target/ppc: Use MMUAccessType in mmu-hash64.c
[qemu/ar7.git] / hw / arm / mps2-tz.c
blob70aa31a7f6c80465aa2404b00786deb0bae088e2
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
26 * Board TRM:
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType {
82 FPGA_AN505,
83 FPGA_AN521,
84 FPGA_AN524,
85 FPGA_AN547,
86 } MPS2TZFPGAType;
89 * Define the layout of RAM in a board, including which parts are
90 * behind which MPCs.
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo {
95 const char *name;
96 uint32_t base;
97 uint32_t size;
98 int mpc; /* MPC number, -1 for "not behind an MPC" */
99 int mrindex;
100 int flags;
101 } RAMInfo;
104 * Flag values:
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
109 #define IS_ALIAS 1
110 #define IS_ROM 2
112 struct MPS2TZMachineClass {
113 MachineClass parent;
114 MPS2TZFPGAType fpga_type;
115 uint32_t scc_id;
116 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118 uint32_t len_oscclk;
119 const uint32_t *oscclk;
120 uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123 int numirq; /* Number of external interrupts */
124 int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor; /* init-svtor setting for SSE */
126 const RAMInfo *raminfo;
127 const char *armsse_type;
130 struct MPS2TZMachineState {
131 MachineState parent;
133 ARMSSE iotkit;
134 MemoryRegion ram[MPS2TZ_RAM_MAX];
135 MemoryRegion eth_usb_container;
137 MPS2SCC scc;
138 MPS2FPGAIO fpgaio;
139 TZPPC ppc[5];
140 TZMPC mpc[3];
141 PL022State spi[5];
142 ArmSbconI2CState i2c[5];
143 UnimplementedDeviceState i2s_audio;
144 UnimplementedDeviceState gpio[4];
145 UnimplementedDeviceState gfx;
146 UnimplementedDeviceState cldc;
147 UnimplementedDeviceState usb;
148 PL031State rtc;
149 PL080State dma[4];
150 TZMSC msc[4];
151 CMSDKAPBUART uart[6];
152 SplitIRQ sec_resp_splitter;
153 qemu_or_irq uart_irq_orgate;
154 DeviceState *lan9118;
155 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
156 Clock *sysclk;
157 Clock *s32kclk;
159 bool remap;
160 qemu_irq remap_irq;
163 #define TYPE_MPS2TZ_MACHINE "mps2tz"
164 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
165 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
166 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
167 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
169 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
171 /* Slow 32Khz S32KCLK frequency in Hz */
172 #define S32KCLK_FRQ (32 * 1000)
175 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
176 * emulation of that much guest RAM, so artificially make it smaller.
178 #if HOST_LONG_BITS == 32
179 #define MPS3_DDR_SIZE (1 * GiB)
180 #else
181 #define MPS3_DDR_SIZE (2 * GiB)
182 #endif
184 static const uint32_t an505_oscclk[] = {
185 40000000,
186 24580000,
187 25000000,
190 static const uint32_t an524_oscclk[] = {
191 24000000,
192 32000000,
193 50000000,
194 50000000,
195 24576000,
196 23750000,
199 static const RAMInfo an505_raminfo[] = { {
200 .name = "ssram-0",
201 .base = 0x00000000,
202 .size = 0x00400000,
203 .mpc = 0,
204 .mrindex = 0,
205 }, {
206 .name = "ssram-1",
207 .base = 0x28000000,
208 .size = 0x00200000,
209 .mpc = 1,
210 .mrindex = 1,
211 }, {
212 .name = "ssram-2",
213 .base = 0x28200000,
214 .size = 0x00200000,
215 .mpc = 2,
216 .mrindex = 2,
217 }, {
218 .name = "ssram-0-alias",
219 .base = 0x00400000,
220 .size = 0x00400000,
221 .mpc = 0,
222 .mrindex = 3,
223 .flags = IS_ALIAS,
224 }, {
225 /* Use the largest bit of contiguous RAM as our "system memory" */
226 .name = "mps.ram",
227 .base = 0x80000000,
228 .size = 16 * MiB,
229 .mpc = -1,
230 .mrindex = -1,
231 }, {
232 .name = NULL,
237 * Note that the addresses and MPC numbering here should match up
238 * with those used in remap_memory(), which can swap the BRAM and QSPI.
