3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, ARMMMUIdx mmu_idx
,
17 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 assert(ri
->fieldoffset
);
123 if (cpreg_field_is_64bit(ri
)) {
124 return CPREG_FIELD64(env
, ri
);
126 return CPREG_FIELD32(env
, ri
);
130 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
133 assert(ri
->fieldoffset
);
134 if (cpreg_field_is_64bit(ri
)) {
135 CPREG_FIELD64(env
, ri
) = value
;
137 CPREG_FIELD32(env
, ri
) = value
;
141 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
143 return (char *)env
+ ri
->fieldoffset
;
146 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri
->type
& ARM_CP_CONST
) {
150 return ri
->resetvalue
;
151 } else if (ri
->raw_readfn
) {
152 return ri
->raw_readfn(env
, ri
);
153 } else if (ri
->readfn
) {
154 return ri
->readfn(env
, ri
);
156 return raw_read(env
, ri
);
160 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
168 if (ri
->type
& ARM_CP_CONST
) {
170 } else if (ri
->raw_writefn
) {
171 ri
->raw_writefn(env
, ri
, v
);
172 } else if (ri
->writefn
) {
173 ri
->writefn(env
, ri
, v
);
175 raw_write(env
, ri
, v
);
179 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri
->type
& ARM_CP_CONST
) ||
194 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
200 bool write_cpustate_to_list(ARMCPU
*cpu
)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
206 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
207 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
208 const ARMCPRegInfo
*ri
;
210 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
215 if (ri
->type
& ARM_CP_NO_RAW
) {
218 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
223 bool write_list_to_cpustate(ARMCPU
*cpu
)
228 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
229 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
230 uint64_t v
= cpu
->cpreg_values
[i
];
231 const ARMCPRegInfo
*ri
;
233 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
238 if (ri
->type
& ARM_CP_NO_RAW
) {
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu
->env
, ri
, v
);
246 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
253 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
255 ARMCPU
*cpu
= opaque
;
257 const ARMCPRegInfo
*ri
;
259 regidx
= *(uint32_t *)key
;
260 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
262 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
263 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
264 /* The value array need not be initialized at this point */
265 cpu
->cpreg_array_len
++;
269 static void count_cpreg(gpointer key
, gpointer opaque
)
271 ARMCPU
*cpu
= opaque
;
273 const ARMCPRegInfo
*ri
;
275 regidx
= *(uint32_t *)key
;
276 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
278 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
279 cpu
->cpreg_array_len
++;
283 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
285 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
286 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
297 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
299 GList
**plist
= udata
;
301 *plist
= g_list_prepend(*plist
, key
);
304 void init_cpreg_list(ARMCPU
*cpu
)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
312 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
314 keys
= g_list_sort(keys
, cpreg_key_compare
);
316 cpu
->cpreg_array_len
= 0;
318 g_list_foreach(keys
, count_cpreg
, cpu
);
320 arraylen
= cpu
->cpreg_array_len
;
321 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
322 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
323 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
324 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
325 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
326 cpu
->cpreg_array_len
= 0;
328 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
330 assert(cpu
->cpreg_array_len
== arraylen
);
335 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
337 ARMCPU
*cpu
= arm_env_get_cpu(env
);
339 raw_write(env
, ri
, value
);
340 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
345 ARMCPU
*cpu
= arm_env_get_cpu(env
);
347 if (raw_read(env
, ri
) != value
) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu
), 1);
352 raw_write(env
, ri
, value
);
356 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
362 && !extended_addresses_enabled(env
)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu
), 1);
369 raw_write(env
, ri
, value
);
372 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
375 /* Invalidate all (TLBIALL) */
376 ARMCPU
*cpu
= arm_env_get_cpu(env
);
378 tlb_flush(CPU(cpu
), 1);
381 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU
*cpu
= arm_env_get_cpu(env
);
387 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
390 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU
*cpu
= arm_env_get_cpu(env
);
396 tlb_flush(CPU(cpu
), value
== 0);
399 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU
*cpu
= arm_env_get_cpu(env
);
405 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
414 CPU_FOREACH(other_cs
) {
415 tlb_flush(other_cs
, 1);
419 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
424 CPU_FOREACH(other_cs
) {
425 tlb_flush(other_cs
, value
== 0);
429 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
434 CPU_FOREACH(other_cs
) {
435 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
439 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
444 CPU_FOREACH(other_cs
) {
445 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
449 static const ARMCPRegInfo cp_reginfo
[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name
= "FCSEIDR(NS)",
456 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
457 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
458 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
459 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
460 { .name
= "FCSEIDR(S)",
461 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
462 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
463 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
464 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
472 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
473 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
474 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
475 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
476 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
477 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
478 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
479 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
480 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
484 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
490 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
491 .access
= PL1_RW
, .resetvalue
= 0,
492 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
493 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
494 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
495 /* ??? This covers not just the impdef TLB lockdown registers but also
496 * some v7VMSA registers relating to TEX remap, so it is overly broad.
498 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
499 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
500 /* Cache maintenance ops; some of this space may be overridden later. */
501 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
502 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
503 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
507 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
508 /* Not all pre-v6 cores implemented this WFI, so this is slightly
511 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
512 .access
= PL1_W
, .type
= ARM_CP_WFI
},
516 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
517 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
518 * is UNPREDICTABLE; we choose to NOP as most implementations do).
520 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
521 .access
= PL1_W
, .type
= ARM_CP_WFI
},
522 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
523 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
524 * OMAPCP will override this space.
526 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
527 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
529 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
530 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
532 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
533 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
534 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
536 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
537 * implementing it as RAZ means the "debug architecture version" bits
538 * will read as a reserved value, which should cause Linux to not try
539 * to use the debug hardware.
541 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
542 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
543 /* MMU TLB control. Note that the wildcarding means we cover not just
544 * the unified TLB ops but also the dside/iside/inner-shareable variants.
546 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
547 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
548 .type
= ARM_CP_NO_RAW
},
549 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
550 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
551 .type
= ARM_CP_NO_RAW
},
552 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
553 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
554 .type
= ARM_CP_NO_RAW
},
555 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
556 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
557 .type
= ARM_CP_NO_RAW
},
561 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
566 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
567 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
568 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
569 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
570 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
572 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
573 /* VFP coprocessor: cp10 & cp11 [23:20] */
574 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
576 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
577 /* ASEDIS [31] bit is RAO/WI */
581 /* VFPv3 and upwards with NEON implement 32 double precision
582 * registers (D0-D31).
584 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
585 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
586 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
592 env
->cp15
.cpacr_el1
= value
;
595 static const ARMCPRegInfo v6_cp_reginfo
[] = {
596 /* prefetch by MVA in v6, NOP in v7 */
597 { .name
= "MVA_prefetch",
598 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
599 .access
= PL1_W
, .type
= ARM_CP_NOP
},
600 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
601 .access
= PL0_W
, .type
= ARM_CP_NOP
},
602 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
603 .access
= PL0_W
, .type
= ARM_CP_NOP
},
604 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
605 .access
= PL0_W
, .type
= ARM_CP_NOP
},
606 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
608 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
609 offsetof(CPUARMState
, cp15
.ifar_ns
) },
611 /* Watchpoint Fault Address Register : should actually only be present
612 * for 1136, 1176, 11MPCore.
