hw/registerfields: Prefix local variables with underscore in macros
[qemu/ar7.git] / target / i386 / kvm.c
blob34f838728dd6ab444a31ac1c03bd700bf66e1543
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/runstate.h"
28 #include "kvm_i386.h"
29 #include "hyperv.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/main-loop.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "hw/i386/x86.h"
38 #include "hw/i386/apic.h"
39 #include "hw/i386/apic_internal.h"
40 #include "hw/i386/apic-msidef.h"
41 #include "hw/i386/intel_iommu.h"
42 #include "hw/i386/x86-iommu.h"
43 #include "hw/i386/e820_memory_layout.h"
45 #include "hw/pci/pci.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci/msix.h"
48 #include "migration/blocker.h"
49 #include "exec/memattrs.h"
50 #include "trace.h"
52 //#define DEBUG_KVM
54 #ifdef DEBUG_KVM
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF(fmt, ...) \
59 do { } while (0)
60 #endif
62 #define MSR_KVM_WALL_CLOCK 0x11
63 #define MSR_KVM_SYSTEM_TIME 0x12
65 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
66 * 255 kvm_msr_entry structs */
67 #define MSR_BUF_SIZE 4096
69 static void kvm_init_msrs(X86CPU *cpu);
71 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
72 KVM_CAP_INFO(SET_TSS_ADDR),
73 KVM_CAP_INFO(EXT_CPUID),
74 KVM_CAP_INFO(MP_STATE),
75 KVM_CAP_LAST_INFO
78 static bool has_msr_star;
79 static bool has_msr_hsave_pa;
80 static bool has_msr_tsc_aux;
81 static bool has_msr_tsc_adjust;
82 static bool has_msr_tsc_deadline;
83 static bool has_msr_feature_control;
84 static bool has_msr_misc_enable;
85 static bool has_msr_smbase;
86 static bool has_msr_bndcfgs;
87 static int lm_capable_kernel;
88 static bool has_msr_hv_hypercall;
89 static bool has_msr_hv_crash;
90 static bool has_msr_hv_reset;
91 static bool has_msr_hv_vpindex;
92 static bool hv_vpindex_settable;
93 static bool has_msr_hv_runtime;
94 static bool has_msr_hv_synic;
95 static bool has_msr_hv_stimer;
96 static bool has_msr_hv_frequencies;
97 static bool has_msr_hv_reenlightenment;
98 static bool has_msr_xss;
99 static bool has_msr_umwait;
100 static bool has_msr_spec_ctrl;
101 static bool has_msr_tsx_ctrl;
102 static bool has_msr_virt_ssbd;
103 static bool has_msr_smi_count;
104 static bool has_msr_arch_capabs;
105 static bool has_msr_core_capabs;
106 static bool has_msr_vmx_vmfunc;
107 static bool has_msr_ucode_rev;
108 static bool has_msr_vmx_procbased_ctls2;
110 static uint32_t has_architectural_pmu_version;
111 static uint32_t num_architectural_pmu_gp_counters;
112 static uint32_t num_architectural_pmu_fixed_counters;
114 static int has_xsave;
115 static int has_xcrs;
116 static int has_pit_state2;
117 static int has_exception_payload;
119 static bool has_msr_mcg_ext_ctl;
121 static struct kvm_cpuid2 *cpuid_cache;
122 static struct kvm_msr_list *kvm_feature_msrs;
124 int kvm_has_pit_state2(void)
126 return has_pit_state2;
129 bool kvm_has_smm(void)
131 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
134 bool kvm_has_adjust_clock_stable(void)
136 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
138 return (ret == KVM_CLOCK_TSC_STABLE);
141 bool kvm_has_exception_payload(void)
143 return has_exception_payload;
146 bool kvm_allows_irq0_override(void)
148 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
151 static bool kvm_x2apic_api_set_flags(uint64_t flags)
153 KVMState *s = KVM_STATE(current_accel());
155 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
158 #define MEMORIZE(fn, _result) \
159 ({ \
160 static bool _memorized; \
162 if (_memorized) { \
163 return _result; \
165 _memorized = true; \
166 _result = fn; \
169 static bool has_x2apic_api;
171 bool kvm_has_x2apic_api(void)
173 return has_x2apic_api;
176 bool kvm_enable_x2apic(void)
178 return MEMORIZE(
179 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
180 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
181 has_x2apic_api);
184 bool kvm_hv_vpindex_settable(void)
186 return hv_vpindex_settable;
189 static int kvm_get_tsc(CPUState *cs)
191 X86CPU *cpu = X86_CPU(cs);
192 CPUX86State *env = &cpu->env;
193 struct {
194 struct kvm_msrs info;
195 struct kvm_msr_entry entries[1];
196 } msr_data = {};
197 int ret;
199 if (env->tsc_valid) {
200 return 0;
203 memset(&msr_data, 0, sizeof(msr_data));
204 msr_data.info.nmsrs = 1;
205 msr_data.entries[0].index = MSR_IA32_TSC;
206 env->tsc_valid = !runstate_is_running();
208 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
209 if (ret < 0) {
210 return ret;
213 assert(ret == 1);
214 env->tsc = msr_data.entries[0].data;
215 return 0;
218 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
220 kvm_get_tsc(cpu);
223 void kvm_synchronize_all_tsc(void)
225 CPUState *cpu;
227 if (kvm_enabled()) {
228 CPU_FOREACH(cpu) {
229 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
234 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
236 struct kvm_cpuid2 *cpuid;
237 int r, size;
239 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
240 cpuid = g_malloc0(size);
241 cpuid->nent = max;
242 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
243 if (r == 0 && cpuid->nent >= max) {
244 r = -E2BIG;
246 if (r < 0) {
247 if (r == -E2BIG) {
248 g_free(cpuid);
249 return NULL;
250 } else {
251 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
252 strerror(-r));
253 exit(1);
256 return cpuid;
259 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
260 * for all entries.
262 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
264 struct kvm_cpuid2 *cpuid;
265 int max = 1;
267 if (cpuid_cache != NULL) {
268 return cpuid_cache;
270 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
271 max *= 2;
273 cpuid_cache = cpuid;
274 return cpuid;
277 static const struct kvm_para_features {
278 int cap;
279 int feature;
280 } para_features[] = {
281 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
282 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
283 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
284 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
287 static int get_para_features(KVMState *s)
289 int i, features = 0;
291 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
292 if (kvm_check_extension(s, para_features[i].cap)) {
293 features |= (1 << para_features[i].feature);
297 return features;
300 static bool host_tsx_blacklisted(void)
302 int family, model, stepping;\
303 char vendor[CPUID_VENDOR_SZ + 1];
305 host_vendor_fms(vendor, &family, &model, &stepping);
307 /* Check if we are running on a Haswell host known to have broken TSX */
308 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
309 (family == 6) &&
310 ((model == 63 && stepping < 4) ||
311 model == 60 || model == 69 || model == 70);
314 /* Returns the value for a specific register on the cpuid entry
316 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
318 uint32_t ret = 0;
319 switch (reg) {
320 case R_EAX:
321 ret = entry->eax;
322 break;
323 case R_EBX:
324 ret = entry->ebx;
325 break;
326 case R_ECX:
327 ret = entry->ecx;
328 break;
329 case R_EDX:
330 ret = entry->edx;
331 break;
333 return ret;
336 /* Find matching entry for function/index on kvm_cpuid2 struct
338 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
339 uint32_t function,
340 uint32_t index)
342 int i;
343 for (i = 0; i < cpuid->nent; ++i) {
344 if (cpuid->entries[i].function == function &&
345 cpuid->entries[i].index == index) {
346 return &cpuid->entries[i];
349 /* not found: */
350 return NULL;
353 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
354 uint32_t index, int reg)
356 struct kvm_cpuid2 *cpuid;
357 uint32_t ret = 0;
358 uint32_t cpuid_1_edx;
359 bool found = false;
361 cpuid = get_supported_cpuid(s);
363 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
364 if (entry) {
365 found = true;
366 ret = cpuid_entry_get_reg(entry, reg);
369 /* Fixups for the data returned by KVM, below */
371 if (function == 1 && reg == R_EDX) {
372 /* KVM before 2.6.30 misreports the following features */
373 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
374 } else if (function == 1 && reg == R_ECX) {
375 /* We can set the hypervisor flag, even if KVM does not return it on
376 * GET_SUPPORTED_CPUID
378 ret |= CPUID_EXT_HYPERVISOR;
379 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
380 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
381 * and the irqchip is in the kernel.
383 if (kvm_irqchip_in_kernel() &&
384 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
385 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
388 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
389 * without the in-kernel irqchip
391 if (!kvm_irqchip_in_kernel()) {
392 ret &= ~CPUID_EXT_X2APIC;
395 if (enable_cpu_pm) {
396 int disable_exits = kvm_check_extension(s,
397 KVM_CAP_X86_DISABLE_EXITS);
399 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
400 ret |= CPUID_EXT_MONITOR;
403 } else if (function == 6 && reg == R_EAX) {
404 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
405 } else if (function == 7 && index == 0 && reg == R_EBX) {
406 if (host_tsx_blacklisted()) {
407 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
409 } else if (function == 7 && index == 0 && reg == R_ECX) {
410 if (enable_cpu_pm) {
411 ret |= CPUID_7_0_ECX_WAITPKG;
412 } else {
413 ret &= ~CPUID_7_0_ECX_WAITPKG;
415 } else if (function == 7 && index == 0 && reg == R_EDX) {
417 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
418 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
419 * returned by KVM_GET_MSR_INDEX_LIST.
421 if (!has_msr_arch_capabs) {
422 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
424 } else if (function == 0x80000001 && reg == R_ECX) {
426 * It's safe to enable TOPOEXT even if it's not returned by
427 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
428 * us to keep CPU models including TOPOEXT runnable on older kernels.
430 ret |= CPUID_EXT3_TOPOEXT;
431 } else if (function == 0x80000001 && reg == R_EDX) {
432 /* On Intel, kvm returns cpuid according to the Intel spec,
433 * so add missing bits according to the AMD spec:
435 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
436 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
437 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
438 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
439 * be enabled without the in-kernel irqchip
441 if (!kvm_irqchip_in_kernel()) {
442 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
444 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
445 ret |= 1U << KVM_HINTS_REALTIME;
446 found = 1;
449 /* fallback for older kernels */
450 if ((function == KVM_CPUID_FEATURES) && !found) {
451 ret = get_para_features(s);
454 return ret;
457 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
459 struct {
460 struct kvm_msrs info;
461 struct kvm_msr_entry entries[1];
462 } msr_data = {};
463 uint64_t value;
464 uint32_t ret, can_be_one, must_be_one;
466 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
467 return 0;
470 /* Check if requested MSR is supported feature MSR */
471 int i;
472 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
473 if (kvm_feature_msrs->indices[i] == index) {
474 break;
476 if (i == kvm_feature_msrs->nmsrs) {
477 return 0; /* if the feature MSR is not supported, simply return 0 */
480 msr_data.info.nmsrs = 1;
481 msr_data.entries[0].index = index;
483 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
484 if (ret != 1) {
485 error_report("KVM get MSR (index=0x%x) feature failed, %s",
486 index, strerror(-ret));
487 exit(1);
490 value = msr_data.entries[0].data;
491 switch (index) {
492 case MSR_IA32_VMX_PROCBASED_CTLS2:
493 if (!has_msr_vmx_procbased_ctls2) {
494 /* KVM forgot to add these bits for some time, do this ourselves. */
495 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
496 CPUID_XSAVE_XSAVES) {
497 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
499 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
500 CPUID_EXT_RDRAND) {
501 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
503 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
504 CPUID_7_0_EBX_INVPCID) {
505 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
507 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
508 CPUID_7_0_EBX_RDSEED) {
509 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
511 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
512 CPUID_EXT2_RDTSCP) {
513 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
516 /* fall through */
517 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
518 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
519 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
520 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
522 * Return true for bits that can be one, but do not have to be one.
523 * The SDM tells us which bits could have a "must be one" setting,
524 * so we can do the opposite transformation in make_vmx_msr_value.
526 must_be_one = (uint32_t)value;
527 can_be_one = (uint32_t)(value >> 32);
528 return can_be_one & ~must_be_one;
530 default:
531 return value;
535 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
536 int *max_banks)
538 int r;
540 r = kvm_check_extension(s, KVM_CAP_MCE);
541 if (r > 0) {
542 *max_banks = r;
543 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
545 return -ENOSYS;
548 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
550 CPUState *cs = CPU(cpu);
551 CPUX86State *env = &cpu->env;
552 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
553 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
554 uint64_t mcg_status = MCG_STATUS_MCIP;
555 int flags = 0;
557 if (code == BUS_MCEERR_AR) {
558 status |= MCI_STATUS_AR | 0x134;
559 mcg_status |= MCG_STATUS_EIPV;
560 } else {
561 status |= 0xc0;
562 mcg_status |= MCG_STATUS_RIPV;
565 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
566 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
567 * guest kernel back into env->mcg_ext_ctl.
569 cpu_synchronize_state(cs);
570 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
571 mcg_status |= MCG_STATUS_LMCE;
572 flags = 0;
575 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
576 (MCM_ADDR_PHYS << 6) | 0xc, flags);
579 static void hardware_memory_error(void *host_addr)
581 error_report("QEMU got Hardware memory error at addr %p", host_addr);
582 exit(1);
585 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
587 X86CPU *cpu = X86_CPU(c);
588 CPUX86State *env = &cpu->env;
589 ram_addr_t ram_addr;
590 hwaddr paddr;
592 /* If we get an action required MCE, it has been injected by KVM
593 * while the VM was running. An action optional MCE instead should
594 * be coming from the main thread, which qemu_init_sigbus identifies
595 * as the "early kill" thread.
597 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
599 if ((env->mcg_cap & MCG_SER_P) && addr) {
600 ram_addr = qemu_ram_addr_from_host(addr);
601 if (ram_addr != RAM_ADDR_INVALID &&
602 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
603 kvm_hwpoison_page_add(ram_addr);
604 kvm_mce_inject(cpu, paddr, code);
607 * Use different logging severity based on error type.
