pseries: do not allow memory-less/cpu-less NUMA node
[qemu/ar7.git] / hw / ppc / spapr.c
blobf976d76ecaad8b970c9c21c7b6d5748bba9cedd3
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include <libfdt.h>
86 /* SLOF memory layout:
88 * SLOF raw image loaded at 0, copies its romfs right below the flat
89 * device-tree, then position SLOF itself 31M below that
91 * So we set FW_OVERHEAD to 40MB which should account for all of that
92 * and more
94 * We load our kernel at 4M, leaving space for SLOF initial image
96 #define FDT_MAX_SIZE 0x100000
97 #define RTAS_MAX_SIZE 0x10000
98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE 0x400000
100 #define FW_FILE_NAME "slof.bin"
101 #define FW_OVERHEAD 0x2800000
102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
104 #define MIN_RMA_SLOF 128UL
106 #define PHANDLE_INTC 0x00001111
108 /* These two functions implement the VCPU id numbering: one to compute them
109 * all and one to identify thread 0 of a VCORE. Any change to the first one
110 * is likely to have an impact on the second one, so let's keep them close.
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 MachineState *ms = MACHINE(spapr);
115 unsigned int smp_threads = ms->smp.threads;
117 assert(spapr->vsmt);
118 return
119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122 PowerPCCPU *cpu)
124 assert(spapr->vsmt);
125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
134 return false;
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138 .name = "icp/server",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = pre_2_10_vmstate_dummy_icp_needed,
142 .fields = (VMStateField[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153 (void *)(uintptr_t) i);
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
162 int spapr_max_server_number(SpaprMachineState *spapr)
164 MachineState *ms = MACHINE(spapr);
166 assert(spapr->vsmt);
167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171 int smt_threads)
173 int i, ret = 0;
174 uint32_t servers_prop[smt_threads];
175 uint32_t gservers_prop[smt_threads * 2];
176 int index = spapr_get_vcpu_id(cpu);
178 if (cpu->compat_pvr) {
179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180 if (ret < 0) {
181 return ret;
185 /* Build interrupt servers and gservers properties */
186 for (i = 0; i < smt_threads; i++) {
187 servers_prop[i] = cpu_to_be32(index + i);
188 /* Hack, direct the group queues back to cpu 0 */
189 gservers_prop[i*2] = cpu_to_be32(index + i);
190 gservers_prop[i*2 + 1] = 0;
192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193 servers_prop, sizeof(servers_prop));
194 if (ret < 0) {
195 return ret;
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198 gservers_prop, sizeof(gservers_prop));
200 return ret;
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 int index = spapr_get_vcpu_id(cpu);
206 uint32_t associativity[] = {cpu_to_be32(0x5),
207 cpu_to_be32(0x0),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(cpu->node_id),
211 cpu_to_be32(index)};
213 /* Advertise NUMA via ibm,associativity */
214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215 sizeof(associativity));
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset,
222 bool legacy_guest)
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
271 if (!pa_features) {
272 return;
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
283 pa_features[3] |= 0x20;
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
288 if (legacy_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
300 MachineState *ms = MACHINE(spapr);
301 int ret = 0, offset, cpus_offset;
302 CPUState *cs;
303 char cpu_model[32];
304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
306 CPU_FOREACH(cs) {
307 PowerPCCPU *cpu = POWERPC_CPU(cs);
308 DeviceClass *dc = DEVICE_GET_CLASS(cs);
309 int index = spapr_get_vcpu_id(cpu);
310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
313 continue;
316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
318 cpus_offset = fdt_path_offset(fdt, "/cpus");
319 if (cpus_offset < 0) {
320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
321 if (cpus_offset < 0) {
322 return cpus_offset;
325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326 if (offset < 0) {
327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
328 if (offset < 0) {
329 return offset;
333 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
334 pft_size_prop, sizeof(pft_size_prop));
335 if (ret < 0) {
336 return ret;
339 if (ms->numa_state->num_nodes > 1) {
340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
341 if (ret < 0) {
342 return ret;
346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
347 if (ret < 0) {
348 return ret;
351 spapr_populate_pa_features(spapr, cpu, fdt, offset,
352 spapr->cas_legacy_guest_workaround);
354 return ret;
357 static hwaddr spapr_node0_size(MachineState *machine)
359 if (machine->numa_state->num_nodes) {
360 int i;
361 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
362 if (machine->numa_state->nodes[i].node_mem) {
363 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
364 machine->ram_size);
368 return machine->ram_size;
371 static void add_str(GString *s, const gchar *s1)
373 g_string_append_len(s, s1, strlen(s1) + 1);
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377 hwaddr size)
379 uint32_t associativity[] = {
380 cpu_to_be32(0x4), /* length */
381 cpu_to_be32(0x0), cpu_to_be32(0x0),
382 cpu_to_be32(0x0), cpu_to_be32(nodeid)
384 char mem_name[32];
385 uint64_t mem_reg_property[2];
386 int off;
388 mem_reg_property[0] = cpu_to_be64(start);
389 mem_reg_property[1] = cpu_to_be64(size);
391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392 off = fdt_add_subnode(fdt, 0, mem_name);
393 _FDT(off);
394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396 sizeof(mem_reg_property))));
397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398 sizeof(associativity))));
399 return off;
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
404 MachineState *machine = MACHINE(spapr);
405 hwaddr mem_start, node_size;
406 int i, nb_nodes = machine->numa_state->num_nodes;
407 NodeInfo *nodes = machine->numa_state->nodes;
408 NodeInfo ramnode;
410 /* No NUMA nodes, assume there is just one node with whole RAM */
411 if (!nb_nodes) {
412 nb_nodes = 1;
413 ramnode.node_mem = machine->ram_size;
414 nodes = &ramnode;
417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418 if (!nodes[i].node_mem) {
419 continue;
421 if (mem_start >= machine->ram_size) {
422 node_size = 0;
423 } else {
424 node_size = nodes[i].node_mem;
425 if (node_size > machine->ram_size - mem_start) {
426 node_size = machine->ram_size - mem_start;
429 if (!mem_start) {
430 /* spapr_machine_init() checks for rma_size <= node0_size
431 * already */
432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433 mem_start += spapr->rma_size;
434 node_size -= spapr->rma_size;
436 for ( ; node_size; ) {
437 hwaddr sizetmp = pow2floor(node_size);
439 /* mem_start != 0 here */
440 if (ctzl(mem_start) < ctzl(sizetmp)) {
441 sizetmp = 1ULL << ctzl(mem_start);
444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445 node_size -= sizetmp;
446 mem_start += sizetmp;
450 return 0;
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454 SpaprMachineState *spapr)
456 MachineState *ms = MACHINE(spapr);
457 PowerPCCPU *cpu = POWERPC_CPU(cs);
458 CPUPPCState *env = &cpu->env;
459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460 int index = spapr_get_vcpu_id(cpu);
461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462 0xffffffff, 0xffffffff};
463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464 : SPAPR_TIMEBASE_FREQ;
465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466 uint32_t page_sizes_prop[64];
467 size_t page_sizes_prop_size;
468 unsigned int smp_threads = ms->smp.threads;
469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472 SpaprDrc *drc;
473 int drc_index;
474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475 int i;
477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478 if (drc) {
479 drc_index = spapr_drc_index(drc);
480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488 env->dcache_line_size)));
489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490 env->dcache_line_size)));
491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492 env->icache_line_size)));
493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494 env->icache_line_size)));
496 if (pcc->l1_dcache_size) {
497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498 pcc->l1_dcache_size)));
499 } else {
500 warn_report("Unknown L1 dcache size for cpu");
502 if (pcc->l1_icache_size) {
503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504 pcc->l1_icache_size)));
505 } else {
506 warn_report("Unknown L1 icache size for cpu");
509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
516 if (env->spr_cb[SPR_PURR].oea_read) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
519 if (env->spr_cb[SPR_SPURR].oea_read) {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525 segs, sizeof(segs))));
528 /* Advertise VSX (vector extensions) if available
529 * 1 == VMX / Altivec available
530 * 2 == VSX available
532 * Only CPUs for which we create core types in spapr_cpu_core.c
533 * are possible, and all of those have VMX */
534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536 } else {
537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
540 /* Advertise DFP (Decimal Floating Point) if available
541 * 0 / no property == no DFP
542 * 1 == DFP available */
543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548 sizeof(page_sizes_prop));
549 if (page_sizes_prop_size) {
550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551 page_sizes_prop, page_sizes_prop_size)));
554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557 cs->cpu_index / vcpus_per_socket)));
559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560 pft_size_prop, sizeof(pft_size_prop))));
562 if (ms->numa_state->num_nodes > 1) {
563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
568 if (pcc->radix_page_info) {
569 for (i = 0; i < pcc->radix_page_info->count; i++) {
570 radix_AP_encodings[i] =
571 cpu_to_be32(pcc->radix_page_info->entries[i]);
573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574 radix_AP_encodings,
575 pcc->radix_page_info->count *
576 sizeof(radix_AP_encodings[0]))));
580 * We set this property to let the guest know that it can use the large
581 * decrementer and its width in bits.
583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585 pcc->lrg_decr_bits)));
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
590 CPUState **rev;
591 CPUState *cs;
592 int n_cpus;
593 int cpus_offset;
594 char *nodename;
595 int i;
597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598 _FDT(cpus_offset);
599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
603 * We walk the CPUs in reverse order to ensure that CPU DT nodes
604 * created by fdt_add_subnode() end up in the right order in FDT
605 * for the guest kernel the enumerate the CPUs correctly.
607 * The CPU list cannot be traversed in reverse order, so we need
608 * to do extra work.
610 n_cpus = 0;
611 rev = NULL;
612 CPU_FOREACH(cs) {
613 rev = g_renew(CPUState *, rev, n_cpus + 1);
614 rev[n_cpus++] = cs;
617 for (i = n_cpus - 1; i >= 0; i--) {
618 CPUState *cs = rev[i];
619 PowerPCCPU *cpu = POWERPC_CPU(cs);
620 int index = spapr_get_vcpu_id(cpu);
621 DeviceClass *dc = DEVICE_GET_CLASS(cs);
622 int offset;
624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625 continue;
628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630 g_free(nodename);
631 _FDT(offset);
632 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
635 g_free(rev);
638 static int spapr_rng_populate_dt(void *fdt)
640 int node;
641 int ret;
643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644 if (node <= 0) {
645 return -1;
647 ret = fdt_setprop_string(fdt, node, "device_type",
648 "ibm,platform-facilities");
649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
652 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653 if (node <= 0) {
654 return -1;
656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
658 return ret ? -1 : 0;
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
663 MemoryDeviceInfoList *info;
665 for (info = list; info; info = info->next) {
666 MemoryDeviceInfo *value = info->value;
668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
671 if (addr >= pcdimm_info->addr &&
672 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673 return pcdimm_info->node;
678 return -1;
681 struct sPAPRDrconfCellV2 {
682 uint32_t seq_lmbs;
683 uint64_t base_addr;
684 uint32_t drc_index;
685 uint32_t aa_index;
686 uint32_t flags;
687 } QEMU_PACKED;
689 typedef struct DrconfCellQueue {
690 struct sPAPRDrconfCellV2 cell;
691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696 uint32_t drc_index, uint32_t aa_index,
697 uint32_t flags)
699 DrconfCellQueue *elem;
701 elem = g_malloc0(sizeof(*elem));
702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703 elem->cell.base_addr = cpu_to_be64(base_addr);
704 elem->cell.drc_index = cpu_to_be32(drc_index);
705 elem->cell.aa_index = cpu_to_be32(aa_index);
706 elem->cell.flags = cpu_to_be32(flags);
708 return elem;
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713 int offset, MemoryDeviceInfoList *dimms)
715 MachineState *machine = MACHINE(spapr);
716 uint8_t *int_buf, *cur_index;
717 int ret;
718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719 uint64_t addr, cur_addr, size;
720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721 uint64_t mem_end = machine->device_memory->base +
722 memory_region_size(&machine->device_memory->mr);
723 uint32_t node, buf_len, nr_entries = 0;
724 SpaprDrc *drc;
725 DrconfCellQueue *elem, *next;
726 MemoryDeviceInfoList *info;
727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
730 /* Entry to cover RAM and the gap area */
731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732 SPAPR_LMB_FLAGS_RESERVED |
733 SPAPR_LMB_FLAGS_DRC_INVALID);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
737 cur_addr = machine->device_memory->base;
738 for (info = dimms; info; info = info->next) {
739 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
741 addr = di->addr;
742 size = di->size;
743 node = di->node;
745 /* Entry for hot-pluggable area */
746 if (cur_addr < addr) {
747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748 g_assert(drc);
749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750 cur_addr, spapr_drc_index(drc), -1, 0);
751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752 nr_entries++;
755 /* Entry for DIMM */
756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757 g_assert(drc);
758 elem = spapr_get_drconf_cell(size / lmb_size, addr,
759 spapr_drc_index(drc), node,
760 SPAPR_LMB_FLAGS_ASSIGNED);
761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762 nr_entries++;
763 cur_addr = addr + size;
766 /* Entry for remaining hotpluggable area */
767 if (cur_addr < mem_end) {
768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769 g_assert(drc);
770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771 cur_addr, spapr_drc_index(drc), -1, 0);
772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773 nr_entries++;
776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777 int_buf = cur_index = g_malloc0(buf_len);
778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779 cur_index += sizeof(nr_entries);
781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783 cur_index += sizeof(elem->cell);
784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785 g_free(elem);
788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789 g_free(int_buf);
790 if (ret < 0) {
791 return -1;
793 return 0;
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798 int offset, MemoryDeviceInfoList *dimms)
800 MachineState *machine = MACHINE(spapr);
801 int i, ret;
802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804 uint32_t nr_lmbs = (machine->device_memory->base +
805 memory_region_size(&machine->device_memory->mr)) /
806 lmb_size;
807 uint32_t *int_buf, *cur_index, buf_len;
810 * Allocate enough buffer size to fit in ibm,dynamic-memory
812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813 cur_index = int_buf = g_malloc0(buf_len);
814 int_buf[0] = cpu_to_be32(nr_lmbs);
815 cur_index++;
816 for (i = 0; i < nr_lmbs; i++) {
817 uint64_t addr = i * lmb_size;
818 uint32_t *dynamic_memory = cur_index;
820 if (i >= device_lmb_start) {
821 SpaprDrc *drc;
823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824 g_assert(drc);
826 dynamic_memory[0] = cpu_to_be32(addr >> 32);
827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831 if (memory_region_present(get_system_memory(), addr)) {
832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833 } else {
834 dynamic_memory[5] = cpu_to_be32(0);
836 } else {
838 * LMB information for RMA, boot time RAM and gap b/n RAM and
839 * device memory region -- all these are marked as reserved
840 * and as having no valid DRC.