240 static const RAMInfo an524_raminfo[] = { {
241 .name = "bram",
242 .base = 0x00000000,
243 .size = 512 * KiB,
244 .mpc = 0,
245 .mrindex = 0,
246 }, {
247 .name = "sram",
248 .base = 0x20000000,
249 .size = 32 * 4 * KiB,
250 .mpc = -1,
251 .mrindex = 1,
252 }, {
253 /* We don't model QSPI flash yet; for now expose it as simple ROM */
254 .name = "QSPI",
255 .base = 0x28000000,
256 .size = 8 * MiB,
257 .mpc = 1,
258 .mrindex = 2,
259 .flags = IS_ROM,
260 }, {
261 .name = "DDR",
262 .base = 0x60000000,
263 .size = MPS3_DDR_SIZE,
264 .mpc = 2,
265 .mrindex = -1,
266 }, {
267 .name = NULL,
271 static const RAMInfo an547_raminfo[] = { {
272 .name = "itcm",
273 .base = 0x00000000,
274 .size = 512 * KiB,
275 .mpc = -1,
276 .mrindex = 0,
277 }, {
278 .name = "sram",
279 .base = 0x01000000,
280 .size = 2 * MiB,
281 .mpc = 0,
282 .mrindex = 1,
283 }, {
284 .name = "dtcm",
285 .base = 0x20000000,
286 .size = 4 * 128 * KiB,
287 .mpc = -1,
288 .mrindex = 2,
289 }, {
290 .name = "sram 2",
291 .base = 0x21000000,
292 .size = 4 * MiB,
293 .mpc = -1,
294 .mrindex = 3,
295 }, {
296 /* We don't model QSPI flash yet; for now expose it as simple ROM */
297 .name = "QSPI",
298 .base = 0x28000000,
299 .size = 8 * MiB,
300 .mpc = 1,
301 .mrindex = 4,
302 .flags = IS_ROM,
303 }, {
304 .name = "DDR",
305 .base = 0x60000000,
306 .size = MPS3_DDR_SIZE,
307 .mpc = 2,
308 .mrindex = -1,
309 }, {
310 .name = NULL,
314 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
316 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
317 const RAMInfo *p;
318 const RAMInfo *found = NULL;
320 for (p = mmc->raminfo; p->name; p++) {
321 if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
322 /* There should only be one entry in the array for this MPC */
323 g_assert(!found);
324 found = p;
327 /* if raminfo array doesn't have an entry for each MPC this is a bug */
328 assert(found);
329 return found;
332 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
333 const RAMInfo *raminfo)
335 /* Return an initialized MemoryRegion for the RAMInfo. */
336 MemoryRegion *ram;
338 if (raminfo->mrindex < 0) {
339 /* Means this RAMInfo is for QEMU's "system memory" */
340 MachineState *machine = MACHINE(mms);
341 assert(!(raminfo->flags & IS_ROM));
342 return machine->ram;
345 assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
346 ram = &mms->ram[raminfo->mrindex];
348 memory_region_init_ram(ram, NULL, raminfo->name,
349 raminfo->size, &error_fatal);
350 if (raminfo->flags & IS_ROM) {
351 memory_region_set_readonly(ram, true);
353 return ram;
356 /* Create an alias of an entire original MemoryRegion @orig
357 * located at @base in the memory map.
359 static void make_ram_alias(MemoryRegion *mr, const char *name,
360 MemoryRegion *orig, hwaddr base)
362 memory_region_init_alias(mr, NULL, name, orig, 0,
363 memory_region_size(orig));
364 memory_region_add_subregion(get_system_memory(), base, mr);
367 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
370 * Return a qemu_irq which will signal IRQ n to all CPUs in the
371 * SSE. The irqno should be as the CPU sees it, so the first
372 * external-to-the-SSE interrupt is 32.
374 MachineClass *mc = MACHINE_GET_CLASS(mms);
375 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
377 assert(irqno >= 32 && irqno < (mmc->numirq + 32));
380 * Convert from "CPU irq number" (as listed in the FPGA image
381 * documentation) to the SSE external-interrupt number.
383 irqno -= 32;
385 if (mc->max_cpus > 1) {
386 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
387 } else {
388 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
392 /* Most of the devices in the AN505 FPGA image sit behind
393 * Peripheral Protection Controllers. These data structures
394 * define the layout of which devices sit behind which PPCs.
395 * The devfn for each port is a function which creates, configures
396 * and initializes the device, returning the MemoryRegion which
397 * needs to be plugged into the downstream end of the PPC port.