614 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
615 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
616 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
617 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
618 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
619 .resetvalue
= 0, .writefn
= cpacr_write
},
623 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
625 /* Performance monitor registers user accessibility is controlled
628 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
629 return CP_ACCESS_TRAP
;
634 #ifndef CONFIG_USER_ONLY
636 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
638 /* This does not support checking PMCCFILTR_EL0 register */
640 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
647 void pmccntr_sync(CPUARMState
*env
)
651 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
652 get_ticks_per_sec(), 1000000);
654 if (env
->cp15
.c9_pmcr
& PMCRD
) {
655 /* Increment once every 64 processor clock cycles */
659 if (arm_ccnt_enabled(env
)) {
660 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
664 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
670 /* The counter has been reset */
671 env
->cp15
.c15_ccnt
= 0;
674 /* only the DP, X, D and E bits are writable */
675 env
->cp15
.c9_pmcr
&= ~0x39;
676 env
->cp15
.c9_pmcr
|= (value
& 0x39);
681 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
683 uint64_t total_ticks
;
685 if (!arm_ccnt_enabled(env
)) {
686 /* Counter is disabled, do not change value */
687 return env
->cp15
.c15_ccnt
;
690 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
691 get_ticks_per_sec(), 1000000);
693 if (env
->cp15
.c9_pmcr
& PMCRD
) {
694 /* Increment once every 64 processor clock cycles */
697 return total_ticks
- env
->cp15
.c15_ccnt
;
700 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
703 uint64_t total_ticks
;
705 if (!arm_ccnt_enabled(env
)) {
706 /* Counter is disabled, set the absolute value */
707 env
->cp15
.c15_ccnt
= value
;
711 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
712 get_ticks_per_sec(), 1000000);
714 if (env
->cp15
.c9_pmcr
& PMCRD
) {
715 /* Increment once every 64 processor clock cycles */
718 env
->cp15
.c15_ccnt
= total_ticks
- value
;
721 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
724 uint64_t cur_val
= pmccntr_read(env
, NULL
);
726 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
729 #else /* CONFIG_USER_ONLY */
731 void pmccntr_sync(CPUARMState
*env
)
737 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
741 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
745 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
749 env
->cp15
.c9_pmcnten
|= value
;
752 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
756 env
->cp15
.c9_pmcnten
&= ~value
;
759 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
762 env
->cp15
.c9_pmovsr
&= ~value
;
765 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
768 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
771 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
774 env
->cp15
.c9_pmuserenr
= value
& 1;
777 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
780 /* We have no event counters so only the C bit can be changed */
782 env
->cp15
.c9_pminten
|= value
;
785 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
789 env
->cp15
.c9_pminten
&= ~value
;
792 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
795 /* Note that even though the AArch64 view of this register has bits
796 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
797 * architectural requirements for bits which are RES0 only in some
798 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
799 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
801 raw_write(env
, ri
, value
& ~0x1FULL
);
804 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
806 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
807 * For bits that vary between AArch32/64, code needs to check the
808 * current execution mode before directly using the feature bit.
810 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
812 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
813 valid_mask
&= ~SCR_HCE
;
815 /* On ARMv7, SMD (or SCD as it is called in v7) is only
816 * supported if EL2 exists. The bit is UNK/SBZP when
817 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
818 * when EL2 is unavailable.
819 * On ARMv8, this bit is always available.
821 if (arm_feature(env
, ARM_FEATURE_V7
) &&
822 !arm_feature(env
, ARM_FEATURE_V8
)) {
823 valid_mask
&= ~SCR_SMD
;
827 /* Clear all-context RES0 bits. */
829 raw_write(env
, ri
, value
);
832 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
834 ARMCPU
*cpu
= arm_env_get_cpu(env
);
836 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
839 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
840 ri
->secure
& ARM_CP_SECSTATE_S
);
842 return cpu
->ccsidr
[index
];
845 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
848 raw_write(env
, ri
, value
& 0xf);
851 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
853 CPUState
*cs
= ENV_GET_CPU(env
);
856 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
859 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
862 /* External aborts are not possible in QEMU so A bit is always clear */
866 static const ARMCPRegInfo v7_cp_reginfo
[] = {
867 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
868 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
869 .access
= PL1_W
, .type
= ARM_CP_NOP
},
870 /* Performance monitors are implementation defined in v7,
871 * but with an ARM recommended set of registers, which we
872 * follow (although we don't actually implement any counters)
874 * Performance registers fall into three categories:
875 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
876 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
877 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
878 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
879 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
881 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
882 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
883 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
884 .writefn
= pmcntenset_write
,
885 .accessfn
= pmreg_access
,
886 .raw_writefn
= raw_write
},
887 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
888 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
889 .access
= PL0_RW
, .accessfn
= pmreg_access
,
890 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
891 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
892 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
894 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
895 .accessfn
= pmreg_access
,
896 .writefn
= pmcntenclr_write
,
897 .type
= ARM_CP_ALIAS
},
898 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
899 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
900 .access
= PL0_RW
, .accessfn
= pmreg_access
,
901 .type
= ARM_CP_ALIAS
,
902 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
903 .writefn
= pmcntenclr_write
},
904 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
905 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
906 .accessfn
= pmreg_access
,
907 .writefn
= pmovsr_write
,
908 .raw_writefn
= raw_write
},
909 /* Unimplemented so WI. */
910 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
911 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
912 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
913 * We choose to RAZ/WI.
915 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
916 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
917 .accessfn
= pmreg_access
},
918 #ifndef CONFIG_USER_ONLY
919 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
920 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
921 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
922 .accessfn
= pmreg_access
},
923 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
924 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
925 .access
= PL0_RW
, .accessfn
= pmreg_access
,
927 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
929 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
930 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
931 .writefn
= pmccfiltr_write
,
932 .access
= PL0_RW
, .accessfn
= pmreg_access
,
934 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
936 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
938 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
939 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
940 .raw_writefn
= raw_write
},
941 /* Unimplemented, RAZ/WI. */
942 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
943 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
944 .accessfn
= pmreg_access
},
945 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
946 .access
= PL0_R
| PL1_RW
,
947 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
949 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
950 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
952 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
954 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
955 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
956 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
957 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
958 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
959 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
960 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
961 .access
= PL1_RW
, .writefn
= vbar_write
,
962 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
963 offsetof(CPUARMState
, cp15
.vbar_ns
) },
965 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
966 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
967 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
968 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
969 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
970 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
971 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
972 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
973 /* Auxiliary ID register: this actually has an IMPDEF value but for now
974 * just RAZ for all cores:
976 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
977 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
978 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
979 /* Auxiliary fault status registers: these also are IMPDEF, and we
980 * choose to RAZ/WI for all cores.