608 * If there is additional MCE reporting on the hypervisor, QEMU VA
609 * could be another source to identify the PA and MCE details.
611 if (code == BUS_MCEERR_AR) {
612 error_report("Guest MCE Memory Error at QEMU addr %p and "
613 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
614 addr, paddr, "BUS_MCEERR_AR");
615 } else {
616 warn_report("Guest MCE Memory Error at QEMU addr %p and "
617 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
618 addr, paddr, "BUS_MCEERR_AO");
621 return;
624 if (code == BUS_MCEERR_AO) {
625 warn_report("Hardware memory error at addr %p of type %s "
626 "for memory used by QEMU itself instead of guest system!",
627 addr, "BUS_MCEERR_AO");
631 if (code == BUS_MCEERR_AR) {
632 hardware_memory_error(addr);
635 /* Hope we are lucky for AO MCE */
638 static void kvm_reset_exception(CPUX86State *env)
640 env->exception_nr = -1;
641 env->exception_pending = 0;
642 env->exception_injected = 0;
643 env->exception_has_payload = false;
644 env->exception_payload = 0;
647 static void kvm_queue_exception(CPUX86State *env,
648 int32_t exception_nr,
649 uint8_t exception_has_payload,
650 uint64_t exception_payload)
652 assert(env->exception_nr == -1);
653 assert(!env->exception_pending);
654 assert(!env->exception_injected);
655 assert(!env->exception_has_payload);
657 env->exception_nr = exception_nr;
659 if (has_exception_payload) {
660 env->exception_pending = 1;
662 env->exception_has_payload = exception_has_payload;
663 env->exception_payload = exception_payload;
664 } else {
665 env->exception_injected = 1;
667 if (exception_nr == EXCP01_DB) {
668 assert(exception_has_payload);
669 env->dr[6] = exception_payload;
670 } else if (exception_nr == EXCP0E_PAGE) {
671 assert(exception_has_payload);
672 env->cr[2] = exception_payload;
673 } else {
674 assert(!exception_has_payload);
679 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
681 CPUX86State *env = &cpu->env;
683 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
684 unsigned int bank, bank_num = env->mcg_cap & 0xff;
685 struct kvm_x86_mce mce;
687 kvm_reset_exception(env);
690 * There must be at least one bank in use if an MCE is pending.
691 * Find it and use its values for the event injection.
693 for (bank = 0; bank < bank_num; bank++) {
694 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
695 break;
698 assert(bank < bank_num);
700 mce.bank = bank;
701 mce.status = env->mce_banks[bank * 4 + 1];
702 mce.mcg_status = env->mcg_status;
703 mce.addr = env->mce_banks[bank * 4 + 2];
704 mce.misc = env->mce_banks[bank * 4 + 3];
706 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
708 return 0;
711 static void cpu_update_state(void *opaque, int running, RunState state)
713 CPUX86State *env = opaque;
715 if (running) {
716 env->tsc_valid = false;
720 unsigned long kvm_arch_vcpu_id(CPUState *cs)
722 X86CPU *cpu = X86_CPU(cs);
723 return cpu->apic_id;
726 #ifndef KVM_CPUID_SIGNATURE_NEXT
727 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
728 #endif
730 static bool hyperv_enabled(X86CPU *cpu)
732 CPUState *cs = CPU(cpu);
733 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
734 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
735 cpu->hyperv_features || cpu->hyperv_passthrough);
738 static int kvm_arch_set_tsc_khz(CPUState *cs)
740 X86CPU *cpu = X86_CPU(cs);
741 CPUX86State *env = &cpu->env;
742 int r;
744 if (!env->tsc_khz) {
745 return 0;
748 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
749 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
750 -ENOTSUP;
751 if (r < 0) {
752 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
753 * TSC frequency doesn't match the one we want.
755 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
756 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
757 -ENOTSUP;
758 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
759 warn_report("TSC frequency mismatch between "
760 "VM (%" PRId64 " kHz) and host (%d kHz), "
761 "and TSC scaling unavailable",
762 env->tsc_khz, cur_freq);
763 return r;
767 return 0;
770 static bool tsc_is_stable_and_known(CPUX86State *env)
772 if (!env->tsc_khz) {
773 return false;
775 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
776 || env->user_tsc_khz;
779 static struct {
780 const char *desc;
781 struct {
782 uint32_t fw;
783 uint32_t bits;
784 } flags[2];
785 uint64_t dependencies;
786 } kvm_hyperv_properties[] = {
787 [HYPERV_FEAT_RELAXED] = {
788 .desc = "relaxed timing (hv-relaxed)",
789 .flags = {
790 {.fw = FEAT_HYPERV_EAX,
791 .bits = HV_HYPERCALL_AVAILABLE},
792 {.fw = FEAT_HV_RECOMM_EAX,
793 .bits = HV_RELAXED_TIMING_RECOMMENDED}
796 [HYPERV_FEAT_VAPIC] = {
797 .desc = "virtual APIC (hv-vapic)",
798 .flags = {
799 {.fw = FEAT_HYPERV_EAX,
800 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
801 {.fw = FEAT_HV_RECOMM_EAX,
802 .bits = HV_APIC_ACCESS_RECOMMENDED}
805 [HYPERV_FEAT_TIME] = {
806 .desc = "clocksources (hv-time)",
807 .flags = {
808 {.fw = FEAT_HYPERV_EAX,
809 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
810 HV_REFERENCE_TSC_AVAILABLE}
813 [HYPERV_FEAT_CRASH] = {
814 .desc = "crash MSRs (hv-crash)",
815 .flags = {
816 {.fw = FEAT_HYPERV_EDX,
817 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
820 [HYPERV_FEAT_RESET] = {
821 .desc = "reset MSR (hv-reset)",
822 .flags = {
823 {.fw = FEAT_HYPERV_EAX,
824 .bits = HV_RESET_AVAILABLE}
827 [HYPERV_FEAT_VPINDEX] = {
828 .desc = "VP_INDEX MSR (hv-vpindex)",
829 .flags = {
830 {.fw = FEAT_HYPERV_EAX,
831 .bits = HV_VP_INDEX_AVAILABLE}
834 [HYPERV_FEAT_RUNTIME] = {
835 .desc = "VP_RUNTIME MSR (hv-runtime)",
836 .flags = {
837 {.fw = FEAT_HYPERV_EAX,
838 .bits = HV_VP_RUNTIME_AVAILABLE}
841 [HYPERV_FEAT_SYNIC] = {
842 .desc = "synthetic interrupt controller (hv-synic)",
843 .flags = {
844 {.fw = FEAT_HYPERV_EAX,
845 .bits = HV_SYNIC_AVAILABLE}
848 [HYPERV_FEAT_STIMER] = {
849 .desc = "synthetic timers (hv-stimer)",
850 .flags = {
851 {.fw = FEAT_HYPERV_EAX,
852 .bits = HV_SYNTIMERS_AVAILABLE}
854 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
856 [HYPERV_FEAT_FREQUENCIES] = {
857 .desc = "frequency MSRs (hv-frequencies)",
858 .flags = {
859 {.fw = FEAT_HYPERV_EAX,
860 .bits = HV_ACCESS_FREQUENCY_MSRS},
861 {.fw = FEAT_HYPERV_EDX,
862 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
865 [HYPERV_FEAT_REENLIGHTENMENT] = {
866 .desc = "reenlightenment MSRs (hv-reenlightenment)",
867 .flags = {
868 {.fw = FEAT_HYPERV_EAX,
869 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
872 [HYPERV_FEAT_TLBFLUSH] = {
873 .desc = "paravirtualized TLB flush (hv-tlbflush)",
874 .flags = {
875 {.fw = FEAT_HV_RECOMM_EAX,
876 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
877 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
879 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
881 [HYPERV_FEAT_EVMCS] = {
882 .desc = "enlightened VMCS (hv-evmcs)",
883 .flags = {
884 {.fw = FEAT_HV_RECOMM_EAX,
885 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
887 .dependencies = BIT(HYPERV_FEAT_VAPIC)
889 [HYPERV_FEAT_IPI] = {
890 .desc = "paravirtualized IPI (hv-ipi)",
891 .flags = {
892 {.fw = FEAT_HV_RECOMM_EAX,
893 .bits = HV_CLUSTER_IPI_RECOMMENDED |
894 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
896 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
898 [HYPERV_FEAT_STIMER_DIRECT] = {
899 .desc = "direct mode synthetic timers (hv-stimer-direct)",
900 .flags = {
901 {.fw = FEAT_HYPERV_EDX,
902 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
904 .dependencies = BIT(HYPERV_FEAT_STIMER)
908 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
910 struct kvm_cpuid2 *cpuid;
911 int r, size;
913 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
914 cpuid = g_malloc0(size);
915 cpuid->nent = max;
917 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
918 if (r == 0 && cpuid->nent >= max) {
919 r = -E2BIG;
921 if (r < 0) {
922 if (r == -E2BIG) {
923 g_free(cpuid);
924 return NULL;
925 } else {
926 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
927 strerror(-r));
928 exit(1);
931 return cpuid;
935 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
936 * for all entries.
938 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
940 struct kvm_cpuid2 *cpuid;
941 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
944 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
945 * -E2BIG, however, it doesn't report back the right size. Keep increasing
946 * it and re-trying until we succeed.
948 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
949 max++;
951 return cpuid;
955 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
956 * leaves from KVM_CAP_HYPERV* and present MSRs data.
958 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
960 X86CPU *cpu = X86_CPU(cs);
961 struct kvm_cpuid2 *cpuid;
962 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
964 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
965 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
966 cpuid->nent = 2;
968 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
969 entry_feat = &cpuid->entries[0];
970 entry_feat->function = HV_CPUID_FEATURES;
972 entry_recomm = &cpuid->entries[1];
973 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
974 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
976 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
977 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
978 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
979 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
980 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
981 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
984 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
985 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
986 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
989 if (has_msr_hv_frequencies) {
990 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
991 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
994 if (has_msr_hv_crash) {
995 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
998 if (has_msr_hv_reenlightenment) {
999 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1002 if (has_msr_hv_reset) {
1003 entry_feat->eax |= HV_RESET_AVAILABLE;
1006 if (has_msr_hv_vpindex) {
1007 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1010 if (has_msr_hv_runtime) {
1011 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1014 if (has_msr_hv_synic) {
1015 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1016 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1018 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1019 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1023 if (has_msr_hv_stimer) {
1024 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1027 if (kvm_check_extension(cs->kvm_state,
1028 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1029 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1030 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1033 if (kvm_check_extension(cs->kvm_state,
1034 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1035 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1038 if (kvm_check_extension(cs->kvm_state,
1039 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1040 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1041 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1044 return cpuid;
1047 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1049 struct kvm_cpuid_entry2 *entry;
1050 uint32_t func;
1051 int reg;
1053 switch (fw) {
1054 case FEAT_HYPERV_EAX:
1055 reg = R_EAX;
1056 func = HV_CPUID_FEATURES;
1057 break;
1058 case FEAT_HYPERV_EDX:
1059 reg = R_EDX;
1060 func = HV_CPUID_FEATURES;
1061 break;
1062 case FEAT_HV_RECOMM_EAX:
1063 reg = R_EAX;
1064 func = HV_CPUID_ENLIGHTMENT_INFO;
1065 break;
1066 default:
1067 return -EINVAL;
1070 entry = cpuid_find_entry(cpuid, func, 0);
1071 if (!entry) {
1072 return -ENOENT;
1075 switch (reg) {
1076 case R_EAX:
1077 *r = entry->eax;
1078 break;
1079 case R_EDX:
1080 *r = entry->edx;
1081 break;
1082 default:
1083 return -EINVAL;
1086 return 0;
1089 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1090 int feature)
1092 X86CPU *cpu = X86_CPU(cs);
1093 CPUX86State *env = &cpu->env;
1094 uint32_t r, fw, bits;
1095 uint64_t deps;
1096 int i, dep_feat;
1098 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1099 return 0;
1102 deps = kvm_hyperv_properties[feature].dependencies;
1103 while (deps) {
1104 dep_feat = ctz64(deps);
1105 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1106 fprintf(stderr,
1107 "Hyper-V %s requires Hyper-V %s\n",
1108 kvm_hyperv_properties[feature].desc,
1109 kvm_hyperv_properties[dep_feat].desc);
1110 return 1;
1112 deps &= ~(1ull << dep_feat);
1115 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1116 fw = kvm_hyperv_properties[feature].flags[i].fw;
1117 bits = kvm_hyperv_properties[feature].flags[i].bits;
1119 if (!fw) {
1120 continue;
1123 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1124 if (hyperv_feat_enabled(cpu, feature)) {
1125 fprintf(stderr,
1126 "Hyper-V %s is not supported by kernel\n",
1127 kvm_hyperv_properties[feature].desc);
1128 return 1;
1129 } else {
1130 return 0;
1134 env->features[fw] |= bits;
1137 if (cpu->hyperv_passthrough) {
1138 cpu->hyperv_features |= BIT(feature);
1141 return 0;
1145 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1146 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1147 * extentions are enabled.
