4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
33 static inline void set_feature(CPUARMState
*env
, int feature
)
35 env
->features
|= 1ULL << feature
;
38 static inline void unset_feature(CPUARMState
*env
, int feature
)
40 env
->features
&= ~(1ULL << feature
);
43 #ifndef CONFIG_USER_ONLY
44 static uint64_t a57_a53_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
46 ARMCPU
*cpu
= arm_env_get_cpu(env
);
48 /* Number of cores is in [25:24]; otherwise we RAZ */
49 return (cpu
->core_count
- 1) << 24;
53 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo
[] = {
54 #ifndef CONFIG_USER_ONLY
55 { .name
= "L2CTLR_EL1", .state
= ARM_CP_STATE_AA64
,
56 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 2,
57 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
58 .writefn
= arm_cp_write_ignore
},
60 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 2,
61 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
62 .writefn
= arm_cp_write_ignore
},
64 { .name
= "L2ECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
65 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 3,
66 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
68 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 3,
69 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
70 { .name
= "L2ACTLR", .state
= ARM_CP_STATE_BOTH
,
71 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 0, .opc2
= 0,
72 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
73 { .name
= "CPUACTLR_EL1", .state
= ARM_CP_STATE_AA64
,
74 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 0,
75 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
77 .cp
= 15, .opc1
= 0, .crm
= 15,
78 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
79 { .name
= "CPUECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
80 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 1,
81 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
83 .cp
= 15, .opc1
= 1, .crm
= 15,
84 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
85 { .name
= "CPUMERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
86 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 2,
87 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
88 { .name
= "CPUMERRSR",
89 .cp
= 15, .opc1
= 2, .crm
= 15,
90 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
91 { .name
= "L2MERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
92 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 3,
93 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
95 .cp
= 15, .opc1
= 3, .crm
= 15,
96 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
100 static void aarch64_a57_initfn(Object
*obj
)
102 ARMCPU
*cpu
= ARM_CPU(obj
);
104 cpu
->dtb_compatible
= "arm,cortex-a57";
105 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
106 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
107 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
108 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
109 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
110 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
111 set_feature(&cpu
->env
, ARM_FEATURE_V8_AES
);
112 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA1
);
113 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA256
);
114 set_feature(&cpu
->env
, ARM_FEATURE_V8_PMULL
);
115 set_feature(&cpu
->env
, ARM_FEATURE_CRC
);
116 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
117 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
118 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
119 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A57
;
120 cpu
->midr
= 0x411fd070;
121 cpu
->revidr
= 0x00000000;
122 cpu
->reset_fpsid
= 0x41034070;
123 cpu
->mvfr0
= 0x10110222;
124 cpu
->mvfr1
= 0x12111111;
125 cpu
->mvfr2
= 0x00000043;
126 cpu
->ctr
= 0x8444c004;
127 cpu
->reset_sctlr
= 0x00c50838;
128 cpu
->id_pfr0
= 0x00000131;
129 cpu
->id_pfr1
= 0x00011011;
130 cpu
->id_dfr0
= 0x03010066;
131 cpu
->id_afr0
= 0x00000000;
132 cpu
->id_mmfr0
= 0x10101105;
133 cpu
->id_mmfr1
= 0x40000000;
134 cpu
->id_mmfr2
= 0x01260000;
135 cpu
->id_mmfr3
= 0x02102211;
136 cpu
->id_isar0
= 0x02101110;
137 cpu
->id_isar1
= 0x13112111;
138 cpu
->id_isar2
= 0x21232042;
139 cpu
->id_isar3
= 0x01112131;
140 cpu
->id_isar4
= 0x00011142;
141 cpu
->id_isar5
= 0x00011121;
142 cpu
->id_aa64pfr0
= 0x00002222;
143 cpu
->id_aa64dfr0
= 0x10305106;
144 cpu
->pmceid0
= 0x00000000;
145 cpu
->pmceid1
= 0x00000000;
146 cpu
->id_aa64isar0
= 0x00011120;
147 cpu
->id_aa64mmfr0