399 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
400 const char *name, hwaddr size,
401 const int *irqs);
403 typedef struct PPCPortInfo {
404 const char *name;
405 MakeDevFn *devfn;
406 void *opaque;
407 hwaddr addr;
408 hwaddr size;
409 int irqs[3]; /* currently no device needs more IRQ lines than this */
410 } PPCPortInfo;
412 typedef struct PPCInfo {
413 const char *name;
414 PPCPortInfo ports[TZ_NUM_PORTS];
415 } PPCInfo;
417 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
418 void *opaque,
419 const char *name, hwaddr size,
420 const int *irqs)
422 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
423 * and return a pointer to its MemoryRegion.
425 UnimplementedDeviceState *uds = opaque;
427 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
428 qdev_prop_set_string(DEVICE(uds), "name", name);
429 qdev_prop_set_uint64(DEVICE(uds), "size", size);
430 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
431 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
434 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
435 const char *name, hwaddr size,
436 const int *irqs)
438 /* The irq[] array is tx, rx, combined, in that order */
439 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
440 CMSDKAPBUART *uart = opaque;
441 int i = uart - &mms->uart[0];
442 SysBusDevice *s;
443 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
445 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
446 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
447 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
448 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
449 s = SYS_BUS_DEVICE(uart);
450 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
451 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
452 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
453 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
454 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
455 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
458 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
459 const char *name, hwaddr size,
460 const int *irqs)
462 MPS2SCC *scc = opaque;
463 DeviceState *sccdev;
464 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
465 uint32_t i;
467 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
468 sccdev = DEVICE(scc);
469 qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
470 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
471 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
472 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
473 qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
474 for (i = 0; i < mmc->len_oscclk; i++) {
475 g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
476 qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
478 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
479 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
482 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
483 const char *name, hwaddr size,
484 const int *irqs)
486 MPS2FPGAIO *fpgaio = opaque;
487 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
489 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
490 qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
491 qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
492 qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
493 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
494 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
497 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
498 const char *name, hwaddr size,
499 const int *irqs)
501 SysBusDevice *s;
502 NICInfo *nd = &nd_table[0];
504 /* In hardware this is a LAN9220; the LAN9118 is software compatible
505 * except that it doesn't support the checksum-offload feature.
507 qemu_check_nic_model(nd, "lan9118");
508 mms->lan9118 = qdev_new(TYPE_LAN9118);
509 qdev_set_nic_properties(mms->lan9118, nd);
511 s = SYS_BUS_DEVICE(mms->lan9118);
512 sysbus_realize_and_unref(s, &error_fatal);
513 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
514 return sysbus_mmio_get_region(s, 0);
517 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
518 const char *name, hwaddr size,
519 const int *irqs)
522 * The AN524 makes the ethernet and USB share a PPC port.
523 * irqs[] is the ethernet IRQ.
525 SysBusDevice *s;
526 NICInfo *nd = &nd_table[0];
528 memory_region_init(&mms->eth_usb_container, OBJECT(mms),
529 "mps2-tz-eth-usb-container", 0x200000);
532 * In hardware this is a LAN9220; the LAN9118 is software compatible
533 * except that it doesn't support the checksum-offload feature.
535 qemu_check_nic_model(nd, "lan9118");
536 mms->lan9118 = qdev_new(TYPE_LAN9118);
537 qdev_set_nic_properties(mms->lan9118, nd);
539 s = SYS_BUS_DEVICE(mms->lan9118);
540 sysbus_realize_and_unref(s, &error_fatal);
541 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
543 memory_region_add_subregion(&mms->eth_usb_container,
544 0, sysbus_mmio_get_region(s, 0));
546 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
547 object_initialize_child(OBJECT(mms), "usb-otg",
548 &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
549 qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
550 qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
551 s = SYS_BUS_DEVICE(&mms->usb);
552 sysbus_realize(s, &error_fatal);
554 memory_region_add_subregion(&mms->eth_usb_container,
555 0x100000, sysbus_mmio_get_region(s, 0));
557 return &mms->eth_usb_container;
560 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
561 const char *name, hwaddr size,
562 const int *irqs)
564 TZMPC *mpc = opaque;
565 int i = mpc - &mms->mpc[0];
566 MemoryRegion *upstream;
567 const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
568 MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
570 object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
571 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
572 &error_fatal);
573 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
574 /* Map the upstream end of the MPC into system memory */
575 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
576 memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
577 /* and connect its interrupt to the IoTKit */
578 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
579 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
580 "mpcexp_status", i));
582 /* Return the register interface MR for our caller to map behind the PPC */
583 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
586 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
589 * Return the canonical address of the block which will be mapped
590 * at address 0x0 (i.e. where the vector table is).