1149 static int hyperv_handle_properties(CPUState *cs,
1150 struct kvm_cpuid_entry2 *cpuid_ent)
1152 X86CPU *cpu = X86_CPU(cs);
1153 CPUX86State *env = &cpu->env;
1154 struct kvm_cpuid2 *cpuid;
1155 struct kvm_cpuid_entry2 *c;
1156 uint32_t signature[3];
1157 uint32_t cpuid_i = 0;
1158 int r;
1160 if (!hyperv_enabled(cpu))
1161 return 0;
1163 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1164 cpu->hyperv_passthrough) {
1165 uint16_t evmcs_version;
1167 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1168 (uintptr_t)&evmcs_version);
1170 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1171 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1172 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1173 return -ENOSYS;
1176 if (!r) {
1177 env->features[FEAT_HV_RECOMM_EAX] |=
1178 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1179 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1183 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1184 cpuid = get_supported_hv_cpuid(cs);
1185 } else {
1186 cpuid = get_supported_hv_cpuid_legacy(cs);
1189 if (cpu->hyperv_passthrough) {
1190 memcpy(cpuid_ent, &cpuid->entries[0],
1191 cpuid->nent * sizeof(cpuid->entries[0]));
1193 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1194 if (c) {
1195 env->features[FEAT_HYPERV_EAX] = c->eax;
1196 env->features[FEAT_HYPERV_EBX] = c->ebx;
1197 env->features[FEAT_HYPERV_EDX] = c->eax;
1199 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1200 if (c) {
1201 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1203 /* hv-spinlocks may have been overriden */
1204 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1205 c->ebx = cpu->hyperv_spinlock_attempts;
1208 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1209 if (c) {
1210 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1214 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1215 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1216 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1217 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1218 if (c) {
1219 env->features[FEAT_HV_RECOMM_EAX] |=
1220 c->eax & HV_NO_NONARCH_CORESHARING;
1224 /* Features */
1225 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1226 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1227 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1228 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1229 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1230 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1231 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1232 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1233 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1234 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1235 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1236 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1237 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1238 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1239 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1241 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1242 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1243 !cpu->hyperv_synic_kvm_only &&
1244 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1245 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1246 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1247 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1248 r |= 1;
1251 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1252 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1254 if (r) {
1255 r = -ENOSYS;
1256 goto free;
1259 if (cpu->hyperv_passthrough) {
1260 /* We already copied all feature words from KVM as is */
1261 r = cpuid->nent;
1262 goto free;
1265 c = &cpuid_ent[cpuid_i++];
1266 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1267 if (!cpu->hyperv_vendor_id) {
1268 memcpy(signature, "Microsoft Hv", 12);
1269 } else {
1270 size_t len = strlen(cpu->hyperv_vendor_id);
1272 if (len > 12) {
1273 error_report("hv-vendor-id truncated to 12 characters");
1274 len = 12;
1276 memset(signature, 0, 12);
1277 memcpy(signature, cpu->hyperv_vendor_id, len);
1279 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1280 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1281 c->ebx = signature[0];
1282 c->ecx = signature[1];
1283 c->edx = signature[2];
1285 c = &cpuid_ent[cpuid_i++];
1286 c->function = HV_CPUID_INTERFACE;
1287 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1288 c->eax = signature[0];
1289 c->ebx = 0;
1290 c->ecx = 0;
1291 c->edx = 0;
1293 c = &cpuid_ent[cpuid_i++];
1294 c->function = HV_CPUID_VERSION;
1295 c->eax = 0x00001bbc;
1296 c->ebx = 0x00060001;
1298 c = &cpuid_ent[cpuid_i++];
1299 c->function = HV_CPUID_FEATURES;
1300 c->eax = env->features[FEAT_HYPERV_EAX];
1301 c->ebx = env->features[FEAT_HYPERV_EBX];
1302 c->edx = env->features[FEAT_HYPERV_EDX];
1304 c = &cpuid_ent[cpuid_i++];
1305 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1306 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1307 c->ebx = cpu->hyperv_spinlock_attempts;
1309 c = &cpuid_ent[cpuid_i++];
1310 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1311 c->eax = cpu->hv_max_vps;
1312 c->ebx = 0x40;
1314 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1315 __u32 function;
1317 /* Create zeroed 0x40000006..0x40000009 leaves */
1318 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1319 function < HV_CPUID_NESTED_FEATURES; function++) {
1320 c = &cpuid_ent[cpuid_i++];
1321 c->function = function;
1324 c = &cpuid_ent[cpuid_i++];
1325 c->function = HV_CPUID_NESTED_FEATURES;
1326 c->eax = env->features[FEAT_HV_NESTED_EAX];
1328 r = cpuid_i;
1330 free:
1331 g_free(cpuid);
1333 return r;
1336 static Error *hv_passthrough_mig_blocker;
1337 static Error *hv_no_nonarch_cs_mig_blocker;
1339 static int hyperv_init_vcpu(X86CPU *cpu)
1341 CPUState *cs = CPU(cpu);
1342 Error *local_err = NULL;
1343 int ret;
1345 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1346 error_setg(&hv_passthrough_mig_blocker,
1347 "'hv-passthrough' CPU flag prevents migration, use explicit"
1348 " set of hv-* flags instead");
1349 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1350 if (local_err) {
1351 error_report_err(local_err);
1352 error_free(hv_passthrough_mig_blocker);
1353 return ret;
1357 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1358 hv_no_nonarch_cs_mig_blocker == NULL) {
1359 error_setg(&hv_no_nonarch_cs_mig_blocker,
1360 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1361 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1362 " make sure SMT is disabled and/or that vCPUs are properly"
1363 " pinned)");
1364 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1365 if (local_err) {
1366 error_report_err(local_err);
1367 error_free(hv_no_nonarch_cs_mig_blocker);
1368 return ret;
1372 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1374 * the kernel doesn't support setting vp_index; assert that its value
1375 * is in sync
1377 struct {
1378 struct kvm_msrs info;
1379 struct kvm_msr_entry entries[1];
1380 } msr_data = {
1381 .info.nmsrs = 1,
1382 .entries[0].index = HV_X64_MSR_VP_INDEX,
1385 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1386 if (ret < 0) {
1387 return ret;
1389 assert(ret == 1);
1391 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1392 error_report("kernel's vp_index != QEMU's vp_index");
1393 return -ENXIO;
1397 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1398 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1399 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1400 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1401 if (ret < 0) {
1402 error_report("failed to turn on HyperV SynIC in KVM: %s",
1403 strerror(-ret));
1404 return ret;
1407 if (!cpu->hyperv_synic_kvm_only) {
1408 ret = hyperv_x86_synic_add(cpu);
1409 if (ret < 0) {
1410 error_report("failed to create HyperV SynIC: %s",
1411 strerror(-ret));
1412 return ret;
1417 return 0;
1420 static Error *invtsc_mig_blocker;
1422 #define KVM_MAX_CPUID_ENTRIES 100
1424 int kvm_arch_init_vcpu(CPUState *cs)
1426 struct {
1427 struct kvm_cpuid2 cpuid;
1428 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1429 } cpuid_data;
1431 * The kernel defines these structs with padding fields so there
1432 * should be no extra padding in our cpuid_data struct.
1434 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1435 sizeof(struct kvm_cpuid2) +
1436 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1438 X86CPU *cpu = X86_CPU(cs);
1439 CPUX86State *env = &cpu->env;
1440 uint32_t limit, i, j, cpuid_i;
1441 uint32_t unused;
1442 struct kvm_cpuid_entry2 *c;
1443 uint32_t signature[3];
1444 int kvm_base = KVM_CPUID_SIGNATURE;
1445 int max_nested_state_len;
1446 int r;
1447 Error *local_err = NULL;
1449 memset(&cpuid_data, 0, sizeof(cpuid_data));
1451 cpuid_i = 0;
1453 r = kvm_arch_set_tsc_khz(cs);
1454 if (r < 0) {
1455 return r;
1458 /* vcpu's TSC frequency is either specified by user, or following
1459 * the value used by KVM if the former is not present. In the
1460 * latter case, we query it from KVM and record in env->tsc_khz,
1461 * so that vcpu's TSC frequency can be migrated later via this field.
1463 if (!env->tsc_khz) {
1464 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1465 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1466 -ENOTSUP;
1467 if (r > 0) {
1468 env->tsc_khz = r;
1472 /* Paravirtualization CPUIDs */
1473 r = hyperv_handle_properties(cs, cpuid_data.entries);
1474 if (r < 0) {
1475 return r;
1476 } else if (r > 0) {
1477 cpuid_i = r;
1478 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1479 has_msr_hv_hypercall = true;
1482 if (cpu->expose_kvm) {
1483 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1484 c = &cpuid_data.entries[cpuid_i++];
1485 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1486 c->eax = KVM_CPUID_FEATURES | kvm_base;
1487 c->ebx = signature[0];
1488 c->ecx = signature[1];
1489 c->edx = signature[2];
1491 c = &cpuid_data.entries[cpuid_i++];
1492 c->function = KVM_CPUID_FEATURES | kvm_base;
1493 c->eax = env->features[FEAT_KVM];
1494 c->edx = env->features[FEAT_KVM_HINTS];
1497 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1499 for (i = 0; i <= limit; i++) {
1500 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1501 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1502 abort();
1504 c = &cpuid_data.entries[cpuid_i++];
1506 switch (i) {
1507 case 2: {
1508 /* Keep reading function 2 till all the input is received */
1509 int times;
1511 c->function = i;
1512 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1513 KVM_CPUID_FLAG_STATE_READ_NEXT;
1514 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1515 times = c->eax & 0xff;
1517 for (j = 1; j < times; ++j) {
1518 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1519 fprintf(stderr, "cpuid_data is full, no space for "
1520 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1521 abort();
1523 c = &cpuid_data.entries[cpuid_i++];
1524 c->function = i;
1525 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1528 break;
1530 case 0x1f:
1531 if (env->nr_dies < 2) {
1532 break;
1534 case 4:
1535 case 0xb:
1536 case 0xd:
1537 for (j = 0; ; j++) {
1538 if (i == 0xd && j == 64) {
1539 break;
1542 if (i == 0x1f && j == 64) {
1543 break;
1546 c->function = i;
1547 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1548 c->index = j;
1549 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1551 if (i == 4 && c->eax == 0) {
1552 break;
1554 if (i == 0xb && !(c->ecx & 0xff00)) {
1555 break;
1557 if (i == 0x1f && !(c->ecx & 0xff00)) {
1558 break;
1560 if (i == 0xd && c->eax == 0) {
1561 continue;
1563 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1564 fprintf(stderr, "cpuid_data is full, no space for "
1565 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1566 abort();
1568 c = &cpuid_data.entries[cpuid_i++];
1570 break;
1571 case 0x7:
1572 case 0x14: {
1573 uint32_t times;
1575 c->function = i;
1576 c->index = 0;
1577 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1578 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1579 times = c->eax;
1581 for (j = 1; j <= times; ++j) {
1582 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1583 fprintf(stderr, "cpuid_data is full, no space for "
1584 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1585 abort();
1587 c = &cpuid_data.entries[cpuid_i++];
1588 c->function = i;
1589 c->index = j;
1590 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1591 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1593 break;
1595 default:
1596 c->function = i;
1597 c->flags = 0;
1598 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1599 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1601 * KVM already returns all zeroes if a CPUID entry is missing,
1602 * so we can omit it and avoid hitting KVM's 80-entry limit.
1604 cpuid_i--;
1606 break;
1610 if (limit >= 0x0a) {
1611 uint32_t eax, edx;
1613 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1615 has_architectural_pmu_version = eax & 0xff;
1616 if (has_architectural_pmu_version > 0) {
1617 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1619 /* Shouldn't be more than 32, since that's the number of bits
1620 * available in EBX to tell us _which_ counters are available.
1621 * Play it safe.
1623 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1624 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1627 if (has_architectural_pmu_version > 1) {
1628 num_architectural_pmu_fixed_counters = edx & 0x1f;
1630 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1631 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1637 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1639 for (i = 0x80000000; i <= limit; i++) {
1640 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1641 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1642 abort();
1644 c = &cpuid_data.entries[cpuid_i++];
1646 switch (i) {
1647 case 0x8000001d:
1648 /* Query for all AMD cache information leaves */
1649 for (j = 0; ; j++) {
1650 c->function = i;
1651 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1652 c->index = j;
1653 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1655 if (c->eax == 0) {
1656 break;
1658 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1659 fprintf(stderr, "cpuid_data is full, no space for "
1660 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1661 abort();
1663 c = &cpuid_data.entries[cpuid_i++];
1665 break;
1666 default:
1667 c->function = i;
1668 c->flags = 0;
1669 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1670 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1672 * KVM already returns all zeroes if a CPUID entry is missing,
1673 * so we can omit it and avoid hitting KVM's 80-entry limit.