982 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
983 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
984 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
985 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
986 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
987 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
988 /* MAIR can just read-as-written because we don't implement caches
989 * and so don't need to care about memory attributes.
991 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
992 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
993 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
995 /* For non-long-descriptor page tables these are PRRR and NMRR;
996 * regardless they still act as reads-as-written for QEMU.
997 * The override is necessary because of the overly-broad TLB_LOCKDOWN
1000 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1001 * allows them to assign the correct fieldoffset based on the endianness
1002 * handled in the field definitions.
1004 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
1005 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1006 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1007 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1008 .resetfn
= arm_cp_reset_ignore
},
1009 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
1010 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1011 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1012 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1013 .resetfn
= arm_cp_reset_ignore
},
1014 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1015 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1016 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1017 /* 32 bit ITLB invalidates */
1018 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1019 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1020 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1021 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1022 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1023 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1024 /* 32 bit DTLB invalidates */
1025 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1026 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1027 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1028 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1029 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1030 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1031 /* 32 bit TLB invalidates */
1032 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1033 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1034 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1035 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1036 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1037 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1038 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1039 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1043 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1044 /* 32 bit TLB invalidates, Inner Shareable */
1045 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1046 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1047 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1048 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1049 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1050 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1051 .writefn
= tlbiasid_is_write
},
1052 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1053 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1054 .writefn
= tlbimvaa_is_write
},
1058 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1065 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1067 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1068 return CP_ACCESS_TRAP
;
1070 return CP_ACCESS_OK
;
1073 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1074 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1075 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1077 .writefn
= teecr_write
},
1078 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1079 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1080 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1084 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1085 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1086 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1088 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1089 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1091 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1092 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1093 .resetfn
= arm_cp_reset_ignore
},
1094 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1095 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1096 .access
= PL0_R
|PL1_W
,
1097 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1099 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1100 .access
= PL0_R
|PL1_W
,
1101 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1102 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1103 .resetfn
= arm_cp_reset_ignore
},
1104 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1105 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1107 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1108 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1110 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1111 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1116 #ifndef CONFIG_USER_ONLY
1118 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1120 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1121 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1122 return CP_ACCESS_TRAP
;
1124 return CP_ACCESS_OK
;
1127 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1129 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1130 if (arm_current_el(env
) == 0 &&
1131 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1132 return CP_ACCESS_TRAP
;
1134 return CP_ACCESS_OK
;
1137 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1139 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1140 * EL0[PV]TEN is zero.
1142 if (arm_current_el(env
) == 0 &&
1143 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1144 return CP_ACCESS_TRAP
;
1146 return CP_ACCESS_OK
;
1149 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1150 const ARMCPRegInfo
*ri
)
1152 return gt_counter_access(env
, GTIMER_PHYS
);
1155 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1156 const ARMCPRegInfo
*ri
)
1158 return gt_counter_access(env
, GTIMER_VIRT
);
1161 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1163 return gt_timer_access(env
, GTIMER_PHYS
);
1166 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1168 return gt_timer_access(env
, GTIMER_VIRT
);
1171 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1173 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1176 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1178 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1181 /* Timer enabled: calculate and set current ISTATUS, irq, and
1182 * reset timer to when ISTATUS next has to change
1184 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1185 /* Note that this must be unsigned 64 bit arithmetic: */
1186 int istatus
= count
>= gt
->cval
;
1189 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1190 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1191 (istatus
&& !(gt
->ctl
& 2)));
1193 /* Next transition is when count rolls back over to zero */
1194 nexttick
= UINT64_MAX
;
1196 /* Next transition is when we hit cval */
1197 nexttick
= gt
->cval
;
1199 /* Note that the desired next expiry time might be beyond the
1200 * signed-64-bit range of a QEMUTimer -- in this case we just
1201 * set the timer for as far in the future as possible. When the
1202 * timer expires we will reset the timer for any remaining period.
1204 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1205 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1207 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1209 /* Timer disabled: ISTATUS and timer output always clear */
1211 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1212 timer_del(cpu
->gt_timer
[timeridx
]);
1216 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1218 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1219 int timeridx
= ri
->opc1
& 1;
1221 timer_del(cpu
->gt_timer
[timeridx
]);
1224 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1226 return gt_get_countervalue(env
);
1229 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1232 int timeridx
= ri
->opc1
& 1;
1234 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1235 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1238 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1240 int timeridx
= ri
->crm
& 1;
1242 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1243 gt_get_countervalue(env
));
1246 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1249 int timeridx
= ri
->crm
& 1;
1251 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1252 + sextract64(value
, 0, 32);
1253 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1256 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1259 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1260 int timeridx
= ri
->crm
& 1;
1261 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1263 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1264 if ((oldval
^ value
) & 1) {
1265 /* Enable toggled */
1266 gt_recalc_timer(cpu
, timeridx
);
1267 } else if ((oldval
^ value
) & 2) {
1268 /* IMASK toggled: don't need to recalculate,
1269 * just set the interrupt line based on ISTATUS
1271 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1272 (oldval
& 4) && !(value
& 2));
1276 void arm_gt_ptimer_cb(void *opaque
)
1278 ARMCPU
*cpu
= opaque
;
1280 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1283 void arm_gt_vtimer_cb(void *opaque
)
1285 ARMCPU
*cpu
= opaque
;
1287 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1290 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1291 /* Note that CNTFRQ is purely reads-as-written for the benefit
1292 * of software; writing it doesn't actually change the timer frequency.
1293 * Our reset value matches the fixed frequency we implement the timer at.
1295 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1296 .type
= ARM_CP_ALIAS
,
1297 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1298 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1299 .resetfn
= arm_cp_reset_ignore
,
1301 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1302 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1303 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1304 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1305 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1307 /* overall control: mostly access permissions */
1308 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1309 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1311 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1314 /* per-timer control */
1315 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1316 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1317 .accessfn
= gt_ptimer_access
,
1318 .fieldoffset
= offsetoflow32(CPUARMState
,
1319 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1320 .resetfn
= arm_cp_reset_ignore
,
1321 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1323 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1324 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1325 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1326 .accessfn
= gt_ptimer_access
,
1327 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1329 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1331 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1332 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1333 .accessfn
= gt_vtimer_access
,
1334 .fieldoffset
= offsetoflow32(CPUARMState
,
1335 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1336 .resetfn
= arm_cp_reset_ignore
,
1337 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1339 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1340 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1341 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1342 .accessfn
= gt_vtimer_access
,
1343 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1345 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1347 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1348 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1349 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1350 .accessfn
= gt_ptimer_access
,
1351 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1353 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1354 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1355 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1356 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1358 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1359 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1360 .accessfn
= gt_vtimer_access
,
1361 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1363 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1364 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1365 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1366 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1368 /* The counter itself */
1369 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1370 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1371 .accessfn
= gt_pct_access
,
1372 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1374 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1375 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1376 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1377 .accessfn
= gt_pct_access
,
1378 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1380 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1381 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1382 .accessfn
= gt_vct_access
,
1383 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1385 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1386 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1387 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1388 .accessfn
= gt_vct_access
,
1389 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1391 /* Comparison value, indicating when the timer goes off */
1392 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1393 .access
= PL1_RW
| PL0_R
,
1394 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1395 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1396 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1397 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1399 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1400 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1401 .access
= PL1_RW
| PL0_R
,
1403 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1404 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1405 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1407 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1408 .access
= PL1_RW
| PL0_R
,
1409 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1410 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1411 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1412 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1414 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1415 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1416 .access
= PL1_RW
| PL0_R
,
1418 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1419 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1420 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1426 /* In user-mode none of the generic timer registers are accessible,
1427 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1428 * so instead just don't register any of them.
