exec: store RAMBlock pointer into memory region
[qemu/ar7.git] / exec.c
blob4c0114a1a182931788f1fcb912f60ea5e81505a6
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #ifndef _WIN32
21 #include <sys/mman.h>
22 #endif
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "tcg.h"
27 #include "hw/hw.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/boards.h"
30 #endif
31 #include "hw/qdev.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48 #include "qemu/rcu_queue.h"
49 #include "qemu/main-loop.h"
50 #include "translate-all.h"
51 #include "sysemu/replay.h"
53 #include "exec/memory-internal.h"
54 #include "exec/ram_addr.h"
55 #include "exec/log.h"
57 #include "qemu/range.h"
58 #ifndef _WIN32
59 #include "qemu/mmap-alloc.h"
60 #endif
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
68 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
70 static MemoryRegion *system_memory;
71 static MemoryRegion *system_io;
73 AddressSpace address_space_io;
74 AddressSpace address_space_memory;
76 MemoryRegion io_mem_rom, io_mem_notdirty;
77 static MemoryRegion io_mem_unassigned;
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
88 #define RAM_RESIZEABLE (1 << 2)
90 #endif
92 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
93 /* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
95 __thread CPUState *current_cpu;
96 /* 0 = Do not count executed instructions.
97 1 = Precise instruction counting.
98 2 = Adaptive rate instruction counting. */
99 int use_icount;
101 #if !defined(CONFIG_USER_ONLY)
103 typedef struct PhysPageEntry PhysPageEntry;
105 struct PhysPageEntry {
106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
107 uint32_t skip : 6;
108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
109 uint32_t ptr : 26;
112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114 /* Size of the L2 (and L3, etc) page tables. */
115 #define ADDR_SPACE_BITS 64
117 #define P_L2_BITS 9
118 #define P_L2_SIZE (1 << P_L2_BITS)
120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122 typedef PhysPageEntry Node[P_L2_SIZE];
124 typedef struct PhysPageMap {
125 struct rcu_head rcu;
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133 } PhysPageMap;
135 struct AddressSpaceDispatch {
136 struct rcu_head rcu;
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
141 PhysPageEntry phys_map;
142 PhysPageMap map;
143 AddressSpace *as;
146 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147 typedef struct subpage_t {
148 MemoryRegion iomem;
149 AddressSpace *as;
150 hwaddr base;
151 uint16_t sub_section[TARGET_PAGE_SIZE];
152 } subpage_t;
154 #define PHYS_SECTION_UNASSIGNED 0
155 #define PHYS_SECTION_NOTDIRTY 1
156 #define PHYS_SECTION_ROM 2
157 #define PHYS_SECTION_WATCH 3
159 static void io_mem_init(void);
160 static void memory_map_init(void);
161 static void tcg_commit(MemoryListener *listener);
163 static MemoryRegion io_mem_watch;
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
179 #endif
181 #if !defined(CONFIG_USER_ONLY)
183 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
186 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
192 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
194 unsigned i;
195 uint32_t ret;
196 PhysPageEntry e;
197 PhysPageEntry *p;
199 ret = map->nodes_nb++;
200 p = map->nodes[ret];
201 assert(ret != PHYS_MAP_NODE_NIL);
202 assert(ret != map->nodes_nb_alloc);
204 e.skip = leaf ? 0 : 1;
205 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
206 for (i = 0; i < P_L2_SIZE; ++i) {
207 memcpy(&p[i], &e, sizeof(e));
209 return ret;
212 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
213 hwaddr *index, hwaddr *nb, uint16_t leaf,
214 int level)
216 PhysPageEntry *p;
217 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
219 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
220 lp->ptr = phys_map_node_alloc(map, level == 0);
222 p = map->nodes[lp->ptr];
223 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
225 while (*nb && lp < &p[P_L2_SIZE]) {
226 if ((*index & (step - 1)) == 0 && *nb >= step) {
227 lp->skip = 0;
228 lp->ptr = leaf;
229 *index += step;
230 *nb -= step;
231 } else {
232 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
234 ++lp;
238 static void phys_page_set(AddressSpaceDispatch *d,
239 hwaddr index, hwaddr nb,
240 uint16_t leaf)
242 /* Wildly overreserve - it doesn't matter much. */
243 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
245 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
248 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
251 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253 unsigned valid_ptr = P_L2_SIZE;
254 int valid = 0;
255 PhysPageEntry *p;
256 int i;
258 if (lp->ptr == PHYS_MAP_NODE_NIL) {
259 return;
262 p = nodes[lp->ptr];
263 for (i = 0; i < P_L2_SIZE; i++) {
264 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
265 continue;
268 valid_ptr = i;
269 valid++;
270 if (p[i].skip) {
271 phys_page_compact(&p[i], nodes, compacted);
275 /* We can only compress if there's only one child. */
276 if (valid != 1) {
277 return;
280 assert(valid_ptr < P_L2_SIZE);
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
284 return;
287 lp->ptr = p[valid_ptr].ptr;
288 if (!p[valid_ptr].skip) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
293 * change this rule.
295 lp->skip = 0;
296 } else {
297 lp->skip += p[valid_ptr].skip;
301 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303 DECLARE_BITMAP(compacted, nodes_nb);
305 if (d->phys_map.skip) {
306 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
310 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
311 Node *nodes, MemoryRegionSection *sections)
313 PhysPageEntry *p;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (sections[lp.ptr].size.hi ||
326 range_covers_byte(sections[lp.ptr].offset_within_address_space,
327 sections[lp.ptr].size.lo, addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
334 bool memory_region_is_unassigned(MemoryRegion *mr)
336 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
337 && mr != &io_mem_watch;
340 /* Called from RCU critical section */
341 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
342 hwaddr addr,
343 bool resolve_subpage)
345 MemoryRegionSection *section;
346 subpage_t *subpage;
348 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
349 if (resolve_subpage && section->mr->subpage) {
350 subpage = container_of(section->mr, subpage_t, iomem);
351 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 return section;
356 /* Called from RCU critical section */
357 static MemoryRegionSection *
358 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
359 hwaddr *plen, bool resolve_subpage)
361 MemoryRegionSection *section;
362 MemoryRegion *mr;
363 Int128 diff;
365 section = address_space_lookup_region(d, addr, resolve_subpage);
366 /* Compute offset within MemoryRegionSection */
367 addr -= section->offset_within_address_space;
369 /* Compute offset within MemoryRegion */
370 *xlat = addr + section->offset_within_region;
372 mr = section->mr;
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * here.
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
385 if (memory_region_is_ram(mr)) {
386 diff = int128_sub(section->size, int128_make64(addr));
387 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 return section;
392 /* Called from RCU critical section */
393 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen,
395 bool is_write)
397 IOMMUTLBEntry iotlb;
398 MemoryRegionSection *section;
399 MemoryRegion *mr;
401 for (;;) {
402 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
403 section = address_space_translate_internal(d, addr, &addr, plen, true);
404 mr = section->mr;
406 if (!mr->iommu_ops) {
407 break;
410 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
411 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
412 | (addr & iotlb.addr_mask));
413 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
414 if (!(iotlb.perm & (1 << is_write))) {
415 mr = &io_mem_unassigned;
416 break;
419 as = iotlb.target_as;
422 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
423 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
424 *plen = MIN(page, *plen);
427 *xlat = addr;
428 return mr;
431 /* Called from RCU critical section */
432 MemoryRegionSection *
433 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
434 hwaddr *xlat, hwaddr *plen)
436 MemoryRegionSection *section;
437 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
439 section = address_space_translate_internal(d, addr, xlat, plen, false);
441 assert(!section->mr->iommu_ops);
442 return section;
444 #endif
446 #if !defined(CONFIG_USER_ONLY)
448 static int cpu_common_post_load(void *opaque, int version_id)
450 CPUState *cpu = opaque;
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
454 cpu->interrupt_request &= ~0x01;
455 tlb_flush(cpu, 1);
457 return 0;
460 static int cpu_common_pre_load(void *opaque)
462 CPUState *cpu = opaque;
464 cpu->exception_index = -1;
466 return 0;
469 static bool cpu_common_exception_index_needed(void *opaque)
471 CPUState *cpu = opaque;
473 return tcg_enabled() && cpu->exception_index != -1;
476 static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = cpu_common_exception_index_needed,
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
487 static bool cpu_common_crash_occurred_needed(void *opaque)
489 CPUState *cpu = opaque;
491 return cpu->crash_occurred;
494 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
505 const VMStateDescription vmstate_cpu_common = {
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .pre_load = cpu_common_pre_load,
510 .post_load = cpu_common_post_load,
511 .fields = (VMStateField[]) {
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
514 VMSTATE_END_OF_LIST()
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
518 &vmstate_cpu_common_crash_occurred,
519 NULL
523 #endif
525 CPUState *qemu_get_cpu(int index)
527 CPUState *cpu;
529 CPU_FOREACH(cpu) {
530 if (cpu->cpu_index == index) {
531 return cpu;
535 return NULL;
538 #if !defined(CONFIG_USER_ONLY)
539 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
541 CPUAddressSpace *newas;
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
561 if (tcg_enabled()) {
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
567 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu->cpu_ases[asidx].as;
572 #endif
574 #ifndef CONFIG_USER_ONLY
575 static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
577 static int cpu_get_free_index(Error **errp)
579 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
581 if (cpu >= MAX_CPUMASK_BITS) {
582 error_setg(errp, "Trying to use more CPUs than max of %d",
583 MAX_CPUMASK_BITS);
584 return -1;
587 bitmap_set(cpu_index_map, cpu, 1);
588 return cpu;
591 void cpu_exec_exit(CPUState *cpu)
593 if (cpu->cpu_index == -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
595 return;
598 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
599 cpu->cpu_index = -1;
601 #else
603 static int cpu_get_free_index(Error **errp)
605 CPUState *some_cpu;
606 int cpu_index = 0;
608 CPU_FOREACH(some_cpu) {
609 cpu_index++;
611 return cpu_index;
614 void cpu_exec_exit(CPUState *cpu)
617 #endif
619 void cpu_exec_init(CPUState *cpu, Error **errp)
621 CPUClass *cc = CPU_GET_CLASS(cpu);
622 int cpu_index;
623 Error *local_err = NULL;
625 cpu->as = NULL;
626 cpu->num_ases = 0;
628 #ifndef CONFIG_USER_ONLY
629 cpu->thread_id = qemu_get_thread_id();
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
637 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
638 (Object **)&cpu->memory,
639 qdev_prop_allow_set_link_before_realize,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE,
641 &error_abort);
642 cpu->memory = system_memory;
643 object_ref(OBJECT(cpu->memory));
644 #endif
646 #if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648 #endif
649 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
650 if (local_err) {
651 error_propagate(errp, local_err);
652 #if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654 #endif
655 return;
657 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
658 #if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660 #endif
661 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
664 if (cc->vmsd != NULL) {
665 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
669 #if defined(CONFIG_USER_ONLY)
670 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
672 tb_invalidate_phys_page_range(pc, pc + 1, 0);
674 #else
675 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
677 MemTxAttrs attrs;
678 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
679 int asidx = cpu_asidx_from_attrs(cpu, attrs);
680 if (phys != -1) {
681 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
682 phys | (pc & ~TARGET_PAGE_MASK));
685 #endif
687 #if defined(CONFIG_USER_ONLY)
688 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
693 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
694 int flags)
696 return -ENOSYS;
699 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
703 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
704 int flags, CPUWatchpoint **watchpoint)
706 return -ENOSYS;
708 #else
709 /* Add a watchpoint. */
710 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
711 int flags, CPUWatchpoint **watchpoint)
713 CPUWatchpoint *wp;
715 /* forbid ranges which are empty or run off the end of the address space */
716 if (len == 0 || (addr + len - 1) < addr) {
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
719 return -EINVAL;
721 wp = g_malloc(sizeof(*wp));
723 wp->vaddr = addr;
724 wp->len = len;
725 wp->flags = flags;
727 /* keep all GDB-injected watchpoints in front */
728 if (flags & BP_GDB) {
729 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
730 } else {
731 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
734 tlb_flush_page(cpu, addr);
736 if (watchpoint)
737 *watchpoint = wp;
738 return 0;
741 /* Remove a specific watchpoint. */
742 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
743 int flags)
745 CPUWatchpoint *wp;
747 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
748 if (addr == wp->vaddr && len == wp->len
749 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
750 cpu_watchpoint_remove_by_ref(cpu, wp);
751 return 0;
754 return -ENOENT;
757 /* Remove a specific watchpoint by reference. */
758 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
760 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
762 tlb_flush_page(cpu, watchpoint->vaddr);
764 g_free(watchpoint);
767 /* Remove all matching watchpoints. */
768 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
770 CPUWatchpoint *wp, *next;
772 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
773 if (wp->flags & mask) {
774 cpu_watchpoint_remove_by_ref(cpu, wp);
779 /* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
782 * access).