842 dynamic_memory[0] = cpu_to_be32(addr >> 32);
843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844 dynamic_memory[2] = cpu_to_be32(0);
845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846 dynamic_memory[4] = cpu_to_be32(-1);
847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848 SPAPR_LMB_FLAGS_DRC_INVALID);
851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854 g_free(int_buf);
855 if (ret < 0) {
856 return -1;
858 return 0;
862 * Adds ibm,dynamic-reconfiguration-memory node.
863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864 * of this device tree node.
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
868 MachineState *machine = MACHINE(spapr);
869 int nb_numa_nodes = machine->numa_state->num_nodes;
870 int ret, i, offset;
871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
873 uint32_t *int_buf, *cur_index, buf_len;
874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
875 MemoryDeviceInfoList *dimms = NULL;
878 * Don't create the node if there is no device memory
880 if (machine->ram_size == machine->maxram_size) {
881 return 0;
884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
887 sizeof(prop_lmb_size));
888 if (ret < 0) {
889 return ret;
892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
893 if (ret < 0) {
894 return ret;
897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
898 if (ret < 0) {
899 return ret;
902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
903 dimms = qmp_memory_device_list();
904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
906 } else {
907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
909 qapi_free_MemoryDeviceInfoList(dimms);
911 if (ret < 0) {
912 return ret;
915 /* ibm,associativity-lookup-arrays */
916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
917 cur_index = int_buf = g_malloc0(buf_len);
918 int_buf[0] = cpu_to_be32(nr_nodes);
919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
920 cur_index += 2;
921 for (i = 0; i < nr_nodes; i++) {
922 uint32_t associativity[] = {
923 cpu_to_be32(0x0),
924 cpu_to_be32(0x0),
925 cpu_to_be32(0x0),
926 cpu_to_be32(i)
928 memcpy(cur_index, associativity, sizeof(associativity));
929 cur_index += 4;
931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
932 (cur_index - int_buf) * sizeof(uint32_t));
933 g_free(int_buf);
935 return ret;
938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
939 SpaprOptionVector *ov5_updates)
941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942 int ret = 0, offset;
944 /* Generate ibm,dynamic-reconfiguration-memory node if required */
945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
946 g_assert(smc->dr_lmb_enabled);
947 ret = spapr_populate_drconf_memory(spapr, fdt);
948 if (ret) {
949 goto out;
953 offset = fdt_path_offset(fdt, "/chosen");
954 if (offset < 0) {
955 offset = fdt_add_subnode(fdt, 0, "chosen");
956 if (offset < 0) {
957 return offset;
960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
961 "ibm,architecture-vec-5");
963 out:
964 return ret;
967 static bool spapr_hotplugged_dev_before_cas(void)
969 Object *drc_container, *obj;
970 ObjectProperty *prop;
971 ObjectPropertyIterator iter;
973 drc_container = container_get(object_get_root(), "/dr-connector");
974 object_property_iter_init(&iter, drc_container);
975 while ((prop = object_property_iter_next(&iter))) {
976 if (!strstart(prop->type, "link<", NULL)) {
977 continue;
979 obj = object_property_get_link(drc_container, prop->name, NULL);
980 if (spapr_drc_needed(obj)) {
981 return true;
984 return false;
987 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
988 target_ulong addr, target_ulong size,
989 SpaprOptionVector *ov5_updates)
991 void *fdt, *fdt_skel;
992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
994 if (spapr_hotplugged_dev_before_cas()) {
995 return 1;
998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
999 error_report("SLOF provided an unexpected CAS buffer size "
1000 TARGET_FMT_lu " (min: %zu, max: %u)",
1001 size, sizeof(hdr), FW_MAX_SIZE);
1002 exit(EXIT_FAILURE);
1005 size -= sizeof(hdr);
1007 /* Create skeleton */
1008 fdt_skel = g_malloc0(size);
1009 _FDT((fdt_create(fdt_skel, size)));
1010 _FDT((fdt_finish_reservemap(fdt_skel)));
1011 _FDT((fdt_begin_node(fdt_skel, "")));
1012 _FDT((fdt_end_node(fdt_skel)));
1013 _FDT((fdt_finish(fdt_skel)));
1014 fdt = g_malloc0(size);
1015 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016 g_free(fdt_skel);
1018 /* Fixup cpu nodes */
1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1022 return -1;
1025 /* Pack resulting tree */
1026 _FDT((fdt_pack(fdt)));
1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1029 trace_spapr_cas_failed(size);
1030 return -1;
1033 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1034 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1035 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1036 g_free(fdt);
1038 return 0;
1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1043 MachineState *ms = MACHINE(spapr);
1044 int rtas;
1045 GString *hypertas = g_string_sized_new(256);
1046 GString *qemu_hypertas = g_string_sized_new(256);
1047 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1048 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1049 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1050 uint32_t lrdr_capacity[] = {
1051 cpu_to_be32(max_device_addr >> 32),
1052 cpu_to_be32(max_device_addr & 0xffffffff),
1053 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1054 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1056 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1057 uint32_t maxdomains[] = {
1058 cpu_to_be32(4),
1059 maxdomain,
1060 maxdomain,
1061 maxdomain,
1062 cpu_to_be32(spapr->gpu_numa_id),
1065 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1067 /* hypertas */
1068 add_str(hypertas, "hcall-pft");
1069 add_str(hypertas, "hcall-term");
1070 add_str(hypertas, "hcall-dabr");
1071 add_str(hypertas, "hcall-interrupt");
1072 add_str(hypertas, "hcall-tce");
1073 add_str(hypertas, "hcall-vio");
1074 add_str(hypertas, "hcall-splpar");
1075 add_str(hypertas, "hcall-join");
1076 add_str(hypertas, "hcall-bulk");
1077 add_str(hypertas, "hcall-set-mode");
1078 add_str(hypertas, "hcall-sprg0");
1079 add_str(hypertas, "hcall-copy");
1080 add_str(hypertas, "hcall-debug");
1081 add_str(hypertas, "hcall-vphn");
1082 add_str(qemu_hypertas, "hcall-memop1");
1084 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1085 add_str(hypertas, "hcall-multi-tce");
1088 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1089 add_str(hypertas, "hcall-hpt-resize");
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1093 hypertas->str, hypertas->len));
1094 g_string_free(hypertas, TRUE);
1095 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1096 qemu_hypertas->str, qemu_hypertas->len));
1097 g_string_free(qemu_hypertas, TRUE);
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1100 refpoints, sizeof(refpoints)));
1102 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1103 maxdomains, sizeof(maxdomains)));
1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1106 RTAS_ERROR_LOG_MAX));
1107 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1108 RTAS_EVENT_SCAN_RATE));
1110 g_assert(msi_nonbroken);
1111 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1114 * According to PAPR, rtas ibm,os-term does not guarantee a return
1115 * back to the guest cpu.
1117 * While an additional ibm,extended-os-term property indicates
1118 * that rtas call return will always occur. Set this property.
1120 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1122 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1123 lrdr_capacity, sizeof(lrdr_capacity)));
1125 spapr_dt_rtas_tokens(fdt, rtas);
1129 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1130 * and the XIVE features that the guest may request and thus the valid
1131 * values for bytes 23..26 of option vector 5:
1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1134 int chosen)
1136 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1138 char val[2 * 4] = {
1139 23, spapr->irq->ov5, /* Xive mode. */
1140 24, 0x00, /* Hash/Radix, filled in below. */
1141 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1142 26, 0x40, /* Radix options: GTSE == yes. */
1145 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1146 first_ppc_cpu->compat_pvr)) {
1148 * If we're in a pre POWER9 compat mode then the guest should
1149 * do hash and use the legacy interrupt mode
1151 val[1] = 0x00; /* XICS */
1152 val[3] = 0x00; /* Hash */
1153 } else if (kvm_enabled()) {
1154 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1155 val[3] = 0x80; /* OV5_MMU_BOTH */
1156 } else if (kvmppc_has_cap_mmu_radix()) {
1157 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1158 } else {
1159 val[3] = 0x00; /* Hash */
1161 } else {
1162 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1163 val[3] = 0xC0;
1165 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1166 val, sizeof(val)));
1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1171 MachineState *machine = MACHINE(spapr);
1172 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1173 int chosen;
1174 const char *boot_device = machine->boot_order;
1175 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1176 size_t cb = 0;
1177 char *bootlist = get_boot_devices_list(&cb);
1179 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1181 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1182 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1183 spapr->initrd_base));
1184 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1185 spapr->initrd_base + spapr->initrd_size));
1187 if (spapr->kernel_size) {
1188 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1189 cpu_to_be64(spapr->kernel_size) };
1191 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1192 &kprop, sizeof(kprop)));
1193 if (spapr->kernel_le) {
1194 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1197 if (boot_menu) {
1198 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1202 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1204 if (cb && bootlist) {
1205 int i;
1207 for (i = 0; i < cb; i++) {
1208 if (bootlist[i] == '\n') {
1209 bootlist[i] = ' ';
1212 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1215 if (boot_device && strlen(boot_device)) {
1216 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1219 if (!spapr->has_graphics && stdout_path) {
1221 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1222 * kernel. New platforms should only use the "stdout-path" property. Set
1223 * the new property and continue using older property to remain
1224 * compatible with the existing firmware.
1226 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1227 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1230 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1231 if (smc->linux_pci_probe) {
1232 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1235 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1237 g_free(stdout_path);
1238 g_free(bootlist);
1241 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1243 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1244 * KVM to work under pHyp with some guest co-operation */
1245 int hypervisor;
1246 uint8_t hypercall[16];
1248 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1249 /* indicate KVM hypercall interface */
1250 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1251 if (kvmppc_has_cap_fixup_hcalls()) {
1253 * Older KVM versions with older guest kernels were broken
1254 * with the magic page, don't allow the guest to map it.
1256 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1257 sizeof(hypercall))) {
1258 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1259 hypercall, sizeof(hypercall)));
1264 static void *spapr_build_fdt(SpaprMachineState *spapr)
1266 MachineState *machine = MACHINE(spapr);
1267 MachineClass *mc = MACHINE_GET_CLASS(machine);
1268 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1269 int ret;
1270 void *fdt;
1271 SpaprPhbState *phb;
1272 char *buf;
1274 fdt = g_malloc0(FDT_MAX_SIZE);
1275 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1277 /* Root node */
1278 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1279 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1280 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1282 /* Guest UUID & Name*/
1283 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1284 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1285 if (qemu_uuid_set) {
1286 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1288 g_free(buf);
1290 if (qemu_get_vm_name()) {
1291 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1292 qemu_get_vm_name()));
1295 /* Host Model & Serial Number */
1296 if (spapr->host_model) {
1297 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1298 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1299 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1300 g_free(buf);
1303 if (spapr->host_serial) {
1304 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1305 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1306 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1307 g_free(buf);
1310 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1311 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1313 /* /interrupt controller */
1314 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1315 PHANDLE_INTC);
1317 ret = spapr_populate_memory(spapr, fdt);
1318 if (ret < 0) {
1319 error_report("couldn't setup memory nodes in fdt");
1320 exit(1);
1323 /* /vdevice */
1324 spapr_dt_vdevice(spapr->vio_bus, fdt);
1326 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1327 ret = spapr_rng_populate_dt(fdt);
1328 if (ret < 0) {
1329 error_report("could not set up rng device in the fdt");
1330 exit(1);
1334 QLIST_FOREACH(phb, &spapr->phbs, list) {
1335 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1336 if (ret < 0) {
1337 error_report("couldn't setup PCI devices in fdt");
1338 exit(1);
1342 /* cpus */
1343 spapr_populate_cpus_dt_node(fdt, spapr);
1345 if (smc->dr_lmb_enabled) {
1346 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1349 if (mc->has_hotpluggable_cpus) {
1350 int offset = fdt_path_offset(fdt, "/cpus");
1351 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1352 if (ret < 0) {
1353 error_report("Couldn't set up CPU DR device tree properties");
1354 exit(1);
1358 /* /event-sources */
1359 spapr_dt_events(spapr, fdt);
1361 /* /rtas */
1362 spapr_dt_rtas(spapr, fdt);
1364 /* /chosen */
1365 spapr_dt_chosen(spapr, fdt);
1367 /* /hypervisor */
1368 if (kvm_enabled()) {
1369 spapr_dt_hypervisor(spapr, fdt);
1372 /* Build memory reserve map */
1373 if (spapr->kernel_size) {
1374 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1376 if (spapr->initrd_size) {
1377 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1380 /* ibm,client-architecture-support updates */
1381 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1382 if (ret < 0) {
1383 error_report("couldn't setup CAS properties fdt");
1384 exit(1);
1387 if (smc->dr_phb_enabled) {
1388 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1389 if (ret < 0) {
1390 error_report("Couldn't set up PHB DR device tree properties");
1391 exit(1);
1395 return fdt;
1398 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1400 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1403 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1404 PowerPCCPU *cpu)
1406 CPUPPCState *env = &cpu->env;
1408 /* The TCG path should also be holding the BQL at this point */
1409 g_assert(qemu_mutex_iothread_locked());
1411 if (msr_pr) {
1412 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1413 env->gpr[3] = H_PRIVILEGE;
1414 } else {
1415 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1419 struct LPCRSyncState {
1420 target_ulong value;
1421 target_ulong mask;
1424 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1426 struct LPCRSyncState *s = arg.host_ptr;
1427 PowerPCCPU *cpu = POWERPC_CPU(cs);
1428 CPUPPCState *env = &cpu->env;
1429 target_ulong lpcr;
1431 cpu_synchronize_state(cs);
1432 lpcr = env->spr[SPR_LPCR];
1433 lpcr &= ~s->mask;
1434 lpcr |= s->value;
1435 ppc_store_lpcr(cpu, lpcr);
1438 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1440 CPUState *cs;
1441 struct LPCRSyncState s = {
1442 .value = value,
1443 .mask = mask
1445 CPU_FOREACH(cs) {
1446 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1450 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1452 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1454 /* Copy PATE1:GR into PATE0:HR */
1455 entry->dw0 = spapr->patb_entry & PATE0_HR;
1456 entry->dw1 = spapr->patb_entry;
1459 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1460 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1461 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1462 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1463 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1466 * Get the fd to access the kernel htab, re-opening it if necessary
1468 static int get_htab_fd(SpaprMachineState *spapr)
1470 Error *local_err = NULL;
1472 if (spapr->htab_fd >= 0) {
1473 return spapr->htab_fd;
1476 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1477 if (spapr->htab_fd < 0) {
1478 error_report_err(local_err);
1481 return spapr->htab_fd;
1484 void close_htab_fd(SpaprMachineState *spapr)
1486 if (spapr->htab_fd >= 0) {
1487 close(spapr->htab_fd);
1489 spapr->htab_fd = -1;
1492 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1499 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1501 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1503 assert(kvm_enabled());
1505 if (!spapr->htab) {
1506 return 0;
1509 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1512 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1513 hwaddr ptex, int n)
1515 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1516 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1518 if (!spapr->htab) {
1520 * HTAB is controlled by KVM. Fetch into temporary buffer
1522 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1523 kvmppc_read_hptes(hptes, ptex, n);
1524 return hptes;
1528 * HTAB is controlled by QEMU. Just point to the internally
1529 * accessible PTEG.