591 * This is usually 0, but if the AN524 alternate memory map is
592 * enabled it will be the base address of the QSPI block.
594 return mms->remap ? 0x28000000 : 0;
597 static void remap_memory(MPS2TZMachineState *mms, int map)
600 * Remap the memory for the AN524. 'map' is the value of
601 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
602 * for the "option 1" mapping where QSPI is at address 0.
604 * Effectively we need to swap around the "upstream" ends of
605 * MPC 0 and MPC 1.
607 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
608 int i;
610 if (mmc->fpga_type != FPGA_AN524) {
611 return;
614 memory_region_transaction_begin();
615 for (i = 0; i < 2; i++) {
616 TZMPC *mpc = &mms->mpc[i];
617 MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
618 hwaddr addr = (i ^ map) ? 0x28000000 : 0;
620 memory_region_set_address(upstream, addr);
622 memory_region_transaction_commit();
625 static void remap_irq_fn(void *opaque, int n, int level)
627 MPS2TZMachineState *mms = opaque;
629 remap_memory(mms, level);
632 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
633 const char *name, hwaddr size,
634 const int *irqs)
636 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
637 PL080State *dma = opaque;
638 int i = dma - &mms->dma[0];
639 SysBusDevice *s;
640 char *mscname = g_strdup_printf("%s-msc", name);
641 TZMSC *msc = &mms->msc[i];
642 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
643 MemoryRegion *msc_upstream;
644 MemoryRegion *msc_downstream;
647 * Each DMA device is a PL081 whose transaction master interface
648 * is guarded by a Master Security Controller. The downstream end of
649 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
650 * DMA devices can see all devices and memory that the CPU does.
652 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
653 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
654 object_property_set_link(OBJECT(msc), "downstream",
655 OBJECT(msc_downstream), &error_fatal);
656 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
657 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
659 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
660 qdev_get_gpio_in_named(iotkitdev,
661 "mscexp_status", i));
662 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
663 qdev_get_gpio_in_named(DEVICE(msc),
664 "irq_clear", 0));
665 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
666 qdev_get_gpio_in_named(DEVICE(msc),
667 "cfg_nonsec", 0));
668 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
669 ARRAY_SIZE(mms->ppc) + i,
670 qdev_get_gpio_in_named(DEVICE(msc),
671 "cfg_sec_resp", 0));
672 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
674 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
675 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
676 &error_fatal);
677 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
679 s = SYS_BUS_DEVICE(dma);
680 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
681 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
682 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
683 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
685 g_free(mscname);
686 return sysbus_mmio_get_region(s, 0);
689 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
690 const char *name, hwaddr size,
691 const int *irqs)
694 * The AN505 has five PL022 SPI controllers.
695 * One of these should have the LCD controller behind it; the others
696 * are connected only to the FPGA's "general purpose SPI connector"
697 * or "shield" expansion connectors.
698 * Note that if we do implement devices behind SPI, the chip select
699 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
701 PL022State *spi = opaque;
702 SysBusDevice *s;
704 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
705 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
706 s = SYS_BUS_DEVICE(spi);
707 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
708 return sysbus_mmio_get_region(s, 0);
711 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
712 const char *name, hwaddr size,
713 const int *irqs)
715 ArmSbconI2CState *i2c = opaque;
716 SysBusDevice *s;
718 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
719 s = SYS_BUS_DEVICE(i2c);
720 sysbus_realize(s, &error_fatal);
721 return sysbus_mmio_get_region(s, 0);
724 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
725 const char *name, hwaddr size,
726 const int *irqs)
728 PL031State *pl031 = opaque;
729 SysBusDevice *s;
731 object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
732 s = SYS_BUS_DEVICE(pl031);
733 sysbus_realize(s, &error_fatal);
735 * The board docs don't give an IRQ number for the PL031, so
736 * presumably it is not connected.
738 return sysbus_mmio_get_region(s, 0);
741 static void create_non_mpc_ram(MPS2TZMachineState *mms)
744 * Handle the RAMs which are either not behind MPCs or which are
745 * aliases to another MPC.