784 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
785 vaddr addr,
786 vaddr len)
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
793 vaddr wpend = wp->vaddr + wp->len - 1;
794 vaddr addrend = addr + len - 1;
796 return !(addr > wpend || wp->vaddr > addrend);
799 #endif
801 /* Add a breakpoint. */
802 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
803 CPUBreakpoint **breakpoint)
805 CPUBreakpoint *bp;
807 bp = g_malloc(sizeof(*bp));
809 bp->pc = pc;
810 bp->flags = flags;
812 /* keep all GDB-injected breakpoints in front */
813 if (flags & BP_GDB) {
814 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
815 } else {
816 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
819 breakpoint_invalidate(cpu, pc);
821 if (breakpoint) {
822 *breakpoint = bp;
824 return 0;
827 /* Remove a specific breakpoint. */
828 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
830 CPUBreakpoint *bp;
832 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
833 if (bp->pc == pc && bp->flags == flags) {
834 cpu_breakpoint_remove_by_ref(cpu, bp);
835 return 0;
838 return -ENOENT;
841 /* Remove a specific breakpoint by reference. */
842 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
844 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
846 breakpoint_invalidate(cpu, breakpoint->pc);
848 g_free(breakpoint);
851 /* Remove all matching breakpoints. */
852 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
854 CPUBreakpoint *bp, *next;
856 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
857 if (bp->flags & mask) {
858 cpu_breakpoint_remove_by_ref(cpu, bp);
863 /* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
865 void cpu_single_step(CPUState *cpu, int enabled)
867 if (cpu->singlestep_enabled != enabled) {
868 cpu->singlestep_enabled = enabled;
869 if (kvm_enabled()) {
870 kvm_update_guest_debug(cpu, 0);
871 } else {
872 /* must flush all the translated code to avoid inconsistencies */
873 /* XXX: only flush what is necessary */
874 tb_flush(cpu);
879 void cpu_abort(CPUState *cpu, const char *fmt, ...)
881 va_list ap;
882 va_list ap2;
884 va_start(ap, fmt);
885 va_copy(ap2, ap);
886 fprintf(stderr, "qemu: fatal: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
889 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
890 if (qemu_log_separate()) {
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt, ap2);
893 qemu_log("\n");
894 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
895 qemu_log_flush();
896 qemu_log_close();
898 va_end(ap2);
899 va_end(ap);
900 replay_finish();
901 #if defined(CONFIG_USER_ONLY)
903 struct sigaction act;
904 sigfillset(&act.sa_mask);
905 act.sa_handler = SIG_DFL;
906 sigaction(SIGABRT, &act, NULL);
908 #endif
909 abort();
912 #if !defined(CONFIG_USER_ONLY)
913 /* Called from RCU critical section */
914 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
916 RAMBlock *block;
918 block = atomic_rcu_read(&ram_list.mru_block);
919 if (block && addr - block->offset < block->max_length) {
920 return block;
922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
923 if (addr - block->offset < block->max_length) {
924 goto found;
928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
929 abort();
931 found:
932 /* It is safe to write mru_block outside the iothread lock. This
933 * is what happens:
935 * mru_block = xxx
936 * rcu_read_unlock()
937 * xxx removed from list
938 * rcu_read_lock()
939 * read mru_block
940 * mru_block = NULL;
941 * call_rcu(reclaim_ramblock, xxx);
942 * rcu_read_unlock()
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
948 ram_list.mru_block = block;
949 return block;
952 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
954 CPUState *cpu;
955 ram_addr_t start1;
956 RAMBlock *block;
957 ram_addr_t end;
959 end = TARGET_PAGE_ALIGN(start + length);
960 start &= TARGET_PAGE_MASK;
962 rcu_read_lock();
963 block = qemu_get_ram_block(start);
964 assert(block == qemu_get_ram_block(end - 1));
965 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
966 CPU_FOREACH(cpu) {
967 tlb_reset_dirty(cpu, start1, length);
969 rcu_read_unlock();
972 /* Note: start and end must be within the same ram block. */
973 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
974 ram_addr_t length,
975 unsigned client)
977 DirtyMemoryBlocks *blocks;
978 unsigned long end, page;
979 bool dirty = false;
981 if (length == 0) {
982 return false;
985 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
986 page = start >> TARGET_PAGE_BITS;
988 rcu_read_lock();
990 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
992 while (page < end) {
993 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
994 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
995 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
997 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
998 offset, num);
999 page += num;
1002 rcu_read_unlock();
1004 if (dirty && tcg_enabled()) {
1005 tlb_reset_dirty_range_all(start, length);
1008 return dirty;
1011 /* Called from RCU critical section */
1012 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1013 MemoryRegionSection *section,
1014 target_ulong vaddr,
1015 hwaddr paddr, hwaddr xlat,
1016 int prot,
1017 target_ulong *address)
1019 hwaddr iotlb;
1020 CPUWatchpoint *wp;
1022 if (memory_region_is_ram(section->mr)) {
1023 /* Normal RAM. */
1024 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1025 + xlat;
1026 if (!section->readonly) {
1027 iotlb |= PHYS_SECTION_NOTDIRTY;
1028 } else {
1029 iotlb |= PHYS_SECTION_ROM;
1031 } else {
1032 AddressSpaceDispatch *d;
1034 d = atomic_rcu_read(&section->address_space->dispatch);
1035 iotlb = section - d->map.sections;
1036 iotlb += xlat;
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
1041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1042 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1045 iotlb = PHYS_SECTION_WATCH + paddr;
1046 *address |= TLB_MMIO;
1047 break;
1052 return iotlb;
1054 #endif /* defined(CONFIG_USER_ONLY) */
1056 #if !defined(CONFIG_USER_ONLY)
1058 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1059 uint16_t section);
1060 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1062 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1063 qemu_anon_ram_alloc;
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1070 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1072 phys_mem_alloc = alloc;
1075 static uint16_t phys_section_add(PhysPageMap *map,
1076 MemoryRegionSection *section)
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1082 assert(map->sections_nb < TARGET_PAGE_SIZE);
1084 if (map->sections_nb == map->sections_nb_alloc) {
1085 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1086 map->sections = g_renew(MemoryRegionSection, map->sections,
1087 map->sections_nb_alloc);
1089 map->sections[map->sections_nb] = *section;
1090 memory_region_ref(section->mr);
1091 return map->sections_nb++;
1094 static void phys_section_destroy(MemoryRegion *mr)
1096 bool have_sub_page = mr->subpage;
1098 memory_region_unref(mr);
1100 if (have_sub_page) {
1101 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1102 object_unref(OBJECT(&subpage->iomem));
1103 g_free(subpage);
1107 static void phys_sections_free(PhysPageMap *map)
1109 while (map->sections_nb > 0) {
1110 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1111 phys_section_destroy(section->mr);
1113 g_free(map->sections);
1114 g_free(map->nodes);
1117 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1119 subpage_t *subpage;
1120 hwaddr base = section->offset_within_address_space
1121 & TARGET_PAGE_MASK;
1122 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1123 d->map.nodes, d->map.sections);
1124 MemoryRegionSection subsection = {
1125 .offset_within_address_space = base,
1126 .size = int128_make64(TARGET_PAGE_SIZE),
1128 hwaddr start, end;
1130 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1132 if (!(existing->mr->subpage)) {
1133 subpage = subpage_init(d->as, base);
1134 subsection.address_space = d->as;
1135 subsection.mr = &subpage->iomem;
1136 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1137 phys_section_add(&d->map, &subsection));
1138 } else {
1139 subpage = container_of(existing->mr, subpage_t, iomem);
1141 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1142 end = start + int128_get64(section->size) - 1;
1143 subpage_register(subpage, start, end,
1144 phys_section_add(&d->map, section));
1148 static void register_multipage(AddressSpaceDispatch *d,
1149 MemoryRegionSection *section)
1151 hwaddr start_addr = section->offset_within_address_space;
1152 uint16_t section_index = phys_section_add(&d->map, section);
1153 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1154 TARGET_PAGE_BITS));
1156 assert(num_pages);
1157 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1160 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1162 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1163 AddressSpaceDispatch *d = as->next_dispatch;
1164 MemoryRegionSection now = *section, remain = *section;
1165 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1167 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1168 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1169 - now.offset_within_address_space;
1171 now.size = int128_min(int128_make64(left), now.size);
1172 register_subpage(d, &now);
1173 } else {
1174 now.size = int128_zero();
1176 while (int128_ne(remain.size, now.size)) {
1177 remain.size = int128_sub(remain.size, now.size);
1178 remain.offset_within_address_space += int128_get64(now.size);
1179 remain.offset_within_region += int128_get64(now.size);
1180 now = remain;
1181 if (int128_lt(remain.size, page_size)) {
1182 register_subpage(d, &now);
1183 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1184 now.size = page_size;
1185 register_subpage(d, &now);
1186 } else {
1187 now.size = int128_and(now.size, int128_neg(page_size));
1188 register_multipage(d, &now);
1193 void qemu_flush_coalesced_mmio_buffer(void)
1195 if (kvm_enabled())
1196 kvm_flush_coalesced_mmio_buffer();
1199 void qemu_mutex_lock_ramlist(void)
1201 qemu_mutex_lock(&ram_list.mutex);
1204 void qemu_mutex_unlock_ramlist(void)
1206 qemu_mutex_unlock(&ram_list.mutex);
1209 #ifdef __linux__
