944 /* AArch32 only supports 4KB pages. Assert on that. */
945 assert(stride == 9);
947 if (level == 0) {
948 return false;
951 return true;
955 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
957 * Returns false if the translation was successful. Otherwise, phys_ptr,
958 * attrs, prot and page_size may not be filled in, and the populated fsr
959 * value provides information on why the translation aborted, in the format
960 * of a long-format DFSR/IFSR fault register, with the following caveat:
961 * the WnR bit is never set (the caller must do this).
963 * @env: CPUARMState
964 * @address: virtual address to get physical address for
965 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
966 * @mmu_idx: MMU index indicating required translation regime
967 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page
968 * table walk), must be true if this is stage 2 of a stage 1+2
969 * walk for an EL0 access. If @mmu_idx is anything else,
970 * @s1_is_el0 is ignored.
971 * @phys_ptr: set to the physical address corresponding to the virtual address
972 * @attrs: set to the memory transaction attributes to use
973 * @prot: set to the permissions for the page containing phys_ptr
974 * @page_size_ptr: set to the size of the page containing phys_ptr
975 * @fi: set to fault info if the translation fails
976 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
978 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
979 MMUAccessType access_type, ARMMMUIdx mmu_idx,
980 bool s1_is_el0, hwaddr *phys_ptr,
981 MemTxAttrs *txattrs, int *prot,
982 target_ulong *page_size_ptr,
983 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
985 ARMCPU *cpu = env_archcpu(env);
986 /* Read an LPAE long-descriptor translation table. */
987 ARMFaultType fault_type = ARMFault_Translation;
988 uint32_t level;
989 ARMVAParameters param;
990 uint64_t ttbr;
991 hwaddr descaddr, indexmask, indexmask_grainsize;
992 uint32_t tableattrs;
993 target_ulong page_size;
994 uint32_t attrs;
995 int32_t stride;
996 int addrsize, inputsize, outputsize;
997 TCR *tcr = regime_tcr(env, mmu_idx);
998 int ap, ns, xn, pxn;
999 uint32_t el = regime_el(env, mmu_idx);
1000 uint64_t descaddrmask;
1001 bool aarch64 = arm_el_is_aa64(env, el);
1002 bool guarded = false;
1004 /* TODO: This code does not support shareability levels. */
1005 if (aarch64) {
1006 int ps;
1008 param = aa64_va_parameters(env, address, mmu_idx,
1009 access_type != MMU_INST_FETCH);
1010 level = 0;
1013 * If TxSZ is programmed to a value larger than the maximum,
1014 * or smaller than the effective minimum, it is IMPLEMENTATION
1015 * DEFINED whether we behave as if the field were programmed
1016 * within bounds, or if a level 0 Translation fault is generated.
1018 * With FEAT_LVA, fault on less than minimum becomes required,
1019 * so our choice is to always raise the fault.
1021 if (param.tsz_oob) {
1022 fault_type = ARMFault_Translation;
1023 goto do_fault;
1026 addrsize = 64 - 8 * param.tbi;
1027 inputsize = 64 - param.tsz;
1030 * Bound PS by PARANGE to find the effective output address size.
1031 * ID_AA64MMFR0 is a read-only register so values outside of the
1032 * supported mappings can be considered an implementation error.
1034 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1035 ps = MIN(ps, param.ps);
1036 assert(ps < ARRAY_SIZE(pamax_map));
1037 outputsize = pamax_map[ps];
1038 } else {
1039 param = aa32_va_parameters(env, address, mmu_idx);
1040 level = 1;
1041 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1042 inputsize = addrsize - param.tsz;
1043 outputsize = 40;
1047 * We determined the region when collecting the parameters, but we
1048 * have not yet validated that the address is valid for the region.
1049 * Extract the top bits and verify that they all match select.
1051 * For aa32, if inputsize == addrsize, then we have selected the
1052 * region by exclusion in aa32_va_parameters and there is no more
1053 * validation to do here.
1055 if (inputsize < addrsize) {
1056 target_ulong top_bits = sextract64(address, inputsize,
1057 addrsize - inputsize);
1058 if (-top_bits != param.select) {
1059 /* The gap between the two regions is a Translation fault */
1060 fault_type = ARMFault_Translation;
1061 goto do_fault;
1065 if (param.using64k) {
1066 stride = 13;
1067 } else if (param.using16k) {
1068 stride = 11;
1069 } else {
1070 stride = 9;
1074 * Note that QEMU ignores shareability and cacheability attributes,
1075 * so we don't need to do anything with the SH, ORGN, IRGN fields
1076 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1077 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1078 * implement any ASID-like capability so we can ignore it (instead
1079 * we will always flush the TLB any time the ASID is changed).
1081 ttbr = regime_ttbr(env, mmu_idx, param.select);
1084 * Here we should have set up all the parameters for the translation:
1085 * inputsize, ttbr, epd, stride, tbi
1088 if (param.epd) {
1090 * Translation table walk disabled => Translation fault on TLB miss
1091 * Note: This is always 0 on 64-bit EL2 and EL3.
1093 goto do_fault;
1096 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
1098 * The starting level depends on the virtual address size (which can
1099 * be up to 48 bits) and the translation granule size. It indicates
1100 * the number of strides (stride bits at a time) needed to
1101 * consume the bits of the input address. In the pseudocode this is:
1102 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1103 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1104 * our 'stride + 3' and 'stride' is our 'stride'.