1531 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1534 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1535 const ppc_hash_pte64_t *hptes,
1536 hwaddr ptex, int n)
1538 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1540 if (!spapr->htab) {
1541 g_free((void *)hptes);
1544 /* Nothing to do for qemu managed HPT */
1547 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1548 uint64_t pte0, uint64_t pte1)
1550 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1551 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1553 if (!spapr->htab) {
1554 kvmppc_write_hpte(ptex, pte0, pte1);
1555 } else {
1556 if (pte0 & HPTE64_V_VALID) {
1557 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1559 * When setting valid, we write PTE1 first. This ensures
1560 * proper synchronization with the reading code in
1561 * ppc_hash64_pteg_search()
1563 smp_wmb();
1564 stq_p(spapr->htab + offset, pte0);
1565 } else {
1566 stq_p(spapr->htab + offset, pte0);
1568 * When clearing it we set PTE0 first. This ensures proper
1569 * synchronization with the reading code in
1570 * ppc_hash64_pteg_search()
1572 smp_wmb();
1573 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1578 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1579 uint64_t pte1)
1581 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1582 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1584 if (!spapr->htab) {
1585 /* There should always be a hash table when this is called */
1586 error_report("spapr_hpte_set_c called with no hash table !");
1587 return;
1590 /* The HW performs a non-atomic byte update */
1591 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1594 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1595 uint64_t pte1)
1597 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1598 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1600 if (!spapr->htab) {
1601 /* There should always be a hash table when this is called */
1602 error_report("spapr_hpte_set_r called with no hash table !");
1603 return;
1606 /* The HW performs a non-atomic byte update */
1607 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1610 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1612 int shift;
1614 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1615 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1616 * that's much more than is needed for Linux guests */
1617 shift = ctz64(pow2ceil(ramsize)) - 7;
1618 shift = MAX(shift, 18); /* Minimum architected size */
1619 shift = MIN(shift, 46); /* Maximum architected size */
1620 return shift;
1623 void spapr_free_hpt(SpaprMachineState *spapr)
1625 g_free(spapr->htab);
1626 spapr->htab = NULL;
1627 spapr->htab_shift = 0;
1628 close_htab_fd(spapr);
1631 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1632 Error **errp)
1634 long rc;
1636 /* Clean up any HPT info from a previous boot */
1637 spapr_free_hpt(spapr);
1639 rc = kvmppc_reset_htab(shift);
1640 if (rc < 0) {
1641 /* kernel-side HPT needed, but couldn't allocate one */
1642 error_setg_errno(errp, errno,
1643 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1644 shift);
1645 /* This is almost certainly fatal, but if the caller really
1646 * wants to carry on with shift == 0, it's welcome to try */
1647 } else if (rc > 0) {
1648 /* kernel-side HPT allocated */
1649 if (rc != shift) {
1650 error_setg(errp,
1651 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1652 shift, rc);
1655 spapr->htab_shift = shift;
1656 spapr->htab = NULL;
1657 } else {
1658 /* kernel-side HPT not needed, allocate in userspace instead */
1659 size_t size = 1ULL << shift;
1660 int i;
1662 spapr->htab = qemu_memalign(size, size);
1663 if (!spapr->htab) {
1664 error_setg_errno(errp, errno,
1665 "Could not allocate HPT of order %d", shift);
1666 return;
1669 memset(spapr->htab, 0, size);
1670 spapr->htab_shift = shift;
1672 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1673 DIRTY_HPTE(HPTE(spapr->htab, i));
1676 /* We're setting up a hash table, so that means we're not radix */
1677 spapr->patb_entry = 0;
1678 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1681 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1683 int hpt_shift;
1685 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1686 || (spapr->cas_reboot
1687 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1688 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1689 } else {
1690 uint64_t current_ram_size;
1692 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1693 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1695 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1697 if (spapr->vrma_adjust) {
1698 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1699 spapr->htab_shift);
1703 static int spapr_reset_drcs(Object *child, void *opaque)
1705 SpaprDrc *drc =
1706 (SpaprDrc *) object_dynamic_cast(child,
1707 TYPE_SPAPR_DR_CONNECTOR);
1709 if (drc) {
1710 spapr_drc_reset(drc);
1713 return 0;
1716 static void spapr_machine_reset(MachineState *machine)
1718 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1719 PowerPCCPU *first_ppc_cpu;
1720 uint32_t rtas_limit;
1721 hwaddr rtas_addr, fdt_addr;
1722 void *fdt;
1723 int rc;
1725 spapr_caps_apply(spapr);
1727 first_ppc_cpu = POWERPC_CPU(first_cpu);
1728 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1729 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1730 spapr->max_compat_pvr)) {
1732 * If using KVM with radix mode available, VCPUs can be started
1733 * without a HPT because KVM will start them in radix mode.
1734 * Set the GR bit in PATE so that we know there is no HPT.
1736 spapr->patb_entry = PATE1_GR;
1737 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1738 } else {
1739 spapr_setup_hpt_and_vrma(spapr);
1743 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1744 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1745 * called from vPHB reset handler so we initialize the counter here.
1746 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1747 * must be equally distant from any other node.
1748 * The final value of spapr->gpu_numa_id is going to be written to
1749 * max-associativity-domains in spapr_build_fdt().
1751 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
1752 qemu_devices_reset();
1755 * If this reset wasn't generated by CAS, we should reset our
1756 * negotiated options and start from scratch
1758 if (!spapr->cas_reboot) {
1759 spapr_ovec_cleanup(spapr->ov5_cas);
1760 spapr->ov5_cas = spapr_ovec_new();
1762 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1766 * This is fixing some of the default configuration of the XIVE
1767 * devices. To be called after the reset of the machine devices.
1769 spapr_irq_reset(spapr, &error_fatal);
1772 * There is no CAS under qtest. Simulate one to please the code that
1773 * depends on spapr->ov5_cas. This is especially needed to test device
1774 * unplug, so we do that before resetting the DRCs.
1776 if (qtest_enabled()) {
1777 spapr_ovec_cleanup(spapr->ov5_cas);
1778 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1781 /* DRC reset may cause a device to be unplugged. This will cause troubles
1782 * if this device is used by another device (eg, a running vhost backend
1783 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1784 * situations, we reset DRCs after all devices have been reset.
1786 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1788 spapr_clear_pending_events(spapr);
1791 * We place the device tree and RTAS just below either the top of the RMA,
1792 * or just below 2GB, whichever is lower, so that it can be
1793 * processed with 32-bit real mode code if necessary
1795 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1796 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1797 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1799 fdt = spapr_build_fdt(spapr);
1801 spapr_load_rtas(spapr, fdt, rtas_addr);
1803 rc = fdt_pack(fdt);
1805 /* Should only fail if we've built a corrupted tree */
1806 assert(rc == 0);
1808 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1809 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1810 fdt_totalsize(fdt), FDT_MAX_SIZE);
1811 exit(1);
1814 /* Load the fdt */
1815 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1816 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1817 g_free(spapr->fdt_blob);
1818 spapr->fdt_size = fdt_totalsize(fdt);
1819 spapr->fdt_initial_size = spapr->fdt_size;
1820 spapr->fdt_blob = fdt;
1822 /* Set up the entry state */
1823 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1824 first_ppc_cpu->env.gpr[5] = 0;
1826 spapr->cas_reboot = false;
1829 static void spapr_create_nvram(SpaprMachineState *spapr)
1831 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1832 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1834 if (dinfo) {
1835 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1836 &error_fatal);
1839 qdev_init_nofail(dev);
1841 spapr->nvram = (struct SpaprNvram *)dev;
1844 static void spapr_rtc_create(SpaprMachineState *spapr)
1846 object_initialize_child(OBJECT(spapr), "rtc",
1847 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1848 &error_fatal, NULL);
1849 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1850 &error_fatal);
1851 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1852 "date", &error_fatal);
1855 /* Returns whether we want to use VGA or not */
1856 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1858 switch (vga_interface_type) {
1859 case VGA_NONE:
1860 return false;
1861 case VGA_DEVICE:
1862 return true;
1863 case VGA_STD:
1864 case VGA_VIRTIO:
1865 case VGA_CIRRUS:
1866 return pci_vga_init(pci_bus) != NULL;
1867 default:
1868 error_setg(errp,
1869 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1870 return false;
1874 static int spapr_pre_load(void *opaque)
1876 int rc;
1878 rc = spapr_caps_pre_load(opaque);
1879 if (rc) {
1880 return rc;
1883 return 0;
1886 static int spapr_post_load(void *opaque, int version_id)
1888 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1889 int err = 0;
1891 err = spapr_caps_post_migration(spapr);
1892 if (err) {
1893 return err;
1897 * In earlier versions, there was no separate qdev for the PAPR
1898 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1899 * So when migrating from those versions, poke the incoming offset
1900 * value into the RTC device
1902 if (version_id < 3) {
1903 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1904 if (err) {
1905 return err;
1909 if (kvm_enabled() && spapr->patb_entry) {
1910 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1911 bool radix = !!(spapr->patb_entry & PATE1_GR);
1912 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1915 * Update LPCR:HR and UPRT as they may not be set properly in
1916 * the stream
1918 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1919 LPCR_HR | LPCR_UPRT);
1921 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1922 if (err) {
1923 error_report("Process table config unsupported by the host");
1924 return -EINVAL;
1928 err = spapr_irq_post_load(spapr, version_id);
1929 if (err) {
1930 return err;
1933 return err;
1936 static int spapr_pre_save(void *opaque)
1938 int rc;
1940 rc = spapr_caps_pre_save(opaque);
1941 if (rc) {
1942 return rc;
1945 return 0;
1948 static bool version_before_3(void *opaque, int version_id)
1950 return version_id < 3;
1953 static bool spapr_pending_events_needed(void *opaque)
1955 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1956 return !QTAILQ_EMPTY(&spapr->pending_events);
1959 static const VMStateDescription vmstate_spapr_event_entry = {
1960 .name = "spapr_event_log_entry",
1961 .version_id = 1,
1962 .minimum_version_id = 1,
1963 .fields = (VMStateField[]) {
1964 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1965 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1966 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1967 NULL, extended_length),
1968 VMSTATE_END_OF_LIST()
1972 static const VMStateDescription vmstate_spapr_pending_events = {
1973 .name = "spapr_pending_events",
1974 .version_id = 1,
1975 .minimum_version_id = 1,
1976 .needed = spapr_pending_events_needed,
1977 .fields = (VMStateField[]) {
1978 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1979 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1980 VMSTATE_END_OF_LIST()
1984 static bool spapr_ov5_cas_needed(void *opaque)
1986 SpaprMachineState *spapr = opaque;
1987 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1988 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1989 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1990 bool cas_needed;
1992 /* Prior to the introduction of SpaprOptionVector, we had two option
1993 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1994 * Both of these options encode machine topology into the device-tree
1995 * in such a way that the now-booted OS should still be able to interact
1996 * appropriately with QEMU regardless of what options were actually
1997 * negotiatied on the source side.
1999 * As such, we can avoid migrating the CAS-negotiated options if these
2000 * are the only options available on the current machine/platform.
2001 * Since these are the only options available for pseries-2.7 and
2002 * earlier, this allows us to maintain old->new/new->old migration
2003 * compatibility.