1675 cpuid_i--;
1677 break;
1681 /* Call Centaur's CPUID instructions they are supported. */
1682 if (env->cpuid_xlevel2 > 0) {
1683 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1685 for (i = 0xC0000000; i <= limit; i++) {
1686 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1687 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1688 abort();
1690 c = &cpuid_data.entries[cpuid_i++];
1692 c->function = i;
1693 c->flags = 0;
1694 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1698 cpuid_data.cpuid.nent = cpuid_i;
1700 if (((env->cpuid_version >> 8)&0xF) >= 6
1701 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1702 (CPUID_MCE | CPUID_MCA)
1703 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1704 uint64_t mcg_cap, unsupported_caps;
1705 int banks;
1706 int ret;
1708 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1709 if (ret < 0) {
1710 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1711 return ret;
1714 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1715 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1716 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1717 return -ENOTSUP;
1720 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1721 if (unsupported_caps) {
1722 if (unsupported_caps & MCG_LMCE_P) {
1723 error_report("kvm: LMCE not supported");
1724 return -ENOTSUP;
1726 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1727 unsupported_caps);
1730 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1731 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1732 if (ret < 0) {
1733 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1734 return ret;
1738 qemu_add_vm_change_state_handler(cpu_update_state, env);
1740 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1741 if (c) {
1742 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1743 !!(c->ecx & CPUID_EXT_SMX);
1746 if (env->mcg_cap & MCG_LMCE_P) {
1747 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1750 if (!env->user_tsc_khz) {
1751 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1752 invtsc_mig_blocker == NULL) {
1753 error_setg(&invtsc_mig_blocker,
1754 "State blocked by non-migratable CPU device"
1755 " (invtsc flag)");
1756 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1757 if (local_err) {
1758 error_report_err(local_err);
1759 error_free(invtsc_mig_blocker);
1760 return r;
1765 if (cpu->vmware_cpuid_freq
1766 /* Guests depend on 0x40000000 to detect this feature, so only expose
1767 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1768 && cpu->expose_kvm
1769 && kvm_base == KVM_CPUID_SIGNATURE
1770 /* TSC clock must be stable and known for this feature. */
1771 && tsc_is_stable_and_known(env)) {
1773 c = &cpuid_data.entries[cpuid_i++];
1774 c->function = KVM_CPUID_SIGNATURE | 0x10;
1775 c->eax = env->tsc_khz;
1776 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1777 * APIC_BUS_CYCLE_NS */
1778 c->ebx = 1000000;
1779 c->ecx = c->edx = 0;
1781 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1782 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1785 cpuid_data.cpuid.nent = cpuid_i;
1787 cpuid_data.cpuid.padding = 0;
1788 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1789 if (r) {
1790 goto fail;
1793 if (has_xsave) {
1794 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1795 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1798 max_nested_state_len = kvm_max_nested_state_length();
1799 if (max_nested_state_len > 0) {
1800 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1802 if (cpu_has_vmx(env)) {
1803 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1805 env->nested_state = g_malloc0(max_nested_state_len);
1806 env->nested_state->size = max_nested_state_len;
1807 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1809 vmx_hdr = &env->nested_state->hdr.vmx;
1810 vmx_hdr->vmxon_pa = -1ull;
1811 vmx_hdr->vmcs12_pa = -1ull;
1815 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1817 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1818 has_msr_tsc_aux = false;
1821 kvm_init_msrs(cpu);
1823 r = hyperv_init_vcpu(cpu);
1824 if (r) {
1825 goto fail;
1828 return 0;
1830 fail:
1831 migrate_del_blocker(invtsc_mig_blocker);
1833 return r;
1836 int kvm_arch_destroy_vcpu(CPUState *cs)
1838 X86CPU *cpu = X86_CPU(cs);
1839 CPUX86State *env = &cpu->env;
1841 if (cpu->kvm_msr_buf) {
1842 g_free(cpu->kvm_msr_buf);
1843 cpu->kvm_msr_buf = NULL;
1846 if (env->nested_state) {
1847 g_free(env->nested_state);
1848 env->nested_state = NULL;
1851 return 0;
1854 void kvm_arch_reset_vcpu(X86CPU *cpu)
1856 CPUX86State *env = &cpu->env;
1858 env->xcr0 = 1;
1859 if (kvm_irqchip_in_kernel()) {
1860 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1861 KVM_MP_STATE_UNINITIALIZED;
1862 } else {
1863 env->mp_state = KVM_MP_STATE_RUNNABLE;
1866 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1867 int i;
1868 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1869 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1872 hyperv_x86_synic_reset(cpu);
1874 /* enabled by default */
1875 env->poll_control_msr = 1;
1878 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1880 CPUX86State *env = &cpu->env;
1882 /* APs get directly into wait-for-SIPI state. */
1883 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1884 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1888 static int kvm_get_supported_feature_msrs(KVMState *s)
1890 int ret = 0;
1892 if (kvm_feature_msrs != NULL) {
1893 return 0;
1896 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1897 return 0;
1900 struct kvm_msr_list msr_list;
1902 msr_list.nmsrs = 0;
1903 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1904 if (ret < 0 && ret != -E2BIG) {
1905 error_report("Fetch KVM feature MSR list failed: %s",
1906 strerror(-ret));
1907 return ret;
1910 assert(msr_list.nmsrs > 0);
1911 kvm_feature_msrs = (struct kvm_msr_list *) \
1912 g_malloc0(sizeof(msr_list) +
1913 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1915 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1916 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1918 if (ret < 0) {
1919 error_report("Fetch KVM feature MSR list failed: %s",
1920 strerror(-ret));
1921 g_free(kvm_feature_msrs);
1922 kvm_feature_msrs = NULL;
1923 return ret;
1926 return 0;
1929 static int kvm_get_supported_msrs(KVMState *s)
1931 int ret = 0;
1932 struct kvm_msr_list msr_list, *kvm_msr_list;
1935 * Obtain MSR list from KVM. These are the MSRs that we must
1936 * save/restore.
1938 msr_list.nmsrs = 0;
1939 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1940 if (ret < 0 && ret != -E2BIG) {
1941 return ret;
1944 * Old kernel modules had a bug and could write beyond the provided
1945 * memory. Allocate at least a safe amount of 1K.
1947 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1948 msr_list.nmsrs *
1949 sizeof(msr_list.indices[0])));
1951 kvm_msr_list->nmsrs = msr_list.nmsrs;
1952 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1953 if (ret >= 0) {
1954 int i;
1956 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1957 switch (kvm_msr_list->indices[i]) {
1958 case MSR_STAR:
1959 has_msr_star = true;
1960 break;
1961 case MSR_VM_HSAVE_PA:
1962 has_msr_hsave_pa = true;
1963 break;
1964 case MSR_TSC_AUX:
1965 has_msr_tsc_aux = true;
1966 break;
1967 case MSR_TSC_ADJUST:
1968 has_msr_tsc_adjust = true;
1969 break;
1970 case MSR_IA32_TSCDEADLINE:
1971 has_msr_tsc_deadline = true;
1972 break;
1973 case MSR_IA32_SMBASE:
1974 has_msr_smbase = true;
1975 break;
1976 case MSR_SMI_COUNT:
1977 has_msr_smi_count = true;
1978 break;
1979 case MSR_IA32_MISC_ENABLE:
1980 has_msr_misc_enable = true;
1981 break;
1982 case MSR_IA32_BNDCFGS:
1983 has_msr_bndcfgs = true;
1984 break;
1985 case MSR_IA32_XSS:
1986 has_msr_xss = true;
1987 break;
1988 case MSR_IA32_UMWAIT_CONTROL:
1989 has_msr_umwait = true;
1990 break;
1991 case HV_X64_MSR_CRASH_CTL:
1992 has_msr_hv_crash = true;
1993 break;
1994 case HV_X64_MSR_RESET:
1995 has_msr_hv_reset = true;
1996 break;
1997 case HV_X64_MSR_VP_INDEX:
1998 has_msr_hv_vpindex = true;
1999 break;
2000 case HV_X64_MSR_VP_RUNTIME:
2001 has_msr_hv_runtime = true;
2002 break;
2003 case HV_X64_MSR_SCONTROL:
2004 has_msr_hv_synic = true;
2005 break;
2006 case HV_X64_MSR_STIMER0_CONFIG:
2007 has_msr_hv_stimer = true;
2008 break;
2009 case HV_X64_MSR_TSC_FREQUENCY:
2010 has_msr_hv_frequencies = true;
2011 break;
2012 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2013 has_msr_hv_reenlightenment = true;
2014 break;
2015 case MSR_IA32_SPEC_CTRL:
2016 has_msr_spec_ctrl = true;
2017 break;
2018 case MSR_IA32_TSX_CTRL:
2019 has_msr_tsx_ctrl = true;
2020 break;
2021 case MSR_VIRT_SSBD:
2022 has_msr_virt_ssbd = true;
2023 break;
2024 case MSR_IA32_ARCH_CAPABILITIES:
2025 has_msr_arch_capabs = true;
2026 break;
2027 case MSR_IA32_CORE_CAPABILITY:
2028 has_msr_core_capabs = true;
2029 break;
2030 case MSR_IA32_VMX_VMFUNC:
2031 has_msr_vmx_vmfunc = true;
2032 break;
2033 case MSR_IA32_UCODE_REV:
2034 has_msr_ucode_rev = true;
2035 break;
2036 case MSR_IA32_VMX_PROCBASED_CTLS2:
2037 has_msr_vmx_procbased_ctls2 = true;
2038 break;
2043 g_free(kvm_msr_list);
2045 return ret;
2048 static Notifier smram_machine_done;
2049 static KVMMemoryListener smram_listener;
2050 static AddressSpace smram_address_space;
2051 static MemoryRegion smram_as_root;
2052 static MemoryRegion smram_as_mem;
2054 static void register_smram_listener(Notifier *n, void *unused)
2056 MemoryRegion *smram =
2057 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2059 /* Outer container... */
2060 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2061 memory_region_set_enabled(&smram_as_root, true);
2063 /* ... with two regions inside: normal system memory with low
2064 * priority, and...
2066 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2067 get_system_memory(), 0, ~0ull);
2068 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2069 memory_region_set_enabled(&smram_as_mem, true);
2071 if (smram) {
2072 /* ... SMRAM with higher priority */
2073 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2074 memory_region_set_enabled(smram, true);
2077 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2078 kvm_memory_listener_register(kvm_state, &smram_listener,
2079 &smram_address_space, 1);
2082 int kvm_arch_init(MachineState *ms, KVMState *s)
2084 uint64_t identity_base = 0xfffbc000;
2085 uint64_t shadow_mem;
2086 int ret;
2087 struct utsname utsname;
2089 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2090 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2091 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2093 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2095 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2096 if (has_exception_payload) {
2097 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2098 if (ret < 0) {
2099 error_report("kvm: Failed to enable exception payload cap: %s",
2100 strerror(-ret));
2101 return ret;
2105 ret = kvm_get_supported_msrs(s);
2106 if (ret < 0) {
2107 return ret;
2110 kvm_get_supported_feature_msrs(s);
2112 uname(&utsname);
2113 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2116 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2117 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2118 * Since these must be part of guest physical memory, we need to allocate
2119 * them, both by setting their start addresses in the kernel and by
2120 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2122 * Older KVM versions may not support setting the identity map base. In
2123 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2124 * size.
2126 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2127 /* Allows up to 16M BIOSes. */
2128 identity_base = 0xfeffc000;
2130 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2131 if (ret < 0) {
2132 return ret;
2136 /* Set TSS base one page after EPT identity map. */
2137 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2138 if (ret < 0) {
2139 return ret;
2142 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2143 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2144 if (ret < 0) {
2145 fprintf(stderr, "e820_add_entry() table is full\n");
2146 return ret;
2149 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2150 if (shadow_mem != -1) {
2151 shadow_mem /= 4096;
2152 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2153 if (ret < 0) {
2154 return ret;
2158 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2159 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2160 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2161 smram_machine_done.notify = register_smram_listener;
2162 qemu_add_machine_init_done_notifier(&smram_machine_done);
2165 if (enable_cpu_pm) {
2166 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2167 int ret;
2169 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2170 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2171 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2172 #endif
2173 if (disable_exits) {
2174 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2175 KVM_X86_DISABLE_EXITS_HLT |
2176 KVM_X86_DISABLE_EXITS_PAUSE |
2177 KVM_X86_DISABLE_EXITS_CSTATE);
2180 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2181 disable_exits);
2182 if (ret < 0) {
2183 error_report("kvm: guest stopping CPU not supported: %s",
2184 strerror(-ret));
2188 return 0;
2191 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2193 lhs->selector = rhs->selector;
2194 lhs->base = rhs->base;
2195 lhs->limit = rhs->limit;
2196 lhs->type = 3;
2197 lhs->present = 1;
2198 lhs->dpl = 3;
2199 lhs->db = 0;
2200 lhs->s = 1;
2201 lhs->l = 0;
2202 lhs->g = 0;
2203 lhs->avl = 0;
2204 lhs->unusable = 0;
2207 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2209 unsigned flags = rhs->flags;
2210 lhs->selector = rhs->selector;
2211 lhs->base = rhs->base;
2212 lhs->limit = rhs->limit;
2213 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2214 lhs->present = (flags & DESC_P_MASK) != 0;
2215 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2216 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2217 lhs->s = (flags & DESC_S_MASK) != 0;
2218 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2219 lhs->g = (flags & DESC_G_MASK) != 0;
2220 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2221 lhs->unusable = !lhs->present;
2222 lhs->padding = 0;
2225 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2227 lhs->selector = rhs->selector;
2228 lhs->base = rhs->base;
2229 lhs->limit = rhs->limit;
2230 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2231 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2232 (rhs->dpl << DESC_DPL_SHIFT) |
2233 (rhs->db << DESC_B_SHIFT) |
2234 (rhs->s * DESC_S_MASK) |
2235 (rhs->l << DESC_L_SHIFT) |
2236 (rhs->g * DESC_G_MASK) |
2237 (rhs->avl * DESC_AVL_MASK);
2240 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2242 if (set) {
2243 *kvm_reg = *qemu_reg;
2244 } else {
2245 *qemu_reg = *kvm_reg;
2249 static int kvm_getput_regs(X86CPU *cpu, int set)
2251 CPUX86State *env = &cpu->env;
2252 struct kvm_regs regs;
2253 int ret = 0;
2255 if (!set) {
2256 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2257 if (ret < 0) {
2258 return ret;
2262 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2263 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2264 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2265 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2266 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2267 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2268 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2269 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2270 #ifdef TARGET_X86_64
2271 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2272 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2273 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2274 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2275 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2276 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2277 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2278 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2279 #endif
2281 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2282 kvm_getput_reg(&regs.rip, &env->eip, set);
2284 if (set) {
2285 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2288 return ret;
2291 static int kvm_put_fpu(X86CPU *cpu)
2293 CPUX86State *env = &cpu->env;
2294 struct kvm_fpu fpu;
2295 int i;
2297 memset(&fpu, 0, sizeof fpu);
2298 fpu.fsw = env->fpus & ~(7 << 11);
2299 fpu.fsw |= (env->fpstt & 7) << 11;
2300 fpu.fcw = env->fpuc;
2301 fpu.last_opcode = env->fpop;
2302 fpu.last_ip = env->fpip;
2303 fpu.last_dp = env->fpdp;
2304 for (i = 0; i < 8; ++i) {
2305 fpu.ftwx |= (!env->fptags[i]) << i;
2307 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2308 for (i = 0; i < CPU_NB_REGS; i++) {
2309 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2310 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2312 fpu.mxcsr = env->mxcsr;
2314 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2317 #define XSAVE_FCW_FSW 0
2318 #define XSAVE_FTW_FOP 1
2319 #define XSAVE_CWD_RIP 2
2320 #define XSAVE_CWD_RDP 4
2321 #define XSAVE_MXCSR 6
2322 #define XSAVE_ST_SPACE 8
2323 #define XSAVE_XMM_SPACE 40
2324 #define XSAVE_XSTATE_BV 128
2325 #define XSAVE_YMMH_SPACE 144
2326 #define XSAVE_BNDREGS 240
2327 #define XSAVE_BNDCSR 256
2328 #define XSAVE_OPMASK 272
2329 #define XSAVE_ZMM_Hi256 288
2330 #define XSAVE_Hi16_ZMM 416
2331 #define XSAVE_PKRU 672
2333 #define XSAVE_BYTE_OFFSET(word_offset) \
2334 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2336 #define ASSERT_OFFSET(word_offset, field) \
2337 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2338 offsetof(X86XSaveArea, field))
2340 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2341 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2342 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2343 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2344 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2345 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2346 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2347 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2348 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2349 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2350 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2351 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2352 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2353 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2354 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2356 static int kvm_put_xsave(X86CPU *cpu)
2358 CPUX86State *env = &cpu->env;
2359 X86XSaveArea *xsave = env->xsave_buf;
2361 if (!has_xsave) {
2362 return kvm_put_fpu(cpu);
2364 x86_cpu_xsave_all_areas(cpu, xsave);
2366 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2369 static int kvm_put_xcrs(X86CPU *cpu)
2371 CPUX86State *env = &cpu->env;
2372 struct kvm_xcrs xcrs = {};
2374 if (!has_xcrs) {
2375 return 0;
2378 xcrs.nr_xcrs = 1;
2379 xcrs.flags = 0;
2380 xcrs.xcrs[0].xcr = 0;
2381 xcrs.xcrs[0].value = env->xcr0;
2382 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2385 static int kvm_put_sregs(X86CPU *cpu)
2387 CPUX86State *env = &cpu->env;
2388 struct kvm_sregs sregs;
2390 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2391 if (env->interrupt_injected >= 0) {
2392 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2393 (uint64_t)1 << (env->interrupt_injected % 64);
2396 if ((env->eflags & VM_MASK)) {
2397 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2398 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2399 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2400 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2401 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2402 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2403 } else {
2404 set_seg(&sregs.cs, &env->segs[R_CS]);
2405 set_seg(&sregs.ds, &env->segs[R_DS]);
2406 set_seg(&sregs.es, &env->segs[R_ES]);
2407 set_seg(&sregs.fs, &env->segs[R_FS]);
2408 set_seg(&sregs.gs, &env->segs[R_GS]);
2409 set_seg(&sregs.ss, &env->segs[R_SS]);
2412 set_seg(&sregs.tr, &env->tr);
2413 set_seg(&sregs.ldt, &env->ldt);
2415 sregs.idt.limit = env->idt.limit;
2416 sregs.idt.base = env->idt.base;
2417 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2418 sregs.gdt.limit = env->gdt.limit;
2419 sregs.gdt.base = env->gdt.base;
2420 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2422 sregs.cr0 = env->cr[0];
2423 sregs.cr2 = env->cr[2];
2424 sregs.cr3 = env->cr[3];
2425 sregs.cr4 = env->cr[4];
2427 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2428 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2430 sregs.efer = env->efer;
2432 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2435 static void kvm_msr_buf_reset(X86CPU *cpu)
2437 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2440 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2442 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2443 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2444 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2446 assert((void *)(entry + 1) <= limit);
2448 entry->index = index;
2449 entry->reserved = 0;
2450 entry->data = value;
2451 msrs->nmsrs++;
2454 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2456 kvm_msr_buf_reset(cpu);
2457 kvm_msr_entry_add(cpu, index, value);
2459 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2462 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2464 int ret;
2466 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2467 assert(ret == 1);
2470 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2472 CPUX86State *env = &cpu->env;
2473 int ret;
2475 if (!has_msr_tsc_deadline) {
2476 return 0;
2479 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2480 if (ret < 0) {
2481 return ret;
2484 assert(ret == 1);
2485 return 0;
2489 * Provide a separate write service for the feature control MSR in order to
2490 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2491 * before writing any other state because forcibly leaving nested mode
2492 * invalidates the VCPU state.