1105 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1106 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1107 * = 4 - (inputsize - 4) / stride;
1109 level = 4 - (inputsize - 4) / stride;
1110 } else {
1112 * For stage 2 translations the starting level is specified by the
1113 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1115 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
1116 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
1117 uint32_t startlevel;
1118 bool ok;
1120 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1121 if (param.ds && stride == 9 && sl2) {
1122 if (sl0 != 0) {
1123 level = 0;
1124 fault_type = ARMFault_Translation;
1125 goto do_fault;
1127 startlevel = -1;
1128 } else if (!aarch64 || stride == 9) {
1129 /* AArch32 or 4KB pages */
1130 startlevel = 2 - sl0;
1132 if (cpu_isar_feature(aa64_st, cpu)) {
1133 startlevel &= 3;
1135 } else {
1136 /* 16KB or 64KB pages */
1137 startlevel = 3 - sl0;
1140 /* Check that the starting level is valid. */
1141 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1142 inputsize, stride, outputsize);
1143 if (!ok) {
1144 fault_type = ARMFault_Translation;
1145 goto do_fault;
1147 level = startlevel;
1150 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1151 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1153 /* Now we can extract the actual base address from the TTBR */
1154 descaddr = extract64(ttbr, 0, 48);
1157 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1159 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1160 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1161 * but we've just cleared the bits above 47, so simplify the test.
1163 if (outputsize > 48) {
1164 descaddr |= extract64(ttbr, 2, 4) << 48;
1165 } else if (descaddr >> outputsize) {
1166 level = 0;
1167 fault_type = ARMFault_AddressSize;
1168 goto do_fault;
1172 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1173 * and also to mask out CnP (bit 0) which could validly be non-zero.
1175 descaddr &= ~indexmask;
1178 * For AArch32, the address field in the descriptor goes up to bit 39
1179 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1180 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1181 * bits as part of the address, which will be checked via outputsize.
1182 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1183 * the highest bits of a 52-bit output are placed elsewhere.
1185 if (param.ds) {
1186 descaddrmask = MAKE_64BIT_MASK(0, 50);
1187 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1188 descaddrmask = MAKE_64BIT_MASK(0, 48);
1189 } else {
1190 descaddrmask = MAKE_64BIT_MASK(0, 40);
1192 descaddrmask &= ~indexmask_grainsize;
1195 * Secure accesses start with the page table in secure memory and
1196 * can be downgraded to non-secure at any step. Non-secure accesses
1197 * remain non-secure. We implement this by just ORing in the NSTable/NS
1198 * bits at each step.
1200 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
1201 for (;;) {
1202 uint64_t descriptor;
1203 bool nstable;
1205 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1206 descaddr &= ~7ULL;
1207 nstable = extract32(tableattrs, 4, 1);
1208 descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi);
1209 if (fi->type != ARMFault_None) {
1210 goto do_fault;
1213 if (!(descriptor & 1) ||
1214 (!(descriptor & 2) && (level == 3))) {
1215 /* Invalid, or the Reserved level 3 encoding */
1216 goto do_fault;
1219 descaddr = descriptor & descaddrmask;
1222 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1223 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1224 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1225 * raise AddressSizeFault.
1227 if (outputsize > 48) {
1228 if (param.ds) {
1229 descaddr |= extract64(descriptor, 8, 2) << 50;
1230 } else {
1231 descaddr |= extract64(descriptor, 12, 4) << 48;
1233 } else if (descaddr >> outputsize) {
1234 fault_type = ARMFault_AddressSize;
1235 goto do_fault;
1238 if ((descriptor & 2) && (level < 3)) {
1240 * Table entry. The top five bits are attributes which may
1241 * propagate down through lower levels of the table (and
1242 * which are all arranged so that 0 means "no effect", so
1243 * we can gather them up by ORing in the bits at each level).
1245 tableattrs |= extract64(descriptor, 59, 5);
1246 level++;
1247 indexmask = indexmask_grainsize;
1248 continue;
1251 * Block entry at level 1 or 2, or page entry at level 3.
1252 * These are basically the same thing, although the number
1253 * of bits we pull in from the vaddr varies. Note that although
1254 * descaddrmask masks enough of the low bits of the descriptor
1255 * to give a correct page or table address, the address field
1256 * in a block descriptor is smaller; so we need to explicitly
1257 * clear the lower bits here before ORing in the low vaddr bits.
1259 page_size = (1ULL << ((stride * (4 - level)) + 3));
1260 descaddr &= ~(page_size - 1);
1261 descaddr |= (address & (page_size - 1));
1262 /* Extract attributes from the descriptor */
1263 attrs = extract64(descriptor, 2, 10)
1264 | (extract64(descriptor, 52, 12) << 10);
1266 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1267 /* Stage 2 table descriptors do not include any attribute fields */
1268 break;
1270 /* Merge in attributes from table descriptors */
1271 attrs |= nstable << 3; /* NS */
1272 guarded = extract64(descriptor, 50, 1); /* GP */
1273 if (param.hpd) {
1274 /* HPD disables all the table attributes except NSTable. */
1275 break;
1277 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
1279 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1280 * means "force PL1 access only", which means forcing AP[1] to 0.
1282 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
1283 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
1284 break;
1287 * Here descaddr is the final physical address, and attributes
1288 * are all in attrs.
1290 fault_type = ARMFault_AccessFlag;
1291 if ((attrs & (1 << 8)) == 0) {
1292 /* Access flag */
1293 goto do_fault;
1296 ap = extract32(attrs, 4, 2);
1298 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1299 ns = mmu_idx == ARMMMUIdx_Stage2;
1300 xn = extract32(attrs, 11, 2);
1301 *prot = get_S2prot(env, ap, xn, s1_is_el0);
1302 } else {
1303 ns = extract32(attrs, 3, 1);
1304 xn = extract32(attrs, 12, 1);
1305 pxn = extract32(attrs, 11, 1);
1306 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1309 fault_type = ARMFault_Permission;
1310 if (!(*prot & (1 << access_type))) {
1311 goto do_fault;
1314 if (ns) {
1316 * The NS bit will (as required by the architecture) have no effect if
1317 * the CPU doesn't support TZ or this is a non-secure translation
1318 * regime, because the attribute will already be non-secure.