747 const RAMInfo *p;
748 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
750 for (p = mmc->raminfo; p->name; p++) {
751 if (p->flags & IS_ALIAS) {
752 SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
753 MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
754 make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
755 } else if (p->mpc == -1) {
756 /* RAM not behind an MPC */
757 MemoryRegion *mr = mr_for_raminfo(mms, p);
758 memory_region_add_subregion(get_system_memory(), p->base, mr);
763 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
765 /* Return the size of the RAM block at guest address zero */
766 const RAMInfo *p;
767 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
769 for (p = mmc->raminfo; p->name; p++) {
770 if (p->base == boot_mem_base(mms)) {
771 return p->size;
774 g_assert_not_reached();
777 static void mps2tz_common_init(MachineState *machine)
779 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
780 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
781 MachineClass *mc = MACHINE_GET_CLASS(machine);
782 MemoryRegion *system_memory = get_system_memory();
783 DeviceState *iotkitdev;
784 DeviceState *dev_splitter;
785 const PPCInfo *ppcs;
786 int num_ppcs;
787 int i;
789 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
790 error_report("This board can only be used with CPU %s",
791 mc->default_cpu_type);
792 exit(1);
795 if (machine->ram_size != mc->default_ram_size) {
796 char *sz = size_to_str(mc->default_ram_size);
797 error_report("Invalid RAM size, should be %s", sz);
798 g_free(sz);
799 exit(EXIT_FAILURE);
802 /* These clocks don't need migration because they are fixed-frequency */
803 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
804 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
805 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
806 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
808 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
809 mmc->armsse_type);
810 iotkitdev = DEVICE(&mms->iotkit);
811 object_property_set_link(OBJECT(&mms->iotkit), "memory",
812 OBJECT(system_memory), &error_abort);
813 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
814 qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
815 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
816 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
817 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
820 * If this board has more than one CPU, then we need to create splitters
821 * to feed the IRQ inputs for each CPU in the SSE from each device in the
822 * board. If there is only one CPU, we can just wire the device IRQ
823 * directly to the SSE's IRQ input.
825 assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
826 if (mc->max_cpus > 1) {
827 for (i = 0; i < mmc->numirq; i++) {
828 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
829 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
831 object_initialize_child_with_props(OBJECT(machine), name,
832 splitter, sizeof(*splitter),
833 TYPE_SPLIT_IRQ, &error_fatal,
834 NULL);
835 g_free(name);
837 object_property_set_int(OBJECT(splitter), "num-lines", 2,
838 &error_fatal);
839 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
840 qdev_connect_gpio_out(DEVICE(splitter), 0,
841 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
842 "EXP_IRQ", i));
843 qdev_connect_gpio_out(DEVICE(splitter), 1,
844 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
845 "EXP_CPU1_IRQ", i));
849 /* The sec_resp_cfg output from the IoTKit must be split into multiple
850 * lines, one for each of the PPCs we create here, plus one per MSC.
852 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
853 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
854 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
855 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
856 &error_fatal);
857 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
858 dev_splitter = DEVICE(&mms->sec_resp_splitter);
859 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
860 qdev_get_gpio_in(dev_splitter, 0));
863 * The IoTKit sets up much of the memory layout, including
864 * the aliases between secure and non-secure regions in the
865 * address space, and also most of the devices in the system.
866 * The FPGA itself contains various RAMs and some additional devices.
867 * The FPGA images have an odd combination of different RAMs,
868 * because in hardware they are different implementations and
869 * connected to different buses, giving varying performance/size
870 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
871 * call the largest lump our "system memory".
875 * The overflow IRQs for all UARTs are ORed together.
876 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
877 * Create the OR gate for this: it has one input for the TX overflow
878 * and one for the RX overflow for each UART we might have.
879 * (If the board has fewer than the maximum possible number of UARTs
880 * those inputs are never wired up and are treated as always-zero.)