1430 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1436 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1438 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1439 raw_write(env
, ri
, value
);
1440 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1441 raw_write(env
, ri
, value
& 0xfffff6ff);
1443 raw_write(env
, ri
, value
& 0xfffff1ff);
1447 #ifndef CONFIG_USER_ONLY
1448 /* get_phys_addr() isn't present for user-mode-only targets */
1450 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1453 /* Other states are only available with TrustZone; in
1454 * a non-TZ implementation these registers don't exist
1455 * at all, which is an Uncategorized trap. This underdecoding
1456 * is safe because the reginfo is NO_RAW.
1458 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1460 return CP_ACCESS_OK
;
1463 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1464 int access_type
, ARMMMUIdx mmu_idx
)
1467 target_ulong page_size
;
1471 MemTxAttrs attrs
= {};
1473 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1474 &phys_addr
, &attrs
, &prot
, &page_size
);
1475 if (extended_addresses_enabled(env
)) {
1476 /* ret is a DFSR/IFSR value for the long descriptor
1477 * translation table format, but with WnR always clear.
1478 * Convert it to a 64-bit PAR.
1480 par64
= (1 << 11); /* LPAE bit always set */
1482 par64
|= phys_addr
& ~0xfffULL
;
1483 if (!attrs
.secure
) {
1484 par64
|= (1 << 9); /* NS */
1486 /* We don't set the ATTR or SH fields in the PAR. */
1489 par64
|= (ret
& 0x3f) << 1; /* FS */
1490 /* Note that S2WLK and FSTAGE are always zero, because we don't
1491 * implement virtualization and therefore there can't be a stage 2
1496 /* ret is a DFSR/IFSR value for the short descriptor
1497 * translation table format (with WnR always clear).
1498 * Convert it to a 32-bit PAR.
1501 /* We do not set any attribute bits in the PAR */
1502 if (page_size
== (1 << 24)
1503 && arm_feature(env
, ARM_FEATURE_V7
)) {
1504 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1506 par64
= phys_addr
& 0xfffff000;
1508 if (!attrs
.secure
) {
1509 par64
|= (1 << 9); /* NS */
1512 par64
= ((ret
& (1 << 10)) >> 5) | ((ret
& (1 << 12)) >> 6) |
1513 ((ret
& 0xf) << 1) | 1;
1519 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1521 int access_type
= ri
->opc2
& 1;
1524 int el
= arm_current_el(env
);
1525 bool secure
= arm_is_secure_below_el3(env
);
1527 switch (ri
->opc2
& 6) {
1529 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1532 mmu_idx
= ARMMMUIdx_S1E3
;
1535 mmu_idx
= ARMMMUIdx_S1NSE1
;
1538 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1541 g_assert_not_reached();
1545 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1548 mmu_idx
= ARMMMUIdx_S1SE0
;
1551 mmu_idx
= ARMMMUIdx_S1NSE0
;
1554 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1557 g_assert_not_reached();
1561 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1562 mmu_idx
= ARMMMUIdx_S12NSE1
;
1565 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1566 mmu_idx
= ARMMMUIdx_S12NSE0
;
1569 g_assert_not_reached();
1572 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1574 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1577 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1580 int access_type
= ri
->opc2
& 1;
1582 int secure
= arm_is_secure_below_el3(env
);
1584 switch (ri
->opc2
& 6) {
1587 case 0: /* AT S1E1R, AT S1E1W */
1588 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1590 case 4: /* AT S1E2R, AT S1E2W */
1591 mmu_idx
= ARMMMUIdx_S1E2
;
1593 case 6: /* AT S1E3R, AT S1E3W */
1594 mmu_idx
= ARMMMUIdx_S1E3
;
1597 g_assert_not_reached();
1600 case 2: /* AT S1E0R, AT S1E0W */
1601 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1603 case 4: /* AT S12E1R, AT S12E1W */
1604 mmu_idx
= ARMMMUIdx_S12NSE1
;
1606 case 6: /* AT S12E0R, AT S12E0W */
1607 mmu_idx
= ARMMMUIdx_S12NSE0
;
1610 g_assert_not_reached();
1613 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1617 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1618 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1619 .access
= PL1_RW
, .resetvalue
= 0,
1620 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1621 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1622 .writefn
= par_write
},
1623 #ifndef CONFIG_USER_ONLY
1624 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1625 .access
= PL1_W
, .accessfn
= ats_access
,
1626 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1631 /* Return basic MPU access permission bits. */
1632 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1639 for (i
= 0; i
< 16; i
+= 2) {
1640 ret
|= (val
>> i
) & mask
;
1646 /* Pad basic MPU access permission bits to extended format. */
1647 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1654 for (i
= 0; i
< 16; i
+= 2) {
1655 ret
|= (val
& mask
) << i
;
1661 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1664 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1667 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1669 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1672 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1675 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1678 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1680 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1683 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1684 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1685 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1686 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1688 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1689 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1690 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1691 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1693 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1694 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1696 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1698 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1700 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1702 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1704 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1705 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1707 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1708 /* Protection region base and size registers */
1709 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1710 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1711 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1712 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1713 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1714 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1715 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1716 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1717 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1718 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1719 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1720 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1721 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1722 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1723 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1724 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1725 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1726 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1727 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1728 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1729 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1730 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1731 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1732 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1736 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1739 TCR
*tcr
= raw_ptr(env
, ri
);
1740 int maskshift
= extract32(value
, 0, 3);
1742 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1743 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
1744 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1745 * using Long-desciptor translation table format */
1746 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1747 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1748 /* In an implementation that includes the Security Extensions
1749 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1750 * Short-descriptor translation table format.
1752 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
1758 /* Update the masks corresponding to the the TCR bank being written
1759 * Note that we always calculate mask and base_mask, but
1760 * they are only used for short-descriptor tables (ie if EAE is 0);
1761 * for long-descriptor tables the TCR fields are used differently
1762 * and the mask and base_mask values are meaningless.
1764 tcr
->raw_tcr
= value
;
1765 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1766 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1769 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1772 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1774 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1775 /* With LPAE the TTBCR could result in a change of ASID
1776 * via the TTBCR.A1 bit, so do a TLB flush.
1778 tlb_flush(CPU(cpu
), 1);
1780 vmsa_ttbcr_raw_write(env
, ri
, value
);
1783 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1785 TCR
*tcr
= raw_ptr(env
, ri
);
1787 /* Reset both the TCR as well as the masks corresponding to the bank of
1788 * the TCR being reset.