1320 txattrs->secure = false;
1322 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
1323 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
1324 arm_tlb_bti_gp(txattrs) = true;
1327 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1328 cacheattrs->is_s2_format = true;
1329 cacheattrs->attrs = extract32(attrs, 0, 4);
1330 } else {
1331 /* Index into MAIR registers for cache attributes */
1332 uint8_t attrindx = extract32(attrs, 0, 3);
1333 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1334 assert(attrindx <= 7);
1335 cacheattrs->is_s2_format = false;
1336 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
1340 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1341 * was re-purposed for output address bits. The SH attribute in
1342 * that case comes from TCR_ELx, which we extracted earlier.
1344 if (param.ds) {
1345 cacheattrs->shareability = param.sh;
1346 } else {
1347 cacheattrs->shareability = extract32(attrs, 6, 2);
1350 *phys_ptr = descaddr;
1351 *page_size_ptr = page_size;
1352 return false;
1354 do_fault:
1355 fi->type = fault_type;
1356 fi->level = level;
1357 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1358 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
1359 mmu_idx == ARMMMUIdx_Stage2_S);
1360 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1361 return true;
1364 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1365 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1366 hwaddr *phys_ptr, int *prot,
1367 ARMMMUFaultInfo *fi)
1369 int n;
1370 uint32_t mask;
1371 uint32_t base;
1372 bool is_user = regime_is_user(env, mmu_idx);
1374 if (regime_translation_disabled(env, mmu_idx)) {
1375 /* MPU disabled. */
1376 *phys_ptr = address;
1377 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1378 return false;
1381 *phys_ptr = address;
1382 for (n = 7; n >= 0; n--) {
1383 base = env->cp15.c6_region[n];
1384 if ((base & 1) == 0) {
1385 continue;
1387 mask = 1 << ((base >> 1) & 0x1f);
1388 /* Keep this shift separate from the above to avoid an
1389 (undefined) << 32. */
1390 mask = (mask << 1) - 1;
1391 if (((base ^ address) & ~mask) == 0) {
1392 break;
1395 if (n < 0) {
1396 fi->type = ARMFault_Background;
1397 return true;
1400 if (access_type == MMU_INST_FETCH) {
1401 mask = env->cp15.pmsav5_insn_ap;
1402 } else {
1403 mask = env->cp15.pmsav5_data_ap;
1405 mask = (mask >> (n * 4)) & 0xf;
1406 switch (mask) {
1407 case 0:
1408 fi->type = ARMFault_Permission;
1409 fi->level = 1;
1410 return true;
1411 case 1:
1412 if (is_user) {
1413 fi->type = ARMFault_Permission;
1414 fi->level = 1;
1415 return true;
1417 *prot = PAGE_READ | PAGE_WRITE;
1418 break;
1419 case 2:
1420 *prot = PAGE_READ;
1421 if (!is_user) {
1422 *prot |= PAGE_WRITE;
1424 break;
1425 case 3:
1426 *prot = PAGE_READ | PAGE_WRITE;
1427 break;
1428 case 5:
1429 if (is_user) {
1430 fi->type = ARMFault_Permission;
1431 fi->level = 1;
1432 return true;
1434 *prot = PAGE_READ;
1435 break;
1436 case 6:
1437 *prot = PAGE_READ;
1438 break;
1439 default:
1440 /* Bad permission. */
1441 fi->type = ARMFault_Permission;
1442 fi->level = 1;
1443 return true;
1445 *prot |= PAGE_EXEC;
1446 return false;
1449 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1450 int32_t address, int *prot)
1452 if (!arm_feature(env, ARM_FEATURE_M)) {
1453 *prot = PAGE_READ | PAGE_WRITE;
1454 switch (address) {
1455 case 0xF0000000 ... 0xFFFFFFFF:
1456 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1457 /* hivecs execing is ok */
1458 *prot |= PAGE_EXEC;
1460 break;
1461 case 0x00000000 ... 0x7FFFFFFF:
1462 *prot |= PAGE_EXEC;
1463 break;
1465 } else {
1466 /* Default system address map for M profile cores.
1467 * The architecture specifies which regions are execute-never;
1468 * at the MPU level no other checks are defined.
1470 switch (address) {
1471 case 0x00000000 ... 0x1fffffff: /* ROM */
1472 case 0x20000000 ... 0x3fffffff: /* SRAM */
1473 case 0x60000000 ... 0x7fffffff: /* RAM */
1474 case 0x80000000 ... 0x9fffffff: /* RAM */
1475 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1476 break;
1477 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1478 case 0xa0000000 ... 0xbfffffff: /* Device */
1479 case 0xc0000000 ... 0xdfffffff: /* Device */
1480 case 0xe0000000 ... 0xffffffff: /* System */
1481 *prot = PAGE_READ | PAGE_WRITE;
1482 break;
1483 default:
1484 g_assert_not_reached();
1489 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1491 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1492 return arm_feature(env, ARM_FEATURE_M) &&
1493 extract32(address, 20, 12) == 0xe00;
1496 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1499 * True if address is in the M profile system region
1500 * 0xe0000000 - 0xffffffff
1502 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1505 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1506 bool is_user)
1509 * Return true if we should use the default memory map as a
1510 * "background" region if there are no hits against any MPU regions.
1512 CPUARMState *env = &cpu->env;
1514 if (is_user) {
1515 return false;
1518 if (arm_feature(env, ARM_FEATURE_M)) {
1519 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
1520 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1521 } else {
1522 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1526 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1527 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1528 hwaddr *phys_ptr, int *prot,
1529 target_ulong *page_size,
1530 ARMMMUFaultInfo *fi)
1532 ARMCPU *cpu = env_archcpu(env);
1533 int n;
1534 bool is_user = regime_is_user(env, mmu_idx);
1536 *phys_ptr = address;
1537 *page_size = TARGET_PAGE_SIZE;
1538 *prot = 0;
1540 if (regime_translation_disabled(env, mmu_idx) ||
1541 m_is_ppb_region(env, address)) {
1543 * MPU disabled or M profile PPB access: use default memory map.