882 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
883 &mms->uart_irq_orgate, TYPE_OR_IRQ);
884 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
885 2 * ARRAY_SIZE(mms->uart),
886 &error_fatal);
887 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
888 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
889 get_sse_irq_in(mms, mmc->uart_overflow_irq));
891 /* Most of the devices in the FPGA are behind Peripheral Protection
892 * Controllers. The required order for initializing things is:
893 * + initialize the PPC
894 * + initialize, configure and realize downstream devices
895 * + connect downstream device MemoryRegions to the PPC
896 * + realize the PPC
897 * + map the PPC's MemoryRegions to the places in the address map
898 * where the downstream devices should appear
899 * + wire up the PPC's control lines to the IoTKit object
902 const PPCInfo an505_ppcs[] = { {
903 .name = "apb_ppcexp0",
904 .ports = {
905 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
906 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
907 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
909 }, {
910 .name = "apb_ppcexp1",
911 .ports = {
912 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
913 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
914 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
915 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
916 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
917 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
918 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
919 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
920 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
921 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
922 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
923 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
924 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
925 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
927 }, {
928 .name = "apb_ppcexp2",
929 .ports = {
930 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
931 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
932 0x40301000, 0x1000 },
933 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
935 }, {
936 .name = "ahb_ppcexp0",
937 .ports = {
938 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
939 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
940 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
941 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
942 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
943 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
945 }, {
946 .name = "ahb_ppcexp1",
947 .ports = {
948 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
949 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
950 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
951 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
956 const PPCInfo an524_ppcs[] = { {
957 .name = "apb_ppcexp0",
958 .ports = {
959 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
960 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
961 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
963 }, {
964 .name = "apb_ppcexp1",
965 .ports = {
966 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
967 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
968 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
969 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
970 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
971 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
972 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
973 { /* port 7 reserved */ },
974 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
976 }, {
977 .name = "apb_ppcexp2",
978 .ports = {
979 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
980 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
981 0x41301000, 0x1000 },
982 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
983 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
984 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
985 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
986 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
987 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
988 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
990 { /* port 9 reserved */ },
991 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
992 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
994 }, {
995 .name = "ahb_ppcexp0",
996 .ports = {
997 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
998 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
999 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1000 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1001 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1006 const PPCInfo an547_ppcs[] = { {
1007 .name = "apb_ppcexp0",
1008 .ports = {
1009 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1010 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1011 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1013 }, {
1014 .name = "apb_ppcexp1",
1015 .ports = {
1016 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
1017 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
1018 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1019 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1020 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1021 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
1022 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
1023 { /* port 7 reserved */ },
1024 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
1026 }, {
1027 .name = "apb_ppcexp2",
1028 .ports = {
1029 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1030 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1031 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1032 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1033 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1034 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1035 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1036 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1037 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1039 { /* port 9 reserved */ },
1040 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1041 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1043 }, {
1044 .name = "ahb_ppcexp0",
1045 .ports = {
1046 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1047 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1048 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1049 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1050 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1055 switch (mmc->fpga_type) {
1056 case FPGA_AN505:
1057 case FPGA_AN521:
1058 ppcs = an505_ppcs;
1059 num_ppcs = ARRAY_SIZE(an505_ppcs);
1060 break;
1061 case FPGA_AN524:
1062 ppcs = an524_ppcs;
1063 num_ppcs = ARRAY_SIZE(an524_ppcs);
1064 break;
1065 case FPGA_AN547:
1066 ppcs = an547_ppcs;
1067 num_ppcs = ARRAY_SIZE(an547_ppcs);
1068 break;
1069 default:
1070 g_assert_not_reached();
1073 for (i = 0; i < num_ppcs; i++) {
1074 const PPCInfo *ppcinfo = &ppcs[i];
1075 TZPPC *ppc = &mms->ppc[i];
1076 DeviceState *ppcdev;
1077 int port;
1078 char *gpioname;
1080 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1081 TYPE_TZ_PPC);
1082 ppcdev = DEVICE(ppc);
1084 for (port = 0; port < TZ_NUM_PORTS; port++) {
1085 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1086 MemoryRegion *mr;
1087 char *portname;
1089 if (!pinfo->devfn) {
1090 continue;
1093 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1094 pinfo->irqs);
1095 portname = g_strdup_printf("port[%d]", port);
1096 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1097 &error_fatal);
1098 g_free(portname);
1101 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1103 for (port = 0; port < TZ_NUM_PORTS; port++) {
1104 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1106 if (!pinfo->devfn) {
1107 continue;
1109 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1111 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1112 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1113 qdev_get_gpio_in_named(ppcdev,
1114 "cfg_nonsec",
1115 port));
1116 g_free(gpioname);
1117 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1118 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1119 qdev_get_gpio_in_named(ppcdev,
1120 "cfg_ap", port));
1121 g_free(gpioname);
1124 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1125 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1126 qdev_get_gpio_in_named(ppcdev,
1127 "irq_enable", 0));
1128 g_free(gpioname);
1129 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1130 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1131 qdev_get_gpio_in_named(ppcdev,
1132 "irq_clear", 0));
1133 g_free(gpioname);
1134 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1135 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1136 qdev_get_gpio_in_named(iotkitdev,
1137 gpioname, 0));
1138 g_free(gpioname);
1140 qdev_connect_gpio_out(dev_splitter, i,
1141 qdev_get_gpio_in_named(ppcdev,
1142 "cfg_sec_resp", 0));
1145 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1147 if (mmc->fpga_type == FPGA_AN547) {
1148 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1149 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1152 create_non_mpc_ram(mms);
1154 if (mmc->fpga_type == FPGA_AN524) {
1156 * Connect the line from the SCC so that we can remap when the
1157 * guest updates that register.