1211 #include <sys/vfs.h>
1213 #define HUGETLBFS_MAGIC 0x958458f6
1215 static long gethugepagesize(const char *path, Error **errp)
1217 struct statfs fs;
1218 int ret;
1220 do {
1221 ret = statfs(path, &fs);
1222 } while (ret != 0 && errno == EINTR);
1224 if (ret != 0) {
1225 error_setg_errno(errp, errno, "failed to get page size of file %s",
1226 path);
1227 return 0;
1230 return fs.f_bsize;
1233 static void *file_ram_alloc(RAMBlock *block,
1234 ram_addr_t memory,
1235 const char *path,
1236 Error **errp)
1238 struct stat st;
1239 char *filename;
1240 char *sanitized_name;
1241 char *c;
1242 void *area;
1243 int fd;
1244 uint64_t hpagesize;
1245 Error *local_err = NULL;
1247 hpagesize = gethugepagesize(path, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
1250 goto error;
1252 block->mr->align = hpagesize;
1254 if (memory < hpagesize) {
1255 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1256 "or larger than huge page size 0x%" PRIx64,
1257 memory, hpagesize);
1258 goto error;
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1262 error_setg(errp,
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
1264 goto error;
1267 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name = g_strdup(memory_region_name(block->mr));
1270 for (c = sanitized_name; *c != '\0'; c++) {
1271 if (*c == '/') {
1272 *c = '_';
1276 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1277 sanitized_name);
1278 g_free(sanitized_name);
1280 fd = mkstemp(filename);
1281 if (fd >= 0) {
1282 unlink(filename);
1284 g_free(filename);
1285 } else {
1286 fd = open(path, O_RDWR | O_CREAT, 0644);
1289 if (fd < 0) {
1290 error_setg_errno(errp, errno,
1291 "unable to create backing store for hugepages");
1292 goto error;
1295 memory = ROUND_UP(memory, hpagesize);
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1301 * mmap will fail.
1303 if (ftruncate(fd, memory)) {
1304 perror("ftruncate");
1307 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
1308 if (area == MAP_FAILED) {
1309 error_setg_errno(errp, errno,
1310 "unable to map backing store for hugepages");
1311 close(fd);
1312 goto error;
1315 if (mem_prealloc) {
1316 os_mem_prealloc(fd, area, memory);
1319 block->fd = fd;
1320 return area;
1322 error:
1323 return NULL;
1325 #endif
1327 /* Called with the ramlist lock held. */
1328 static ram_addr_t find_ram_offset(ram_addr_t size)
1330 RAMBlock *block, *next_block;
1331 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1333 assert(size != 0); /* it would hand out same offset multiple times */
1335 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1336 return 0;
1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1340 ram_addr_t end, next = RAM_ADDR_MAX;
1342 end = block->offset + block->max_length;
1344 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1345 if (next_block->offset >= end) {
1346 next = MIN(next, next_block->offset);
1349 if (next - end >= size && next - end < mingap) {
1350 offset = end;
1351 mingap = next - end;
1355 if (offset == RAM_ADDR_MAX) {
1356 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1357 (uint64_t)size);
1358 abort();
1361 return offset;
1364 ram_addr_t last_ram_offset(void)
1366 RAMBlock *block;
1367 ram_addr_t last = 0;
1369 rcu_read_lock();
1370 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1371 last = MAX(last, block->offset + block->max_length);
1373 rcu_read_unlock();
1374 return last;
1377 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1379 int ret;
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1382 if (!machine_dump_guest_core(current_machine)) {
1383 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1384 if (ret) {
1385 perror("qemu_madvise");
1386 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1392 /* Called within an RCU critical section, or while the ramlist lock
1393 * is held.
1395 static RAMBlock *find_ram_block(ram_addr_t addr)
1397 RAMBlock *block;
1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1400 if (block->offset == addr) {
1401 return block;
1405 return NULL;
1408 const char *qemu_ram_get_idstr(RAMBlock *rb)
1410 return rb->idstr;
1413 /* Called with iothread lock held. */
1414 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1416 RAMBlock *new_block, *block;
1418 rcu_read_lock();
1419 new_block = find_ram_block(addr);
1420 assert(new_block);
1421 assert(!new_block->idstr[0]);
1423 if (dev) {
1424 char *id = qdev_get_dev_path(dev);
1425 if (id) {
1426 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1427 g_free(id);
1430 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1432 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1433 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1434 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1435 new_block->idstr);
1436 abort();
1439 rcu_read_unlock();
1442 /* Called with iothread lock held. */
1443 void qemu_ram_unset_idstr(ram_addr_t addr)
1445 RAMBlock *block;
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1452 rcu_read_lock();
1453 block = find_ram_block(addr);
1454 if (block) {
1455 memset(block->idstr, 0, sizeof(block->idstr));
1457 rcu_read_unlock();
1460 static int memory_try_enable_merging(void *addr, size_t len)
1462 if (!machine_mem_merge(current_machine)) {
1463 /* disabled by the user */
1464 return 0;
1467 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1470 /* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1477 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1479 RAMBlock *block = find_ram_block(base);
1481 assert(block);
1483 newsize = HOST_PAGE_ALIGN(newsize);
1485 if (block->used_length == newsize) {
1486 return 0;
1489 if (!(block->flags & RAM_RESIZEABLE)) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->used_length);
1494 return -EINVAL;
1497 if (block->max_length < newsize) {
1498 error_setg_errno(errp, EINVAL,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT, block->idstr,
1501 newsize, block->max_length);
1502 return -EINVAL;
1505 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1506 block->used_length = newsize;
1507 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1508 DIRTY_CLIENTS_ALL);
1509 memory_region_set_size(block->mr, newsize);
1510 if (block->resized) {
1511 block->resized(block->idstr, newsize, block->host);
1513 return 0;
1516 /* Called with ram_list.mutex held */
1517 static void dirty_memory_extend(ram_addr_t old_ram_size,
1518 ram_addr_t new_ram_size)
1520 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1521 DIRTY_MEMORY_BLOCK_SIZE);
1522 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1523 DIRTY_MEMORY_BLOCK_SIZE);
1524 int i;
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks <= old_num_blocks) {
1528 return;
1531 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1532 DirtyMemoryBlocks *old_blocks;
1533 DirtyMemoryBlocks *new_blocks;
1534 int j;
1536 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1537 new_blocks = g_malloc(sizeof(*new_blocks) +
1538 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1540 if (old_num_blocks) {
1541 memcpy(new_blocks->blocks, old_blocks->blocks,
1542 old_num_blocks * sizeof(old_blocks->blocks[0]));
1545 for (j = old_num_blocks; j < new_num_blocks; j++) {
1546 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1549 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1551 if (old_blocks) {
1552 g_free_rcu(old_blocks, rcu);
1557 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1559 RAMBlock *block;
1560 RAMBlock *last_block = NULL;
1561 ram_addr_t old_ram_size, new_ram_size;
1562 Error *err = NULL;
1564 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1566 qemu_mutex_lock_ramlist();
1567 new_block->offset = find_ram_offset(new_block->max_length);
1569 if (!new_block->host) {
1570 if (xen_enabled()) {
1571 xen_ram_alloc(new_block->offset, new_block->max_length,
1572 new_block->mr, &err);
1573 if (err) {
1574 error_propagate(errp, err);
1575 qemu_mutex_unlock_ramlist();
1576 return -1;
1578 } else {
1579 new_block->host = phys_mem_alloc(new_block->max_length,
1580 &new_block->mr->align);
1581 if (!new_block->host) {
1582 error_setg_errno(errp, errno,
1583 "cannot set up guest memory '%s'",
1584 memory_region_name(new_block->mr));
1585 qemu_mutex_unlock_ramlist();
1586 return -1;
1588 memory_try_enable_merging(new_block->host, new_block->max_length);
1592 new_ram_size = MAX(old_ram_size,
1593 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1594 if (new_ram_size > old_ram_size) {
1595 migration_bitmap_extend(old_ram_size, new_ram_size);
1596 dirty_memory_extend(old_ram_size, new_ram_size);
1598 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1599 * QLIST (which has an RCU-friendly variant) does not have insertion at
1600 * tail, so save the last element in last_block.
1602 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1603 last_block = block;
1604 if (block->max_length < new_block->max_length) {
1605 break;
1608 if (block) {
1609 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1610 } else if (last_block) {
1611 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1612 } else { /* list is empty */
1613 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1615 ram_list.mru_block = NULL;
1617 /* Write list before version */
1618 smp_wmb();
1619 ram_list.version++;
1620 qemu_mutex_unlock_ramlist();
1622 cpu_physical_memory_set_dirty_range(new_block->offset,
1623 new_block->used_length,
1624 DIRTY_CLIENTS_ALL);
1626 if (new_block->host) {
1627 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1628 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1629 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1630 if (kvm_enabled()) {
1631 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1635 return new_block->offset;
1638 #ifdef __linux__
1639 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1640 bool share, const char *mem_path,
1641 Error **errp)
1643 RAMBlock *new_block;
1644 ram_addr_t addr;
1645 Error *local_err = NULL;
1647 if (xen_enabled()) {
1648 error_setg(errp, "-mem-path not supported with Xen");
1649 return -1;
1652 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1654 * file_ram_alloc() needs to allocate just like
1655 * phys_mem_alloc, but we haven't bothered to provide
1656 * a hook there.