1544 * The other case which uses the default memory map in the
1545 * v7M ARM ARM pseudocode is exception vector reads from the vector
1546 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1547 * which always does a direct read using address_space_ldl(), rather
1548 * than going via this function, so we don't need to check that here.
1550 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1551 } else { /* MPU enabled */
1552 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1553 /* region search */
1554 uint32_t base = env->pmsav7.drbar[n];
1555 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1556 uint32_t rmask;
1557 bool srdis = false;
1559 if (!(env->pmsav7.drsr[n] & 0x1)) {
1560 continue;
1563 if (!rsize) {
1564 qemu_log_mask(LOG_GUEST_ERROR,
1565 "DRSR[%d]: Rsize field cannot be 0\n", n);
1566 continue;
1568 rsize++;
1569 rmask = (1ull << rsize) - 1;
1571 if (base & rmask) {
1572 qemu_log_mask(LOG_GUEST_ERROR,
1573 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1574 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1575 n, base, rmask);
1576 continue;
1579 if (address < base || address > base + rmask) {
1581 * Address not in this region. We must check whether the
1582 * region covers addresses in the same page as our address.
1583 * In that case we must not report a size that covers the
1584 * whole page for a subsequent hit against a different MPU
1585 * region or the background region, because it would result in
1586 * incorrect TLB hits for subsequent accesses to addresses that
1587 * are in this MPU region.
1589 if (ranges_overlap(base, rmask,
1590 address & TARGET_PAGE_MASK,
1591 TARGET_PAGE_SIZE)) {
1592 *page_size = 1;
1594 continue;
1597 /* Region matched */
1599 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1600 int i, snd;
1601 uint32_t srdis_mask;
1603 rsize -= 3; /* sub region size (power of 2) */
1604 snd = ((address - base) >> rsize) & 0x7;
1605 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1607 srdis_mask = srdis ? 0x3 : 0x0;
1608 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1610 * This will check in groups of 2, 4 and then 8, whether
1611 * the subregion bits are consistent. rsize is incremented
1612 * back up to give the region size, considering consistent
1613 * adjacent subregions as one region. Stop testing if rsize
1614 * is already big enough for an entire QEMU page.
1616 int snd_rounded = snd & ~(i - 1);
1617 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1618 snd_rounded + 8, i);
1619 if (srdis_mask ^ srdis_multi) {
1620 break;
1622 srdis_mask = (srdis_mask << i) | srdis_mask;
1623 rsize++;
1626 if (srdis) {
1627 continue;
1629 if (rsize < TARGET_PAGE_BITS) {
1630 *page_size = 1 << rsize;
1632 break;
1635 if (n == -1) { /* no hits */
1636 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
1637 /* background fault */
1638 fi->type = ARMFault_Background;
1639 return true;
1641 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1642 } else { /* a MPU hit! */
1643 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1644 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1646 if (m_is_system_region(env, address)) {
1647 /* System space is always execute never */
1648 xn = 1;
1651 if (is_user) { /* User mode AP bit decoding */
1652 switch (ap) {
1653 case 0:
1654 case 1:
1655 case 5:
1656 break; /* no access */
1657 case 3:
1658 *prot |= PAGE_WRITE;
1659 /* fall through */
1660 case 2:
1661 case 6:
1662 *prot |= PAGE_READ | PAGE_EXEC;
1663 break;
1664 case 7:
1665 /* for v7M, same as 6; for R profile a reserved value */
1666 if (arm_feature(env, ARM_FEATURE_M)) {
1667 *prot |= PAGE_READ | PAGE_EXEC;
1668 break;
1670 /* fall through */
1671 default:
1672 qemu_log_mask(LOG_GUEST_ERROR,
1673 "DRACR[%d]: Bad value for AP bits: 0x%"
1674 PRIx32 "\n", n, ap);
1676 } else { /* Priv. mode AP bits decoding */
1677 switch (ap) {
1678 case 0:
1679 break; /* no access */
1680 case 1:
1681 case 2:
1682 case 3:
1683 *prot |= PAGE_WRITE;
1684 /* fall through */
1685 case 5:
1686 case 6:
1687 *prot |= PAGE_READ | PAGE_EXEC;
1688 break;
1689 case 7:
1690 /* for v7M, same as 6; for R profile a reserved value */
1691 if (arm_feature(env, ARM_FEATURE_M)) {
1692 *prot |= PAGE_READ | PAGE_EXEC;
1693 break;
1695 /* fall through */
1696 default:
1697 qemu_log_mask(LOG_GUEST_ERROR,
1698 "DRACR[%d]: Bad value for AP bits: 0x%"
1699 PRIx32 "\n", n, ap);
1703 /* execute never */
1704 if (xn) {
1705 *prot &= ~PAGE_EXEC;
1710 fi->type = ARMFault_Permission;
1711 fi->level = 1;
1712 return !(*prot & (1 << access_type));
1715 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1716 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1717 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1718 int *prot, bool *is_subpage,
1719 ARMMMUFaultInfo *fi, uint32_t *mregion)
1722 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1723 * that a full phys-to-virt translation does).
1724 * mregion is (if not NULL) set to the region number which matched,
1725 * or -1 if no region number is returned (MPU off, address did not
1726 * hit a region, address hit in multiple regions).
1727 * We set is_subpage to true if the region hit doesn't cover the
1728 * entire TARGET_PAGE the address is within.
1730 ARMCPU *cpu = env_archcpu(env);
1731 bool is_user = regime_is_user(env, mmu_idx);
1732 uint32_t secure = regime_is_secure(env, mmu_idx);
1733 int n;
1734 int matchregion = -1;
1735 bool hit = false;
1736 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1737 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1739 *is_subpage = false;
1740 *phys_ptr = address;
1741 *prot = 0;
1742 if (mregion) {
1743 *mregion = -1;
1747 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1748 * was an exception vector read from the vector table (which is always
1749 * done using the default system address map), because those accesses
1750 * are done in arm_v7m_load_vector(), which always does a direct
1751 * read using address_space_ldl(), rather than going via this function.