1159 mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1160 qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1161 mms->remap_irq);
1164 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1165 boot_ram_size(mms));
1168 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1169 int *iregion, bool *exempt, bool *ns, bool *nsc)
1172 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1173 * the Master Security Controllers. Thes have the same logic as
1174 * is used by the IoTKit for the IDAU connected to the CPU, except
1175 * that MSCs don't care about the NSC attribute.
1177 int region = extract32(address, 28, 4);
1179 *ns = !(region & 1);
1180 *nsc = false;
1181 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1182 *exempt = (address & 0xeff00000) == 0xe0000000;
1183 *iregion = region;
1186 static char *mps2_get_remap(Object *obj, Error **errp)
1188 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1189 const char *val = mms->remap ? "QSPI" : "BRAM";
1190 return g_strdup(val);
1193 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1195 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1197 if (!strcmp(value, "BRAM")) {
1198 mms->remap = false;
1199 } else if (!strcmp(value, "QSPI")) {
1200 mms->remap = true;
1201 } else {
1202 error_setg(errp, "Invalid remap value");
1203 error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1207 static void mps2_machine_reset(MachineState *machine)
1209 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1212 * Set the initial memory mapping before triggering the reset of
1213 * the rest of the system, so that the guest image loader and CPU
1214 * reset see the correct mapping.
1216 remap_memory(mms, mms->remap);
1217 qemu_devices_reset();
1220 static void mps2tz_class_init(ObjectClass *oc, void *data)
1222 MachineClass *mc = MACHINE_CLASS(oc);
1223 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1225 mc->init = mps2tz_common_init;
1226 mc->reset = mps2_machine_reset;
1227 iic->check = mps2_tz_idau_check;
1230 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1233 * Set mc->default_ram_size and default_ram_id from the
1234 * information in mmc->raminfo.
1236 MachineClass *mc = MACHINE_CLASS(mmc);
1237 const RAMInfo *p;
1239 for (p = mmc->raminfo; p->name; p++) {
1240 if (p->mrindex < 0) {
1241 /* Found the entry for "system memory" */
1242 mc->default_ram_size = p->size;
1243 mc->default_ram_id = p->name;
1244 return;
1247 g_assert_not_reached();
1250 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1252 MachineClass *mc = MACHINE_CLASS(oc);
1253 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1255 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1256 mc->default_cpus = 1;
1257 mc->min_cpus = mc->default_cpus;
1258 mc->max_cpus = mc->default_cpus;
1259 mmc->fpga_type = FPGA_AN505;
1260 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1261 mmc->scc_id = 0x41045050;
1262 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1263 mmc->apb_periph_frq = mmc->sysclk_frq;
1264 mmc->oscclk = an505_oscclk;
1265 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1266 mmc->fpgaio_num_leds = 2;
1267 mmc->fpgaio_has_switches = false;
1268 mmc->fpgaio_has_dbgctrl = false;
1269 mmc->numirq = 92;
1270 mmc->uart_overflow_irq = 47;
1271 mmc->init_svtor = 0x10000000;
1272 mmc->raminfo = an505_raminfo;
1273 mmc->armsse_type = TYPE_IOTKIT;
1274 mps2tz_set_default_ram_info(mmc);
1277 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1279 MachineClass *mc = MACHINE_CLASS(oc);
1280 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1282 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1283 mc->default_cpus = 2;
1284 mc->min_cpus = mc->default_cpus;
1285 mc->max_cpus = mc->default_cpus;
1286 mmc->fpga_type = FPGA_AN521;
1287 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1288 mmc->scc_id = 0x41045210;
1289 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1290 mmc->apb_periph_frq = mmc->sysclk_frq;