1658 error_setg(errp,
1659 "-mem-path not supported with this accelerator");
1660 return -1;
1663 size = HOST_PAGE_ALIGN(size);
1664 new_block = g_malloc0(sizeof(*new_block));
1665 new_block->mr = mr;
1666 new_block->used_length = size;
1667 new_block->max_length = size;
1668 new_block->flags = share ? RAM_SHARED : 0;
1669 new_block->host = file_ram_alloc(new_block, size,
1670 mem_path, errp);
1671 if (!new_block->host) {
1672 g_free(new_block);
1673 return -1;
1676 addr = ram_block_add(new_block, &local_err);
1677 if (local_err) {
1678 g_free(new_block);
1679 error_propagate(errp, local_err);
1680 return -1;
1682 return addr;
1684 #endif
1686 static
1687 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1688 void (*resized)(const char*,
1689 uint64_t length,
1690 void *host),
1691 void *host, bool resizeable,
1692 MemoryRegion *mr, Error **errp)
1694 RAMBlock *new_block;
1695 ram_addr_t addr;
1696 Error *local_err = NULL;
1698 size = HOST_PAGE_ALIGN(size);
1699 max_size = HOST_PAGE_ALIGN(max_size);
1700 new_block = g_malloc0(sizeof(*new_block));
1701 new_block->mr = mr;
1702 new_block->resized = resized;
1703 new_block->used_length = size;
1704 new_block->max_length = max_size;
1705 assert(max_size >= size);
1706 new_block->fd = -1;
1707 new_block->host = host;
1708 if (host) {
1709 new_block->flags |= RAM_PREALLOC;
1711 if (resizeable) {
1712 new_block->flags |= RAM_RESIZEABLE;
1714 addr = ram_block_add(new_block, &local_err);
1715 if (local_err) {
1716 g_free(new_block);
1717 error_propagate(errp, local_err);
1718 return -1;
1721 mr->ram_block = new_block;
1722 return addr;
1725 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1726 MemoryRegion *mr, Error **errp)
1728 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1731 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1733 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1736 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1737 void (*resized)(const char*,
1738 uint64_t length,
1739 void *host),
1740 MemoryRegion *mr, Error **errp)
1742 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1745 static void reclaim_ramblock(RAMBlock *block)
1747 if (block->flags & RAM_PREALLOC) {
1749 } else if (xen_enabled()) {
1750 xen_invalidate_map_cache_entry(block->host);
1751 #ifndef _WIN32
1752 } else if (block->fd >= 0) {
1753 qemu_ram_munmap(block->host, block->max_length);
1754 close(block->fd);
1755 #endif
1756 } else {
1757 qemu_anon_ram_free(block->host, block->max_length);
1759 g_free(block);
1762 void qemu_ram_free(ram_addr_t addr)
1764 RAMBlock *block;
1766 qemu_mutex_lock_ramlist();
1767 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1768 if (addr == block->offset) {
1769 QLIST_REMOVE_RCU(block, next);
1770 ram_list.mru_block = NULL;
1771 /* Write list before version */
1772 smp_wmb();
1773 ram_list.version++;
1774 call_rcu(block, reclaim_ramblock, rcu);
1775 break;
1778 qemu_mutex_unlock_ramlist();
1781 #ifndef _WIN32
1782 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1784 RAMBlock *block;
1785 ram_addr_t offset;
1786 int flags;
1787 void *area, *vaddr;
1789 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1790 offset = addr - block->offset;
1791 if (offset < block->max_length) {
1792 vaddr = ramblock_ptr(block, offset);
1793 if (block->flags & RAM_PREALLOC) {
1795 } else if (xen_enabled()) {
1796 abort();
1797 } else {
1798 flags = MAP_FIXED;
1799 if (block->fd >= 0) {
1800 flags |= (block->flags & RAM_SHARED ?
1801 MAP_SHARED : MAP_PRIVATE);
1802 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1803 flags, block->fd, offset);
1804 } else {
1806 * Remap needs to match alloc. Accelerators that
1807 * set phys_mem_alloc never remap. If they did,
1808 * we'd need a remap hook here.
1810 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1812 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1813 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1814 flags, -1, 0);
1816 if (area != vaddr) {
1817 fprintf(stderr, "Could not remap addr: "
1818 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1819 length, addr);
1820 exit(1);
1822 memory_try_enable_merging(vaddr, length);
1823 qemu_ram_setup_dump(vaddr, length);
1828 #endif /* !_WIN32 */
1830 int qemu_get_ram_fd(ram_addr_t addr)
1832 RAMBlock *block;
1833 int fd;
1835 rcu_read_lock();
1836 block = qemu_get_ram_block(addr);
1837 fd = block->fd;
1838 rcu_read_unlock();
1839 return fd;
1842 void qemu_set_ram_fd(ram_addr_t addr, int fd)
1844 RAMBlock *block;
1846 rcu_read_lock();
1847 block = qemu_get_ram_block(addr);
1848 block->fd = fd;
1849 rcu_read_unlock();
1852 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1854 RAMBlock *block;
1855 void *ptr;
1857 rcu_read_lock();
1858 block = qemu_get_ram_block(addr);
1859 ptr = ramblock_ptr(block, 0);
1860 rcu_read_unlock();
1861 return ptr;
1864 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1865 * This should not be used for general purpose DMA. Use address_space_map
1866 * or address_space_rw instead. For local memory (e.g. video ram) that the
1867 * device owns, use memory_region_get_ram_ptr.
1869 * Called within RCU critical section.
1871 void *qemu_get_ram_ptr(ram_addr_t addr)
1873 RAMBlock *block = qemu_get_ram_block(addr);
1875 if (xen_enabled() && block->host == NULL) {
1876 /* We need to check if the requested address is in the RAM
1877 * because we don't want to map the entire memory in QEMU.
1878 * In that case just map until the end of the page.
1880 if (block->offset == 0) {
1881 return xen_map_cache(addr, 0, 0);
1884 block->host = xen_map_cache(block->offset, block->max_length, 1);
1886 return ramblock_ptr(block, addr - block->offset);
1889 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1890 * but takes a size argument.
1892 * Called within RCU critical section.
1894 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1896 RAMBlock *block;
1897 ram_addr_t offset_inside_block;
1898 if (*size == 0) {
1899 return NULL;
1902 block = qemu_get_ram_block(addr);
1903 offset_inside_block = addr - block->offset;
1904 *size = MIN(*size, block->max_length - offset_inside_block);
1906 if (xen_enabled() && block->host == NULL) {
1907 /* We need to check if the requested address is in the RAM
1908 * because we don't want to map the entire memory in QEMU.
1909 * In that case just map the requested area.
1911 if (block->offset == 0) {
1912 return xen_map_cache(addr, *size, 1);
1915 block->host = xen_map_cache(block->offset, block->max_length, 1);
1918 return ramblock_ptr(block, offset_inside_block);
1922 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1923 * in that RAMBlock.
1925 * ptr: Host pointer to look up
1926 * round_offset: If true round the result offset down to a page boundary
1927 * *ram_addr: set to result ram_addr
1928 * *offset: set to result offset within the RAMBlock
1930 * Returns: RAMBlock (or NULL if not found)
1932 * By the time this function returns, the returned pointer is not protected
1933 * by RCU anymore. If the caller is not within an RCU critical section and
1934 * does not hold the iothread lock, it must have other means of protecting the
1935 * pointer, such as a reference to the region that includes the incoming
1936 * ram_addr_t.
1938 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1939 ram_addr_t *ram_addr,
1940 ram_addr_t *offset)
1942 RAMBlock *block;
1943 uint8_t *host = ptr;
1945 if (xen_enabled()) {
1946 rcu_read_lock();
1947 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1948 block = qemu_get_ram_block(*ram_addr);
1949 if (block) {
1950 *offset = (host - block->host);
1952 rcu_read_unlock();
1953 return block;
1956 rcu_read_lock();
1957 block = atomic_rcu_read(&ram_list.mru_block);
1958 if (block && block->host && host - block->host < block->max_length) {
1959 goto found;
1962 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1963 /* This case append when the block is not mapped. */
1964 if (block->host == NULL) {
1965 continue;
1967 if (host - block->host < block->max_length) {
1968 goto found;
1972 rcu_read_unlock();
1973 return NULL;
1975 found:
1976 *offset = (host - block->host);
1977 if (round_offset) {
1978 *offset &= TARGET_PAGE_MASK;
1980 *ram_addr = block->offset + *offset;
1981 rcu_read_unlock();
1982 return block;
1986 * Finds the named RAMBlock
1988 * name: The name of RAMBlock to find
1990 * Returns: RAMBlock (or NULL if not found)
1992 RAMBlock *qemu_ram_block_by_name(const char *name)
1994 RAMBlock *block;
1996 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1997 if (!strcmp(name, block->idstr)) {
1998 return block;
2002 return NULL;
2005 /* Some of the softmmu routines need to translate from a host pointer
2006 (typically a TLB entry) back to a ram offset. */
2007 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2009 RAMBlock *block;
2010 ram_addr_t offset; /* Not used */
2012 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2014 if (!block) {
2015 return NULL;
2018 return block->mr;
2021 /* Called within RCU critical section. */
2022 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2023 uint64_t val, unsigned size)
2025 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2026 tb_invalidate_phys_page_fast(ram_addr, size);
2028 switch (size) {
2029 case 1:
2030 stb_p(qemu_get_ram_ptr(ram_addr), val);
2031 break;
2032 case 2:
2033 stw_p(qemu_get_ram_ptr(ram_addr), val);
2034 break;
2035 case 4:
2036 stl_p(qemu_get_ram_ptr(ram_addr), val);
2037 break;
2038 default:
2039 abort();
2041 /* Set both VGA and migration bits for simplicity and to remove
2042 * the notdirty callback faster.