2494 static int kvm_put_msr_feature_control(X86CPU *cpu)
2496 int ret;
2498 if (!has_msr_feature_control) {
2499 return 0;
2502 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2503 cpu->env.msr_ia32_feature_control);
2504 if (ret < 0) {
2505 return ret;
2508 assert(ret == 1);
2509 return 0;
2512 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2514 uint32_t default1, can_be_one, can_be_zero;
2515 uint32_t must_be_one;
2517 switch (index) {
2518 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2519 default1 = 0x00000016;
2520 break;
2521 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2522 default1 = 0x0401e172;
2523 break;
2524 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2525 default1 = 0x000011ff;
2526 break;
2527 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2528 default1 = 0x00036dff;
2529 break;
2530 case MSR_IA32_VMX_PROCBASED_CTLS2:
2531 default1 = 0;
2532 break;
2533 default:
2534 abort();
2537 /* If a feature bit is set, the control can be either set or clear.
2538 * Otherwise the value is limited to either 0 or 1 by default1.
2540 can_be_one = features | default1;
2541 can_be_zero = features | ~default1;
2542 must_be_one = ~can_be_zero;
2545 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2546 * Bit 32:63 -> 1 if the control bit can be one.
2548 return must_be_one | (((uint64_t)can_be_one) << 32);
2551 #define VMCS12_MAX_FIELD_INDEX (0x17)
2553 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2555 uint64_t kvm_vmx_basic =
2556 kvm_arch_get_supported_msr_feature(kvm_state,
2557 MSR_IA32_VMX_BASIC);
2559 if (!kvm_vmx_basic) {
2560 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2561 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2563 return;
2566 uint64_t kvm_vmx_misc =
2567 kvm_arch_get_supported_msr_feature(kvm_state,
2568 MSR_IA32_VMX_MISC);
2569 uint64_t kvm_vmx_ept_vpid =
2570 kvm_arch_get_supported_msr_feature(kvm_state,
2571 MSR_IA32_VMX_EPT_VPID_CAP);
2574 * If the guest is 64-bit, a value of 1 is allowed for the host address
2575 * space size vmexit control.
2577 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2578 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2581 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2582 * not change them for backwards compatibility.
2584 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2585 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2586 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2587 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2590 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2591 * change in the future but are always zero for now, clear them to be
2592 * future proof. Bits 32-63 in theory could change, though KVM does
2593 * not support dual-monitor treatment and probably never will; mask
2594 * them out as well.
2596 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2597 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2598 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2601 * EPT memory types should not change either, so we do not bother
2602 * adding features for them.
2604 uint64_t fixed_vmx_ept_mask =
2605 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2606 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2607 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2609 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2610 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2611 f[FEAT_VMX_PROCBASED_CTLS]));
2612 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2613 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2614 f[FEAT_VMX_PINBASED_CTLS]));
2615 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2616 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2617 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2618 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2619 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2620 f[FEAT_VMX_ENTRY_CTLS]));
2621 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2622 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2623 f[FEAT_VMX_SECONDARY_CTLS]));
2624 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2625 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2626 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2627 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2628 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2629 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2630 if (has_msr_vmx_vmfunc) {
2631 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2635 * Just to be safe, write these with constant values. The CRn_FIXED1
2636 * MSRs are generated by KVM based on the vCPU's CPUID.
2638 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2639 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2640 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2641 CR4_VMXE_MASK);
2642 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2643 VMCS12_MAX_FIELD_INDEX << 1);
2646 static int kvm_buf_set_msrs(X86CPU *cpu)
2648 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2649 if (ret < 0) {
2650 return ret;
2653 if (ret < cpu->kvm_msr_buf->nmsrs) {
2654 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2655 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2656 (uint32_t)e->index, (uint64_t)e->data);
2659 assert(ret == cpu->kvm_msr_buf->nmsrs);
2660 return 0;
2663 static void kvm_init_msrs(X86CPU *cpu)
2665 CPUX86State *env = &cpu->env;
2667 kvm_msr_buf_reset(cpu);
2668 if (has_msr_arch_capabs) {
2669 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2670 env->features[FEAT_ARCH_CAPABILITIES]);
2673 if (has_msr_core_capabs) {
2674 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2675 env->features[FEAT_CORE_CAPABILITY]);
2678 if (has_msr_ucode_rev) {
2679 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2683 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2684 * all kernels with MSR features should have them.
2686 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2687 kvm_msr_entry_add_vmx(cpu, env->features);
2690 assert(kvm_buf_set_msrs(cpu) == 0);
2693 static int kvm_put_msrs(X86CPU *cpu, int level)
2695 CPUX86State *env = &cpu->env;
2696 int i;
2698 kvm_msr_buf_reset(cpu);
2700 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2701 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2702 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2703 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2704 if (has_msr_star) {
2705 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2707 if (has_msr_hsave_pa) {
2708 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2710 if (has_msr_tsc_aux) {
2711 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2713 if (has_msr_tsc_adjust) {
2714 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2716 if (has_msr_misc_enable) {
2717 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2718 env->msr_ia32_misc_enable);
2720 if (has_msr_smbase) {
2721 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2723 if (has_msr_smi_count) {
2724 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2726 if (has_msr_bndcfgs) {
2727 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2729 if (has_msr_xss) {
2730 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2732 if (has_msr_umwait) {
2733 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2735 if (has_msr_spec_ctrl) {
2736 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2738 if (has_msr_tsx_ctrl) {
2739 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2741 if (has_msr_virt_ssbd) {
2742 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2745 #ifdef TARGET_X86_64
2746 if (lm_capable_kernel) {
2747 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2748 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2749 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2750 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2752 #endif
2755 * The following MSRs have side effects on the guest or are too heavy
2756 * for normal writeback. Limit them to reset or full state updates.
2758 if (level >= KVM_PUT_RESET_STATE) {
2759 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2760 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2761 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2762 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2763 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2765 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2766 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2768 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2769 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2772 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2773 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2776 if (has_architectural_pmu_version > 0) {
2777 if (has_architectural_pmu_version > 1) {
2778 /* Stop the counter. */
2779 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2780 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2783 /* Set the counter values. */
2784 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2785 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2786 env->msr_fixed_counters[i]);
2788 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2789 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2790 env->msr_gp_counters[i]);
2791 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2792 env->msr_gp_evtsel[i]);
2794 if (has_architectural_pmu_version > 1) {
2795 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2796 env->msr_global_status);
2797 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2798 env->msr_global_ovf_ctrl);
2800 /* Now start the PMU. */
2801 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2802 env->msr_fixed_ctr_ctrl);
2803 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2804 env->msr_global_ctrl);
2808 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2809 * only sync them to KVM on the first cpu
2811 if (current_cpu == first_cpu) {
2812 if (has_msr_hv_hypercall) {
2813 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2814 env->msr_hv_guest_os_id);
2815 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2816 env->msr_hv_hypercall);
2818 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2819 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2820 env->msr_hv_tsc);
2822 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2823 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2824 env->msr_hv_reenlightenment_control);
2825 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2826 env->msr_hv_tsc_emulation_control);
2827 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2828 env->msr_hv_tsc_emulation_status);
2831 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2832 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2833 env->msr_hv_vapic);
2835 if (has_msr_hv_crash) {
2836 int j;
2838 for (j = 0; j < HV_CRASH_PARAMS; j++)
2839 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2840 env->msr_hv_crash_params[j]);
2842 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2844 if (has_msr_hv_runtime) {
2845 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2847 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2848 && hv_vpindex_settable) {
2849 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2850 hyperv_vp_index(CPU(cpu)));
2852 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2853 int j;
2855 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2857 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2858 env->msr_hv_synic_control);
2859 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2860 env->msr_hv_synic_evt_page);
2861 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2862 env->msr_hv_synic_msg_page);
2864 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2865 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2866 env->msr_hv_synic_sint[j]);
2869 if (has_msr_hv_stimer) {
2870 int j;
2872 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2873 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2874 env->msr_hv_stimer_config[j]);
2877 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2878 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2879 env->msr_hv_stimer_count[j]);
2882 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2883 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2885 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2886 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2887 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2888 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2889 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2890 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2891 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2892 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2893 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2894 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2895 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2896 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2897 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2898 /* The CPU GPs if we write to a bit above the physical limit of
2899 * the host CPU (and KVM emulates that)
2901 uint64_t mask = env->mtrr_var[i].mask;
2902 mask &= phys_mask;
2904 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2905 env->mtrr_var[i].base);
2906 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2909 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2910 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2911 0x14, 1, R_EAX) & 0x7;
2913 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2914 env->msr_rtit_ctrl);
2915 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2916 env->msr_rtit_status);
2917 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2918 env->msr_rtit_output_base);
2919 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2920 env->msr_rtit_output_mask);
2921 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2922 env->msr_rtit_cr3_match);
2923 for (i = 0; i < addr_num; i++) {
2924 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2925 env->msr_rtit_addrs[i]);
2929 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2930 * kvm_put_msr_feature_control. */
2933 if (env->mcg_cap) {
2934 int i;
2936 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2937 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2938 if (has_msr_mcg_ext_ctl) {
2939 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2941 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2942 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2946 return kvm_buf_set_msrs(cpu);
2950 static int kvm_get_fpu(X86CPU *cpu)
2952 CPUX86State *env = &cpu->env;
2953 struct kvm_fpu fpu;
2954 int i, ret;
2956 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2957 if (ret < 0) {
2958 return ret;
2961 env->fpstt = (fpu.fsw >> 11) & 7;
2962 env->fpus = fpu.fsw;
2963 env->fpuc = fpu.fcw;
2964 env->fpop = fpu.last_opcode;
2965 env->fpip = fpu.last_ip;
2966 env->fpdp = fpu.last_dp;
2967 for (i = 0; i < 8; ++i) {
2968 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2970 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2971 for (i = 0; i < CPU_NB_REGS; i++) {
2972 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2973 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2975 env->mxcsr = fpu.mxcsr;
2977 return 0;
2980 static int kvm_get_xsave(X86CPU *cpu)
2982 CPUX86State *env = &cpu->env;
2983 X86XSaveArea *xsave = env->xsave_buf;
2984 int ret;
2986 if (!has_xsave) {
2987 return kvm_get_fpu(cpu);
2990 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2991 if (ret < 0) {
2992 return ret;
2994 x86_cpu_xrstor_all_areas(cpu, xsave);
2996 return 0;
2999 static int kvm_get_xcrs(X86CPU *cpu)
3001 CPUX86State *env = &cpu->env;
3002 int i, ret;
3003 struct kvm_xcrs xcrs;
3005 if (!has_xcrs) {
3006 return 0;
3009 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3010 if (ret < 0) {
3011 return ret;
3014 for (i = 0; i < xcrs.nr_xcrs; i++) {
3015 /* Only support xcr0 now */
3016 if (xcrs.xcrs[i].xcr == 0) {
3017 env->xcr0 = xcrs.xcrs[i].value;
3018 break;
3021 return 0;
3024 static int kvm_get_sregs(X86CPU *cpu)
3026 CPUX86State *env = &cpu->env;
3027 struct kvm_sregs sregs;
3028 int bit, i, ret;
3030 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3031 if (ret < 0) {
3032 return ret;
3035 /* There can only be one pending IRQ set in the bitmap at a time, so try
3036 to find it and save its number instead (-1 for none). */
3037 env->interrupt_injected = -1;
3038 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3039 if (sregs.interrupt_bitmap[i]) {
3040 bit = ctz64(sregs.interrupt_bitmap[i]);
3041 env->interrupt_injected = i * 64 + bit;
3042 break;
3046 get_seg(&env->segs[R_CS], &sregs.cs);
3047 get_seg(&env->segs[R_DS], &sregs.ds);
3048 get_seg(&env->segs[R_ES], &sregs.es);
3049 get_seg(&env->segs[R_FS], &sregs.fs);
3050 get_seg(&env->segs[R_GS], &sregs.gs);
3051 get_seg(&env->segs[R_SS], &sregs.ss);
3053 get_seg(&env->tr, &sregs.tr);
3054 get_seg(&env->ldt, &sregs.ldt);
3056 env->idt.limit = sregs.idt.limit;
3057 env->idt.base = sregs.idt.base;
3058 env->gdt.limit = sregs.gdt.limit;
3059 env->gdt.base = sregs.gdt.base;
3061 env->cr[0] = sregs.cr0;
3062 env->cr[2] = sregs.cr2;
3063 env->cr[3] = sregs.cr3;
3064 env->cr[4] = sregs.cr4;
3066 env->efer = sregs.efer;