2005 * For QEMU 2.8+, there are additional CAS-negotiatable options available
2006 * via default pseries-2.8 machines and explicit command-line parameters.
2007 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2008 * of the actual CAS-negotiated values to continue working properly. For
2009 * example, availability of memory unplug depends on knowing whether
2010 * OV5_HP_EVT was negotiated via CAS.
2012 * Thus, for any cases where the set of available CAS-negotiatable
2013 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2014 * include the CAS-negotiated options in the migration stream, unless
2015 * if they affect boot time behaviour only.
2017 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2018 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2019 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2021 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2022 * the mask itself since in the future it's possible "legacy" bits may be
2023 * removed via machine options, which could generate a false positive
2024 * that breaks migration.
2026 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2027 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2029 spapr_ovec_cleanup(ov5_mask);
2030 spapr_ovec_cleanup(ov5_legacy);
2031 spapr_ovec_cleanup(ov5_removed);
2033 return cas_needed;
2036 static const VMStateDescription vmstate_spapr_ov5_cas = {
2037 .name = "spapr_option_vector_ov5_cas",
2038 .version_id = 1,
2039 .minimum_version_id = 1,
2040 .needed = spapr_ov5_cas_needed,
2041 .fields = (VMStateField[]) {
2042 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2043 vmstate_spapr_ovec, SpaprOptionVector),
2044 VMSTATE_END_OF_LIST()
2048 static bool spapr_patb_entry_needed(void *opaque)
2050 SpaprMachineState *spapr = opaque;
2052 return !!spapr->patb_entry;
2055 static const VMStateDescription vmstate_spapr_patb_entry = {
2056 .name = "spapr_patb_entry",
2057 .version_id = 1,
2058 .minimum_version_id = 1,
2059 .needed = spapr_patb_entry_needed,
2060 .fields = (VMStateField[]) {
2061 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2062 VMSTATE_END_OF_LIST()
2066 static bool spapr_irq_map_needed(void *opaque)
2068 SpaprMachineState *spapr = opaque;
2070 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2073 static const VMStateDescription vmstate_spapr_irq_map = {
2074 .name = "spapr_irq_map",
2075 .version_id = 1,
2076 .minimum_version_id = 1,
2077 .needed = spapr_irq_map_needed,
2078 .fields = (VMStateField[]) {
2079 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2080 VMSTATE_END_OF_LIST()
2084 static bool spapr_dtb_needed(void *opaque)
2086 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2088 return smc->update_dt_enabled;
2091 static int spapr_dtb_pre_load(void *opaque)
2093 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2095 g_free(spapr->fdt_blob);
2096 spapr->fdt_blob = NULL;
2097 spapr->fdt_size = 0;
2099 return 0;
2102 static const VMStateDescription vmstate_spapr_dtb = {
2103 .name = "spapr_dtb",
2104 .version_id = 1,
2105 .minimum_version_id = 1,
2106 .needed = spapr_dtb_needed,
2107 .pre_load = spapr_dtb_pre_load,
2108 .fields = (VMStateField[]) {
2109 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2110 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2111 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2112 fdt_size),
2113 VMSTATE_END_OF_LIST()
2117 static const VMStateDescription vmstate_spapr = {
2118 .name = "spapr",
2119 .version_id = 3,
2120 .minimum_version_id = 1,
2121 .pre_load = spapr_pre_load,
2122 .post_load = spapr_post_load,
2123 .pre_save = spapr_pre_save,
2124 .fields = (VMStateField[]) {
2125 /* used to be @next_irq */
2126 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2128 /* RTC offset */
2129 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2131 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2132 VMSTATE_END_OF_LIST()
2134 .subsections = (const VMStateDescription*[]) {
2135 &vmstate_spapr_ov5_cas,
2136 &vmstate_spapr_patb_entry,
2137 &vmstate_spapr_pending_events,
2138 &vmstate_spapr_cap_htm,
2139 &vmstate_spapr_cap_vsx,
2140 &vmstate_spapr_cap_dfp,
2141 &vmstate_spapr_cap_cfpc,
2142 &vmstate_spapr_cap_sbbc,
2143 &vmstate_spapr_cap_ibs,
2144 &vmstate_spapr_cap_hpt_maxpagesize,
2145 &vmstate_spapr_irq_map,
2146 &vmstate_spapr_cap_nested_kvm_hv,
2147 &vmstate_spapr_dtb,
2148 &vmstate_spapr_cap_large_decr,
2149 &vmstate_spapr_cap_ccf_assist,
2150 NULL
2154 static int htab_save_setup(QEMUFile *f, void *opaque)
2156 SpaprMachineState *spapr = opaque;
2158 /* "Iteration" header */
2159 if (!spapr->htab_shift) {
2160 qemu_put_be32(f, -1);
2161 } else {
2162 qemu_put_be32(f, spapr->htab_shift);
2165 if (spapr->htab) {
2166 spapr->htab_save_index = 0;
2167 spapr->htab_first_pass = true;
2168 } else {
2169 if (spapr->htab_shift) {
2170 assert(kvm_enabled());
2175 return 0;
2178 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2179 int chunkstart, int n_valid, int n_invalid)
2181 qemu_put_be32(f, chunkstart);
2182 qemu_put_be16(f, n_valid);
2183 qemu_put_be16(f, n_invalid);
2184 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2185 HASH_PTE_SIZE_64 * n_valid);
2188 static void htab_save_end_marker(QEMUFile *f)
2190 qemu_put_be32(f, 0);
2191 qemu_put_be16(f, 0);
2192 qemu_put_be16(f, 0);
2195 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2196 int64_t max_ns)
2198 bool has_timeout = max_ns != -1;
2199 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2200 int index = spapr->htab_save_index;
2201 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2203 assert(spapr->htab_first_pass);
2205 do {
2206 int chunkstart;
2208 /* Consume invalid HPTEs */
2209 while ((index < htabslots)
2210 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2211 CLEAN_HPTE(HPTE(spapr->htab, index));
2212 index++;
2215 /* Consume valid HPTEs */
2216 chunkstart = index;
2217 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2218 && HPTE_VALID(HPTE(spapr->htab, index))) {
2219 CLEAN_HPTE(HPTE(spapr->htab, index));
2220 index++;
2223 if (index > chunkstart) {
2224 int n_valid = index - chunkstart;
2226 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2228 if (has_timeout &&
2229 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2230 break;
2233 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2235 if (index >= htabslots) {
2236 assert(index == htabslots);
2237 index = 0;
2238 spapr->htab_first_pass = false;
2240 spapr->htab_save_index = index;
2243 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2244 int64_t max_ns)
2246 bool final = max_ns < 0;
2247 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2248 int examined = 0, sent = 0;
2249 int index = spapr->htab_save_index;
2250 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2252 assert(!spapr->htab_first_pass);
2254 do {
2255 int chunkstart, invalidstart;
2257 /* Consume non-dirty HPTEs */
2258 while ((index < htabslots)
2259 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2260 index++;
2261 examined++;
2264 chunkstart = index;
2265 /* Consume valid dirty HPTEs */
2266 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2267 && HPTE_DIRTY(HPTE(spapr->htab, index))
2268 && HPTE_VALID(HPTE(spapr->htab, index))) {
2269 CLEAN_HPTE(HPTE(spapr->htab, index));
2270 index++;
2271 examined++;
2274 invalidstart = index;
2275 /* Consume invalid dirty HPTEs */
2276 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2277 && HPTE_DIRTY(HPTE(spapr->htab, index))
2278 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2279 CLEAN_HPTE(HPTE(spapr->htab, index));
2280 index++;
2281 examined++;
2284 if (index > chunkstart) {
2285 int n_valid = invalidstart - chunkstart;
2286 int n_invalid = index - invalidstart;
2288 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2289 sent += index - chunkstart;
2291 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2292 break;
2296 if (examined >= htabslots) {
2297 break;
2300 if (index >= htabslots) {
2301 assert(index == htabslots);
2302 index = 0;
2304 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2306 if (index >= htabslots) {
2307 assert(index == htabslots);
2308 index = 0;
2311 spapr->htab_save_index = index;
2313 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2316 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2317 #define MAX_KVM_BUF_SIZE 2048
2319 static int htab_save_iterate(QEMUFile *f, void *opaque)
2321 SpaprMachineState *spapr = opaque;
2322 int fd;
2323 int rc = 0;
2325 /* Iteration header */
2326 if (!spapr->htab_shift) {
2327 qemu_put_be32(f, -1);
2328 return 1;
2329 } else {
2330 qemu_put_be32(f, 0);
2333 if (!spapr->htab) {
2334 assert(kvm_enabled());
2336 fd = get_htab_fd(spapr);
2337 if (fd < 0) {
2338 return fd;
2341 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2342 if (rc < 0) {
2343 return rc;
2345 } else if (spapr->htab_first_pass) {
2346 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2347 } else {
2348 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2351 htab_save_end_marker(f);
2353 return rc;
2356 static int htab_save_complete(QEMUFile *f, void *opaque)
2358 SpaprMachineState *spapr = opaque;
2359 int fd;
2361 /* Iteration header */
2362 if (!spapr->htab_shift) {
2363 qemu_put_be32(f, -1);
2364 return 0;
2365 } else {
2366 qemu_put_be32(f, 0);
2369 if (!spapr->htab) {
2370 int rc;
2372 assert(kvm_enabled());
2374 fd = get_htab_fd(spapr);
2375 if (fd < 0) {
2376 return fd;
2379 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2380 if (rc < 0) {
2381 return rc;
2383 } else {
2384 if (spapr->htab_first_pass) {
2385 htab_save_first_pass(f, spapr, -1);
2387 htab_save_later_pass(f, spapr, -1);
2390 /* End marker */
2391 htab_save_end_marker(f);
2393 return 0;
2396 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2398 SpaprMachineState *spapr = opaque;
2399 uint32_t section_hdr;
2400 int fd = -1;
2401 Error *local_err = NULL;
2403 if (version_id < 1 || version_id > 1) {
2404 error_report("htab_load() bad version");
2405 return -EINVAL;
2408 section_hdr = qemu_get_be32(f);
2410 if (section_hdr == -1) {
2411 spapr_free_hpt(spapr);
2412 return 0;
2415 if (section_hdr) {
2416 /* First section gives the htab size */
2417 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2418 if (local_err) {
2419 error_report_err(local_err);
2420 return -EINVAL;
2422 return 0;
2425 if (!spapr->htab) {
2426 assert(kvm_enabled());
2428 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2429 if (fd < 0) {
2430 error_report_err(local_err);
2431 return fd;
2435 while (true) {
2436 uint32_t index;
2437 uint16_t n_valid, n_invalid;
2439 index = qemu_get_be32(f);
2440 n_valid = qemu_get_be16(f);
2441 n_invalid = qemu_get_be16(f);
2443 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2444 /* End of Stream */
2445 break;
2448 if ((index + n_valid + n_invalid) >
2449 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2450 /* Bad index in stream */
2451 error_report(
2452 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2453 index, n_valid, n_invalid, spapr->htab_shift);
2454 return -EINVAL;
2457 if (spapr->htab) {
2458 if (n_valid) {
2459 qemu_get_buffer(f, HPTE(spapr->htab, index),
2460 HASH_PTE_SIZE_64 * n_valid);
2462 if (n_invalid) {
2463 memset(HPTE(spapr->htab, index + n_valid), 0,
2464 HASH_PTE_SIZE_64 * n_invalid);
2466 } else {
2467 int rc;
2469 assert(fd >= 0);
2471 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2472 if (rc < 0) {
2473 return rc;
2478 if (!spapr->htab) {
2479 assert(fd >= 0);
2480 close(fd);
2483 return 0;
2486 static void htab_save_cleanup(void *opaque)
2488 SpaprMachineState *spapr = opaque;
2490 close_htab_fd(spapr);
2493 static SaveVMHandlers savevm_htab_handlers = {
2494 .save_setup = htab_save_setup,
2495 .save_live_iterate = htab_save_iterate,
2496 .save_live_complete_precopy = htab_save_complete,
2497 .save_cleanup = htab_save_cleanup,
2498 .load_state = htab_load,
2501 static void spapr_boot_set(void *opaque, const char *boot_device,
2502 Error **errp)
2504 MachineState *machine = MACHINE(opaque);
2505 machine->boot_order = g_strdup(boot_device);
2508 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2510 MachineState *machine = MACHINE(spapr);
2511 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2512 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2513 int i;
2515 for (i = 0; i < nr_lmbs; i++) {
2516 uint64_t addr;
2518 addr = i * lmb_size + machine->device_memory->base;
2519 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2520 addr / lmb_size);
2525 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2526 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2527 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2529 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2531 int i;
2533 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2534 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2535 " is not aligned to %" PRIu64 " MiB",
2536 machine->ram_size,
2537 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2538 return;
2541 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2542 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2543 " is not aligned to %" PRIu64 " MiB",
2544 machine->ram_size,
2545 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2546 return;
2549 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2550 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2551 error_setg(errp,
2552 "Node %d memory size 0x%" PRIx64
2553 " is not aligned to %" PRIu64 " MiB",
2554 i, machine->numa_state->nodes[i].node_mem,
2555 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2556 return;
2561 /* find cpu slot in machine->possible_cpus by core_id */
2562 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2564 int index = id / ms->smp.threads;
2566 if (index >= ms->possible_cpus->len) {
2567 return NULL;
2569 if (idx) {
2570 *idx = index;
2572 return &ms->possible_cpus->cpus[index];
2575 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2577 MachineState *ms = MACHINE(spapr);
2578 Error *local_err = NULL;
2579 bool vsmt_user = !!spapr->vsmt;
2580 int kvm_smt = kvmppc_smt_threads();
2581 int ret;
2582 unsigned int smp_threads = ms->smp.threads;
2584 if (!kvm_enabled() && (smp_threads > 1)) {
2585 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2586 "on a pseries machine");
2587 goto out;
2589 if (!is_power_of_2(smp_threads)) {
2590 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2591 "machine because it must be a power of 2", smp_threads);
2592 goto out;
2595 /* Detemine the VSMT mode to use: */
2596 if (vsmt_user) {
2597 if (spapr->vsmt < smp_threads) {
2598 error_setg(&local_err, "Cannot support VSMT mode %d"
2599 " because it must be >= threads/core (%d)",
2600 spapr->vsmt, smp_threads);
2601 goto out;
2603 /* In this case, spapr->vsmt has been set by the command line */
2604 } else {
2606 * Default VSMT value is tricky, because we need it to be as
2607 * consistent as possible (for migration), but this requires
2608 * changing it for at least some existing cases. We pick 8 as
2609 * the value that we'd get with KVM on POWER8, the
2610 * overwhelmingly common case in production systems.