2044 cpu_physical_memory_set_dirty_range(ram_addr, size,
2045 DIRTY_CLIENTS_NOCODE);
2046 /* we remove the notdirty callback only if the code has been
2047 flushed */
2048 if (!cpu_physical_memory_is_clean(ram_addr)) {
2049 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2053 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2054 unsigned size, bool is_write)
2056 return is_write;
2059 static const MemoryRegionOps notdirty_mem_ops = {
2060 .write = notdirty_mem_write,
2061 .valid.accepts = notdirty_mem_accepts,
2062 .endianness = DEVICE_NATIVE_ENDIAN,
2065 /* Generate a debug exception if a watchpoint has been hit. */
2066 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2068 CPUState *cpu = current_cpu;
2069 CPUClass *cc = CPU_GET_CLASS(cpu);
2070 CPUArchState *env = cpu->env_ptr;
2071 target_ulong pc, cs_base;
2072 target_ulong vaddr;
2073 CPUWatchpoint *wp;
2074 int cpu_flags;
2076 if (cpu->watchpoint_hit) {
2077 /* We re-entered the check after replacing the TB. Now raise
2078 * the debug interrupt so that is will trigger after the
2079 * current instruction. */
2080 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2081 return;
2083 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2084 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2085 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2086 && (wp->flags & flags)) {
2087 if (flags == BP_MEM_READ) {
2088 wp->flags |= BP_WATCHPOINT_HIT_READ;
2089 } else {
2090 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2092 wp->hitaddr = vaddr;
2093 wp->hitattrs = attrs;
2094 if (!cpu->watchpoint_hit) {
2095 if (wp->flags & BP_CPU &&
2096 !cc->debug_check_watchpoint(cpu, wp)) {
2097 wp->flags &= ~BP_WATCHPOINT_HIT;
2098 continue;
2100 cpu->watchpoint_hit = wp;
2101 tb_check_watchpoint(cpu);
2102 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2103 cpu->exception_index = EXCP_DEBUG;
2104 cpu_loop_exit(cpu);
2105 } else {
2106 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2107 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2108 cpu_resume_from_signal(cpu, NULL);
2111 } else {
2112 wp->flags &= ~BP_WATCHPOINT_HIT;
2117 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2118 so these check for a hit then pass through to the normal out-of-line
2119 phys routines. */
2120 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2121 unsigned size, MemTxAttrs attrs)
2123 MemTxResult res;
2124 uint64_t data;
2125 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2126 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2128 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2129 switch (size) {
2130 case 1:
2131 data = address_space_ldub(as, addr, attrs, &res);
2132 break;
2133 case 2:
2134 data = address_space_lduw(as, addr, attrs, &res);
2135 break;
2136 case 4:
2137 data = address_space_ldl(as, addr, attrs, &res);
2138 break;
2139 default: abort();
2141 *pdata = data;
2142 return res;
2145 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2146 uint64_t val, unsigned size,
2147 MemTxAttrs attrs)
2149 MemTxResult res;
2150 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2151 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2153 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2154 switch (size) {
2155 case 1:
2156 address_space_stb(as, addr, val, attrs, &res);
2157 break;
2158 case 2:
2159 address_space_stw(as, addr, val, attrs, &res);
2160 break;
2161 case 4:
2162 address_space_stl(as, addr, val, attrs, &res);
2163 break;
2164 default: abort();
2166 return res;
2169 static const MemoryRegionOps watch_mem_ops = {
2170 .read_with_attrs = watch_mem_read,
2171 .write_with_attrs = watch_mem_write,
2172 .endianness = DEVICE_NATIVE_ENDIAN,
2175 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2176 unsigned len, MemTxAttrs attrs)
2178 subpage_t *subpage = opaque;
2179 uint8_t buf[8];
2180 MemTxResult res;
2182 #if defined(DEBUG_SUBPAGE)
2183 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2184 subpage, len, addr);
2185 #endif
2186 res = address_space_read(subpage->as, addr + subpage->base,
2187 attrs, buf, len);
2188 if (res) {
2189 return res;
2191 switch (len) {
2192 case 1:
2193 *data = ldub_p(buf);
2194 return MEMTX_OK;
2195 case 2:
2196 *data = lduw_p(buf);
2197 return MEMTX_OK;
2198 case 4:
2199 *data = ldl_p(buf);
2200 return MEMTX_OK;
2201 case 8:
2202 *data = ldq_p(buf);
2203 return MEMTX_OK;
2204 default:
2205 abort();
2209 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2210 uint64_t value, unsigned len, MemTxAttrs attrs)
2212 subpage_t *subpage = opaque;
2213 uint8_t buf[8];
2215 #if defined(DEBUG_SUBPAGE)
2216 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2217 " value %"PRIx64"\n",
2218 __func__, subpage, len, addr, value);
2219 #endif
2220 switch (len) {
2221 case 1:
2222 stb_p(buf, value);
2223 break;
2224 case 2:
2225 stw_p(buf, value);
2226 break;
2227 case 4:
2228 stl_p(buf, value);
2229 break;
2230 case 8:
2231 stq_p(buf, value);
2232 break;
2233 default:
2234 abort();
2236 return address_space_write(subpage->as, addr + subpage->base,
2237 attrs, buf, len);
2240 static bool subpage_accepts(void *opaque, hwaddr addr,
2241 unsigned len, bool is_write)
2243 subpage_t *subpage = opaque;
2244 #if defined(DEBUG_SUBPAGE)
2245 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2246 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2247 #endif
2249 return address_space_access_valid(subpage->as, addr + subpage->base,
2250 len, is_write);
2253 static const MemoryRegionOps subpage_ops = {
2254 .read_with_attrs = subpage_read,
2255 .write_with_attrs = subpage_write,
2256 .impl.min_access_size = 1,
2257 .impl.max_access_size = 8,
2258 .valid.min_access_size = 1,
2259 .valid.max_access_size = 8,
2260 .valid.accepts = subpage_accepts,
2261 .endianness = DEVICE_NATIVE_ENDIAN,
2264 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2265 uint16_t section)
2267 int idx, eidx;
2269 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2270 return -1;
2271 idx = SUBPAGE_IDX(start);
2272 eidx = SUBPAGE_IDX(end);
2273 #if defined(DEBUG_SUBPAGE)
2274 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2275 __func__, mmio, start, end, idx, eidx, section);
2276 #endif
2277 for (; idx <= eidx; idx++) {
2278 mmio->sub_section[idx] = section;
2281 return 0;
2284 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2286 subpage_t *mmio;
2288 mmio = g_malloc0(sizeof(subpage_t));
2290 mmio->as = as;
2291 mmio->base = base;
2292 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2293 NULL, TARGET_PAGE_SIZE);
2294 mmio->iomem.subpage = true;
2295 #if defined(DEBUG_SUBPAGE)
2296 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2297 mmio, base, TARGET_PAGE_SIZE);
2298 #endif
2299 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2301 return mmio;
2304 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2305 MemoryRegion *mr)
2307 assert(as);
2308 MemoryRegionSection section = {
2309 .address_space = as,
2310 .mr = mr,
2311 .offset_within_address_space = 0,
2312 .offset_within_region = 0,
2313 .size = int128_2_64(),
2316 return phys_section_add(map, &section);
2319 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2321 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2322 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2323 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2324 MemoryRegionSection *sections = d->map.sections;
2326 return sections[index & ~TARGET_PAGE_MASK].mr;
2329 static void io_mem_init(void)
2331 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2332 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2333 NULL, UINT64_MAX);
2334 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2335 NULL, UINT64_MAX);
2336 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2337 NULL, UINT64_MAX);
2340 static void mem_begin(MemoryListener *listener)
2342 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2343 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2344 uint16_t n;
2346 n = dummy_section(&d->map, as, &io_mem_unassigned);
2347 assert(n == PHYS_SECTION_UNASSIGNED);
2348 n = dummy_section(&d->map, as, &io_mem_notdirty);
2349 assert(n == PHYS_SECTION_NOTDIRTY);
2350 n = dummy_section(&d->map, as, &io_mem_rom);
2351 assert(n == PHYS_SECTION_ROM);
2352 n = dummy_section(&d->map, as, &io_mem_watch);
2353 assert(n == PHYS_SECTION_WATCH);
2355 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2356 d->as = as;
2357 as->next_dispatch = d;
2360 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2362 phys_sections_free(&d->map);
2363 g_free(d);
2366 static void mem_commit(MemoryListener *listener)
2368 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2369 AddressSpaceDispatch *cur = as->dispatch;
2370 AddressSpaceDispatch *next = as->next_dispatch;
2372 phys_page_compact_all(next, next->map.nodes_nb);
2374 atomic_rcu_set(&as->dispatch, next);
2375 if (cur) {
2376 call_rcu(cur, address_space_dispatch_free, rcu);
2380 static void tcg_commit(MemoryListener *listener)
2382 CPUAddressSpace *cpuas;
2383 AddressSpaceDispatch *d;
2385 /* since each CPU stores ram addresses in its TLB cache, we must
2386 reset the modified entries */
2387 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2388 cpu_reloading_memory_map();
2389 /* The CPU and TLB are protected by the iothread lock.
2390 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2391 * may have split the RCU critical section.
2393 d = atomic_rcu_read(&cpuas->as->dispatch);
2394 cpuas->memory_dispatch = d;
2395 tlb_flush(cpuas->cpu, 1);
2398 void address_space_init_dispatch(AddressSpace *as)
2400 as->dispatch = NULL;
2401 as->dispatch_listener = (MemoryListener) {
2402 .begin = mem_begin,
2403 .commit = mem_commit,
2404 .region_add = mem_add,
2405 .region_nop = mem_add,
2406 .priority = 0,
2408 memory_listener_register(&as->dispatch_listener, as);
2411 void address_space_unregister(AddressSpace *as)
2413 memory_listener_unregister(&as->dispatch_listener);
2416 void address_space_destroy_dispatch(AddressSpace *as)
2418 AddressSpaceDispatch *d = as->dispatch;
2420 atomic_rcu_set(&as->dispatch, NULL);
2421 if (d) {
2422 call_rcu(d, address_space_dispatch_free, rcu);
2426 static void memory_map_init(void)
2428 system_memory = g_malloc(sizeof(*system_memory));
2430 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2431 address_space_init(&address_space_memory, system_memory, "memory");
2433 system_io = g_malloc(sizeof(*system_io));
2434 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2435 65536);
2436 address_space_init(&address_space_io, system_io, "I/O");
2439 MemoryRegion *get_system_memory(void)
2441 return system_memory;
2444 MemoryRegion *get_system_io(void)
2446 return system_io;
2449 #endif /* !defined(CONFIG_USER_ONLY) */
2451 /* physical memory access (slow version, mainly for debug) */
2452 #if defined(CONFIG_USER_ONLY)
2453 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2454 uint8_t *buf, int len, int is_write)
2456 int l, flags;
2457 target_ulong page;
2458 void * p;
2460 while (len > 0) {
2461 page = addr & TARGET_PAGE_MASK;
2462 l = (page + TARGET_PAGE_SIZE) - addr;
2463 if (l > len)
2464 l = len;
2465 flags = page_get_flags(page);
2466 if (!(flags & PAGE_VALID))
2467 return -1;
2468 if (is_write) {
2469 if (!(flags & PAGE_WRITE))
2470 return -1;
2471 /* XXX: this code should not depend on lock_user */
2472 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2473 return -1;
2474 memcpy(p, buf, l);
2475 unlock_user(p, addr, l);
2476 } else {
2477 if (!(flags & PAGE_READ))
2478 return -1;
2479 /* XXX: this code should not depend on lock_user */
2480 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2481 return -1;
2482 memcpy(buf, p, l);
2483 unlock_user(p, addr, 0);
2485 len -= l;
2486 buf += l;
2487 addr += l;
2489 return 0;
2492 #else
2494 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2495 hwaddr length)
2497 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2498 /* No early return if dirty_log_mask is or becomes 0, because
2499 * cpu_physical_memory_set_dirty_range will still call
2500 * xen_modified_memory.