1753 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
1754 hit = true;
1755 } else if (m_is_ppb_region(env, address)) {
1756 hit = true;
1757 } else {
1758 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
1759 hit = true;
1762 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1763 /* region search */
1765 * Note that the base address is bits [31:5] from the register
1766 * with bits [4:0] all zeroes, but the limit address is bits
1767 * [31:5] from the register with bits [4:0] all ones.
1769 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1770 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1772 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1773 /* Region disabled */
1774 continue;
1777 if (address < base || address > limit) {
1779 * Address not in this region. We must check whether the
1780 * region covers addresses in the same page as our address.
1781 * In that case we must not report a size that covers the
1782 * whole page for a subsequent hit against a different MPU
1783 * region or the background region, because it would result in
1784 * incorrect TLB hits for subsequent accesses to addresses that
1785 * are in this MPU region.
1787 if (limit >= base &&
1788 ranges_overlap(base, limit - base + 1,
1789 addr_page_base,
1790 TARGET_PAGE_SIZE)) {
1791 *is_subpage = true;
1793 continue;
1796 if (base > addr_page_base || limit < addr_page_limit) {
1797 *is_subpage = true;
1800 if (matchregion != -1) {
1802 * Multiple regions match -- always a failure (unlike
1803 * PMSAv7 where highest-numbered-region wins)
1805 fi->type = ARMFault_Permission;
1806 fi->level = 1;
1807 return true;
1810 matchregion = n;
1811 hit = true;
1815 if (!hit) {
1816 /* background fault */
1817 fi->type = ARMFault_Background;
1818 return true;
1821 if (matchregion == -1) {
1822 /* hit using the background region */
1823 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1824 } else {
1825 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
1826 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
1827 bool pxn = false;
1829 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1830 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
1833 if (m_is_system_region(env, address)) {
1834 /* System space is always execute never */
1835 xn = 1;
1838 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
1839 if (*prot && !xn && !(pxn && !is_user)) {
1840 *prot |= PAGE_EXEC;
1843 * We don't need to look the attribute up in the MAIR0/MAIR1
1844 * registers because that only tells us about cacheability.
1846 if (mregion) {
1847 *mregion = matchregion;
1851 fi->type = ARMFault_Permission;
1852 fi->level = 1;
1853 return !(*prot & (1 << access_type));
1856 static bool v8m_is_sau_exempt(CPUARMState *env,
1857 uint32_t address, MMUAccessType access_type)
1860 * The architecture specifies that certain address ranges are
1861 * exempt from v8M SAU/IDAU checks.
1863 return
1864 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
1865 (address >= 0xe0000000 && address <= 0xe0002fff) ||
1866 (address >= 0xe000e000 && address <= 0xe000efff) ||
1867 (address >= 0xe002e000 && address <= 0xe002efff) ||
1868 (address >= 0xe0040000 && address <= 0xe0041fff) ||
1869 (address >= 0xe00ff000 && address <= 0xe00fffff);
1872 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1873 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1874 V8M_SAttributes *sattrs)
1877 * Look up the security attributes for this address. Compare the
1878 * pseudocode SecurityCheck() function.
1879 * We assume the caller has zero-initialized *sattrs.
1881 ARMCPU *cpu = env_archcpu(env);
1882 int r;
1883 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
1884 int idau_region = IREGION_NOTVALID;
1885 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1886 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1888 if (cpu->idau) {
1889 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
1890 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
1892 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
1893 &idau_nsc);
1896 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
1897 /* 0xf0000000..0xffffffff is always S for insn fetches */
1898 return;
1901 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
1902 sattrs->ns = !regime_is_secure(env, mmu_idx);
1903 return;
1906 if (idau_region != IREGION_NOTVALID) {
1907 sattrs->irvalid = true;
1908 sattrs->iregion = idau_region;
1911 switch (env->sau.ctrl & 3) {
1912 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
1913 break;
1914 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
1915 sattrs->ns = true;
1916 break;
1917 default: /* SAU.ENABLE == 1 */
1918 for (r = 0; r < cpu->sau_sregion; r++) {
1919 if (env->sau.rlar[r] & 1) {
1920 uint32_t base = env->sau.rbar[r] & ~0x1f;
1921 uint32_t limit = env->sau.rlar[r] | 0x1f;
1923 if (base <= address && limit >= address) {
1924 if (base > addr_page_base || limit < addr_page_limit) {
1925 sattrs->subpage = true;
1927 if (sattrs->srvalid) {
1929 * If we hit in more than one region then we must report
1930 * as Secure, not NS-Callable, with no valid region
1931 * number info.
1933 sattrs->ns = false;
1934 sattrs->nsc = false;
1935 sattrs->sregion = 0;
1936 sattrs->srvalid = false;
1937 break;
1938 } else {
1939 if (env->sau.rlar[r] & 2) {
1940 sattrs->nsc = true;
1941 } else {
1942 sattrs->ns = true;
1944 sattrs->srvalid = true;
1945 sattrs->sregion = r;
1947 } else {
1949 * Address not in this region. We must check whether the
1950 * region covers addresses in the same page as our address.
1951 * In that case we must not report a size that covers the
1952 * whole page for a subsequent hit against a different MPU
1953 * region or the background region, because it would result
1954 * in incorrect TLB hits for subsequent accesses to
1955 * addresses that are in this MPU region.
1957 if (limit >= base &&
1958 ranges_overlap(base, limit - base + 1,
1959 addr_page_base,
1960 TARGET_PAGE_SIZE)) {
1961 sattrs->subpage = true;
1966 break;
1970 * The IDAU will override the SAU lookup results if it specifies
1971 * higher security than the SAU does.