2612 spapr->vsmt = MAX(8, smp_threads);
2615 /* KVM: If necessary, set the SMT mode: */
2616 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2617 ret = kvmppc_set_smt_threads(spapr->vsmt);
2618 if (ret) {
2619 /* Looks like KVM isn't able to change VSMT mode */
2620 error_setg(&local_err,
2621 "Failed to set KVM's VSMT mode to %d (errno %d)",
2622 spapr->vsmt, ret);
2623 /* We can live with that if the default one is big enough
2624 * for the number of threads, and a submultiple of the one
2625 * we want. In this case we'll waste some vcpu ids, but
2626 * behaviour will be correct */
2627 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2628 warn_report_err(local_err);
2629 local_err = NULL;
2630 goto out;
2631 } else {
2632 if (!vsmt_user) {
2633 error_append_hint(&local_err,
2634 "On PPC, a VM with %d threads/core"
2635 " on a host with %d threads/core"
2636 " requires the use of VSMT mode %d.\n",
2637 smp_threads, kvm_smt, spapr->vsmt);
2639 kvmppc_hint_smt_possible(&local_err);
2640 goto out;
2644 /* else TCG: nothing to do currently */
2645 out:
2646 error_propagate(errp, local_err);
2649 static void spapr_init_cpus(SpaprMachineState *spapr)
2651 MachineState *machine = MACHINE(spapr);
2652 MachineClass *mc = MACHINE_GET_CLASS(machine);
2653 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2654 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2655 const CPUArchIdList *possible_cpus;
2656 unsigned int smp_cpus = machine->smp.cpus;
2657 unsigned int smp_threads = machine->smp.threads;
2658 unsigned int max_cpus = machine->smp.max_cpus;
2659 int boot_cores_nr = smp_cpus / smp_threads;
2660 int i;
2662 possible_cpus = mc->possible_cpu_arch_ids(machine);
2663 if (mc->has_hotpluggable_cpus) {
2664 if (smp_cpus % smp_threads) {
2665 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2666 smp_cpus, smp_threads);
2667 exit(1);
2669 if (max_cpus % smp_threads) {
2670 error_report("max_cpus (%u) must be multiple of threads (%u)",
2671 max_cpus, smp_threads);
2672 exit(1);
2674 } else {
2675 if (max_cpus != smp_cpus) {
2676 error_report("This machine version does not support CPU hotplug");
2677 exit(1);
2679 boot_cores_nr = possible_cpus->len;
2682 if (smc->pre_2_10_has_unused_icps) {
2683 int i;
2685 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2686 /* Dummy entries get deregistered when real ICPState objects
2687 * are registered during CPU core hotplug.
2689 pre_2_10_vmstate_register_dummy_icp(i);
2693 for (i = 0; i < possible_cpus->len; i++) {
2694 int core_id = i * smp_threads;
2696 if (mc->has_hotpluggable_cpus) {
2697 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2698 spapr_vcpu_id(spapr, core_id));
2701 if (i < boot_cores_nr) {
2702 Object *core = object_new(type);
2703 int nr_threads = smp_threads;
2705 /* Handle the partially filled core for older machine types */
2706 if ((i + 1) * smp_threads >= smp_cpus) {
2707 nr_threads = smp_cpus - i * smp_threads;
2710 object_property_set_int(core, nr_threads, "nr-threads",
2711 &error_fatal);
2712 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2713 &error_fatal);
2714 object_property_set_bool(core, true, "realized", &error_fatal);
2716 object_unref(core);
2721 static PCIHostState *spapr_create_default_phb(void)
2723 DeviceState *dev;
2725 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2726 qdev_prop_set_uint32(dev, "index", 0);
2727 qdev_init_nofail(dev);
2729 return PCI_HOST_BRIDGE(dev);
2732 /* pSeries LPAR / sPAPR hardware init */
2733 static void spapr_machine_init(MachineState *machine)
2735 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2736 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2737 const char *kernel_filename = machine->kernel_filename;
2738 const char *initrd_filename = machine->initrd_filename;
2739 PCIHostState *phb;
2740 int i;
2741 MemoryRegion *sysmem = get_system_memory();
2742 MemoryRegion *ram = g_new(MemoryRegion, 1);
2743 hwaddr node0_size = spapr_node0_size(machine);
2744 long load_limit, fw_size;
2745 char *filename;
2746 Error *resize_hpt_err = NULL;
2748 msi_nonbroken = true;
2750 QLIST_INIT(&spapr->phbs);
2751 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2753 /* Determine capabilities to run with */
2754 spapr_caps_init(spapr);
2756 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2757 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2759 * If the user explicitly requested a mode we should either
2760 * supply it, or fail completely (which we do below). But if
2761 * it's not set explicitly, we reset our mode to something
2762 * that works
2764 if (resize_hpt_err) {
2765 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2766 error_free(resize_hpt_err);
2767 resize_hpt_err = NULL;
2768 } else {
2769 spapr->resize_hpt = smc->resize_hpt_default;
2773 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2775 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2777 * User requested HPT resize, but this host can't supply it. Bail out
2779 error_report_err(resize_hpt_err);
2780 exit(1);
2783 spapr->rma_size = node0_size;
2785 /* With KVM, we don't actually know whether KVM supports an
2786 * unbounded RMA (PR KVM) or is limited by the hash table size
2787 * (HV KVM using VRMA), so we always assume the latter
2789 * In that case, we also limit the initial allocations for RTAS
2790 * etc... to 256M since we have no way to know what the VRMA size
2791 * is going to be as it depends on the size of the hash table
2792 * which isn't determined yet.
2794 if (kvm_enabled()) {
2795 spapr->vrma_adjust = 1;
2796 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2799 /* Actually we don't support unbounded RMA anymore since we added
2800 * proper emulation of HV mode. The max we can get is 16G which
2801 * also happens to be what we configure for PAPR mode so make sure
2802 * we don't do anything bigger than that
2804 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2806 if (spapr->rma_size > node0_size) {
2807 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2808 spapr->rma_size);
2809 exit(1);
2812 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2813 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2816 * VSMT must be set in order to be able to compute VCPU ids, ie to
2817 * call spapr_max_server_number() or spapr_vcpu_id().
2819 spapr_set_vsmt_mode(spapr, &error_fatal);
2821 /* Set up Interrupt Controller before we create the VCPUs */
2822 spapr_irq_init(spapr, &error_fatal);
2824 /* Set up containers for ibm,client-architecture-support negotiated options
2826 spapr->ov5 = spapr_ovec_new();
2827 spapr->ov5_cas = spapr_ovec_new();
2829 if (smc->dr_lmb_enabled) {
2830 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2831 spapr_validate_node_memory(machine, &error_fatal);
2834 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2836 /* advertise support for dedicated HP event source to guests */
2837 if (spapr->use_hotplug_event_source) {
2838 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2841 /* advertise support for HPT resizing */
2842 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2843 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2846 /* advertise support for ibm,dyamic-memory-v2 */
2847 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2849 /* advertise XIVE on POWER9 machines */
2850 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2851 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2854 /* init CPUs */
2855 spapr_init_cpus(spapr);
2858 * check we don't have a memory-less/cpu-less NUMA node
2859 * Firmware relies on the existing memory/cpu topology to provide the
2860 * NUMA topology to the kernel.
2861 * And the linux kernel needs to know the NUMA topology at start
2862 * to be able to hotplug CPUs later.
2864 if (machine->numa_state->num_nodes) {
2865 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2866 /* check for memory-less node */
2867 if (machine->numa_state->nodes[i].node_mem == 0) {
2868 CPUState *cs;
2869 int found = 0;
2870 /* check for cpu-less node */
2871 CPU_FOREACH(cs) {
2872 PowerPCCPU *cpu = POWERPC_CPU(cs);
2873 if (cpu->node_id == i) {
2874 found = 1;
2875 break;
2878 /* memory-less and cpu-less node */
2879 if (!found) {
2880 error_report(
2881 "Memory-less/cpu-less nodes are not supported (node %d)",
2883 exit(1);
2890 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2891 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2892 spapr->max_compat_pvr)) {
2893 /* KVM and TCG always allow GTSE with radix... */
2894 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2896 /* ... but not with hash (currently). */
2898 if (kvm_enabled()) {
2899 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2900 kvmppc_enable_logical_ci_hcalls();
2901 kvmppc_enable_set_mode_hcall();
2903 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2904 kvmppc_enable_clear_ref_mod_hcalls();
2906 /* Enable H_PAGE_INIT */
2907 kvmppc_enable_h_page_init();
2910 /* allocate RAM */
2911 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2912 machine->ram_size);
2913 memory_region_add_subregion(sysmem, 0, ram);
2915 /* always allocate the device memory information */
2916 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2918 /* initialize hotplug memory address space */
2919 if (machine->ram_size < machine->maxram_size) {
2920 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2922 * Limit the number of hotpluggable memory slots to half the number
2923 * slots that KVM supports, leaving the other half for PCI and other
2924 * devices. However ensure that number of slots doesn't drop below 32.
2926 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2927 SPAPR_MAX_RAM_SLOTS;
2929 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2930 max_memslots = SPAPR_MAX_RAM_SLOTS;
2932 if (machine->ram_slots > max_memslots) {
2933 error_report("Specified number of memory slots %"
2934 PRIu64" exceeds max supported %d",
2935 machine->ram_slots, max_memslots);
2936 exit(1);
2939 machine->device_memory->base = ROUND_UP(machine->ram_size,
2940 SPAPR_DEVICE_MEM_ALIGN);
2941 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2942 "device-memory", device_mem_size);
2943 memory_region_add_subregion(sysmem, machine->device_memory->base,
2944 &machine->device_memory->mr);
2947 if (smc->dr_lmb_enabled) {
2948 spapr_create_lmb_dr_connectors(spapr);
2951 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2952 if (!filename) {
2953 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2954 exit(1);
2956 spapr->rtas_size = get_image_size(filename);
2957 if (spapr->rtas_size < 0) {
2958 error_report("Could not get size of LPAR rtas '%s'", filename);
2959 exit(1);
2961 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2962 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2963 error_report("Could not load LPAR rtas '%s'", filename);
2964 exit(1);
2966 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2967 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2968 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2969 exit(1);
2971 g_free(filename);
2973 /* Set up RTAS event infrastructure */
2974 spapr_events_init(spapr);
2976 /* Set up the RTC RTAS interfaces */
2977 spapr_rtc_create(spapr);
2979 /* Set up VIO bus */
2980 spapr->vio_bus = spapr_vio_bus_init();
2982 for (i = 0; i < serial_max_hds(); i++) {
2983 if (serial_hd(i)) {
2984 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2988 /* We always have at least the nvram device on VIO */
2989 spapr_create_nvram(spapr);
2992 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2993 * connectors (described in root DT node's "ibm,drc-types" property)
2994 * are pre-initialized here. additional child connectors (such as
2995 * connectors for a PHBs PCI slots) are added as needed during their
2996 * parent's realization.
2998 if (smc->dr_phb_enabled) {
2999 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3000 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3004 /* Set up PCI */
3005 spapr_pci_rtas_init();
3007 phb = spapr_create_default_phb();
3009 for (i = 0; i < nb_nics; i++) {
3010 NICInfo *nd = &nd_table[i];
3012 if (!nd->model) {
3013 nd->model = g_strdup("spapr-vlan");
3016 if (g_str_equal(nd->model, "spapr-vlan") ||
3017 g_str_equal(nd->model, "ibmveth")) {
3018 spapr_vlan_create(spapr->vio_bus, nd);
3019 } else {
3020 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
3024 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3025 spapr_vscsi_create(spapr->vio_bus);
3028 /* Graphics */
3029 if (spapr_vga_init(phb->bus, &error_fatal)) {
3030 spapr->has_graphics = true;
3031 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3034 if (machine->usb) {
3035 if (smc->use_ohci_by_default) {
3036 pci_create_simple(phb->bus, -1, "pci-ohci");
3037 } else {
3038 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3041 if (spapr->has_graphics) {
3042 USBBus *usb_bus = usb_bus_find(-1);
3044 usb_create_simple(usb_bus, "usb-kbd");
3045 usb_create_simple(usb_bus, "usb-mouse");
3049 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3050 error_report(
3051 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3052 MIN_RMA_SLOF);
3053 exit(1);
3056 if (kernel_filename) {
3057 uint64_t lowaddr = 0;
3059 spapr->kernel_size = load_elf(kernel_filename, NULL,
3060 translate_kernel_address, NULL,
3061 NULL, &lowaddr, NULL, 1,
3062 PPC_ELF_MACHINE, 0, 0);
3063 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3064 spapr->kernel_size = load_elf(kernel_filename, NULL,
3065 translate_kernel_address, NULL, NULL,
3066 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3067 0, 0);
3068 spapr->kernel_le = spapr->kernel_size > 0;
3070 if (spapr->kernel_size < 0) {
3071 error_report("error loading %s: %s", kernel_filename,
3072 load_elf_strerror(spapr->kernel_size));
3073 exit(1);
3076 /* load initrd */
3077 if (initrd_filename) {
3078 /* Try to locate the initrd in the gap between the kernel
3079 * and the firmware. Add a bit of space just in case
3081 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3082 + 0x1ffff) & ~0xffff;
3083 spapr->initrd_size = load_image_targphys(initrd_filename,
3084 spapr->initrd_base,
3085 load_limit
3086 - spapr->initrd_base);
3087 if (spapr->initrd_size < 0) {
3088 error_report("could not load initial ram disk '%s'",
3089 initrd_filename);
3090 exit(1);
3095 if (bios_name == NULL) {
3096 bios_name = FW_FILE_NAME;
3098 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3099 if (!filename) {
3100 error_report("Could not find LPAR firmware '%s'", bios_name);
3101 exit(1);
3103 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3104 if (fw_size <= 0) {
3105 error_report("Could not load LPAR firmware '%s'", filename);
3106 exit(1);
3108 g_free(filename);
3110 /* FIXME: Should register things through the MachineState's qdev
3111 * interface, this is a legacy from the sPAPREnvironment structure
3112 * which predated MachineState but had a similar function */
3113 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3114 register_savevm_live("spapr/htab", -1, 1,
3115 &savevm_htab_handlers, spapr);
3117 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3118 &error_fatal);
3120 qemu_register_boot_set(spapr_boot_set, spapr);
3123 * Nothing needs to be done to resume a suspended guest because
3124 * suspending does not change the machine state, so no need for
3125 * a ->wakeup method.