2502 if (dirty_log_mask) {
2503 dirty_log_mask =
2504 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2506 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2507 tb_invalidate_phys_range(addr, addr + length);
2508 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2510 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2513 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2515 unsigned access_size_max = mr->ops->valid.max_access_size;
2517 /* Regions are assumed to support 1-4 byte accesses unless
2518 otherwise specified. */
2519 if (access_size_max == 0) {
2520 access_size_max = 4;
2523 /* Bound the maximum access by the alignment of the address. */
2524 if (!mr->ops->impl.unaligned) {
2525 unsigned align_size_max = addr & -addr;
2526 if (align_size_max != 0 && align_size_max < access_size_max) {
2527 access_size_max = align_size_max;
2531 /* Don't attempt accesses larger than the maximum. */
2532 if (l > access_size_max) {
2533 l = access_size_max;
2535 l = pow2floor(l);
2537 return l;
2540 static bool prepare_mmio_access(MemoryRegion *mr)
2542 bool unlocked = !qemu_mutex_iothread_locked();
2543 bool release_lock = false;
2545 if (unlocked && mr->global_locking) {
2546 qemu_mutex_lock_iothread();
2547 unlocked = false;
2548 release_lock = true;
2550 if (mr->flush_coalesced_mmio) {
2551 if (unlocked) {
2552 qemu_mutex_lock_iothread();
2554 qemu_flush_coalesced_mmio_buffer();
2555 if (unlocked) {
2556 qemu_mutex_unlock_iothread();
2560 return release_lock;
2563 /* Called within RCU critical section. */
2564 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2565 MemTxAttrs attrs,
2566 const uint8_t *buf,
2567 int len, hwaddr addr1,
2568 hwaddr l, MemoryRegion *mr)
2570 uint8_t *ptr;
2571 uint64_t val;
2572 MemTxResult result = MEMTX_OK;
2573 bool release_lock = false;
2575 for (;;) {
2576 if (!memory_access_is_direct(mr, true)) {
2577 release_lock |= prepare_mmio_access(mr);
2578 l = memory_access_size(mr, l, addr1);
2579 /* XXX: could force current_cpu to NULL to avoid
2580 potential bugs */
2581 switch (l) {
2582 case 8:
2583 /* 64 bit write access */
2584 val = ldq_p(buf);
2585 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2586 attrs);
2587 break;
2588 case 4:
2589 /* 32 bit write access */
2590 val = ldl_p(buf);
2591 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2592 attrs);
2593 break;
2594 case 2:
2595 /* 16 bit write access */
2596 val = lduw_p(buf);
2597 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2598 attrs);
2599 break;
2600 case 1:
2601 /* 8 bit write access */
2602 val = ldub_p(buf);
2603 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2604 attrs);
2605 break;
2606 default:
2607 abort();
2609 } else {
2610 addr1 += memory_region_get_ram_addr(mr);
2611 /* RAM case */
2612 ptr = qemu_get_ram_ptr(addr1);
2613 memcpy(ptr, buf, l);
2614 invalidate_and_set_dirty(mr, addr1, l);
2617 if (release_lock) {
2618 qemu_mutex_unlock_iothread();
2619 release_lock = false;
2622 len -= l;
2623 buf += l;
2624 addr += l;
2626 if (!len) {
2627 break;
2630 l = len;
2631 mr = address_space_translate(as, addr, &addr1, &l, true);
2634 return result;
2637 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2638 const uint8_t *buf, int len)
2640 hwaddr l;
2641 hwaddr addr1;
2642 MemoryRegion *mr;
2643 MemTxResult result = MEMTX_OK;
2645 if (len > 0) {
2646 rcu_read_lock();
2647 l = len;
2648 mr = address_space_translate(as, addr, &addr1, &l, true);
2649 result = address_space_write_continue(as, addr, attrs, buf, len,
2650 addr1, l, mr);
2651 rcu_read_unlock();
2654 return result;
2657 /* Called within RCU critical section. */
2658 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2659 MemTxAttrs attrs, uint8_t *buf,
2660 int len, hwaddr addr1, hwaddr l,
2661 MemoryRegion *mr)
2663 uint8_t *ptr;
2664 uint64_t val;
2665 MemTxResult result = MEMTX_OK;
2666 bool release_lock = false;
2668 for (;;) {
2669 if (!memory_access_is_direct(mr, false)) {
2670 /* I/O case */
2671 release_lock |= prepare_mmio_access(mr);
2672 l = memory_access_size(mr, l, addr1);
2673 switch (l) {
2674 case 8:
2675 /* 64 bit read access */
2676 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2677 attrs);
2678 stq_p(buf, val);
2679 break;
2680 case 4:
2681 /* 32 bit read access */
2682 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2683 attrs);
2684 stl_p(buf, val);
2685 break;
2686 case 2:
2687 /* 16 bit read access */
2688 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2689 attrs);
2690 stw_p(buf, val);
2691 break;
2692 case 1:
2693 /* 8 bit read access */
2694 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2695 attrs);
2696 stb_p(buf, val);
2697 break;
2698 default:
2699 abort();
2701 } else {
2702 /* RAM case */
2703 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2704 memcpy(buf, ptr, l);
2707 if (release_lock) {
2708 qemu_mutex_unlock_iothread();
2709 release_lock = false;
2712 len -= l;
2713 buf += l;
2714 addr += l;
2716 if (!len) {
2717 break;
2720 l = len;
2721 mr = address_space_translate(as, addr, &addr1, &l, false);
2724 return result;
2727 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2728 MemTxAttrs attrs, uint8_t *buf, int len)
2730 hwaddr l;
2731 hwaddr addr1;
2732 MemoryRegion *mr;
2733 MemTxResult result = MEMTX_OK;
2735 if (len > 0) {
2736 rcu_read_lock();
2737 l = len;
2738 mr = address_space_translate(as, addr, &addr1, &l, false);
2739 result = address_space_read_continue(as, addr, attrs, buf, len,
2740 addr1, l, mr);
2741 rcu_read_unlock();
2744 return result;
2747 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2748 uint8_t *buf, int len, bool is_write)
2750 if (is_write) {
2751 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2752 } else {
2753 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2757 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2758 int len, int is_write)
2760 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2761 buf, len, is_write);
2764 enum write_rom_type {
2765 WRITE_DATA,
2766 FLUSH_CACHE,
2769 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2770 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2772 hwaddr l;
2773 uint8_t *ptr;
2774 hwaddr addr1;
2775 MemoryRegion *mr;
2777 rcu_read_lock();
2778 while (len > 0) {
2779 l = len;
2780 mr = address_space_translate(as, addr, &addr1, &l, true);
2782 if (!(memory_region_is_ram(mr) ||
2783 memory_region_is_romd(mr))) {
2784 l = memory_access_size(mr, l, addr1);
2785 } else {
2786 addr1 += memory_region_get_ram_addr(mr);
2787 /* ROM/RAM case */
2788 ptr = qemu_get_ram_ptr(addr1);
2789 switch (type) {
2790 case WRITE_DATA:
2791 memcpy(ptr, buf, l);
2792 invalidate_and_set_dirty(mr, addr1, l);
2793 break;
2794 case FLUSH_CACHE:
2795 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2796 break;
2799 len -= l;
2800 buf += l;
2801 addr += l;
2803 rcu_read_unlock();
2806 /* used for ROM loading : can write in RAM and ROM */
2807 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2808 const uint8_t *buf, int len)
2810 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2813 void cpu_flush_icache_range(hwaddr start, int len)
2816 * This function should do the same thing as an icache flush that was
2817 * triggered from within the guest. For TCG we are always cache coherent,
2818 * so there is no need to flush anything. For KVM / Xen we need to flush
2819 * the host's instruction cache at least.