3068 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3069 x86_update_hflags(env);
3071 return 0;
3074 static int kvm_get_msrs(X86CPU *cpu)
3076 CPUX86State *env = &cpu->env;
3077 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3078 int ret, i;
3079 uint64_t mtrr_top_bits;
3081 kvm_msr_buf_reset(cpu);
3083 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3084 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3085 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3086 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3087 if (has_msr_star) {
3088 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3090 if (has_msr_hsave_pa) {
3091 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3093 if (has_msr_tsc_aux) {
3094 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3096 if (has_msr_tsc_adjust) {
3097 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3099 if (has_msr_tsc_deadline) {
3100 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3102 if (has_msr_misc_enable) {
3103 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3105 if (has_msr_smbase) {
3106 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3108 if (has_msr_smi_count) {
3109 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3111 if (has_msr_feature_control) {
3112 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3114 if (has_msr_bndcfgs) {
3115 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3117 if (has_msr_xss) {
3118 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3120 if (has_msr_umwait) {
3121 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3123 if (has_msr_spec_ctrl) {
3124 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3126 if (has_msr_tsx_ctrl) {
3127 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3129 if (has_msr_virt_ssbd) {
3130 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3132 if (!env->tsc_valid) {
3133 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3134 env->tsc_valid = !runstate_is_running();
3137 #ifdef TARGET_X86_64
3138 if (lm_capable_kernel) {
3139 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3140 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3141 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3142 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3144 #endif
3145 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3146 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3147 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3148 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3150 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3151 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3153 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3154 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3156 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3157 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3159 if (has_architectural_pmu_version > 0) {
3160 if (has_architectural_pmu_version > 1) {
3161 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3162 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3163 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3164 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3166 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3167 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3169 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3170 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3171 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3175 if (env->mcg_cap) {
3176 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3177 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3178 if (has_msr_mcg_ext_ctl) {
3179 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3181 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3182 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3186 if (has_msr_hv_hypercall) {
3187 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3188 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3190 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3191 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3193 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3194 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3196 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3197 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3198 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3199 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3201 if (has_msr_hv_crash) {
3202 int j;
3204 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3205 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3208 if (has_msr_hv_runtime) {
3209 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3211 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3212 uint32_t msr;
3214 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3215 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3216 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3217 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3218 kvm_msr_entry_add(cpu, msr, 0);
3221 if (has_msr_hv_stimer) {
3222 uint32_t msr;
3224 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3225 msr++) {
3226 kvm_msr_entry_add(cpu, msr, 0);
3229 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3230 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3231 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3232 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3233 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3234 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3235 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3236 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3237 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3238 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3239 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3240 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3241 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3242 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3243 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3244 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3248 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3249 int addr_num =
3250 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3252 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3253 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3254 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3255 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3256 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3257 for (i = 0; i < addr_num; i++) {
3258 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3262 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3263 if (ret < 0) {
3264 return ret;
3267 if (ret < cpu->kvm_msr_buf->nmsrs) {
3268 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3269 error_report("error: failed to get MSR 0x%" PRIx32,
3270 (uint32_t)e->index);
3273 assert(ret == cpu->kvm_msr_buf->nmsrs);
3275 * MTRR masks: Each mask consists of 5 parts
3276 * a 10..0: must be zero
3277 * b 11 : valid bit
3278 * c n-1.12: actual mask bits
3279 * d 51..n: reserved must be zero
3280 * e 63.52: reserved must be zero
3282 * 'n' is the number of physical bits supported by the CPU and is
3283 * apparently always <= 52. We know our 'n' but don't know what
3284 * the destinations 'n' is; it might be smaller, in which case
3285 * it masks (c) on loading. It might be larger, in which case
3286 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3287 * we're migrating to.
3290 if (cpu->fill_mtrr_mask) {
3291 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3292 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3293 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3294 } else {
3295 mtrr_top_bits = 0;
3298 for (i = 0; i < ret; i++) {
3299 uint32_t index = msrs[i].index;
3300 switch (index) {
3301 case MSR_IA32_SYSENTER_CS:
3302 env->sysenter_cs = msrs[i].data;
3303 break;
3304 case MSR_IA32_SYSENTER_ESP:
3305 env->sysenter_esp = msrs[i].data;
3306 break;
3307 case MSR_IA32_SYSENTER_EIP:
3308 env->sysenter_eip = msrs[i].data;
3309 break;
3310 case MSR_PAT:
3311 env->pat = msrs[i].data;
3312 break;
3313 case MSR_STAR:
3314 env->star = msrs[i].data;
3315 break;
3316 #ifdef TARGET_X86_64
3317 case MSR_CSTAR:
3318 env->cstar = msrs[i].data;
3319 break;
3320 case MSR_KERNELGSBASE:
3321 env->kernelgsbase = msrs[i].data;
3322 break;
3323 case MSR_FMASK:
3324 env->fmask = msrs[i].data;
3325 break;
3326 case MSR_LSTAR:
3327 env->lstar = msrs[i].data;
3328 break;
3329 #endif
3330 case MSR_IA32_TSC:
3331 env->tsc = msrs[i].data;
3332 break;
3333 case MSR_TSC_AUX:
3334 env->tsc_aux = msrs[i].data;
3335 break;
3336 case MSR_TSC_ADJUST:
3337 env->tsc_adjust = msrs[i].data;
3338 break;
3339 case MSR_IA32_TSCDEADLINE:
3340 env->tsc_deadline = msrs[i].data;
3341 break;
3342 case MSR_VM_HSAVE_PA:
3343 env->vm_hsave = msrs[i].data;
3344 break;
3345 case MSR_KVM_SYSTEM_TIME:
3346 env->system_time_msr = msrs[i].data;
3347 break;
3348 case MSR_KVM_WALL_CLOCK:
3349 env->wall_clock_msr = msrs[i].data;
3350 break;
3351 case MSR_MCG_STATUS:
3352 env->mcg_status = msrs[i].data;
3353 break;
3354 case MSR_MCG_CTL:
3355 env->mcg_ctl = msrs[i].data;
3356 break;
3357 case MSR_MCG_EXT_CTL:
3358 env->mcg_ext_ctl = msrs[i].data;
3359 break;
3360 case MSR_IA32_MISC_ENABLE:
3361 env->msr_ia32_misc_enable = msrs[i].data;
3362 break;
3363 case MSR_IA32_SMBASE:
3364 env->smbase = msrs[i].data;
3365 break;
3366 case MSR_SMI_COUNT:
3367 env->msr_smi_count = msrs[i].data;
3368 break;
3369 case MSR_IA32_FEATURE_CONTROL:
3370 env->msr_ia32_feature_control = msrs[i].data;
3371 break;
3372 case MSR_IA32_BNDCFGS:
3373 env->msr_bndcfgs = msrs[i].data;
3374 break;
3375 case MSR_IA32_XSS:
3376 env->xss = msrs[i].data;
3377 break;
3378 case MSR_IA32_UMWAIT_CONTROL:
3379 env->umwait = msrs[i].data;
3380 break;
3381 default:
3382 if (msrs[i].index >= MSR_MC0_CTL &&
3383 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3384 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3386 break;
3387 case MSR_KVM_ASYNC_PF_EN:
3388 env->async_pf_en_msr = msrs[i].data;
3389 break;
3390 case MSR_KVM_PV_EOI_EN:
3391 env->pv_eoi_en_msr = msrs[i].data;
3392 break;
3393 case MSR_KVM_STEAL_TIME:
3394 env->steal_time_msr = msrs[i].data;
3395 break;
3396 case MSR_KVM_POLL_CONTROL: {
3397 env->poll_control_msr = msrs[i].data;
3398 break;
3400 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3401 env->msr_fixed_ctr_ctrl = msrs[i].data;
3402 break;
3403 case MSR_CORE_PERF_GLOBAL_CTRL:
3404 env->msr_global_ctrl = msrs[i].data;
3405 break;
3406 case MSR_CORE_PERF_GLOBAL_STATUS:
3407 env->msr_global_status = msrs[i].data;
3408 break;
3409 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3410 env->msr_global_ovf_ctrl = msrs[i].data;
3411 break;
3412 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3413 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3414 break;
3415 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3416 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3417 break;
3418 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3419 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3420 break;
3421 case HV_X64_MSR_HYPERCALL:
3422 env->msr_hv_hypercall = msrs[i].data;
3423 break;
3424 case HV_X64_MSR_GUEST_OS_ID:
3425 env->msr_hv_guest_os_id = msrs[i].data;
3426 break;
3427 case HV_X64_MSR_APIC_ASSIST_PAGE:
3428 env->msr_hv_vapic = msrs[i].data;
3429 break;
3430 case HV_X64_MSR_REFERENCE_TSC:
3431 env->msr_hv_tsc = msrs[i].data;
3432 break;
3433 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3434 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3435 break;
3436 case HV_X64_MSR_VP_RUNTIME:
3437 env->msr_hv_runtime = msrs[i].data;
3438 break;
3439 case HV_X64_MSR_SCONTROL:
3440 env->msr_hv_synic_control = msrs[i].data;
3441 break;
3442 case HV_X64_MSR_SIEFP:
3443 env->msr_hv_synic_evt_page = msrs[i].data;
3444 break;
3445 case HV_X64_MSR_SIMP:
3446 env->msr_hv_synic_msg_page = msrs[i].data;
3447 break;
3448 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3449 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3450 break;
3451 case HV_X64_MSR_STIMER0_CONFIG:
3452 case HV_X64_MSR_STIMER1_CONFIG:
3453 case HV_X64_MSR_STIMER2_CONFIG:
3454 case HV_X64_MSR_STIMER3_CONFIG:
3455 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3456 msrs[i].data;
3457 break;
3458 case HV_X64_MSR_STIMER0_COUNT:
3459 case HV_X64_MSR_STIMER1_COUNT:
3460 case HV_X64_MSR_STIMER2_COUNT:
3461 case HV_X64_MSR_STIMER3_COUNT:
3462 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3463 msrs[i].data;
3464 break;
3465 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3466 env->msr_hv_reenlightenment_control = msrs[i].data;
3467 break;
3468 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3469 env->msr_hv_tsc_emulation_control = msrs[i].data;
3470 break;
3471 case HV_X64_MSR_TSC_EMULATION_STATUS:
3472 env->msr_hv_tsc_emulation_status = msrs[i].data;
3473 break;
3474 case MSR_MTRRdefType:
3475 env->mtrr_deftype = msrs[i].data;
3476 break;
3477 case MSR_MTRRfix64K_00000:
3478 env->mtrr_fixed[0] = msrs[i].data;
3479 break;
3480 case MSR_MTRRfix16K_80000:
3481 env->mtrr_fixed[1] = msrs[i].data;
3482 break;
3483 case MSR_MTRRfix16K_A0000:
3484 env->mtrr_fixed[2] = msrs[i].data;
3485 break;
3486 case MSR_MTRRfix4K_C0000:
3487 env->mtrr_fixed[3] = msrs[i].data;
3488 break;
3489 case MSR_MTRRfix4K_C8000:
3490 env->mtrr_fixed[4] = msrs[i].data;
3491 break;
3492 case MSR_MTRRfix4K_D0000:
3493 env->mtrr_fixed[5] = msrs[i].data;
3494 break;
3495 case MSR_MTRRfix4K_D8000:
3496 env->mtrr_fixed[6] = msrs[i].data;
3497 break;
3498 case MSR_MTRRfix4K_E0000:
3499 env->mtrr_fixed[7] = msrs[i].data;
3500 break;
3501 case MSR_MTRRfix4K_E8000:
3502 env->mtrr_fixed[8] = msrs[i].data;
3503 break;
3504 case MSR_MTRRfix4K_F0000:
3505 env->mtrr_fixed[9] = msrs[i].data;
3506 break;
3507 case MSR_MTRRfix4K_F8000:
3508 env->mtrr_fixed[10] = msrs[i].data;
3509 break;
3510 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3511 if (index & 1) {
3512 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3513 mtrr_top_bits;
3514 } else {
3515 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3517 break;
3518 case MSR_IA32_SPEC_CTRL:
3519 env->spec_ctrl = msrs[i].data;
3520 break;
3521 case MSR_IA32_TSX_CTRL:
3522 env->tsx_ctrl = msrs[i].data;
3523 break;
3524 case MSR_VIRT_SSBD:
3525 env->virt_ssbd = msrs[i].data;
3526 break;
3527 case MSR_IA32_RTIT_CTL:
3528 env->msr_rtit_ctrl = msrs[i].data;
3529 break;
3530 case MSR_IA32_RTIT_STATUS:
3531 env->msr_rtit_status = msrs[i].data;
3532 break;
3533 case MSR_IA32_RTIT_OUTPUT_BASE:
3534 env->msr_rtit_output_base = msrs[i].data;
3535 break;
3536 case MSR_IA32_RTIT_OUTPUT_MASK:
3537 env->msr_rtit_output_mask = msrs[i].data;
3538 break;
3539 case MSR_IA32_RTIT_CR3_MATCH:
3540 env->msr_rtit_cr3_match = msrs[i].data;
3541 break;
3542 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3543 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3544 break;
3548 return 0;
3551 static int kvm_put_mp_state(X86CPU *cpu)
3553 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3555 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3558 static int kvm_get_mp_state(X86CPU *cpu)
3560 CPUState *cs = CPU(cpu);
3561 CPUX86State *env = &cpu->env;
3562 struct kvm_mp_state mp_state;
3563 int ret;
3565 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3566 if (ret < 0) {
3567 return ret;
3569 env->mp_state = mp_state.mp_state;
3570 if (kvm_irqchip_in_kernel()) {
3571 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3573 return 0;
3576 static int kvm_get_apic(X86CPU *cpu)
3578 DeviceState *apic = cpu->apic_state;
3579 struct kvm_lapic_state kapic;
3580 int ret;
3582 if (apic && kvm_irqchip_in_kernel()) {
3583 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3584 if (ret < 0) {
3585 return ret;
3588 kvm_get_apic_state(apic, &kapic);
3590 return 0;
3593 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3595 CPUState *cs = CPU(cpu);
3596 CPUX86State *env = &cpu->env;
3597 struct kvm_vcpu_events events = {};
3599 if (!kvm_has_vcpu_events()) {
3600 return 0;
3603 events.flags = 0;
3605 if (has_exception_payload) {
3606 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3607 events.exception.pending = env->exception_pending;
3608 events.exception_has_payload = env->exception_has_payload;
3609 events.exception_payload = env->exception_payload;
3611 events.exception.nr = env->exception_nr;
3612 events.exception.injected = env->exception_injected;
3613 events.exception.has_error_code = env->has_error_code;
3614 events.exception.error_code = env->error_code;
3616 events.interrupt.injected = (env->interrupt_injected >= 0);
3617 events.interrupt.nr = env->interrupt_injected;
3618 events.interrupt.soft = env->soft_interrupt;
3620 events.nmi.injected = env->nmi_injected;
3621 events.nmi.pending = env->nmi_pending;
3622 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3624 events.sipi_vector = env->sipi_vector;
3626 if (has_msr_smbase) {
3627 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3628 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3629 if (kvm_irqchip_in_kernel()) {
3630 /* As soon as these are moved to the kernel, remove them
3631 * from cs->interrupt_request.