3127 qemu_register_wakeup_support();
3129 if (kvm_enabled()) {
3130 /* to stop and start vmclock */
3131 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3132 &spapr->tb);
3134 kvmppc_spapr_enable_inkernel_multitce();
3138 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3140 if (!vm_type) {
3141 return 0;
3144 if (!strcmp(vm_type, "HV")) {
3145 return 1;
3148 if (!strcmp(vm_type, "PR")) {
3149 return 2;
3152 error_report("Unknown kvm-type specified '%s'", vm_type);
3153 exit(1);
3157 * Implementation of an interface to adjust firmware path
3158 * for the bootindex property handling.
3160 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3161 DeviceState *dev)
3163 #define CAST(type, obj, name) \
3164 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3165 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3166 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3167 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3169 if (d) {
3170 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3171 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3172 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3174 if (spapr) {
3176 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3177 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3178 * 0x8000 | (target << 8) | (bus << 5) | lun
3179 * (see the "Logical unit addressing format" table in SAM5)
3181 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3182 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3183 (uint64_t)id << 48);
3184 } else if (virtio) {
3186 * We use SRP luns of the form 01000000 | (target << 8) | lun
3187 * in the top 32 bits of the 64-bit LUN
3188 * Note: the quote above is from SLOF and it is wrong,
3189 * the actual binding is:
3190 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3192 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3193 if (d->lun >= 256) {
3194 /* Use the LUN "flat space addressing method" */
3195 id |= 0x4000;
3197 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3198 (uint64_t)id << 32);
3199 } else if (usb) {
3201 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3202 * in the top 32 bits of the 64-bit LUN
3204 unsigned usb_port = atoi(usb->port->path);
3205 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3206 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3207 (uint64_t)id << 32);
3212 * SLOF probes the USB devices, and if it recognizes that the device is a
3213 * storage device, it changes its name to "storage" instead of "usb-host",
3214 * and additionally adds a child node for the SCSI LUN, so the correct
3215 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3217 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3218 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3219 if (usb_host_dev_is_scsi_storage(usbdev)) {
3220 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3224 if (phb) {
3225 /* Replace "pci" with "pci@800000020000000" */
3226 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3229 if (vsc) {
3230 /* Same logic as virtio above */
3231 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3232 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3235 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3236 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3237 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3238 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3241 return NULL;
3244 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248 return g_strdup(spapr->kvm_type);
3251 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3255 g_free(spapr->kvm_type);
3256 spapr->kvm_type = g_strdup(value);
3259 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3263 return spapr->use_hotplug_event_source;
3266 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3267 Error **errp)
3269 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271 spapr->use_hotplug_event_source = value;
3274 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3276 return true;
3279 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283 switch (spapr->resize_hpt) {
3284 case SPAPR_RESIZE_HPT_DEFAULT:
3285 return g_strdup("default");
3286 case SPAPR_RESIZE_HPT_DISABLED:
3287 return g_strdup("disabled");
3288 case SPAPR_RESIZE_HPT_ENABLED:
3289 return g_strdup("enabled");
3290 case SPAPR_RESIZE_HPT_REQUIRED:
3291 return g_strdup("required");
3293 g_assert_not_reached();
3296 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 if (strcmp(value, "default") == 0) {
3301 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3302 } else if (strcmp(value, "disabled") == 0) {
3303 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3304 } else if (strcmp(value, "enabled") == 0) {
3305 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3306 } else if (strcmp(value, "required") == 0) {
3307 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3308 } else {
3309 error_setg(errp, "Bad value for \"resize-hpt\" property");
3313 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3314 void *opaque, Error **errp)
3316 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3319 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3320 void *opaque, Error **errp)
3322 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3325 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3327 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3329 if (spapr->irq == &spapr_irq_xics_legacy) {
3330 return g_strdup("legacy");
3331 } else if (spapr->irq == &spapr_irq_xics) {
3332 return g_strdup("xics");
3333 } else if (spapr->irq == &spapr_irq_xive) {
3334 return g_strdup("xive");
3335 } else if (spapr->irq == &spapr_irq_dual) {
3336 return g_strdup("dual");
3338 g_assert_not_reached();
3341 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3343 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3345 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3346 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3347 return;
3350 /* The legacy IRQ backend can not be set */
3351 if (strcmp(value, "xics") == 0) {
3352 spapr->irq = &spapr_irq_xics;
3353 } else if (strcmp(value, "xive") == 0) {
3354 spapr->irq = &spapr_irq_xive;
3355 } else if (strcmp(value, "dual") == 0) {
3356 spapr->irq = &spapr_irq_dual;
3357 } else {
3358 error_setg(errp, "Bad value for \"ic-mode\" property");
3362 static char *spapr_get_host_model(Object *obj, Error **errp)
3364 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3366 return g_strdup(spapr->host_model);
3369 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3371 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3373 g_free(spapr->host_model);
3374 spapr->host_model = g_strdup(value);
3377 static char *spapr_get_host_serial(Object *obj, Error **errp)
3379 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381 return g_strdup(spapr->host_serial);
3384 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3386 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3388 g_free(spapr->host_serial);
3389 spapr->host_serial = g_strdup(value);
3392 static void spapr_instance_init(Object *obj)
3394 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3395 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3397 spapr->htab_fd = -1;
3398 spapr->use_hotplug_event_source = true;
3399 object_property_add_str(obj, "kvm-type",
3400 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3401 object_property_set_description(obj, "kvm-type",
3402 "Specifies the KVM virtualization mode (HV, PR)",
3403 NULL);
3404 object_property_add_bool(obj, "modern-hotplug-events",
3405 spapr_get_modern_hotplug_events,
3406 spapr_set_modern_hotplug_events,
3407 NULL);
3408 object_property_set_description(obj, "modern-hotplug-events",
3409 "Use dedicated hotplug event mechanism in"
3410 " place of standard EPOW events when possible"
3411 " (required for memory hot-unplug support)",
3412 NULL);
3413 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3414 "Maximum permitted CPU compatibility mode",
3415 &error_fatal);
3417 object_property_add_str(obj, "resize-hpt",
3418 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3419 object_property_set_description(obj, "resize-hpt",
3420 "Resizing of the Hash Page Table (enabled, disabled, required)",
3421 NULL);
3422 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3423 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3424 object_property_set_description(obj, "vsmt",
3425 "Virtual SMT: KVM behaves as if this were"
3426 " the host's SMT mode", &error_abort);
3427 object_property_add_bool(obj, "vfio-no-msix-emulation",
3428 spapr_get_msix_emulation, NULL, NULL);
3430 /* The machine class defines the default interrupt controller mode */
3431 spapr->irq = smc->irq;
3432 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3433 spapr_set_ic_mode, NULL);
3434 object_property_set_description(obj, "ic-mode",
3435 "Specifies the interrupt controller mode (xics, xive, dual)",
3436 NULL);
3438 object_property_add_str(obj, "host-model",
3439 spapr_get_host_model, spapr_set_host_model,
3440 &error_abort);
3441 object_property_set_description(obj, "host-model",
3442 "Host model to advertise in guest device tree", &error_abort);
3443 object_property_add_str(obj, "host-serial",
3444 spapr_get_host_serial, spapr_set_host_serial,
3445 &error_abort);
3446 object_property_set_description(obj, "host-serial",
3447 "Host serial number to advertise in guest device tree", &error_abort);
3450 static void spapr_machine_finalizefn(Object *obj)
3452 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3454 g_free(spapr->kvm_type);
3457 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3459 cpu_synchronize_state(cs);
3460 ppc_cpu_do_system_reset(cs);
3463 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3465 CPUState *cs;
3467 CPU_FOREACH(cs) {
3468 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3472 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3473 void *fdt, int *fdt_start_offset, Error **errp)
3475 uint64_t addr;
3476 uint32_t node;
3478 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3479 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3480 &error_abort);
3481 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3482 SPAPR_MEMORY_BLOCK_SIZE);
3483 return 0;
3486 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3487 bool dedicated_hp_event_source, Error **errp)
3489 SpaprDrc *drc;
3490 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3491 int i;
3492 uint64_t addr = addr_start;
3493 bool hotplugged = spapr_drc_hotplugged(dev);
3494 Error *local_err = NULL;
3496 for (i = 0; i < nr_lmbs; i++) {
3497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3498 addr / SPAPR_MEMORY_BLOCK_SIZE);
3499 g_assert(drc);
3501 spapr_drc_attach(drc, dev, &local_err);
3502 if (local_err) {
3503 while (addr > addr_start) {
3504 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3505 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3506 addr / SPAPR_MEMORY_BLOCK_SIZE);
3507 spapr_drc_detach(drc);
3509 error_propagate(errp, local_err);
3510 return;
3512 if (!hotplugged) {
3513 spapr_drc_reset(drc);
3515 addr += SPAPR_MEMORY_BLOCK_SIZE;
3517 /* send hotplug notification to the
3518 * guest only in case of hotplugged memory
3520 if (hotplugged) {
3521 if (dedicated_hp_event_source) {
3522 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3523 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3524 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3525 nr_lmbs,
3526 spapr_drc_index(drc));
3527 } else {
3528 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3529 nr_lmbs);
3534 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3535 Error **errp)
3537 Error *local_err = NULL;
3538 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3539 PCDIMMDevice *dimm = PC_DIMM(dev);
3540 uint64_t size, addr;
3542 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3544 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3545 if (local_err) {
3546 goto out;
3549 addr = object_property_get_uint(OBJECT(dimm),
3550 PC_DIMM_ADDR_PROP, &local_err);
3551 if (local_err) {
3552 goto out_unplug;
3555 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3556 &local_err);
3557 if (local_err) {
3558 goto out_unplug;
3561 return;
3563 out_unplug:
3564 pc_dimm_unplug(dimm, MACHINE(ms));
3565 out:
3566 error_propagate(errp, local_err);
3569 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3570 Error **errp)
3572 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3573 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3574 PCDIMMDevice *dimm = PC_DIMM(dev);
3575 Error *local_err = NULL;
3576 uint64_t size;
3577 Object *memdev;
3578 hwaddr pagesize;
3580 if (!smc->dr_lmb_enabled) {
3581 error_setg(errp, "Memory hotplug not supported for this machine");
3582 return;
3585 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3586 if (local_err) {
3587 error_propagate(errp, local_err);
3588 return;
3591 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3592 error_setg(errp, "Hotplugged memory size must be a multiple of "
3593 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3594 return;
3597 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3598 &error_abort);
3599 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3600 spapr_check_pagesize(spapr, pagesize, &local_err);
3601 if (local_err) {
3602 error_propagate(errp, local_err);
3603 return;
3606 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3609 struct SpaprDimmState {
3610 PCDIMMDevice *dimm;
3611 uint32_t nr_lmbs;
3612 QTAILQ_ENTRY(SpaprDimmState) next;
3615 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3616 PCDIMMDevice *dimm)
3618 SpaprDimmState *dimm_state = NULL;
3620 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3621 if (dimm_state->dimm == dimm) {
3622 break;
3625 return dimm_state;
3628 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3629 uint32_t nr_lmbs,
3630 PCDIMMDevice *dimm)
3632 SpaprDimmState *ds = NULL;
3635 * If this request is for a DIMM whose removal had failed earlier
3636 * (due to guest's refusal to remove the LMBs), we would have this
3637 * dimm already in the pending_dimm_unplugs list. In that
3638 * case don't add again.
3640 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3641 if (!ds) {
3642 ds = g_malloc0(sizeof(SpaprDimmState));
3643 ds->nr_lmbs = nr_lmbs;
3644 ds->dimm = dimm;
3645 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3647 return ds;
3650 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3651 SpaprDimmState *dimm_state)
3653 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3654 g_free(dimm_state);
3657 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3658 PCDIMMDevice *dimm)
3660 SpaprDrc *drc;
3661 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3662 &error_abort);
3663 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3664 uint32_t avail_lmbs = 0;
3665 uint64_t addr_start, addr;
3666 int i;
3668 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3669 &error_abort);
3671 addr = addr_start;
3672 for (i = 0; i < nr_lmbs; i++) {
3673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3674 addr / SPAPR_MEMORY_BLOCK_SIZE);
3675 g_assert(drc);
3676 if (drc->dev) {
3677 avail_lmbs++;
3679 addr += SPAPR_MEMORY_BLOCK_SIZE;
3682 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3685 /* Callback to be called during DRC release. */
3686 void spapr_lmb_release(DeviceState *dev)
3688 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3689 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3690 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3692 /* This information will get lost if a migration occurs
3693 * during the unplug process. In this case recover it. */
3694 if (ds == NULL) {
3695 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3696 g_assert(ds);
3697 /* The DRC being examined by the caller at least must be counted */
3698 g_assert(ds->nr_lmbs);
3701 if (--ds->nr_lmbs) {
3702 return;
3706 * Now that all the LMBs have been removed by the guest, call the
3707 * unplug handler chain. This can never fail.