1792 tcr
->base_mask
= 0xffffc000u
;
1795 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1798 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1799 TCR
*tcr
= raw_ptr(env
, ri
);
1801 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1802 tlb_flush(CPU(cpu
), 1);
1803 tcr
->raw_tcr
= value
;
1806 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1809 /* 64 bit accesses to the TTBRs can change the ASID and so we
1810 * must flush the TLB.
1812 if (cpreg_field_is_64bit(ri
)) {
1813 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1815 tlb_flush(CPU(cpu
), 1);
1817 raw_write(env
, ri
, value
);
1820 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1821 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1822 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1823 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
1824 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) },
1825 .resetfn
= arm_cp_reset_ignore
, },
1826 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1827 .access
= PL1_RW
, .resetvalue
= 0,
1828 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
1829 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
1830 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1831 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1833 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1834 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1835 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
1836 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1837 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
1838 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
1839 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1840 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
1841 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1842 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
1843 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
1844 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1845 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1846 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1847 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1848 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
1849 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1850 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
1851 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1852 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
1853 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
1854 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
1855 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1856 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
1858 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
1859 .access
= PL1_RW
, .resetvalue
= 0,
1860 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
1861 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
1865 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1868 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1869 /* The OS_TYPE bit in this register changes the reported CPUID! */
1870 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1871 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1874 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1877 env
->cp15
.c15_threadid
= value
& 0xffff;
1880 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1883 /* Wait-for-interrupt (deprecated) */
1884 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1887 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1890 /* On OMAP there are registers indicating the max/min index of dcache lines
1891 * containing a dirty line; cache flush operations have to reset these.
1893 env
->cp15
.c15_i_max
= 0x000;
1894 env
->cp15
.c15_i_min
= 0xff0;
1897 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1898 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1899 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1900 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1902 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1903 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1904 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1906 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1907 .writefn
= omap_ticonfig_write
},
1908 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1910 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1911 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1912 .access
= PL1_RW
, .resetvalue
= 0xff0,
1913 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1914 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1916 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1917 .writefn
= omap_threadid_write
},
1918 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1919 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1920 .type
= ARM_CP_NO_RAW
,
1921 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1922 /* TODO: Peripheral port remap register:
1923 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1924 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1927 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1928 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1929 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
1930 .writefn
= omap_cachemaint_write
},
1931 { .name
= "C9", .cp
= 15, .crn
= 9,
1932 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1933 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1937 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1940 env
->cp15
.c15_cpar
= value
& 0x3fff;
1943 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1944 { .name
= "XSCALE_CPAR",
1945 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1946 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1947 .writefn
= xscale_cpar_write
, },
1948 { .name
= "XSCALE_AUXCR",
1949 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1950 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1952 /* XScale specific cache-lockdown: since we have no cache we NOP these
1953 * and hope the guest does not really rely on cache behaviour.
1955 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1956 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1957 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1958 { .name
= "XSCALE_UNLOCK_ICACHE",
1959 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1960 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1961 { .name
= "XSCALE_DCACHE_LOCK",
1962 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1963 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1964 { .name
= "XSCALE_UNLOCK_DCACHE",
1965 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1966 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1970 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1971 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1972 * implementation of this implementation-defined space.
1973 * Ideally this should eventually disappear in favour of actually
1974 * implementing the correct behaviour for all cores.
1976 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1977 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1979 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
1984 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1985 /* Cache status: RAZ because we have no cache so it's always clean */
1986 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1987 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
1992 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1993 /* We never have a a block transfer operation in progress */
1994 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1995 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
1997 /* The cache ops themselves: these all NOP for QEMU */
1998 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1999 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2000 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2001 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2002 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2003 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2004 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2005 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2006 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2007 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2008 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2009 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2013 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2014 /* The cache test-and-clean instructions always return (1 << 30)
2015 * to indicate that there are no dirty cache lines.
2017 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2018 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2019 .resetvalue
= (1 << 30) },
2020 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2021 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2022 .resetvalue
= (1 << 30) },
2026 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2027 /* Ignore ReadBuffer accesses */
2028 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2029 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2030 .access
= PL1_RW
, .resetvalue
= 0,
2031 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2035 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2037 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
2038 uint32_t mpidr
= cs
->cpu_index
;
2039 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2040 * in later ARM ARM versions), or any of the higher affinity level fields,
2041 * so these bits always RAZ.
2043 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2044 mpidr
|= (1U << 31);
2045 /* Cores which are uniprocessor (non-coherent)
2046 * but still implement the MP extensions set
2047 * bit 30. (For instance, A9UP.) However we do
2048 * not currently model any of those cores.
2054 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2055 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2056 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2057 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2061 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2062 /* NOP AMAIR0/1: the override is because these clash with the rather
2063 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
2065 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2066 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2067 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
2069 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2070 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2071 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
2073 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2074 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2075 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2076 offsetof(CPUARMState
, cp15
.par_ns
)} },
2077 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2078 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2079 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2080 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2081 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
2082 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2083 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2084 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2085 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2086 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
2090 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2092 return vfp_get_fpcr(env
);
2095 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2098 vfp_set_fpcr(env
, value
);
2101 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2103 return vfp_get_fpsr(env
);
2106 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2109 vfp_set_fpsr(env
, value
);
2112 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2114 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2115 return CP_ACCESS_TRAP
;
2117 return CP_ACCESS_OK
;
2120 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2123 env
->daif
= value
& PSTATE_DAIF
;
2126 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2127 const ARMCPRegInfo
*ri
)
2129 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2130 * SCTLR_EL1.UCI is set.
2132 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2133 return CP_ACCESS_TRAP
;
2135 return CP_ACCESS_OK
;
2138 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2139 * Page D4-1736 (DDI0487A.b)
2142 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2145 /* Invalidate by VA (AArch64 version) */
2146 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2147 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2149 tlb_flush_page(CPU(cpu
), pageaddr
);
2152 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2155 /* Invalidate by VA, all ASIDs (AArch64 version) */
2156 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2157 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2159 tlb_flush_page(CPU(cpu
), pageaddr
);
2162 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2165 /* Invalidate by ASID (AArch64 version) */
2166 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2167 int asid
= extract64(value
, 48, 16);
2168 tlb_flush(CPU(cpu
), asid
== 0);
2171 static void tlbi_aa64_va_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2175 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2177 CPU_FOREACH(other_cs
) {
2178 tlb_flush_page(other_cs
, pageaddr
);
2182 static void tlbi_aa64_vaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2186 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2188 CPU_FOREACH(other_cs
) {
2189 tlb_flush_page(other_cs
, pageaddr
);
2193 static void tlbi_aa64_asid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2197 int asid
= extract64(value
, 48, 16);
2199 CPU_FOREACH(other_cs
) {
2200 tlb_flush(other_cs
, asid
== 0);
2204 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2206 /* We don't implement EL2, so the only control on DC ZVA is the
2207 * bit in the SCTLR which can prohibit access for EL0.