2821 if (tcg_enabled()) {
2822 return;
2825 cpu_physical_memory_write_rom_internal(&address_space_memory,
2826 start, NULL, len, FLUSH_CACHE);
2829 typedef struct {
2830 MemoryRegion *mr;
2831 void *buffer;
2832 hwaddr addr;
2833 hwaddr len;
2834 bool in_use;
2835 } BounceBuffer;
2837 static BounceBuffer bounce;
2839 typedef struct MapClient {
2840 QEMUBH *bh;
2841 QLIST_ENTRY(MapClient) link;
2842 } MapClient;
2844 QemuMutex map_client_list_lock;
2845 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2846 = QLIST_HEAD_INITIALIZER(map_client_list);
2848 static void cpu_unregister_map_client_do(MapClient *client)
2850 QLIST_REMOVE(client, link);
2851 g_free(client);
2854 static void cpu_notify_map_clients_locked(void)
2856 MapClient *client;
2858 while (!QLIST_EMPTY(&map_client_list)) {
2859 client = QLIST_FIRST(&map_client_list);
2860 qemu_bh_schedule(client->bh);
2861 cpu_unregister_map_client_do(client);
2865 void cpu_register_map_client(QEMUBH *bh)
2867 MapClient *client = g_malloc(sizeof(*client));
2869 qemu_mutex_lock(&map_client_list_lock);
2870 client->bh = bh;
2871 QLIST_INSERT_HEAD(&map_client_list, client, link);
2872 if (!atomic_read(&bounce.in_use)) {
2873 cpu_notify_map_clients_locked();
2875 qemu_mutex_unlock(&map_client_list_lock);
2878 void cpu_exec_init_all(void)
2880 qemu_mutex_init(&ram_list.mutex);
2881 io_mem_init();
2882 memory_map_init();
2883 qemu_mutex_init(&map_client_list_lock);
2886 void cpu_unregister_map_client(QEMUBH *bh)
2888 MapClient *client;
2890 qemu_mutex_lock(&map_client_list_lock);
2891 QLIST_FOREACH(client, &map_client_list, link) {
2892 if (client->bh == bh) {
2893 cpu_unregister_map_client_do(client);
2894 break;
2897 qemu_mutex_unlock(&map_client_list_lock);
2900 static void cpu_notify_map_clients(void)
2902 qemu_mutex_lock(&map_client_list_lock);
2903 cpu_notify_map_clients_locked();
2904 qemu_mutex_unlock(&map_client_list_lock);
2907 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2909 MemoryRegion *mr;
2910 hwaddr l, xlat;
2912 rcu_read_lock();
2913 while (len > 0) {
2914 l = len;
2915 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2916 if (!memory_access_is_direct(mr, is_write)) {
2917 l = memory_access_size(mr, l, addr);
2918 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2919 return false;
2923 len -= l;
2924 addr += l;
2926 rcu_read_unlock();
2927 return true;
2930 /* Map a physical memory region into a host virtual address.
2931 * May map a subset of the requested range, given by and returned in *plen.
2932 * May return NULL if resources needed to perform the mapping are exhausted.
2933 * Use only for reads OR writes - not for read-modify-write operations.
2934 * Use cpu_register_map_client() to know when retrying the map operation is
2935 * likely to succeed.
2937 void *address_space_map(AddressSpace *as,
2938 hwaddr addr,
2939 hwaddr *plen,
2940 bool is_write)
2942 hwaddr len = *plen;
2943 hwaddr done = 0;
2944 hwaddr l, xlat, base;
2945 MemoryRegion *mr, *this_mr;
2946 ram_addr_t raddr;
2947 void *ptr;
2949 if (len == 0) {
2950 return NULL;
2953 l = len;
2954 rcu_read_lock();
2955 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2957 if (!memory_access_is_direct(mr, is_write)) {
2958 if (atomic_xchg(&bounce.in_use, true)) {
2959 rcu_read_unlock();
2960 return NULL;
2962 /* Avoid unbounded allocations */
2963 l = MIN(l, TARGET_PAGE_SIZE);
2964 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2965 bounce.addr = addr;
2966 bounce.len = l;
2968 memory_region_ref(mr);
2969 bounce.mr = mr;
2970 if (!is_write) {
2971 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2972 bounce.buffer, l);
2975 rcu_read_unlock();
2976 *plen = l;
2977 return bounce.buffer;
2980 base = xlat;
2981 raddr = memory_region_get_ram_addr(mr);
2983 for (;;) {
2984 len -= l;
2985 addr += l;
2986 done += l;
2987 if (len == 0) {
2988 break;
2991 l = len;
2992 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2993 if (this_mr != mr || xlat != base + done) {
2994 break;
2998 memory_region_ref(mr);
2999 *plen = done;
3000 ptr = qemu_ram_ptr_length(raddr + base, plen);
3001 rcu_read_unlock();
3003 return ptr;
3006 /* Unmaps a memory region previously mapped by address_space_map().
3007 * Will also mark the memory as dirty if is_write == 1. access_len gives
3008 * the amount of memory that was actually read or written by the caller.
3010 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3011 int is_write, hwaddr access_len)
3013 if (buffer != bounce.buffer) {
3014 MemoryRegion *mr;
3015 ram_addr_t addr1;
3017 mr = qemu_ram_addr_from_host(buffer, &addr1);
3018 assert(mr != NULL);
3019 if (is_write) {
3020 invalidate_and_set_dirty(mr, addr1, access_len);
3022 if (xen_enabled()) {
3023 xen_invalidate_map_cache_entry(buffer);
3025 memory_region_unref(mr);
3026 return;
3028 if (is_write) {
3029 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3030 bounce.buffer, access_len);
3032 qemu_vfree(bounce.buffer);
3033 bounce.buffer = NULL;
3034 memory_region_unref(bounce.mr);
3035 atomic_mb_set(&bounce.in_use, false);
3036 cpu_notify_map_clients();
3039 void *cpu_physical_memory_map(hwaddr addr,
3040 hwaddr *plen,
3041 int is_write)
3043 return address_space_map(&address_space_memory, addr, plen, is_write);
3046 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3047 int is_write, hwaddr access_len)
3049 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3052 /* warning: addr must be aligned */
3053 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3054 MemTxAttrs attrs,
3055 MemTxResult *result,
3056 enum device_endian endian)
3058 uint8_t *ptr;
3059 uint64_t val;
3060 MemoryRegion *mr;
3061 hwaddr l = 4;
3062 hwaddr addr1;
3063 MemTxResult r;
3064 bool release_lock = false;
3066 rcu_read_lock();
3067 mr = address_space_translate(as, addr, &addr1, &l, false);
3068 if (l < 4 || !memory_access_is_direct(mr, false)) {
3069 release_lock |= prepare_mmio_access(mr);
3071 /* I/O case */
3072 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
3073 #if defined(TARGET_WORDS_BIGENDIAN)
3074 if (endian == DEVICE_LITTLE_ENDIAN) {
3075 val = bswap32(val);
3077 #else
3078 if (endian == DEVICE_BIG_ENDIAN) {
3079 val = bswap32(val);
3081 #endif
3082 } else {
3083 /* RAM case */
3084 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3085 & TARGET_PAGE_MASK)
3086 + addr1);
3087 switch (endian) {
3088 case DEVICE_LITTLE_ENDIAN:
3089 val = ldl_le_p(ptr);
3090 break;
3091 case DEVICE_BIG_ENDIAN:
3092 val = ldl_be_p(ptr);
3093 break;
3094 default:
3095 val = ldl_p(ptr);
3096 break;
3098 r = MEMTX_OK;
3100 if (result) {
3101 *result = r;
3103 if (release_lock) {
3104 qemu_mutex_unlock_iothread();
3106 rcu_read_unlock();
3107 return val;
3110 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3111 MemTxAttrs attrs, MemTxResult *result)
3113 return address_space_ldl_internal(as, addr, attrs, result,
3114 DEVICE_NATIVE_ENDIAN);
3117 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3118 MemTxAttrs attrs, MemTxResult *result)
3120 return address_space_ldl_internal(as, addr, attrs, result,
3121 DEVICE_LITTLE_ENDIAN);
3124 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3125 MemTxAttrs attrs, MemTxResult *result)
3127 return address_space_ldl_internal(as, addr, attrs, result,
3128 DEVICE_BIG_ENDIAN);
3131 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
3133 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3136 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
3138 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3141 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
3143 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3146 /* warning: addr must be aligned */
3147 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3148 MemTxAttrs attrs,
3149 MemTxResult *result,
3150 enum device_endian endian)
3152 uint8_t *ptr;
3153 uint64_t val;
3154 MemoryRegion *mr;
3155 hwaddr l = 8;
3156 hwaddr addr1;
3157 MemTxResult r;
3158 bool release_lock = false;
3160 rcu_read_lock();
3161 mr = address_space_translate(as, addr, &addr1, &l,
3162 false);
3163 if (l < 8 || !memory_access_is_direct(mr, false)) {
3164 release_lock |= prepare_mmio_access(mr);
3166 /* I/O case */
3167 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
3168 #if defined(TARGET_WORDS_BIGENDIAN)
3169 if (endian == DEVICE_LITTLE_ENDIAN) {
3170 val = bswap64(val);
3172 #else
3173 if (endian == DEVICE_BIG_ENDIAN) {
3174 val = bswap64(val);
3176 #endif
3177 } else {
3178 /* RAM case */
3179 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3180 & TARGET_PAGE_MASK)
3181 + addr1);
3182 switch (endian) {
3183 case DEVICE_LITTLE_ENDIAN:
3184 val = ldq_le_p(ptr);
3185 break;
3186 case DEVICE_BIG_ENDIAN:
3187 val = ldq_be_p(ptr);
3188 break;
3189 default:
3190 val = ldq_p(ptr);
3191 break;
3193 r = MEMTX_OK;
3195 if (result) {
3196 *result = r;
3198 if (release_lock) {
3199 qemu_mutex_unlock_iothread();
3201 rcu_read_unlock();
3202 return val;
3205 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3206 MemTxAttrs attrs, MemTxResult *result)
3208 return address_space_ldq_internal(as, addr, attrs, result,
3209 DEVICE_NATIVE_ENDIAN);
3212 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3213 MemTxAttrs attrs, MemTxResult *result)
3215 return address_space_ldq_internal(as, addr, attrs, result,
3216 DEVICE_LITTLE_ENDIAN);
3219 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3220 MemTxAttrs attrs, MemTxResult *result)
3222 return address_space_ldq_internal(as, addr, attrs, result,
3223 DEVICE_BIG_ENDIAN);
3226 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
3228 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3231 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3233 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3236 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3238 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3241 /* XXX: optimize */
3242 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3243 MemTxAttrs attrs, MemTxResult *result)
3245 uint8_t val;
3246 MemTxResult r;
3248 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3249 if (result) {
3250 *result = r;
3252 return val;
3255 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3257 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3260 /* warning: addr must be aligned */
3261 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3262 hwaddr addr,
3263 MemTxAttrs attrs,
3264 MemTxResult *result,
3265 enum device_endian endian)
3267 uint8_t *ptr;
3268 uint64_t val;
3269 MemoryRegion *mr;
3270 hwaddr l = 2;
3271 hwaddr addr1;
3272 MemTxResult r;
3273 bool release_lock = false;
3275 rcu_read_lock();
3276 mr = address_space_translate(as, addr, &addr1, &l,
3277 false);
3278 if (l < 2 || !memory_access_is_direct(mr, false)) {
3279 release_lock |= prepare_mmio_access(mr);
3281 /* I/O case */
3282 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3283 #if defined(TARGET_WORDS_BIGENDIAN)
3284 if (endian == DEVICE_LITTLE_ENDIAN) {