1973 if (!idau_ns) {
1974 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
1975 sattrs->ns = false;
1976 sattrs->nsc = idau_nsc;
1981 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
1982 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1983 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1984 int *prot, target_ulong *page_size,
1985 ARMMMUFaultInfo *fi)
1987 uint32_t secure = regime_is_secure(env, mmu_idx);
1988 V8M_SAttributes sattrs = {};
1989 bool ret;
1990 bool mpu_is_subpage;
1992 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1993 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
1994 if (access_type == MMU_INST_FETCH) {
1996 * Instruction fetches always use the MMU bank and the
1997 * transaction attribute determined by the fetch address,
1998 * regardless of CPU state. This is painful for QEMU
1999 * to handle, because it would mean we need to encode
2000 * into the mmu_idx not just the (user, negpri) information
2001 * for the current security state but also that for the
2002 * other security state, which would balloon the number
2003 * of mmu_idx values needed alarmingly.
2004 * Fortunately we can avoid this because it's not actually
2005 * possible to arbitrarily execute code from memory with
2006 * the wrong security attribute: it will always generate
2007 * an exception of some kind or another, apart from the
2008 * special case of an NS CPU executing an SG instruction
2009 * in S&NSC memory. So we always just fail the translation
2010 * here and sort things out in the exception handler
2011 * (including possibly emulating an SG instruction).
2013 if (sattrs.ns != !secure) {
2014 if (sattrs.nsc) {
2015 fi->type = ARMFault_QEMU_NSCExec;
2016 } else {
2017 fi->type = ARMFault_QEMU_SFault;
2019 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2020 *phys_ptr = address;
2021 *prot = 0;
2022 return true;
2024 } else {
2026 * For data accesses we always use the MMU bank indicated
2027 * by the current CPU state, but the security attributes
2028 * might downgrade a secure access to nonsecure.
2030 if (sattrs.ns) {
2031 txattrs->secure = false;
2032 } else if (!secure) {
2034 * NS access to S memory must fault.
2035 * Architecturally we should first check whether the
2036 * MPU information for this address indicates that we
2037 * are doing an unaligned access to Device memory, which
2038 * should generate a UsageFault instead. QEMU does not
2039 * currently check for that kind of unaligned access though.
2040 * If we added it we would need to do so as a special case
2041 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2043 fi->type = ARMFault_QEMU_SFault;
2044 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2045 *phys_ptr = address;
2046 *prot = 0;
2047 return true;
2052 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
2053 txattrs, prot, &mpu_is_subpage, fi, NULL);
2054 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
2055 return ret;
2059 * Translate from the 4-bit stage 2 representation of
2060 * memory attributes (without cache-allocation hints) to
2061 * the 8-bit representation of the stage 1 MAIR registers
2062 * (which includes allocation hints).
2064 * ref: shared/translation/attrs/S2AttrDecode()
2065 * .../S2ConvertAttrsHints()
2067 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
2069 uint8_t hiattr = extract32(s2attrs, 2, 2);
2070 uint8_t loattr = extract32(s2attrs, 0, 2);
2071 uint8_t hihint = 0, lohint = 0;
2073 if (hiattr != 0) { /* normal memory */
2074 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
2075 hiattr = loattr = 1; /* non-cacheable */
2076 } else {
2077 if (hiattr != 1) { /* Write-through or write-back */
2078 hihint = 3; /* RW allocate */
2080 if (loattr != 1) { /* Write-through or write-back */
2081 lohint = 3; /* RW allocate */
2086 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2090 * Combine either inner or outer cacheability attributes for normal
2091 * memory, according to table D4-42 and pseudocode procedure
2092 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2094 * NB: only stage 1 includes allocation hints (RW bits), leading to
2095 * some asymmetry.
2097 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2099 if (s1 == 4 || s2 == 4) {
2100 /* non-cacheable has precedence */
2101 return 4;
2102 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2103 /* stage 1 write-through takes precedence */
2104 return s1;
2105 } else if (extract32(s2, 2, 2) == 2) {
2106 /* stage 2 write-through takes precedence, but the allocation hint
2107 * is still taken from stage 1
2109 return (2 << 2) | extract32(s1, 0, 2);
2110 } else { /* write-back */
2111 return s1;
2116 * Combine the memory type and cacheability attributes of
2117 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2118 * combined attributes in MAIR_EL1 format.
2120 static uint8_t combined_attrs_nofwb(CPUARMState *env,
2121 ARMCacheAttrs s1, ARMCacheAttrs s2)
2123 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2125 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);
2127 s1lo = extract32(s1.attrs, 0, 4);
2128 s2lo = extract32(s2_mair_attrs, 0, 4);
2129 s1hi = extract32(s1.attrs, 4, 4);
2130 s2hi = extract32(s2_mair_attrs, 4, 4);
2132 /* Combine memory type and cacheability attributes */
2133 if (s1hi == 0 || s2hi == 0) {
2134 /* Device has precedence over normal */
2135 if (s1lo == 0 || s2lo == 0) {
2136 /* nGnRnE has precedence over anything */
2137 ret_attrs = 0;
2138 } else if (s1lo == 4 || s2lo == 4) {
2139 /* non-Reordering has precedence over Reordering */
2140 ret_attrs = 4; /* nGnRE */
2141 } else if (s1lo == 8 || s2lo == 8) {
2142 /* non-Gathering has precedence over Gathering */
2143 ret_attrs = 8; /* nGRE */
2144 } else {
2145 ret_attrs = 0xc; /* GRE */
2147 } else { /* Normal memory */
2148 /* Outer/inner cacheability combine independently */
2149 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2150 | combine_cacheattr_nibble(s1lo, s2lo);
2152 return ret_attrs;
2155 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2158 * Given the 4 bits specifying the outer or inner cacheability
2159 * in MAIR format, return a value specifying Normal Write-Back,
2160 * with the allocation and transient hints taken from the input
2161 * if the input specified some kind of cacheable attribute.