2209 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2210 return CP_ACCESS_TRAP
;
2212 return CP_ACCESS_OK
;
2215 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2217 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2218 int dzp_bit
= 1 << 4;
2220 /* DZP indicates whether DC ZVA access is allowed */
2221 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2224 return cpu
->dcz_blocksize
| dzp_bit
;
2227 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2229 if (!(env
->pstate
& PSTATE_SP
)) {
2230 /* Access to SP_EL0 is undefined if it's being used as
2231 * the stack pointer.
2233 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2235 return CP_ACCESS_OK
;
2238 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2240 return env
->pstate
& PSTATE_SP
;
2243 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2245 update_spsel(env
, val
);
2248 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2251 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2253 if (raw_read(env
, ri
) == value
) {
2254 /* Skip the TLB flush if nothing actually changed; Linux likes
2255 * to do a lot of pointless SCTLR writes.
2260 raw_write(env
, ri
, value
);
2261 /* ??? Lots of these bits are not implemented. */
2262 /* This may enable/disable the MMU, so do a TLB flush. */
2263 tlb_flush(CPU(cpu
), 1);
2266 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2267 /* Minimal set of EL0-visible registers. This will need to be expanded
2268 * significantly for system emulation of AArch64 CPUs.
2270 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2271 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2272 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2273 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2274 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2275 .type
= ARM_CP_NO_RAW
,
2276 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2277 .fieldoffset
= offsetof(CPUARMState
, daif
),
2278 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2279 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2280 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2281 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2282 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2283 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2284 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2285 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2286 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2287 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2288 .readfn
= aa64_dczid_read
},
2289 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2290 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2291 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2292 #ifndef CONFIG_USER_ONLY
2293 /* Avoid overhead of an access check that always passes in user-mode */
2294 .accessfn
= aa64_zva_access
,
2297 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2298 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2299 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2300 /* Cache ops: all NOPs since we don't emulate caches */
2301 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2302 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2303 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2304 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2305 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2306 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2307 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2308 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2309 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2310 .accessfn
= aa64_cacheop_access
},
2311 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2312 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2313 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2314 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2315 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2316 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2317 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2318 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2319 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2320 .accessfn
= aa64_cacheop_access
},
2321 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2322 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2323 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2324 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2325 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2326 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2327 .accessfn
= aa64_cacheop_access
},
2328 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2329 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2330 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2331 .accessfn
= aa64_cacheop_access
},
2332 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2333 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2334 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2335 /* TLBI operations */
2336 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2337 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2338 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2339 .writefn
= tlbiall_is_write
},
2340 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2341 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2342 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2343 .writefn
= tlbi_aa64_va_is_write
},
2344 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2345 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2346 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2347 .writefn
= tlbi_aa64_asid_is_write
},
2348 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2349 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2350 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2351 .writefn
= tlbi_aa64_vaa_is_write
},
2352 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2353 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2354 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2355 .writefn
= tlbi_aa64_va_is_write
},
2356 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2357 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2358 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2359 .writefn
= tlbi_aa64_vaa_is_write
},
2360 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2361 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2362 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2363 .writefn
= tlbiall_write
},
2364 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2365 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2366 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2367 .writefn
= tlbi_aa64_va_write
},
2368 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2369 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2370 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2371 .writefn
= tlbi_aa64_asid_write
},
2372 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2373 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2374 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2375 .writefn
= tlbi_aa64_vaa_write
},
2376 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2377 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2378 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2379 .writefn
= tlbi_aa64_va_write
},
2380 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2381 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2382 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2383 .writefn
= tlbi_aa64_vaa_write
},
2384 #ifndef CONFIG_USER_ONLY
2385 /* 64 bit address translation operations */
2386 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2387 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2388 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2389 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2390 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2391 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2392 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2393 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2394 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2395 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2396 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2397 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2399 /* TLB invalidate last level of translation table walk */
2400 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2401 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2402 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2403 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2404 .writefn
= tlbimvaa_is_write
},
2405 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2406 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2407 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2408 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2409 /* 32 bit cache operations */
2410 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2411 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2412 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2413 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2414 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2415 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2416 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2417 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2418 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2419 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2420 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2421 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2422 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2423 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2424 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2425 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2426 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2427 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2428 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2429 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2430 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2431 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2432 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2433 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2434 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2435 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2436 /* MMU Domain access control / MPU write buffer control */
2437 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2438 .access
= PL1_RW
, .resetvalue
= 0,
2439 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2440 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
2441 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
2442 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2443 .type
= ARM_CP_ALIAS
,
2444 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2446 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2447 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2448 .type
= ARM_CP_ALIAS
,
2449 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2450 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[1]) },
2451 /* We rely on the access checks not allowing the guest to write to the
2452 * state field when SPSel indicates that it's being used as the stack
2455 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2456 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2457 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2458 .type
= ARM_CP_ALIAS
,
2459 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2460 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
2461 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
2462 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
2463 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
2464 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2465 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2466 .type
= ARM_CP_NO_RAW
,
2467 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2471 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2472 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2473 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2474 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2476 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2477 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2478 .type
= ARM_CP_NO_RAW
,
2479 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2481 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2485 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2487 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2488 uint64_t valid_mask
= HCR_MASK
;
2490 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2491 valid_mask
&= ~HCR_HCD
;
2493 valid_mask
&= ~HCR_TSC
;
2496 /* Clear RES0 bits. */
2497 value
&= valid_mask
;
2499 /* These bits change the MMU setup:
2500 * HCR_VM enables stage 2 translation
2501 * HCR_PTW forbids certain page-table setups
2502 * HCR_DC Disables stage1 and enables stage2 translation
2504 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
2505 tlb_flush(CPU(cpu
), 1);
2507 raw_write(env
, ri
, value
);
2510 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2511 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2512 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2513 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
2514 .writefn
= hcr_write
},
2515 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
2516 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
2517 .access
= PL2_RW
, .resetvalue
= 0,
2518 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2519 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
2520 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2521 .type
= ARM_CP_ALIAS
,
2522 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2524 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2525 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
2526 .type
= ARM_CP_ALIAS
,
2527 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
2528 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
2529 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
2530 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
2531 .access
= PL2_RW
, .resetvalue
= 0,
2532 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
2533 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
2534 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
2535 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
2536 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2537 .type
= ARM_CP_ALIAS
,
2538 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2539 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2540 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2541 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2542 .access
= PL2_RW
, .writefn
= vbar_write
,
2543 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2545 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
2546 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
2547 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
2548 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
2552 static const ARMCPRegInfo el3_cp_reginfo
[] = {
2553 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
2554 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
2555 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
2556 .resetvalue
= 0, .writefn
= scr_write
},
2557 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
2558 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
2559 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
2560 .resetfn
= arm_cp_reset_ignore
, .writefn
= scr_write
},
2561 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
2562 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
2563 .access
= PL3_RW
, .resetvalue
= 0,
2564 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
2566 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
2567 .access
= PL3_RW
, .resetvalue
= 0,
2568 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
2569 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2570 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
2571 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
2572 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
2573 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
2574 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
2575 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
2576 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
2577 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
2578 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
2579 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
2580 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
2581 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
2582 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2583 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
2584 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
2585 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
2586 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
2587 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2588 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
2589 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2590 .type
= ARM_CP_ALIAS
,
2591 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2593 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2594 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
2595 .type
= ARM_CP_ALIAS
,
2596 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
2597 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
2598 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
2599 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
2600 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
2601 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2602 .type
= ARM_CP_ALIAS
,
2603 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2604 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2605 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2606 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2607 .access
= PL3_RW
, .writefn
= vbar_write
,
2608 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2613 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2615 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2616 * but the AArch32 CTR has its own reginfo struct)
2618 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
2619 return CP_ACCESS_TRAP
;
2621 return CP_ACCESS_OK
;
2624 static const ARMCPRegInfo debug_cp_reginfo
[] = {
2625 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2626 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2627 * unlike DBGDRAR it is never accessible from EL0.