3709 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3710 object_unparent(OBJECT(dev));
3713 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3715 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3716 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3718 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3719 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3720 spapr_pending_dimm_unplugs_remove(spapr, ds);
3723 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3724 DeviceState *dev, Error **errp)
3726 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3727 Error *local_err = NULL;
3728 PCDIMMDevice *dimm = PC_DIMM(dev);
3729 uint32_t nr_lmbs;
3730 uint64_t size, addr_start, addr;
3731 int i;
3732 SpaprDrc *drc;
3734 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3735 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3737 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3738 &local_err);
3739 if (local_err) {
3740 goto out;
3744 * An existing pending dimm state for this DIMM means that there is an
3745 * unplug operation in progress, waiting for the spapr_lmb_release
3746 * callback to complete the job (BQL can't cover that far). In this case,
3747 * bail out to avoid detaching DRCs that were already released.
3749 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3750 error_setg(&local_err,
3751 "Memory unplug already in progress for device %s",
3752 dev->id);
3753 goto out;
3756 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3758 addr = addr_start;
3759 for (i = 0; i < nr_lmbs; i++) {
3760 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3761 addr / SPAPR_MEMORY_BLOCK_SIZE);
3762 g_assert(drc);
3764 spapr_drc_detach(drc);
3765 addr += SPAPR_MEMORY_BLOCK_SIZE;
3768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3769 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3770 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3771 nr_lmbs, spapr_drc_index(drc));
3772 out:
3773 error_propagate(errp, local_err);
3776 /* Callback to be called during DRC release. */
3777 void spapr_core_release(DeviceState *dev)
3779 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3781 /* Call the unplug handler chain. This can never fail. */
3782 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3783 object_unparent(OBJECT(dev));
3786 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3788 MachineState *ms = MACHINE(hotplug_dev);
3789 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3790 CPUCore *cc = CPU_CORE(dev);
3791 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3793 if (smc->pre_2_10_has_unused_icps) {
3794 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3795 int i;
3797 for (i = 0; i < cc->nr_threads; i++) {
3798 CPUState *cs = CPU(sc->threads[i]);
3800 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3804 assert(core_slot);
3805 core_slot->cpu = NULL;
3806 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3809 static
3810 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3811 Error **errp)
3813 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3814 int index;
3815 SpaprDrc *drc;
3816 CPUCore *cc = CPU_CORE(dev);
3818 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3819 error_setg(errp, "Unable to find CPU core with core-id: %d",
3820 cc->core_id);
3821 return;
3823 if (index == 0) {
3824 error_setg(errp, "Boot CPU core may not be unplugged");
3825 return;
3828 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3829 spapr_vcpu_id(spapr, cc->core_id));
3830 g_assert(drc);
3832 spapr_drc_detach(drc);
3834 spapr_hotplug_req_remove_by_index(drc);
3837 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3838 void *fdt, int *fdt_start_offset, Error **errp)
3840 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3841 CPUState *cs = CPU(core->threads[0]);
3842 PowerPCCPU *cpu = POWERPC_CPU(cs);
3843 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3844 int id = spapr_get_vcpu_id(cpu);
3845 char *nodename;
3846 int offset;
3848 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3849 offset = fdt_add_subnode(fdt, 0, nodename);
3850 g_free(nodename);
3852 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3854 *fdt_start_offset = offset;
3855 return 0;
3858 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3859 Error **errp)
3861 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3862 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3863 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3864 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3865 CPUCore *cc = CPU_CORE(dev);
3866 CPUState *cs;
3867 SpaprDrc *drc;
3868 Error *local_err = NULL;
3869 CPUArchId *core_slot;
3870 int index;
3871 bool hotplugged = spapr_drc_hotplugged(dev);
3872 int i;
3874 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3875 if (!core_slot) {
3876 error_setg(errp, "Unable to find CPU core with core-id: %d",
3877 cc->core_id);
3878 return;
3880 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3881 spapr_vcpu_id(spapr, cc->core_id));
3883 g_assert(drc || !mc->has_hotpluggable_cpus);
3885 if (drc) {
3886 spapr_drc_attach(drc, dev, &local_err);
3887 if (local_err) {
3888 error_propagate(errp, local_err);
3889 return;
3892 if (hotplugged) {
3894 * Send hotplug notification interrupt to the guest only
3895 * in case of hotplugged CPUs.
3897 spapr_hotplug_req_add_by_index(drc);
3898 } else {
3899 spapr_drc_reset(drc);
3903 core_slot->cpu = OBJECT(dev);
3905 if (smc->pre_2_10_has_unused_icps) {
3906 for (i = 0; i < cc->nr_threads; i++) {
3907 cs = CPU(core->threads[i]);
3908 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3913 * Set compatibility mode to match the boot CPU, which was either set
3914 * by the machine reset code or by CAS.
3916 if (hotplugged) {
3917 for (i = 0; i < cc->nr_threads; i++) {
3918 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3919 &local_err);
3920 if (local_err) {
3921 error_propagate(errp, local_err);
3922 return;
3928 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3929 Error **errp)
3931 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3932 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3933 Error *local_err = NULL;
3934 CPUCore *cc = CPU_CORE(dev);
3935 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3936 const char *type = object_get_typename(OBJECT(dev));
3937 CPUArchId *core_slot;
3938 int index;
3939 unsigned int smp_threads = machine->smp.threads;
3941 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3942 error_setg(&local_err, "CPU hotplug not supported for this machine");
3943 goto out;
3946 if (strcmp(base_core_type, type)) {
3947 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3948 goto out;
3951 if (cc->core_id % smp_threads) {
3952 error_setg(&local_err, "invalid core id %d", cc->core_id);
3953 goto out;
3957 * In general we should have homogeneous threads-per-core, but old
3958 * (pre hotplug support) machine types allow the last core to have
3959 * reduced threads as a compatibility hack for when we allowed
3960 * total vcpus not a multiple of threads-per-core.
3962 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3963 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3964 cc->nr_threads, smp_threads);
3965 goto out;
3968 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3969 if (!core_slot) {
3970 error_setg(&local_err, "core id %d out of range", cc->core_id);
3971 goto out;
3974 if (core_slot->cpu) {
3975 error_setg(&local_err, "core %d already populated", cc->core_id);
3976 goto out;
3979 numa_cpu_pre_plug(core_slot, dev, &local_err);
3981 out:
3982 error_propagate(errp, local_err);
3985 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3986 void *fdt, int *fdt_start_offset, Error **errp)
3988 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3989 int intc_phandle;
3991 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3992 if (intc_phandle <= 0) {
3993 return -1;
3996 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3997 fdt_start_offset)) {
3998 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3999 return -1;
4002 /* generally SLOF creates these, for hotplug it's up to QEMU */
4003 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4005 return 0;
4008 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4009 Error **errp)
4011 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4012 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4013 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4014 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4016 if (dev->hotplugged && !smc->dr_phb_enabled) {
4017 error_setg(errp, "PHB hotplug not supported for this machine");
4018 return;
4021 if (sphb->index == (uint32_t)-1) {
4022 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4023 return;
4027 * This will check that sphb->index doesn't exceed the maximum number of
4028 * PHBs for the current machine type.
4030 smc->phb_placement(spapr, sphb->index,
4031 &sphb->buid, &sphb->io_win_addr,
4032 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4033 windows_supported, sphb->dma_liobn,
4034 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4035 errp);
4038 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4039 Error **errp)
4041 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4042 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4043 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4044 SpaprDrc *drc;
4045 bool hotplugged = spapr_drc_hotplugged(dev);
4046 Error *local_err = NULL;
4048 if (!smc->dr_phb_enabled) {
4049 return;
4052 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4053 /* hotplug hooks should check it's enabled before getting this far */
4054 assert(drc);
4056 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4057 if (local_err) {
4058 error_propagate(errp, local_err);
4059 return;
4062 if (hotplugged) {
4063 spapr_hotplug_req_add_by_index(drc);
4064 } else {
4065 spapr_drc_reset(drc);
4069 void spapr_phb_release(DeviceState *dev)
4071 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4073 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4074 object_unparent(OBJECT(dev));
4077 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4079 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4082 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4083 DeviceState *dev, Error **errp)
4085 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4086 SpaprDrc *drc;
4088 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4089 assert(drc);
4091 if (!spapr_drc_unplug_requested(drc)) {
4092 spapr_drc_detach(drc);
4093 spapr_hotplug_req_remove_by_index(drc);
4097 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4098 Error **errp)
4100 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4101 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4103 if (spapr->tpm_proxy != NULL) {
4104 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4105 return;
4108 spapr->tpm_proxy = tpm_proxy;
4111 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4113 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4115 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4116 object_unparent(OBJECT(dev));
4117 spapr->tpm_proxy = NULL;
4120 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4121 DeviceState *dev, Error **errp)
4123 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4124 spapr_memory_plug(hotplug_dev, dev, errp);
4125 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4126 spapr_core_plug(hotplug_dev, dev, errp);
4127 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4128 spapr_phb_plug(hotplug_dev, dev, errp);
4129 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4130 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4134 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4135 DeviceState *dev, Error **errp)
4137 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4138 spapr_memory_unplug(hotplug_dev, dev);
4139 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4140 spapr_core_unplug(hotplug_dev, dev);
4141 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4142 spapr_phb_unplug(hotplug_dev, dev);
4143 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4144 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4148 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4149 DeviceState *dev, Error **errp)
4151 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4152 MachineClass *mc = MACHINE_GET_CLASS(sms);
4153 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4155 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4156 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4157 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4158 } else {
4159 /* NOTE: this means there is a window after guest reset, prior to
4160 * CAS negotiation, where unplug requests will fail due to the
4161 * capability not being detected yet. This is a bit different than
4162 * the case with PCI unplug, where the events will be queued and
4163 * eventually handled by the guest after boot
4165 error_setg(errp, "Memory hot unplug not supported for this guest");
4167 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4168 if (!mc->has_hotpluggable_cpus) {
4169 error_setg(errp, "CPU hot unplug not supported on this machine");
4170 return;
4172 spapr_core_unplug_request(hotplug_dev, dev, errp);
4173 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4174 if (!smc->dr_phb_enabled) {
4175 error_setg(errp, "PHB hot unplug not supported on this machine");
4176 return;
4178 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4179 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4180 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4184 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4185 DeviceState *dev, Error **errp)
4187 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4188 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4189 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4190 spapr_core_pre_plug(hotplug_dev, dev, errp);
4191 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4192 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4196 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4197 DeviceState *dev)
4199 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4200 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4201 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4202 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4203 return HOTPLUG_HANDLER(machine);
4205 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4206 PCIDevice *pcidev = PCI_DEVICE(dev);
4207 PCIBus *root = pci_device_root_bus(pcidev);
4208 SpaprPhbState *phb =
4209 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4210 TYPE_SPAPR_PCI_HOST_BRIDGE);
4212 if (phb) {
4213 return HOTPLUG_HANDLER(phb);
4216 return NULL;
4219 static CpuInstanceProperties
4220 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4222 CPUArchId *core_slot;
4223 MachineClass *mc = MACHINE_GET_CLASS(machine);
4225 /* make sure possible_cpu are intialized */
4226 mc->possible_cpu_arch_ids(machine);
4227 /* get CPU core slot containing thread that matches cpu_index */
4228 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4229 assert(core_slot);
4230 return core_slot->props;
4233 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4235 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4238 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4240 int i;
4241 unsigned int smp_threads = machine->smp.threads;
4242 unsigned int smp_cpus = machine->smp.cpus;
4243 const char *core_type;
4244 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4245 MachineClass *mc = MACHINE_GET_CLASS(machine);
4247 if (!mc->has_hotpluggable_cpus) {
4248 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4250 if (machine->possible_cpus) {
4251 assert(machine->possible_cpus->len == spapr_max_cores);
4252 return machine->possible_cpus;
4255 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4256 if (!core_type) {
4257 error_report("Unable to find sPAPR CPU Core definition");
4258 exit(1);
4261 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4262 sizeof(CPUArchId) * spapr_max_cores);
4263 machine->possible_cpus->len = spapr_max_cores;
4264 for (i = 0; i < machine->possible_cpus->len; i++) {
4265 int core_id = i * smp_threads;
4267 machine->possible_cpus->cpus[i].type = core_type;
4268 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4269 machine->possible_cpus->cpus[i].arch_id = core_id;
4270 machine->possible_cpus->cpus[i].props.has_core_id = true;
4271 machine->possible_cpus->cpus[i].props.core_id = core_id;
4273 return machine->possible_cpus;
4276 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4277 uint64_t *buid, hwaddr *pio,
4278 hwaddr *mmio32, hwaddr *mmio64,
4279 unsigned n_dma, uint32_t *liobns,
4280 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4283 * New-style PHB window placement.
4285 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4286 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4287 * windows.
4289 * Some guest kernels can't work with MMIO windows above 1<<46
4290 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4292 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4293 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4294 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4295 * 1TiB 64-bit MMIO windows for each PHB.