= 0x00001124;
148 cpu
->dbgdidr
= 0x3516d000;
149 cpu
->clidr
= 0x0a200023;
150 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
151 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
152 cpu
->ccsidr
[2] = 0x70ffe07a; /* 2048KB L2 cache */
153 cpu
->dcz_blocksize
= 4; /* 64 bytes */
154 cpu
->gic_num_lrs
= 4;
155 cpu
->gic_vpribits
= 5;
156 cpu
->gic_vprebits
= 5;
157 define_arm_cp_regs(cpu
, cortex_a57_a53_cp_reginfo
);
160 static void aarch64_a53_initfn(Object
*obj
)
162 ARMCPU
*cpu
= ARM_CPU(obj
);
164 cpu
->dtb_compatible
= "arm,cortex-a53";
165 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
166 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
167 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
168 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
169 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
170 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
171 set_feature(&cpu
->env
, ARM_FEATURE_V8_AES
);
172 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA1
);
173 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA256
);
174 set_feature(&cpu
->env
, ARM_FEATURE_V8_PMULL
);
175 set_feature(&cpu
->env
, ARM_FEATURE_CRC
);
176 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
177 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
178 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
179 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A53
;
180 cpu
->midr
= 0x410fd034;
181 cpu
->revidr
= 0x00000000;
182 cpu
->reset_fpsid
= 0x41034070;
183 cpu
->mvfr0
= 0x10110222;
184 cpu
->mvfr1
= 0x12111111;
185 cpu
->mvfr2
= 0x00000043;
186 cpu
->ctr
= 0x84448004; /* L1Ip = VIPT */
187 cpu
->reset_sctlr
= 0x00c50838;
188 cpu
->id_pfr0
= 0x00000131;
189 cpu
->id_pfr1
= 0x00011011;
190 cpu
->id_dfr0
= 0x03010066;
191 cpu
->id_afr0
= 0x00000000;
192 cpu
->id_mmfr0
= 0x10101105;
193 cpu
->id_mmfr1
= 0x40000000;
194 cpu
->id_mmfr2
= 0x01260000;
195 cpu
->id_mmfr3
= 0x02102211;
196 cpu
->id_isar0
= 0x02101110;
197 cpu
->id_isar1
= 0x13112111;
198 cpu
->id_isar2
= 0x21232042;
199 cpu
->id_isar3
= 0x01112131;
200 cpu
->id_isar4
= 0x00011142;
201 cpu
->id_isar5
= 0x00011121;
202 cpu
->id_aa64pfr0
= 0x00002222;
203 cpu
->id_aa64dfr0
= 0x10305106;
204 cpu
->id_aa64isar0
= 0x00011120;
205 cpu
->id_aa64mmfr0
= 0x00001122; /* 40 bit physical addr */
206 cpu
->dbgdidr
= 0x3516d000;
207 cpu
->clidr
= 0x0a200023;
208 cpu
->ccsidr
[0] = 0x700fe01a; /* 32KB L1 dcache */
209 cpu
->ccsidr
[1] = 0x201fe00a; /* 32KB L1 icache */
210 cpu
->ccsidr
[2] = 0x707fe07a; /* 1024KB L2 cache */
211 cpu
->dcz_blocksize
= 4; /* 64 bytes */
212 cpu
->gic_num_lrs
= 4;
213 cpu
->gic_vpribits
= 5;
214 cpu
->gic_vprebits
= 5;
215 define_arm_cp_regs(cpu
, cortex_a57_a53_cp_reginfo
);
218 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
219 * otherwise, a CPU with as many features enabled as our emulation supports.
220 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
221 * this only needs to handle 64 bits.
223 static void aarch64_max_initfn(Object
*obj
)
225 ARMCPU
*cpu
= ARM_CPU(obj
);
228 kvm_arm_set_cpu_features_from_host(cpu
);
230 aarch64_a57_initfn(obj
);
231 #ifdef CONFIG_USER_ONLY
232 /* We don't set these in system emulation mode for the moment,
233 * since we don't correctly set the ID registers to advertise them,
234 * and in some cases they're only available in AArch64 and not AArch32,
235 * whereas the architecture requires them to be present in both if
238 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
239 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
240 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
241 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
242 set_feature(&cpu
->env
, ARM_FEATURE_V8_AES
);
243 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA1
);
244 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA256
);
245 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA512
);
246 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA3
);
247 set_feature(&cpu
->env
, ARM_FEATURE_V8_SM3
);
248 set_feature(&cpu
->env
, ARM_FEATURE_V8_SM4
);
249 set_feature(&cpu
->env
, ARM_FEATURE_V8_PMULL
);
250 set_feature(&cpu
->env
, ARM_FEATURE_CRC
);
251 set_feature(&cpu
->env
, ARM_FEATURE_V8_RDM
);
252 set_feature(&cpu
->env
, ARM_FEATURE_V8_FP16
);
253 set_feature(&cpu
->env
, ARM_FEATURE_V8_FCMA
);
254 /* For usermode -cpu max we can use a larger and more efficient DCZ
255 * blocksize since we don't have to follow what the hardware does.