2628 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2631 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2632 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2633 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
2634 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
2635 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2636 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2637 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2638 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2639 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
2640 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2642 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2644 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2645 * We don't implement the configurable EL0 access.
2647 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
2648 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2649 .type
= ARM_CP_ALIAS
,
2651 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2652 .resetfn
= arm_cp_reset_ignore
},
2653 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2654 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
2655 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2656 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2657 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2658 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2659 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
2660 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2661 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2662 * implement vector catch debug events yet.
2665 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2666 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2670 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
2671 /* 64 bit access versions of the (dummy) debug registers */
2672 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
2673 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2674 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
2675 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2679 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
2681 CPUARMState
*env
= &cpu
->env
;
2683 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
2684 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
2686 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
2688 if (env
->cpu_watchpoint
[n
]) {
2689 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
2690 env
->cpu_watchpoint
[n
] = NULL
;
2693 if (!extract64(wcr
, 0, 1)) {
2694 /* E bit clear : watchpoint disabled */
2698 switch (extract64(wcr
, 3, 2)) {
2700 /* LSC 00 is reserved and must behave as if the wp is disabled */
2703 flags
|= BP_MEM_READ
;
2706 flags
|= BP_MEM_WRITE
;
2709 flags
|= BP_MEM_ACCESS
;
2713 /* Attempts to use both MASK and BAS fields simultaneously are
2714 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2715 * thus generating a watchpoint for every byte in the masked region.
2717 mask
= extract64(wcr
, 24, 4);
2718 if (mask
== 1 || mask
== 2) {
2719 /* Reserved values of MASK; we must act as if the mask value was
2720 * some non-reserved value, or as if the watchpoint were disabled.
2721 * We choose the latter.
2725 /* Watchpoint covers an aligned area up to 2GB in size */
2727 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2728 * whether the watchpoint fires when the unmasked bits match; we opt
2729 * to generate the exceptions.
2733 /* Watchpoint covers bytes defined by the byte address select bits */
2734 int bas
= extract64(wcr
, 5, 8);
2738 /* This must act as if the watchpoint is disabled */
2742 if (extract64(wvr
, 2, 1)) {
2743 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2744 * ignored, and BAS[3:0] define which bytes to watch.
2748 /* The BAS bits are supposed to be programmed to indicate a contiguous
2749 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2750 * we fire for each byte in the word/doubleword addressed by the WVR.
2751 * We choose to ignore any non-zero bits after the first range of 1s.
2753 basstart
= ctz32(bas
);
2754 len
= cto32(bas
>> basstart
);
2758 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
2759 &env
->cpu_watchpoint
[n
]);
2762 void hw_watchpoint_update_all(ARMCPU
*cpu
)
2765 CPUARMState
*env
= &cpu
->env
;
2767 /* Completely clear out existing QEMU watchpoints and our array, to
2768 * avoid possible stale entries following migration load.
2770 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
2771 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
2773 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
2774 hw_watchpoint_update(cpu
, i
);
2778 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2781 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2784 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2785 * register reads and behaves as if values written are sign extended.
2786 * Bits [1:0] are RES0.
2788 value
= sextract64(value
, 0, 49) & ~3ULL;
2790 raw_write(env
, ri
, value
);
2791 hw_watchpoint_update(cpu
, i
);
2794 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2797 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2800 raw_write(env
, ri
, value
);
2801 hw_watchpoint_update(cpu
, i
);
2804 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
2806 CPUARMState
*env
= &cpu
->env
;
2807 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
2808 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
2813 if (env
->cpu_breakpoint
[n
]) {
2814 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
2815 env
->cpu_breakpoint
[n
] = NULL
;
2818 if (!extract64(bcr
, 0, 1)) {
2819 /* E bit clear : watchpoint disabled */
2823 bt
= extract64(bcr
, 20, 4);
2826 case 4: /* unlinked address mismatch (reserved if AArch64) */
2827 case 5: /* linked address mismatch (reserved if AArch64) */
2828 qemu_log_mask(LOG_UNIMP
,
2829 "arm: address mismatch breakpoint types not implemented");
2831 case 0: /* unlinked address match */
2832 case 1: /* linked address match */
2834 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2835 * we behave as if the register was sign extended. Bits [1:0] are
2836 * RES0. The BAS field is used to allow setting breakpoints on 16
2837 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2838 * a bp will fire if the addresses covered by the bp and the addresses
2839 * covered by the insn overlap but the insn doesn't start at the
2840 * start of the bp address range. We choose to require the insn and
2841 * the bp to have the same address. The constraints on writing to
2842 * BAS enforced in dbgbcr_write mean we have only four cases:
2843 * 0b0000 => no breakpoint
2844 * 0b0011 => breakpoint on addr
2845 * 0b1100 => breakpoint on addr + 2
2846 * 0b1111 => breakpoint on addr
2847 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2849 int bas
= extract64(bcr
, 5, 4);
2850 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
2859 case 2: /* unlinked context ID match */
2860 case 8: /* unlinked VMID match (reserved if no EL2) */
2861 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2862 qemu_log_mask(LOG_UNIMP
,
2863 "arm: unlinked context breakpoint types not implemented");
2865 case 9: /* linked VMID match (reserved if no EL2) */
2866 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2867 case 3: /* linked context ID match */
2869 /* We must generate no events for Linked context matches (unless
2870 * they are linked to by some other bp/wp, which is handled in
2871 * updates for the linking bp/wp). We choose to also generate no events
2872 * for reserved values.
2877 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
2880 void hw_breakpoint_update_all(ARMCPU
*cpu
)
2883 CPUARMState
*env
= &cpu
->env
;
2885 /* Completely clear out existing QEMU breakpoints and our array, to
2886 * avoid possible stale entries following migration load.
2888 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
2889 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
2891 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
2892 hw_breakpoint_update(cpu
, i
);
2896 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2899 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2902 raw_write(env
, ri
, value
);
2903 hw_breakpoint_update(cpu
, i
);
2906 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2909 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2912 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2915 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
2916 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
2918 raw_write(env
, ri
, value
);
2919 hw_breakpoint_update(cpu
, i
);
2922 static void define_debug_regs(ARMCPU
*cpu
)
2924 /* Define v7 and v8 architectural debug registers.