3633 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3634 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3635 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3636 } else {
3637 /* Keep these in cs->interrupt_request. */
3638 events.smi.pending = 0;
3639 events.smi.latched_init = 0;
3641 /* Stop SMI delivery on old machine types to avoid a reboot
3642 * on an inward migration of an old VM.
3644 if (!cpu->kvm_no_smi_migration) {
3645 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3649 if (level >= KVM_PUT_RESET_STATE) {
3650 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3651 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3652 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3656 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3659 static int kvm_get_vcpu_events(X86CPU *cpu)
3661 CPUX86State *env = &cpu->env;
3662 struct kvm_vcpu_events events;
3663 int ret;
3665 if (!kvm_has_vcpu_events()) {
3666 return 0;
3669 memset(&events, 0, sizeof(events));
3670 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3671 if (ret < 0) {
3672 return ret;
3675 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3676 env->exception_pending = events.exception.pending;
3677 env->exception_has_payload = events.exception_has_payload;
3678 env->exception_payload = events.exception_payload;
3679 } else {
3680 env->exception_pending = 0;
3681 env->exception_has_payload = false;
3683 env->exception_injected = events.exception.injected;
3684 env->exception_nr =
3685 (env->exception_pending || env->exception_injected) ?
3686 events.exception.nr : -1;
3687 env->has_error_code = events.exception.has_error_code;
3688 env->error_code = events.exception.error_code;
3690 env->interrupt_injected =
3691 events.interrupt.injected ? events.interrupt.nr : -1;
3692 env->soft_interrupt = events.interrupt.soft;
3694 env->nmi_injected = events.nmi.injected;
3695 env->nmi_pending = events.nmi.pending;
3696 if (events.nmi.masked) {
3697 env->hflags2 |= HF2_NMI_MASK;
3698 } else {
3699 env->hflags2 &= ~HF2_NMI_MASK;
3702 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3703 if (events.smi.smm) {
3704 env->hflags |= HF_SMM_MASK;
3705 } else {
3706 env->hflags &= ~HF_SMM_MASK;
3708 if (events.smi.pending) {
3709 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3710 } else {
3711 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3713 if (events.smi.smm_inside_nmi) {
3714 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3715 } else {
3716 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3718 if (events.smi.latched_init) {
3719 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3720 } else {
3721 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3725 env->sipi_vector = events.sipi_vector;
3727 return 0;
3730 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3732 CPUState *cs = CPU(cpu);
3733 CPUX86State *env = &cpu->env;
3734 int ret = 0;
3735 unsigned long reinject_trap = 0;
3737 if (!kvm_has_vcpu_events()) {
3738 if (env->exception_nr == EXCP01_DB) {
3739 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3740 } else if (env->exception_injected == EXCP03_INT3) {
3741 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3743 kvm_reset_exception(env);
3747 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3748 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3749 * by updating the debug state once again if single-stepping is on.
3750 * Another reason to call kvm_update_guest_debug here is a pending debug
3751 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3752 * reinject them via SET_GUEST_DEBUG.
3754 if (reinject_trap ||
3755 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3756 ret = kvm_update_guest_debug(cs, reinject_trap);
3758 return ret;
3761 static int kvm_put_debugregs(X86CPU *cpu)
3763 CPUX86State *env = &cpu->env;
3764 struct kvm_debugregs dbgregs;
3765 int i;
3767 if (!kvm_has_debugregs()) {
3768 return 0;
3771 memset(&dbgregs, 0, sizeof(dbgregs));
3772 for (i = 0; i < 4; i++) {
3773 dbgregs.db[i] = env->dr[i];
3775 dbgregs.dr6 = env->dr[6];
3776 dbgregs.dr7 = env->dr[7];
3777 dbgregs.flags = 0;
3779 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3782 static int kvm_get_debugregs(X86CPU *cpu)
3784 CPUX86State *env = &cpu->env;
3785 struct kvm_debugregs dbgregs;
3786 int i, ret;
3788 if (!kvm_has_debugregs()) {
3789 return 0;
3792 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3793 if (ret < 0) {
3794 return ret;
3796 for (i = 0; i < 4; i++) {
3797 env->dr[i] = dbgregs.db[i];
3799 env->dr[4] = env->dr[6] = dbgregs.dr6;
3800 env->dr[5] = env->dr[7] = dbgregs.dr7;
3802 return 0;
3805 static int kvm_put_nested_state(X86CPU *cpu)
3807 CPUX86State *env = &cpu->env;
3808 int max_nested_state_len = kvm_max_nested_state_length();
3810 if (!env->nested_state) {
3811 return 0;
3814 assert(env->nested_state->size <= max_nested_state_len);
3815 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3818 static int kvm_get_nested_state(X86CPU *cpu)
3820 CPUX86State *env = &cpu->env;
3821 int max_nested_state_len = kvm_max_nested_state_length();
3822 int ret;
3824 if (!env->nested_state) {
3825 return 0;
3829 * It is possible that migration restored a smaller size into
3830 * nested_state->hdr.size than what our kernel support.
3831 * We preserve migration origin nested_state->hdr.size for
3832 * call to KVM_SET_NESTED_STATE but wish that our next call
3833 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3835 env->nested_state->size = max_nested_state_len;
3837 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3838 if (ret < 0) {
3839 return ret;
3842 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3843 env->hflags |= HF_GUEST_MASK;
3844 } else {
3845 env->hflags &= ~HF_GUEST_MASK;
3848 return ret;
3851 int kvm_arch_put_registers(CPUState *cpu, int level)
3853 X86CPU *x86_cpu = X86_CPU(cpu);
3854 int ret;
3856 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3858 if (level >= KVM_PUT_RESET_STATE) {
3859 ret = kvm_put_nested_state(x86_cpu);
3860 if (ret < 0) {
3861 return ret;
3864 ret = kvm_put_msr_feature_control(x86_cpu);
3865 if (ret < 0) {
3866 return ret;
3870 if (level == KVM_PUT_FULL_STATE) {
3871 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3872 * because TSC frequency mismatch shouldn't abort migration,
3873 * unless the user explicitly asked for a more strict TSC
3874 * setting (e.g. using an explicit "tsc-freq" option).
3876 kvm_arch_set_tsc_khz(cpu);
3879 ret = kvm_getput_regs(x86_cpu, 1);
3880 if (ret < 0) {
3881 return ret;
3883 ret = kvm_put_xsave(x86_cpu);
3884 if (ret < 0) {
3885 return ret;
3887 ret = kvm_put_xcrs(x86_cpu);
3888 if (ret < 0) {
3889 return ret;
3891 ret = kvm_put_sregs(x86_cpu);
3892 if (ret < 0) {
3893 return ret;
3895 /* must be before kvm_put_msrs */
3896 ret = kvm_inject_mce_oldstyle(x86_cpu);
3897 if (ret < 0) {
3898 return ret;
3900 ret = kvm_put_msrs(x86_cpu, level);
3901 if (ret < 0) {
3902 return ret;
3904 ret = kvm_put_vcpu_events(x86_cpu, level);
3905 if (ret < 0) {
3906 return ret;
3908 if (level >= KVM_PUT_RESET_STATE) {
3909 ret = kvm_put_mp_state(x86_cpu);
3910 if (ret < 0) {
3911 return ret;
3915 ret = kvm_put_tscdeadline_msr(x86_cpu);
3916 if (ret < 0) {
3917 return ret;
3919 ret = kvm_put_debugregs(x86_cpu);
3920 if (ret < 0) {
3921 return ret;
3923 /* must be last */
3924 ret = kvm_guest_debug_workarounds(x86_cpu);
3925 if (ret < 0) {
3926 return ret;
3928 return 0;
3931 int kvm_arch_get_registers(CPUState *cs)
3933 X86CPU *cpu = X86_CPU(cs);
3934 int ret;
3936 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3938 ret = kvm_get_vcpu_events(cpu);
3939 if (ret < 0) {
3940 goto out;
3943 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3944 * KVM_GET_REGS and KVM_GET_SREGS.
3946 ret = kvm_get_mp_state(cpu);
3947 if (ret < 0) {
3948 goto out;
3950 ret = kvm_getput_regs(cpu, 0);
3951 if (ret < 0) {
3952 goto out;
3954 ret = kvm_get_xsave(cpu);
3955 if (ret < 0) {
3956 goto out;
3958 ret = kvm_get_xcrs(cpu);
3959 if (ret < 0) {
3960 goto out;
3962 ret = kvm_get_sregs(cpu);
3963 if (ret < 0) {
3964 goto out;
3966 ret = kvm_get_msrs(cpu);
3967 if (ret < 0) {
3968 goto out;
3970 ret = kvm_get_apic(cpu);
3971 if (ret < 0) {
3972 goto out;
3974 ret = kvm_get_debugregs(cpu);
3975 if (ret < 0) {
3976 goto out;
3978 ret = kvm_get_nested_state(cpu);
3979 if (ret < 0) {
3980 goto out;
3982 ret = 0;
3983 out:
3984 cpu_sync_bndcs_hflags(&cpu->env);
3985 return ret;
3988 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3990 X86CPU *x86_cpu = X86_CPU(cpu);
3991 CPUX86State *env = &x86_cpu->env;
3992 int ret;
3994 /* Inject NMI */
3995 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3996 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3997 qemu_mutex_lock_iothread();
3998 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3999 qemu_mutex_unlock_iothread();
4000 DPRINTF("injected NMI\n");
4001 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4002 if (ret < 0) {
4003 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4004 strerror(-ret));
4007 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4008 qemu_mutex_lock_iothread();
4009 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4010 qemu_mutex_unlock_iothread();
4011 DPRINTF("injected SMI\n");
4012 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4013 if (ret < 0) {
4014 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4015 strerror(-ret));
4020 if (!kvm_pic_in_kernel()) {
4021 qemu_mutex_lock_iothread();
4024 /* Force the VCPU out of its inner loop to process any INIT requests
4025 * or (for userspace APIC, but it is cheap to combine the checks here)
4026 * pending TPR access reports.