1291 mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1292 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1293 mmc->fpgaio_num_leds = 2;
1294 mmc->fpgaio_has_switches = false;
1295 mmc->fpgaio_has_dbgctrl = false;
1296 mmc->numirq = 92;
1297 mmc->uart_overflow_irq = 47;
1298 mmc->init_svtor = 0x10000000;
1299 mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1300 mmc->armsse_type = TYPE_SSE200;
1301 mps2tz_set_default_ram_info(mmc);
1304 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1306 MachineClass *mc = MACHINE_CLASS(oc);
1307 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1309 mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1310 mc->default_cpus = 2;
1311 mc->min_cpus = mc->default_cpus;
1312 mc->max_cpus = mc->default_cpus;
1313 mmc->fpga_type = FPGA_AN524;
1314 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1315 mmc->scc_id = 0x41045240;
1316 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1317 mmc->apb_periph_frq = mmc->sysclk_frq;
1318 mmc->oscclk = an524_oscclk;
1319 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1320 mmc->fpgaio_num_leds = 10;
1321 mmc->fpgaio_has_switches = true;
1322 mmc->fpgaio_has_dbgctrl = false;
1323 mmc->numirq = 95;
1324 mmc->uart_overflow_irq = 47;
1325 mmc->init_svtor = 0x10000000;
1326 mmc->raminfo = an524_raminfo;
1327 mmc->armsse_type = TYPE_SSE200;
1328 mps2tz_set_default_ram_info(mmc);
1330 object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1331 object_class_property_set_description(oc, "remap",
1332 "Set memory mapping. Valid values "
1333 "are BRAM (default) and QSPI.");
1336 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1338 MachineClass *mc = MACHINE_CLASS(oc);
1339 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1341 mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1342 mc->default_cpus = 1;
1343 mc->min_cpus = mc->default_cpus;
1344 mc->max_cpus = mc->default_cpus;
1345 mmc->fpga_type = FPGA_AN547;
1346 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1347 mmc->scc_id = 0x41055470;
1348 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1349 mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1350 mmc->oscclk = an524_oscclk; /* same as AN524 */
1351 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1352 mmc->fpgaio_num_leds = 10;
1353 mmc->fpgaio_has_switches = true;
1354 mmc->fpgaio_has_dbgctrl = true;
1355 mmc->numirq = 96;
1356 mmc->uart_overflow_irq = 48;
1357 mmc->init_svtor = 0x00000000;
1358 mmc->raminfo = an547_raminfo;
1359 mmc->armsse_type = TYPE_SSE300;
1360 mps2tz_set_default_ram_info(mmc);
1363 static const TypeInfo mps2tz_info = {
1364 .name = TYPE_MPS2TZ_MACHINE,
1365 .parent = TYPE_MACHINE,
1366 .abstract = true,
1367 .instance_size = sizeof(MPS2TZMachineState),
1368 .class_size = sizeof(MPS2TZMachineClass),
1369 .class_init = mps2tz_class_init,
1370 .interfaces = (InterfaceInfo[]) {
1371 { TYPE_IDAU_INTERFACE },
1376 static const TypeInfo mps2tz_an505_info = {
1377 .name = TYPE_MPS2TZ_AN505_MACHINE,
1378 .parent = TYPE_MPS2TZ_MACHINE,
1379 .class_init = mps2tz_an505_class_init,
1382 static const TypeInfo mps2tz_an521_info = {
1383 .name = TYPE_MPS2TZ_AN521_MACHINE,
1384 .parent = TYPE_MPS2TZ_MACHINE,
1385 .class_init = mps2tz_an521_class_init,
1388 static const TypeInfo mps3tz_an524_info = {
1389 .name = TYPE_MPS3TZ_AN524_MACHINE,
1390 .parent = TYPE_MPS2TZ_MACHINE,
1391 .class_init = mps3tz_an524_class_init,
1394 static const TypeInfo mps3tz_an547_info = {
1395 .name = TYPE_MPS3TZ_AN547_MACHINE,
1396 .parent = TYPE_MPS2TZ_MACHINE,
1397 .class_init = mps3tz_an547_class_init,
1400 static void mps2tz_machine_init(void)
1402 type_register_static(&mps2tz_info);
1403 type_register_static(&mps2tz_an505_info);
1404 type_register_static(&mps2tz_an521_info);
1405 type_register_static(&mps3tz_an524_info);
1406 type_register_static(&mps3tz_an547_info);
1409 type_init(mps2tz_machine_init);