257 cpu
->ctr
= 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
258 cpu
->dcz_blocksize
= 7; /* 512 bytes */
263 typedef struct ARMCPUInfo
{
265 void (*initfn
)(Object
*obj
);
266 void (*class_init
)(ObjectClass
*oc
, void *data
);
269 static const ARMCPUInfo aarch64_cpus
[] = {
270 { .name
= "cortex-a57", .initfn
= aarch64_a57_initfn
},
271 { .name
= "cortex-a53", .initfn
= aarch64_a53_initfn
},
272 { .name
= "max", .initfn
= aarch64_max_initfn
},
276 static bool aarch64_cpu_get_aarch64(Object
*obj
, Error
**errp
)
278 ARMCPU
*cpu
= ARM_CPU(obj
);
280 return arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
283 static void aarch64_cpu_set_aarch64(Object
*obj
, bool value
, Error
**errp
)
285 ARMCPU
*cpu
= ARM_CPU(obj
);
287 /* At this time, this property is only allowed if KVM is enabled. This
288 * restriction allows us to avoid fixing up functionality that assumes a
289 * uniform execution state like do_interrupt.
291 if (!kvm_enabled()) {
292 error_setg(errp
, "'aarch64' feature cannot be disabled "
293 "unless KVM is enabled");
297 if (value
== false) {
298 unset_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
300 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
304 static void aarch64_cpu_initfn(Object
*obj
)
306 object_property_add_bool(obj
, "aarch64", aarch64_cpu_get_aarch64
,
307 aarch64_cpu_set_aarch64
, NULL
);
308 object_property_set_description(obj
, "aarch64",
309 "Set on/off to enable/disable aarch64 "
314 static void aarch64_cpu_finalizefn(Object
*obj
)
318 static void aarch64_cpu_set_pc(CPUState
*cs
, vaddr value
)
320 ARMCPU
*cpu
= ARM_CPU(cs
);
321 /* It's OK to look at env for the current mode here, because it's
322 * never possible for an AArch64 TB to chain to an AArch32 TB.
323 * (Otherwise we would need to use synchronize_from_tb instead.)
325 if (is_a64(&cpu
->env
)) {
328 cpu
->env
.regs
[15] = value
;
332 static gchar
*aarch64_gdb_arch_name(CPUState
*cs
)
334 return g_strdup("aarch64");
337 static void aarch64_cpu_class_init(ObjectClass
*oc
, void *data
)
339 CPUClass
*cc
= CPU_CLASS(oc
);
341 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
342 cc
->set_pc
= aarch64_cpu_set_pc
;
343 cc
->gdb_read_register
= aarch64_cpu_gdb_read_register
;
344 cc
->gdb_write_register
= aarch64_cpu_gdb_write_register
;
345 cc
->gdb_num_core_regs
= 34;
346 cc
->gdb_core_xml_file
= "aarch64-core.xml";
347 cc
->gdb_arch_name
= aarch64_gdb_arch_name
;
350 static void aarch64_cpu_register(const ARMCPUInfo
*info
)
352 TypeInfo type_info
= {
353 .parent
= TYPE_AARCH64_CPU
,
354 .instance_size
= sizeof(ARMCPU
),
355 .instance_init
= info
->initfn
,
356 .class_size
= sizeof(ARMCPUClass
),
357 .class_init
= info
->class_init
,
360 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
361 type_register(&type_info
);
362 g_free((void *)type_info
.name
);
365 static const TypeInfo aarch64_cpu_type_info
= {
366 .name
= TYPE_AARCH64_CPU
,
367 .parent
= TYPE_ARM_CPU
,
368 .instance_size
= sizeof(ARMCPU
),
369 .instance_init
= aarch64_cpu_initfn
,
370 .instance_finalize
= aarch64_cpu_finalizefn
,
372 .class_size
= sizeof(AArch64CPUClass
),
373 .class_init
= aarch64_cpu_class_init
,
376 static void aarch64_cpu_register_types(void)
378 const ARMCPUInfo
*info
= aarch64_cpus
;
380 type_register_static(&aarch64_cpu_type_info
);
383 aarch64_cpu_register(info
);
388 type_init(aarch64_cpu_register_types
)
390 /* The manual says that when SVE is enabled and VQ is widened the
391 * implementation is allowed to zero the previously inaccessible
392 * portion of the registers. The corollary to that is that when
393 * SVE is enabled and VQ is narrowed we are also allowed to zero
394 * the now inaccessible portion of the registers.
396 * The intent of this is that no predicate bit beyond VQ is ever set.
397 * Which means that some operations on predicate registers themselves
398 * may operate on full uint64_t or even unrolled across the maximum
399 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
400 * may well be cheaper than conditionals to restrict the operation
401 * to the relevant portion of a uint16_t[16].
403 * TODO: Need to call this for changes to the real system registers
404 * and EL state changes.
406 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
411 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
413 /* Zap the high bits of the zregs. */
414 for (i
= 0; i
< 32; i
++) {
415 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
418 /* Zap the high bits of the pregs and ffr. */
421 pmask
= ~(-1ULL << (16 * (vq
& 3)));
423 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
424 for (i
= 0; i
< 17; ++i
) {
425 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;