4028 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4029 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4030 !(env->hflags & HF_SMM_MASK)) {
4031 cpu->exit_request = 1;
4033 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4034 cpu->exit_request = 1;
4038 if (!kvm_pic_in_kernel()) {
4039 /* Try to inject an interrupt if the guest can accept it */
4040 if (run->ready_for_interrupt_injection &&
4041 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4042 (env->eflags & IF_MASK)) {
4043 int irq;
4045 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4046 irq = cpu_get_pic_interrupt(env);
4047 if (irq >= 0) {
4048 struct kvm_interrupt intr;
4050 intr.irq = irq;
4051 DPRINTF("injected interrupt %d\n", irq);
4052 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4053 if (ret < 0) {
4054 fprintf(stderr,
4055 "KVM: injection failed, interrupt lost (%s)\n",
4056 strerror(-ret));
4061 /* If we have an interrupt but the guest is not ready to receive an
4062 * interrupt, request an interrupt window exit. This will
4063 * cause a return to userspace as soon as the guest is ready to
4064 * receive interrupts. */
4065 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4066 run->request_interrupt_window = 1;
4067 } else {
4068 run->request_interrupt_window = 0;
4071 DPRINTF("setting tpr\n");
4072 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4074 qemu_mutex_unlock_iothread();
4078 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4080 X86CPU *x86_cpu = X86_CPU(cpu);
4081 CPUX86State *env = &x86_cpu->env;
4083 if (run->flags & KVM_RUN_X86_SMM) {
4084 env->hflags |= HF_SMM_MASK;
4085 } else {
4086 env->hflags &= ~HF_SMM_MASK;
4088 if (run->if_flag) {
4089 env->eflags |= IF_MASK;
4090 } else {
4091 env->eflags &= ~IF_MASK;
4094 /* We need to protect the apic state against concurrent accesses from
4095 * different threads in case the userspace irqchip is used. */
4096 if (!kvm_irqchip_in_kernel()) {
4097 qemu_mutex_lock_iothread();
4099 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4100 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4101 if (!kvm_irqchip_in_kernel()) {
4102 qemu_mutex_unlock_iothread();
4104 return cpu_get_mem_attrs(env);
4107 int kvm_arch_process_async_events(CPUState *cs)
4109 X86CPU *cpu = X86_CPU(cs);
4110 CPUX86State *env = &cpu->env;
4112 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4113 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4114 assert(env->mcg_cap);
4116 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4118 kvm_cpu_synchronize_state(cs);
4120 if (env->exception_nr == EXCP08_DBLE) {
4121 /* this means triple fault */
4122 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4123 cs->exit_request = 1;
4124 return 0;
4126 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4127 env->has_error_code = 0;
4129 cs->halted = 0;
4130 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4131 env->mp_state = KVM_MP_STATE_RUNNABLE;
4135 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4136 !(env->hflags & HF_SMM_MASK)) {
4137 kvm_cpu_synchronize_state(cs);
4138 do_cpu_init(cpu);
4141 if (kvm_irqchip_in_kernel()) {
4142 return 0;
4145 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4146 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4147 apic_poll_irq(cpu->apic_state);
4149 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4150 (env->eflags & IF_MASK)) ||
4151 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4152 cs->halted = 0;
4154 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4155 kvm_cpu_synchronize_state(cs);
4156 do_cpu_sipi(cpu);
4158 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4159 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4160 kvm_cpu_synchronize_state(cs);
4161 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4162 env->tpr_access_type);
4165 return cs->halted;
4168 static int kvm_handle_halt(X86CPU *cpu)
4170 CPUState *cs = CPU(cpu);
4171 CPUX86State *env = &cpu->env;
4173 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4174 (env->eflags & IF_MASK)) &&
4175 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4176 cs->halted = 1;
4177 return EXCP_HLT;
4180 return 0;
4183 static int kvm_handle_tpr_access(X86CPU *cpu)
4185 CPUState *cs = CPU(cpu);
4186 struct kvm_run *run = cs->kvm_run;
4188 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4189 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4190 : TPR_ACCESS_READ);
4191 return 1;
4194 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4196 static const uint8_t int3 = 0xcc;
4198 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4199 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4200 return -EINVAL;
4202 return 0;
4205 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4207 uint8_t int3;
4209 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4210 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4211 return -EINVAL;
4213 return 0;
4216 static struct {
4217 target_ulong addr;
4218 int len;
4219 int type;
4220 } hw_breakpoint[4];
4222 static int nb_hw_breakpoint;
4224 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4226 int n;
4228 for (n = 0; n < nb_hw_breakpoint; n++) {
4229 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4230 (hw_breakpoint[n].len == len || len == -1)) {
4231 return n;
4234 return -1;
4237 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4238 target_ulong len, int type)
4240 switch (type) {
4241 case GDB_BREAKPOINT_HW:
4242 len = 1;
4243 break;
4244 case GDB_WATCHPOINT_WRITE:
4245 case GDB_WATCHPOINT_ACCESS:
4246 switch (len) {
4247 case 1:
4248 break;
4249 case 2:
4250 case 4:
4251 case 8:
4252 if (addr & (len - 1)) {
4253 return -EINVAL;
4255 break;
4256 default:
4257 return -EINVAL;
4259 break;
4260 default:
4261 return -ENOSYS;
4264 if (nb_hw_breakpoint == 4) {
4265 return -ENOBUFS;
4267 if (find_hw_breakpoint(addr, len, type) >= 0) {
4268 return -EEXIST;
4270 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4271 hw_breakpoint[nb_hw_breakpoint].len = len;
4272 hw_breakpoint[nb_hw_breakpoint].type = type;
4273 nb_hw_breakpoint++;
4275 return 0;
4278 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4279 target_ulong len, int type)
4281 int n;
4283 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4284 if (n < 0) {
4285 return -ENOENT;
4287 nb_hw_breakpoint--;
4288 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4290 return 0;
4293 void kvm_arch_remove_all_hw_breakpoints(void)
4295 nb_hw_breakpoint = 0;
4298 static CPUWatchpoint hw_watchpoint;
4300 static int kvm_handle_debug(X86CPU *cpu,
4301 struct kvm_debug_exit_arch *arch_info)
4303 CPUState *cs = CPU(cpu);
4304 CPUX86State *env = &cpu->env;
4305 int ret = 0;
4306 int n;
4308 if (arch_info->exception == EXCP01_DB) {
4309 if (arch_info->dr6 & DR6_BS) {
4310 if (cs->singlestep_enabled) {
4311 ret = EXCP_DEBUG;
4313 } else {
4314 for (n = 0; n < 4; n++) {
4315 if (arch_info->dr6 & (1 << n)) {
4316 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4317 case 0x0:
4318 ret = EXCP_DEBUG;
4319 break;
4320 case 0x1:
4321 ret = EXCP_DEBUG;
4322 cs->watchpoint_hit = &hw_watchpoint;
4323 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4324 hw_watchpoint.flags = BP_MEM_WRITE;
4325 break;
4326 case 0x3:
4327 ret = EXCP_DEBUG;
4328 cs->watchpoint_hit = &hw_watchpoint;
4329 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4330 hw_watchpoint.flags = BP_MEM_ACCESS;
4331 break;
4336 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4337 ret = EXCP_DEBUG;
4339 if (ret == 0) {
4340 cpu_synchronize_state(cs);
4341 assert(env->exception_nr == -1);
4343 /* pass to guest */
4344 kvm_queue_exception(env, arch_info->exception,
4345 arch_info->exception == EXCP01_DB,
4346 arch_info->dr6);
4347 env->has_error_code = 0;
4350 return ret;
4353 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4355 const uint8_t type_code[] = {
4356 [GDB_BREAKPOINT_HW] = 0x0,
4357 [GDB_WATCHPOINT_WRITE] = 0x1,
4358 [GDB_WATCHPOINT_ACCESS] = 0x3
4360 const uint8_t len_code[] = {
4361 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4363 int n;
4365 if (kvm_sw_breakpoints_active(cpu)) {
4366 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4368 if (nb_hw_breakpoint > 0) {
4369 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4370 dbg->arch.debugreg[7] = 0x0600;
4371 for (n = 0; n < nb_hw_breakpoint; n++) {
4372 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4373 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4374 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4375 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4380 static bool host_supports_vmx(void)
4382 uint32_t ecx, unused;
4384 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4385 return ecx & CPUID_EXT_VMX;
4388 #define VMX_INVALID_GUEST_STATE 0x80000021
4390 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4392 X86CPU *cpu = X86_CPU(cs);
4393 uint64_t code;
4394 int ret;
4396 switch (run->exit_reason) {
4397 case KVM_EXIT_HLT:
4398 DPRINTF("handle_hlt\n");
4399 qemu_mutex_lock_iothread();
4400 ret = kvm_handle_halt(cpu);
4401 qemu_mutex_unlock_iothread();
4402 break;
4403 case KVM_EXIT_SET_TPR:
4404 ret = 0;
4405 break;
4406 case KVM_EXIT_TPR_ACCESS:
4407 qemu_mutex_lock_iothread();
4408 ret = kvm_handle_tpr_access(cpu);
4409 qemu_mutex_unlock_iothread();
4410 break;
4411 case KVM_EXIT_FAIL_ENTRY:
4412 code = run->fail_entry.hardware_entry_failure_reason;
4413 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4414 code);
4415 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4416 fprintf(stderr,
4417 "\nIf you're running a guest on an Intel machine without "
4418 "unrestricted mode\n"
4419 "support, the failure can be most likely due to the guest "
4420 "entering an invalid\n"
4421 "state for Intel VT. For example, the guest maybe running "
4422 "in big real mode\n"
4423 "which is not supported on less recent Intel processors."
4424 "\n\n");
4426 ret = -1;
4427 break;
4428 case KVM_EXIT_EXCEPTION:
4429 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4430 run->ex.exception, run->ex.error_code);
4431 ret = -1;
4432 break;
4433 case KVM_EXIT_DEBUG:
4434 DPRINTF("kvm_exit_debug\n");
4435 qemu_mutex_lock_iothread();
4436 ret = kvm_handle_debug(cpu, &run->debug.arch);
4437 qemu_mutex_unlock_iothread();
4438 break;
4439 case KVM_EXIT_HYPERV:
4440 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4441 break;
4442 case KVM_EXIT_IOAPIC_EOI:
4443 ioapic_eoi_broadcast(run->eoi.vector);
4444 ret = 0;
4445 break;
4446 default:
4447 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4448 ret = -1;
4449 break;
4452 return ret;
4455 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4457 X86CPU *cpu = X86_CPU(cs);
4458 CPUX86State *env = &cpu->env;
4460 kvm_cpu_synchronize_state(cs);
4461 return !(env->cr[0] & CR0_PE_MASK) ||
4462 ((env->segs[R_CS].selector & 3) != 3);
4465 void kvm_arch_init_irq_routing(KVMState *s)
4467 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4468 /* If kernel can't do irq routing, interrupt source
4469 * override 0->2 cannot be set up as required by HPET.
4470 * So we have to disable it.
4472 no_hpet = 1;
4474 /* We know at this point that we're using the in-kernel
4475 * irqchip, so we can use irqfds, and on x86 we know
4476 * we can use msi via irqfd and GSI routing.
4478 kvm_msi_via_irqfd_allowed = true;
4479 kvm_gsi_routing_allowed = true;
4481 if (kvm_irqchip_is_split()) {
4482 int i;
4484 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4485 MSI routes for signaling interrupts to the local apics. */
4486 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4487 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4488 error_report("Could not enable split IRQ mode.");
4489 exit(1);
4495 int kvm_arch_irqchip_create(KVMState *s)
4497 int ret;
4498 if (kvm_kernel_irqchip_split()) {
4499 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4500 if (ret) {
4501 error_report("Could not enable split irqchip mode: %s",
4502 strerror(-ret));
4503 exit(1);
4504 } else {
4505 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4506 kvm_split_irqchip = true;
4507 return 1;
4509 } else {
4510 return 0;
4514 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4515 uint64_t address, uint32_t data, PCIDevice *dev)
4517 X86IOMMUState *iommu = x86_iommu_get_default();
4519 if (iommu) {
4520 int ret;
4521 MSIMessage src, dst;
4522 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4524 if (!class->int_remap) {
4525 return 0;
4528 src.address = route->u.msi.address_hi;
4529 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4530 src.address |= route->u.msi.address_lo;
4531 src.data = route->u.msi.data;
4533 ret = class->int_remap(iommu, &src, &dst, dev ? \
4534 pci_requester_id(dev) : \
4535 X86_IOMMU_SID_INVALID);
4536 if (ret) {
4537 trace_kvm_x86_fixup_msi_error(route->gsi);
4538 return 1;
4541 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4542 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4543 route->u.msi.data = dst.data;
4546 return 0;
4549 typedef struct MSIRouteEntry MSIRouteEntry;
4551 struct MSIRouteEntry {
4552 PCIDevice *dev; /* Device pointer */
4553 int vector; /* MSI/MSIX vector index */
4554 int virq; /* Virtual IRQ index */
4555 QLIST_ENTRY(MSIRouteEntry) list;
4558 /* List of used GSI routes */
4559 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4560 QLIST_HEAD_INITIALIZER(msi_route_list);
4562 static void kvm_update_msi_routes_all(void *private, bool global,
4563 uint32_t index, uint32_t mask)
4565 int cnt = 0, vector;
4566 MSIRouteEntry *entry;
4567 MSIMessage msg;
4568 PCIDevice *dev;
4570 /* TODO: explicit route update */
4571 QLIST_FOREACH(entry, &msi_route_list, list) {
4572 cnt++;
4573 vector = entry->vector;
4574 dev = entry->dev;
4575 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4576 msg = msix_get_message(dev, vector);
4577 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4578 msg = msi_get_message(dev, vector);
4579 } else {
4581 * Either MSI/MSIX is disabled for the device, or the
4582 * specific message was masked out. Skip this one.
4584 continue;
4586 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4588 kvm_irqchip_commit_routes(kvm_state);
4589 trace_kvm_x86_update_msi_routes(cnt);
4592 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4593 int vector, PCIDevice *dev)
4595 static bool notify_list_inited = false;
4596 MSIRouteEntry *entry;
4598 if (!dev) {
4599 /* These are (possibly) IOAPIC routes only used for split
4600 * kernel irqchip mode, while what we are housekeeping are
4601 * PCI devices only. */
4602 return 0;
4605 entry = g_new0(MSIRouteEntry, 1);
4606 entry->dev = dev;
4607 entry->vector = vector;
4608 entry->virq = route->gsi;
4609 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4611 trace_kvm_x86_add_msi_route(route->gsi);
4613 if (!notify_list_inited) {
4614 /* For the first time we do add route, add ourselves into
4615 * IOMMU's IEC notify list if needed. */
4616 X86IOMMUState *iommu = x86_iommu_get_default();
4617 if (iommu) {
4618 x86_iommu_iec_register_notifier(iommu,
4619 kvm_update_msi_routes_all,
4620 NULL);
4622 notify_list_inited = true;
4624 return 0;
4627 int kvm_arch_release_virq_post(int virq)
4629 MSIRouteEntry *entry, *next;
4630 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4631 if (entry->virq == virq) {
4632 trace_kvm_x86_remove_msi_route(virq);
4633 QLIST_REMOVE(entry, list);
4634 g_free(entry);
4635 break;
4638 return 0;
4641 int kvm_arch_msi_data_to_gsi(uint32_t data)
4643 abort();