4297 const uint64_t base_buid = 0x800000020000000ULL;
4298 int i;
4300 /* Sanity check natural alignments */
4301 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4302 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4303 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4304 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4305 /* Sanity check bounds */
4306 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4307 SPAPR_PCI_MEM32_WIN_SIZE);
4308 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4309 SPAPR_PCI_MEM64_WIN_SIZE);
4311 if (index >= SPAPR_MAX_PHBS) {
4312 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4313 SPAPR_MAX_PHBS - 1);
4314 return;
4317 *buid = base_buid + index;
4318 for (i = 0; i < n_dma; ++i) {
4319 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4322 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4323 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4324 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4326 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4327 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4330 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4332 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4334 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4337 static void spapr_ics_resend(XICSFabric *dev)
4339 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4341 ics_resend(spapr->ics);
4344 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4346 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4348 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4351 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4352 Monitor *mon)
4354 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4356 spapr->irq->print_info(spapr, mon);
4359 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4361 return cpu->vcpu_id;
4364 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4366 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4367 MachineState *ms = MACHINE(spapr);
4368 int vcpu_id;
4370 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4372 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4373 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4374 error_append_hint(errp, "Adjust the number of cpus to %d "
4375 "or try to raise the number of threads per core\n",
4376 vcpu_id * ms->smp.threads / spapr->vsmt);
4377 return;
4380 cpu->vcpu_id = vcpu_id;
4383 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4385 CPUState *cs;
4387 CPU_FOREACH(cs) {
4388 PowerPCCPU *cpu = POWERPC_CPU(cs);
4390 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4391 return cpu;
4395 return NULL;
4398 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4400 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4402 /* These are only called by TCG, KVM maintains dispatch state */
4404 spapr_cpu->prod = false;
4405 if (spapr_cpu->vpa_addr) {
4406 CPUState *cs = CPU(cpu);
4407 uint32_t dispatch;
4409 dispatch = ldl_be_phys(cs->as,
4410 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4411 dispatch++;
4412 if ((dispatch & 1) != 0) {
4413 qemu_log_mask(LOG_GUEST_ERROR,
4414 "VPA: incorrect dispatch counter value for "
4415 "dispatched partition %u, correcting.\n", dispatch);
4416 dispatch++;
4418 stl_be_phys(cs->as,
4419 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4423 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4425 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4427 if (spapr_cpu->vpa_addr) {
4428 CPUState *cs = CPU(cpu);
4429 uint32_t dispatch;
4431 dispatch = ldl_be_phys(cs->as,
4432 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4433 dispatch++;
4434 if ((dispatch & 1) != 1) {
4435 qemu_log_mask(LOG_GUEST_ERROR,
4436 "VPA: incorrect dispatch counter value for "
4437 "preempted partition %u, correcting.\n", dispatch);
4438 dispatch++;
4440 stl_be_phys(cs->as,
4441 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4445 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4447 MachineClass *mc = MACHINE_CLASS(oc);
4448 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4449 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4450 NMIClass *nc = NMI_CLASS(oc);
4451 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4452 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4453 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4454 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4456 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4457 mc->ignore_boot_device_suffixes = true;
4460 * We set up the default / latest behaviour here. The class_init
4461 * functions for the specific versioned machine types can override
4462 * these details for backwards compatibility
4464 mc->init = spapr_machine_init;
4465 mc->reset = spapr_machine_reset;
4466 mc->block_default_type = IF_SCSI;
4467 mc->max_cpus = 1024;
4468 mc->no_parallel = 1;
4469 mc->default_boot_order = "";
4470 mc->default_ram_size = 512 * MiB;
4471 mc->default_display = "std";
4472 mc->kvm_type = spapr_kvm_type;
4473 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4474 mc->pci_allow_0_address = true;
4475 assert(!mc->get_hotplug_handler);
4476 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4477 hc->pre_plug = spapr_machine_device_pre_plug;
4478 hc->plug = spapr_machine_device_plug;
4479 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4480 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4481 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4482 hc->unplug_request = spapr_machine_device_unplug_request;
4483 hc->unplug = spapr_machine_device_unplug;
4485 smc->dr_lmb_enabled = true;
4486 smc->update_dt_enabled = true;
4487 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4488 mc->has_hotpluggable_cpus = true;
4489 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4490 fwc->get_dev_path = spapr_get_fw_dev_path;
4491 nc->nmi_monitor_handler = spapr_nmi;
4492 smc->phb_placement = spapr_phb_placement;
4493 vhc->hypercall = emulate_spapr_hypercall;
4494 vhc->hpt_mask = spapr_hpt_mask;
4495 vhc->map_hptes = spapr_map_hptes;
4496 vhc->unmap_hptes = spapr_unmap_hptes;
4497 vhc->hpte_set_c = spapr_hpte_set_c;
4498 vhc->hpte_set_r = spapr_hpte_set_r;
4499 vhc->get_pate = spapr_get_pate;
4500 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4501 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4502 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4503 xic->ics_get = spapr_ics_get;
4504 xic->ics_resend = spapr_ics_resend;
4505 xic->icp_get = spapr_icp_get;
4506 ispc->print_info = spapr_pic_print_info;
4507 /* Force NUMA node memory size to be a multiple of
4508 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4509 * in which LMBs are represented and hot-added
4511 mc->numa_mem_align_shift = 28;
4512 mc->numa_mem_supported = true;
4514 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4515 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4516 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4517 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4518 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4519 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4520 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4521 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4522 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4523 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4524 spapr_caps_add_properties(smc, &error_abort);
4525 smc->irq = &spapr_irq_dual;
4526 smc->dr_phb_enabled = true;
4527 smc->linux_pci_probe = true;
4530 static const TypeInfo spapr_machine_info = {
4531 .name = TYPE_SPAPR_MACHINE,
4532 .parent = TYPE_MACHINE,
4533 .abstract = true,
4534 .instance_size = sizeof(SpaprMachineState),
4535 .instance_init = spapr_instance_init,
4536 .instance_finalize = spapr_machine_finalizefn,
4537 .class_size = sizeof(SpaprMachineClass),
4538 .class_init = spapr_machine_class_init,
4539 .interfaces = (InterfaceInfo[]) {
4540 { TYPE_FW_PATH_PROVIDER },
4541 { TYPE_NMI },
4542 { TYPE_HOTPLUG_HANDLER },
4543 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4544 { TYPE_XICS_FABRIC },
4545 { TYPE_INTERRUPT_STATS_PROVIDER },
4550 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4551 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4552 void *data) \
4554 MachineClass *mc = MACHINE_CLASS(oc); \
4555 spapr_machine_##suffix##_class_options(mc); \
4556 if (latest) { \
4557 mc->alias = "pseries"; \
4558 mc->is_default = 1; \
4561 static const TypeInfo spapr_machine_##suffix##_info = { \
4562 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4563 .parent = TYPE_SPAPR_MACHINE, \
4564 .class_init = spapr_machine_##suffix##_class_init, \
4565 }; \
4566 static void spapr_machine_register_##suffix(void) \
4568 type_register(&spapr_machine_##suffix##_info); \
4570 type_init(spapr_machine_register_##suffix)
4573 * pseries-4.2
4575 static void spapr_machine_4_2_class_options(MachineClass *mc)
4577 /* Defaults for the latest behaviour inherited from the base class */
4580 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4583 * pseries-4.1
4585 static void spapr_machine_4_1_class_options(MachineClass *mc)
4587 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4588 static GlobalProperty compat[] = {
4589 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4590 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4593 spapr_machine_4_2_class_options(mc);
4594 smc->linux_pci_probe = false;
4595 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4596 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4599 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4602 * pseries-4.0
4604 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4605 uint64_t *buid, hwaddr *pio,
4606 hwaddr *mmio32, hwaddr *mmio64,
4607 unsigned n_dma, uint32_t *liobns,
4608 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4610 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4611 nv2gpa, nv2atsd, errp);
4612 *nv2gpa = 0;
4613 *nv2atsd = 0;
4616 static void spapr_machine_4_0_class_options(MachineClass *mc)
4618 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4620 spapr_machine_4_1_class_options(mc);
4621 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4622 smc->phb_placement = phb_placement_4_0;
4623 smc->irq = &spapr_irq_xics;
4624 smc->pre_4_1_migration = true;
4627 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4630 * pseries-3.1
4632 static void spapr_machine_3_1_class_options(MachineClass *mc)
4634 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4636 spapr_machine_4_0_class_options(mc);
4637 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4639 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4640 smc->update_dt_enabled = false;
4641 smc->dr_phb_enabled = false;
4642 smc->broken_host_serial_model = true;
4643 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4644 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4645 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4646 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4649 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4652 * pseries-3.0
4655 static void spapr_machine_3_0_class_options(MachineClass *mc)
4657 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4659 spapr_machine_3_1_class_options(mc);
4660 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4662 smc->legacy_irq_allocation = true;
4663 smc->irq = &spapr_irq_xics_legacy;
4666 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4669 * pseries-2.12
4671 static void spapr_machine_2_12_class_options(MachineClass *mc)
4673 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4674 static GlobalProperty compat[] = {
4675 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4676 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4679 spapr_machine_3_0_class_options(mc);
4680 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4681 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4683 /* We depend on kvm_enabled() to choose a default value for the
4684 * hpt-max-page-size capability. Of course we can't do it here
4685 * because this is too early and the HW accelerator isn't initialzed
4686 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4688 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4691 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4693 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4695 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4697 spapr_machine_2_12_class_options(mc);
4698 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4699 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4700 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4703 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4706 * pseries-2.11
4709 static void spapr_machine_2_11_class_options(MachineClass *mc)
4711 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4713 spapr_machine_2_12_class_options(mc);
4714 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4715 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4718 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4721 * pseries-2.10
4724 static void spapr_machine_2_10_class_options(MachineClass *mc)
4726 spapr_machine_2_11_class_options(mc);
4727 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4730 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4733 * pseries-2.9
4736 static void spapr_machine_2_9_class_options(MachineClass *mc)
4738 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4739 static GlobalProperty compat[] = {
4740 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4743 spapr_machine_2_10_class_options(mc);
4744 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4745 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4746 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4747 smc->pre_2_10_has_unused_icps = true;
4748 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4751 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4754 * pseries-2.8
4757 static void spapr_machine_2_8_class_options(MachineClass *mc)
4759 static GlobalProperty compat[] = {
4760 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4763 spapr_machine_2_9_class_options(mc);
4764 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4765 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4766 mc->numa_mem_align_shift = 23;
4769 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4772 * pseries-2.7
4775 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4776 uint64_t *buid, hwaddr *pio,
4777 hwaddr *mmio32, hwaddr *mmio64,
4778 unsigned n_dma, uint32_t *liobns,
4779 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4781 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4782 const uint64_t base_buid = 0x800000020000000ULL;
4783 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4784 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4785 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4786 const uint32_t max_index = 255;
4787 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4789 uint64_t ram_top = MACHINE(spapr)->ram_size;
4790 hwaddr phb0_base, phb_base;
4791 int i;
4793 /* Do we have device memory? */
4794 if (MACHINE(spapr)->maxram_size > ram_top) {
4795 /* Can't just use maxram_size, because there may be an
4796 * alignment gap between normal and device memory regions
4798 ram_top = MACHINE(spapr)->device_memory->base +
4799 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4802 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4804 if (index > max_index) {
4805 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4806 max_index);
4807 return;
4810 *buid = base_buid + index;
4811 for (i = 0; i < n_dma; ++i) {
4812 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4815 phb_base = phb0_base + index * phb_spacing;
4816 *pio = phb_base + pio_offset;
4817 *mmio32 = phb_base + mmio_offset;
4819 * We don't set the 64-bit MMIO window, relying on the PHB's
4820 * fallback behaviour of automatically splitting a large "32-bit"
4821 * window into contiguous 32-bit and 64-bit windows
4824 *nv2gpa = 0;
4825 *nv2atsd = 0;
4828 static void spapr_machine_2_7_class_options(MachineClass *mc)
4830 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4831 static GlobalProperty compat[] = {
4832 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4833 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4834 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4835 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4838 spapr_machine_2_8_class_options(mc);
4839 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4840 mc->default_machine_opts = "modern-hotplug-events=off";
4841 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4842 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4843 smc->phb_placement = phb_placement_2_7;
4846 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4849 * pseries-2.6
4852 static void spapr_machine_2_6_class_options(MachineClass *mc)
4854 static GlobalProperty compat[] = {
4855 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4858 spapr_machine_2_7_class_options(mc);
4859 mc->has_hotpluggable_cpus = false;
4860 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4861 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4864 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4867 * pseries-2.5
4870 static void spapr_machine_2_5_class_options(MachineClass *mc)
4872 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4873 static GlobalProperty compat[] = {
4874 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4877 spapr_machine_2_6_class_options(mc);
4878 smc->use_ohci_by_default = true;
4879 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4880 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4883 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4886 * pseries-2.4
4889 static void spapr_machine_2_4_class_options(MachineClass *mc)
4891 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4893 spapr_machine_2_5_class_options(mc);
4894 smc->dr_lmb_enabled = false;
4895 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4898 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4901 * pseries-2.3
4904 static void spapr_machine_2_3_class_options(MachineClass *mc)
4906 static GlobalProperty compat[] = {
4907 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4909 spapr_machine_2_4_class_options(mc);
4910 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4911 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4913 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4916 * pseries-2.2
4919 static void spapr_machine_2_2_class_options(MachineClass *mc)
4921 static GlobalProperty compat[] = {
4922 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4925 spapr_machine_2_3_class_options(mc);
4926 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4927 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4928 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4930 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4933 * pseries-2.1
4936 static void spapr_machine_2_1_class_options(MachineClass *mc)
4938 spapr_machine_2_2_class_options(mc);
4939 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4941 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4943 static void spapr_machine_register_types(void)
4945 type_register_static(&spapr_machine_info);
4948 type_init(spapr_machine_register_types)