2163 if (attr == 0 || attr == 4) {
2165 * 0 == an UNPREDICTABLE encoding
2166 * 4 == Non-cacheable
2167 * Either way, force Write-Back RW allocate non-transient
2169 return 0xf;
2171 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2172 return attr | 4;
2176 * Combine the memory type and cacheability attributes of
2177 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2178 * combined attributes in MAIR_EL1 format.
2180 static uint8_t combined_attrs_fwb(CPUARMState *env,
2181 ARMCacheAttrs s1, ARMCacheAttrs s2)
2183 switch (s2.attrs) {
2184 case 7:
2185 /* Use stage 1 attributes */
2186 return s1.attrs;
2187 case 6:
2189 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2190 * then we take the allocation hints from it; otherwise it is
2191 * RW allocate, non-transient.
2193 if ((s1.attrs & 0xf0) == 0) {
2194 /* S1 is Device */
2195 return 0xff;
2197 /* Need to check the Inner and Outer nibbles separately */
2198 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2199 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2200 case 5:
2201 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2202 if ((s1.attrs & 0xf0) == 0) {
2203 return s1.attrs;
2205 return 0x44;
2206 case 0 ... 3:
2207 /* Force Device, of subtype specified by S2 */
2208 return s2.attrs << 2;
2209 default:
2211 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2212 * arbitrarily force Device.
2214 return 0;
2219 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2220 * and CombineS1S2Desc()
2222 * @env: CPUARMState
2223 * @s1: Attributes from stage 1 walk
2224 * @s2: Attributes from stage 2 walk
2226 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
2227 ARMCacheAttrs s1, ARMCacheAttrs s2)
2229 ARMCacheAttrs ret;
2230 bool tagged = false;
2232 assert(s2.is_s2_format && !s1.is_s2_format);
2233 ret.is_s2_format = false;
2235 if (s1.attrs == 0xf0) {
2236 tagged = true;
2237 s1.attrs = 0xff;
2240 /* Combine shareability attributes (table D4-43) */
2241 if (s1.shareability == 2 || s2.shareability == 2) {
2242 /* if either are outer-shareable, the result is outer-shareable */
2243 ret.shareability = 2;
2244 } else if (s1.shareability == 3 || s2.shareability == 3) {
2245 /* if either are inner-shareable, the result is inner-shareable */
2246 ret.shareability = 3;
2247 } else {
2248 /* both non-shareable */
2249 ret.shareability = 0;
2252 /* Combine memory type and cacheability attributes */
2253 if (arm_hcr_el2_eff(env) & HCR_FWB) {
2254 ret.attrs = combined_attrs_fwb(env, s1, s2);
2255 } else {
2256 ret.attrs = combined_attrs_nofwb(env, s1, s2);
2260 * Any location for which the resultant memory type is any
2261 * type of Device memory is always treated as Outer Shareable.
2262 * Any location for which the resultant memory type is Normal
2263 * Inner Non-cacheable, Outer Non-cacheable is always treated
2264 * as Outer Shareable.
2265 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2267 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2268 ret.shareability = 2;
2271 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2272 if (tagged && ret.attrs == 0xff) {
2273 ret.attrs = 0xf0;
2276 return ret;
2280 * get_phys_addr - get the physical address for this virtual address
2282 * Find the physical address corresponding to the given virtual address,
2283 * by doing a translation table walk on MMU based systems or using the
2284 * MPU state on MPU based systems.
2286 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
2287 * prot and page_size may not be filled in, and the populated fsr value provides
2288 * information on why the translation aborted, in the format of a
2289 * DFSR/IFSR fault register, with the following caveats:
2290 * * we honour the short vs long DFSR format differences.
2291 * * the WnR bit is never set (the caller must do this).
2292 * * for PSMAv5 based systems we don't bother to return a full FSR format
2293 * value.
2295 * @env: CPUARMState
2296 * @address: virtual address to get physical address for
2297 * @access_type: 0 for read, 1 for write, 2 for execute
2298 * @mmu_idx: MMU index indicating required translation regime
2299 * @phys_ptr: set to the physical address corresponding to the virtual address
2300 * @attrs: set to the memory transaction attributes to use
2301 * @prot: set to the permissions for the page containing phys_ptr
2302 * @page_size: set to the size of the page containing phys_ptr
2303 * @fi: set to fault info if the translation fails
2304 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
2306 bool get_phys_addr(CPUARMState *env, target_ulong address,
2307 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2308 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
2309 target_ulong *page_size,
2310 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
2312 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
2314 if (mmu_idx != s1_mmu_idx) {
2316 * Call ourselves recursively to do the stage 1 and then stage 2
2317 * translations if mmu_idx is a two-stage regime.
2319 if (arm_feature(env, ARM_FEATURE_EL2)) {
2320 hwaddr ipa;
2321 int s2_prot;
2322 int ret;
2323 bool ipa_secure;
2324 ARMCacheAttrs cacheattrs2 = {};
2325 ARMMMUIdx s2_mmu_idx;
2326 bool is_el0;
2328 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
2329 attrs, prot, page_size, fi, cacheattrs);
2331 /* If S1 fails or S2 is disabled, return early. */
2332 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
2333 *phys_ptr = ipa;
2334 return ret;
2337 ipa_secure = attrs->secure;
2338 if (arm_is_secure_below_el3(env)) {
2339 if (ipa_secure) {
2340 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
2341 } else {
2342 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
2344 } else {
2345 assert(!ipa_secure);
2348 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2349 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
2351 /* S1 is done. Now do S2 translation. */
2352 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
2353 phys_ptr, attrs, &s2_prot,
2354 page_size, fi, &cacheattrs2);
2355 fi->s2addr = ipa;
2356 /* Combine the S1 and S2 perms. */
2357 *prot &= s2_prot;
2359 /* If S2 fails, return early. */
2360 if (ret) {
2361 return ret;
2364 /* Combine the S1 and S2 cache attributes. */
2365 if (arm_hcr_el2_eff(env) & HCR_DC) {
2367 * HCR.DC forces the first stage attributes to
2368 * Normal Non-Shareable,
2369 * Inner Write-Back Read-Allocate Write-Allocate,
2370 * Outer Write-Back Read-Allocate Write-Allocate.