3285 val = bswap16(val);
3287 #else
3288 if (endian == DEVICE_BIG_ENDIAN) {
3289 val = bswap16(val);
3291 #endif
3292 } else {
3293 /* RAM case */
3294 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3295 & TARGET_PAGE_MASK)
3296 + addr1);
3297 switch (endian) {
3298 case DEVICE_LITTLE_ENDIAN:
3299 val = lduw_le_p(ptr);
3300 break;
3301 case DEVICE_BIG_ENDIAN:
3302 val = lduw_be_p(ptr);
3303 break;
3304 default:
3305 val = lduw_p(ptr);
3306 break;
3308 r = MEMTX_OK;
3310 if (result) {
3311 *result = r;
3313 if (release_lock) {
3314 qemu_mutex_unlock_iothread();
3316 rcu_read_unlock();
3317 return val;
3320 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3321 MemTxAttrs attrs, MemTxResult *result)
3323 return address_space_lduw_internal(as, addr, attrs, result,
3324 DEVICE_NATIVE_ENDIAN);
3327 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3328 MemTxAttrs attrs, MemTxResult *result)
3330 return address_space_lduw_internal(as, addr, attrs, result,
3331 DEVICE_LITTLE_ENDIAN);
3334 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3335 MemTxAttrs attrs, MemTxResult *result)
3337 return address_space_lduw_internal(as, addr, attrs, result,
3338 DEVICE_BIG_ENDIAN);
3341 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3343 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3346 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3348 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3351 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3353 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3356 /* warning: addr must be aligned. The ram page is not masked as dirty
3357 and the code inside is not invalidated. It is useful if the dirty
3358 bits are used to track modified PTEs */
3359 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3360 MemTxAttrs attrs, MemTxResult *result)
3362 uint8_t *ptr;
3363 MemoryRegion *mr;
3364 hwaddr l = 4;
3365 hwaddr addr1;
3366 MemTxResult r;
3367 uint8_t dirty_log_mask;
3368 bool release_lock = false;
3370 rcu_read_lock();
3371 mr = address_space_translate(as, addr, &addr1, &l,
3372 true);
3373 if (l < 4 || !memory_access_is_direct(mr, true)) {
3374 release_lock |= prepare_mmio_access(mr);
3376 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3377 } else {
3378 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3379 ptr = qemu_get_ram_ptr(addr1);
3380 stl_p(ptr, val);
3382 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3383 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3384 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
3385 r = MEMTX_OK;
3387 if (result) {
3388 *result = r;
3390 if (release_lock) {
3391 qemu_mutex_unlock_iothread();
3393 rcu_read_unlock();
3396 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3398 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3401 /* warning: addr must be aligned */
3402 static inline void address_space_stl_internal(AddressSpace *as,
3403 hwaddr addr, uint32_t val,
3404 MemTxAttrs attrs,
3405 MemTxResult *result,
3406 enum device_endian endian)
3408 uint8_t *ptr;
3409 MemoryRegion *mr;
3410 hwaddr l = 4;
3411 hwaddr addr1;
3412 MemTxResult r;
3413 bool release_lock = false;
3415 rcu_read_lock();
3416 mr = address_space_translate(as, addr, &addr1, &l,
3417 true);
3418 if (l < 4 || !memory_access_is_direct(mr, true)) {
3419 release_lock |= prepare_mmio_access(mr);
3421 #if defined(TARGET_WORDS_BIGENDIAN)
3422 if (endian == DEVICE_LITTLE_ENDIAN) {
3423 val = bswap32(val);
3425 #else
3426 if (endian == DEVICE_BIG_ENDIAN) {
3427 val = bswap32(val);
3429 #endif
3430 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3431 } else {
3432 /* RAM case */
3433 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3434 ptr = qemu_get_ram_ptr(addr1);
3435 switch (endian) {
3436 case DEVICE_LITTLE_ENDIAN:
3437 stl_le_p(ptr, val);
3438 break;
3439 case DEVICE_BIG_ENDIAN:
3440 stl_be_p(ptr, val);
3441 break;
3442 default:
3443 stl_p(ptr, val);
3444 break;
3446 invalidate_and_set_dirty(mr, addr1, 4);
3447 r = MEMTX_OK;
3449 if (result) {
3450 *result = r;
3452 if (release_lock) {
3453 qemu_mutex_unlock_iothread();
3455 rcu_read_unlock();
3458 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3459 MemTxAttrs attrs, MemTxResult *result)
3461 address_space_stl_internal(as, addr, val, attrs, result,
3462 DEVICE_NATIVE_ENDIAN);
3465 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3466 MemTxAttrs attrs, MemTxResult *result)
3468 address_space_stl_internal(as, addr, val, attrs, result,
3469 DEVICE_LITTLE_ENDIAN);
3472 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3473 MemTxAttrs attrs, MemTxResult *result)
3475 address_space_stl_internal(as, addr, val, attrs, result,
3476 DEVICE_BIG_ENDIAN);
3479 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3481 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3484 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3486 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3489 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3491 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3494 /* XXX: optimize */
3495 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3496 MemTxAttrs attrs, MemTxResult *result)
3498 uint8_t v = val;
3499 MemTxResult r;
3501 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3502 if (result) {
3503 *result = r;
3507 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3509 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3512 /* warning: addr must be aligned */
3513 static inline void address_space_stw_internal(AddressSpace *as,
3514 hwaddr addr, uint32_t val,
3515 MemTxAttrs attrs,
3516 MemTxResult *result,
3517 enum device_endian endian)
3519 uint8_t *ptr;
3520 MemoryRegion *mr;
3521 hwaddr l = 2;
3522 hwaddr addr1;
3523 MemTxResult r;
3524 bool release_lock = false;
3526 rcu_read_lock();
3527 mr = address_space_translate(as, addr, &addr1, &l, true);
3528 if (l < 2 || !memory_access_is_direct(mr, true)) {
3529 release_lock |= prepare_mmio_access(mr);
3531 #if defined(TARGET_WORDS_BIGENDIAN)
3532 if (endian == DEVICE_LITTLE_ENDIAN) {
3533 val = bswap16(val);
3535 #else
3536 if (endian == DEVICE_BIG_ENDIAN) {
3537 val = bswap16(val);
3539 #endif
3540 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3541 } else {
3542 /* RAM case */
3543 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3544 ptr = qemu_get_ram_ptr(addr1);
3545 switch (endian) {
3546 case DEVICE_LITTLE_ENDIAN:
3547 stw_le_p(ptr, val);
3548 break;
3549 case DEVICE_BIG_ENDIAN:
3550 stw_be_p(ptr, val);
3551 break;
3552 default:
3553 stw_p(ptr, val);
3554 break;
3556 invalidate_and_set_dirty(mr, addr1, 2);
3557 r = MEMTX_OK;
3559 if (result) {
3560 *result = r;
3562 if (release_lock) {
3563 qemu_mutex_unlock_iothread();
3565 rcu_read_unlock();
3568 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3569 MemTxAttrs attrs, MemTxResult *result)
3571 address_space_stw_internal(as, addr, val, attrs, result,
3572 DEVICE_NATIVE_ENDIAN);
3575 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3576 MemTxAttrs attrs, MemTxResult *result)
3578 address_space_stw_internal(as, addr, val, attrs, result,
3579 DEVICE_LITTLE_ENDIAN);
3582 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3583 MemTxAttrs attrs, MemTxResult *result)
3585 address_space_stw_internal(as, addr, val, attrs, result,
3586 DEVICE_BIG_ENDIAN);
3589 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3591 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3594 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3596 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3599 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3601 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3604 /* XXX: optimize */
3605 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3606 MemTxAttrs attrs, MemTxResult *result)
3608 MemTxResult r;
3609 val = tswap64(val);
3610 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3611 if (result) {
3612 *result = r;
3616 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3617 MemTxAttrs attrs, MemTxResult *result)
3619 MemTxResult r;
3620 val = cpu_to_le64(val);
3621 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3622 if (result) {
3623 *result = r;
3626 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3627 MemTxAttrs attrs, MemTxResult *result)
3629 MemTxResult r;
3630 val = cpu_to_be64(val);
3631 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3632 if (result) {
3633 *result = r;
3637 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3639 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3642 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3644 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3647 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3649 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3652 /* virtual memory access for debug (includes writing to ROM) */
3653 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3654 uint8_t *buf, int len, int is_write)
3656 int l;
3657 hwaddr phys_addr;
3658 target_ulong page;
3660 while (len > 0) {
3661 int asidx;
3662 MemTxAttrs attrs;
3664 page = addr & TARGET_PAGE_MASK;
3665 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3666 asidx = cpu_asidx_from_attrs(cpu, attrs);
3667 /* if no physical page mapped, return an error */
3668 if (phys_addr == -1)
3669 return -1;
3670 l = (page + TARGET_PAGE_SIZE) - addr;
3671 if (l > len)
3672 l = len;
3673 phys_addr += (addr & ~TARGET_PAGE_MASK);
3674 if (is_write) {
3675 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3676 phys_addr, buf, l);
3677 } else {
3678 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3679 MEMTXATTRS_UNSPECIFIED,
3680 buf, l, 0);
3682 len -= l;
3683 buf += l;
3684 addr += l;
3686 return 0;
3690 * Allows code that needs to deal with migration bitmaps etc to still be built
3691 * target independent.
3693 size_t qemu_target_page_bits(void)
3695 return TARGET_PAGE_BITS;
3698 #endif
3701 * A helper function for the _utterly broken_ virtio device model to find out if
3702 * it's running on a big endian machine. Don't do this at home kids!
3704 bool target_words_bigendian(void);
3705 bool target_words_bigendian(void)
3707 #if defined(TARGET_WORDS_BIGENDIAN)
3708 return true;
3709 #else
3710 return false;
3711 #endif
3714 #ifndef CONFIG_USER_ONLY
3715 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3717 MemoryRegion*mr;
3718 hwaddr l = 1;
3719 bool res;
3721 rcu_read_lock();
3722 mr = address_space_translate(&address_space_memory,
3723 phys_addr, &phys_addr, &l, false);
3725 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3726 rcu_read_unlock();
3727 return res;
3730 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3732 RAMBlock *block;
3733 int ret = 0;
3735 rcu_read_lock();
3736 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3737 ret = func(block->idstr, block->host, block->offset,
3738 block->used_length, opaque);
3739 if (ret) {
3740 break;
3743 rcu_read_unlock();
3744 return ret;
3746 #endif