2371 * Do not overwrite Tagged within attrs.
2373 if (cacheattrs->attrs != 0xf0) {
2374 cacheattrs->attrs = 0xff;
2376 cacheattrs->shareability = 0;
2378 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);
2380 /* Check if IPA translates to secure or non-secure PA space. */
2381 if (arm_is_secure_below_el3(env)) {
2382 if (ipa_secure) {
2383 attrs->secure =
2384 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
2385 } else {
2386 attrs->secure =
2387 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
2388 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
2391 return 0;
2392 } else {
2394 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
2396 mmu_idx = stage_1_mmu_idx(mmu_idx);
2401 * The page table entries may downgrade secure to non-secure, but
2402 * cannot upgrade an non-secure translation regime's attributes
2403 * to secure.
2405 attrs->secure = regime_is_secure(env, mmu_idx);
2406 attrs->user = regime_is_user(env, mmu_idx);
2409 * Fast Context Switch Extension. This doesn't exist at all in v8.
2410 * In v7 and earlier it affects all stage 1 translations.
2412 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2413 && !arm_feature(env, ARM_FEATURE_V8)) {
2414 if (regime_el(env, mmu_idx) == 3) {
2415 address += env->cp15.fcseidr_s;
2416 } else {
2417 address += env->cp15.fcseidr_ns;
2421 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2422 bool ret;
2423 *page_size = TARGET_PAGE_SIZE;
2425 if (arm_feature(env, ARM_FEATURE_V8)) {
2426 /* PMSAv8 */
2427 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2428 phys_ptr, attrs, prot, page_size, fi);
2429 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2430 /* PMSAv7 */
2431 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2432 phys_ptr, prot, page_size, fi);
2433 } else {
2434 /* Pre-v7 MPU */
2435 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2436 phys_ptr, prot, fi);
2438 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2439 " mmu_idx %u -> %s (prot %c%c%c)\n",
2440 access_type == MMU_DATA_LOAD ? "reading" :
2441 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2442 (uint32_t)address, mmu_idx,
2443 ret ? "Miss" : "Hit",
2444 *prot & PAGE_READ ? 'r' : '-',
2445 *prot & PAGE_WRITE ? 'w' : '-',
2446 *prot & PAGE_EXEC ? 'x' : '-');
2448 return ret;
2451 /* Definitely a real MMU, not an MPU */
2453 if (regime_translation_disabled(env, mmu_idx)) {
2454 uint64_t hcr;
2455 uint8_t memattr;
2458 * MMU disabled. S1 addresses within aa64 translation regimes are
2459 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
2461 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
2462 int r_el = regime_el(env, mmu_idx);
2463 if (arm_el_is_aa64(env, r_el)) {
2464 int pamax = arm_pamax(env_archcpu(env));
2465 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
2466 int addrtop, tbi;
2468 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2469 if (access_type == MMU_INST_FETCH) {
2470 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2472 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2473 addrtop = (tbi ? 55 : 63);
2475 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2476 fi->type = ARMFault_AddressSize;
2477 fi->level = 0;
2478 fi->stage2 = false;
2479 return 1;
2483 * When TBI is disabled, we've just validated that all of the
2484 * bits above PAMax are zero, so logically we only need to
2485 * clear the top byte for TBI. But it's clearer to follow
2486 * the pseudocode set of addrdesc.paddress.
2488 address = extract64(address, 0, 52);
2491 *phys_ptr = address;
2492 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2493 *page_size = TARGET_PAGE_SIZE;
2495 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2496 hcr = arm_hcr_el2_eff(env);
2497 cacheattrs->shareability = 0;
2498 cacheattrs->is_s2_format = false;
2499 if (hcr & HCR_DC) {
2500 if (hcr & HCR_DCT) {
2501 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2502 } else {
2503 memattr = 0xff; /* Normal, WB, RWA */
2505 } else if (access_type == MMU_INST_FETCH) {
2506 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2507 memattr = 0xee; /* Normal, WT, RA, NT */
2508 } else {
2509 memattr = 0x44; /* Normal, NC, No */
2511 cacheattrs->shareability = 2; /* outer sharable */
2512 } else {
2513 memattr = 0x00; /* Device, nGnRnE */
2515 cacheattrs->attrs = memattr;
2516 return 0;
2519 if (regime_using_lpae_format(env, mmu_idx)) {
2520 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
2521 phys_ptr, attrs, prot, page_size,
2522 fi, cacheattrs);
2523 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2524 return get_phys_addr_v6(env, address, access_type, mmu_idx,
2525 phys_ptr, attrs, prot, page_size, fi);
2526 } else {
2527 return get_phys_addr_v5(env, address, access_type, mmu_idx,
2528 phys_ptr, prot, page_size, fi);
2532 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2533 MemTxAttrs *attrs)
2535 ARMCPU *cpu = ARM_CPU(cs);
2536 CPUARMState *env = &cpu->env;
2537 hwaddr phys_addr;
2538 target_ulong page_size;
2539 int prot;
2540 bool ret;
2541 ARMMMUFaultInfo fi = {};
2542 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2543 ARMCacheAttrs cacheattrs = {};
2545 *attrs = (MemTxAttrs) {};
2547 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
2548 attrs, &prot, &page_size, &fi, &cacheattrs);
2550 if (ret) {
2551 return -1;
2553 return phys_addr;