2925 * These are just dummy implementations for now.
2928 int wrps
, brps
, ctx_cmps
;
2929 ARMCPRegInfo dbgdidr
= {
2930 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
2931 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
2934 /* Note that all these register fields hold "number of Xs minus 1". */
2935 brps
= extract32(cpu
->dbgdidr
, 24, 4);
2936 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
2937 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
2939 assert(ctx_cmps
<= brps
);
2941 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2942 * of the debug registers such as number of breakpoints;
2943 * check that if they both exist then they agree.
2945 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2946 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
2947 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
2948 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
2951 define_one_arm_cp_reg(cpu
, &dbgdidr
);
2952 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
2954 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
2955 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
2958 for (i
= 0; i
< brps
+ 1; i
++) {
2959 ARMCPRegInfo dbgregs
[] = {
2960 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
2961 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2963 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
2964 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
2966 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
2967 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2969 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
2970 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
2974 define_arm_cp_regs(cpu
, dbgregs
);
2977 for (i
= 0; i
< wrps
+ 1; i
++) {
2978 ARMCPRegInfo dbgregs
[] = {
2979 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
2980 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2982 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
2983 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
2985 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
2986 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2988 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
2989 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
2993 define_arm_cp_regs(cpu
, dbgregs
);
2997 void register_cp_regs_for_features(ARMCPU
*cpu
)
2999 /* Register all the coprocessor registers based on feature bits */
3000 CPUARMState
*env
= &cpu
->env
;
3001 if (arm_feature(env
, ARM_FEATURE_M
)) {
3002 /* M profile has no coprocessor registers */
3006 define_arm_cp_regs(cpu
, cp_reginfo
);
3007 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3008 /* Must go early as it is full of wildcards that may be
3009 * overridden by later definitions.
3011 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
3014 if (arm_feature(env
, ARM_FEATURE_V6
)) {
3015 /* The ID registers all have impdef reset values */
3016 ARMCPRegInfo v6_idregs
[] = {
3017 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
3018 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3019 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3020 .resetvalue
= cpu
->id_pfr0
},
3021 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
3022 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
3023 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3024 .resetvalue
= cpu
->id_pfr1
},
3025 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
3026 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
3027 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3028 .resetvalue
= cpu
->id_dfr0
},
3029 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
3030 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
3031 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3032 .resetvalue
= cpu
->id_afr0
},
3033 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
3034 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
3035 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3036 .resetvalue
= cpu
->id_mmfr0
},
3037 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
3038 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
3039 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3040 .resetvalue
= cpu
->id_mmfr1
},
3041 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
3042 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
3043 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3044 .resetvalue
= cpu
->id_mmfr2
},
3045 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
3046 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
3047 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3048 .resetvalue
= cpu
->id_mmfr3
},
3049 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
3050 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
3051 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3052 .resetvalue
= cpu
->id_isar0
},
3053 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
3054 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
3055 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3056 .resetvalue
= cpu
->id_isar1
},
3057 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
3058 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3059 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3060 .resetvalue
= cpu
->id_isar2
},
3061 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
3062 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
3063 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3064 .resetvalue
= cpu
->id_isar3
},
3065 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
3066 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
3067 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3068 .resetvalue
= cpu
->id_isar4
},
3069 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
3070 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
3071 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3072 .resetvalue
= cpu
->id_isar5
},
3073 /* 6..7 are as yet unallocated and must RAZ */
3074 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
3075 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3077 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
3078 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3082 define_arm_cp_regs(cpu
, v6_idregs
);
3083 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
3085 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
3087 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
3088 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
3090 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3091 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
3093 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3094 /* v7 performance monitor control register: same implementor
3095 * field as main ID register, and we implement only the cycle
3098 #ifndef CONFIG_USER_ONLY
3099 ARMCPRegInfo pmcr
= {
3100 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
3102 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
3103 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
3104 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
3105 .raw_writefn
= raw_write
,
3107 ARMCPRegInfo pmcr64
= {
3108 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
3109 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
3110 .access
= PL0_RW
, .accessfn
= pmreg_access
,
3112 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
3113 .resetvalue
= cpu
->midr
& 0xff000000,
3114 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
3116 define_one_arm_cp_reg(cpu
, &pmcr
);
3117 define_one_arm_cp_reg(cpu
, &pmcr64
);
3119 ARMCPRegInfo clidr
= {
3120 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
3121 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
3122 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
3124 define_one_arm_cp_reg(cpu
, &clidr
);
3125 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
3126 define_debug_regs(cpu
);
3128 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
3130 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3131 /* AArch64 ID registers, which all have impdef reset values */
3132 ARMCPRegInfo v8_idregs
[] = {
3133 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3134 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
3135 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3136 .resetvalue
= cpu
->id_aa64pfr0
},
3137 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3138 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
3139 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3140 .resetvalue
= cpu
->id_aa64pfr1
},
3141 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3142 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
3143 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3144 /* We mask out the PMUVer field, because we don't currently
3145 * implement the PMU. Not advertising it prevents the guest
3146 * from trying to use it and getting UNDEFs on registers we
3149 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
3150 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3151 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
3152 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3153 .resetvalue
= cpu
->id_aa64dfr1
},
3154 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3155 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
3156 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3157 .resetvalue
= cpu
->id_aa64afr0
},
3158 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3159 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
3160 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3161 .resetvalue
= cpu
->id_aa64afr1
},
3162 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
3163 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
3164 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3165 .resetvalue
= cpu
->id_aa64isar0
},
3166 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
3167 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
3168 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3169 .resetvalue
= cpu
->id_aa64isar1
},
3170 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3171 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3172 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3173 .resetvalue
= cpu
->id_aa64mmfr0
},
3174 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3175 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
3176 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3177 .resetvalue
= cpu
->id_aa64mmfr1
},
3178 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3179 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
3180 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3181 .resetvalue
= cpu
->mvfr0
},
3182 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3183 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
3184 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3185 .resetvalue
= cpu
->mvfr1
},
3186 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
3187 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
3188 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3189 .resetvalue
= cpu
->mvfr2
},
3192 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3193 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
3194 !arm_feature(env
, ARM_FEATURE_EL2
)) {
3195 ARMCPRegInfo rvbar
= {
3196 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3197 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3198 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
3200 define_one_arm_cp_reg(cpu
, &rvbar
);
3202 define_arm_cp_regs(cpu
, v8_idregs
);
3203 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
3205 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3206 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
3207 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3208 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
3209 ARMCPRegInfo rvbar
= {
3210 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3211 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
3212 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
3214 define_one_arm_cp_reg(cpu
, &rvbar
);
3217 /* If EL2 is missing but higher ELs are enabled, we need to
3218 * register the no_el2 reginfos.
3220 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3221 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
3224 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3225 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
3226 ARMCPRegInfo rvbar
= {
3227 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3228 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
3229 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
3231 define_one_arm_cp_reg(cpu
, &rvbar
);
3233 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3234 /* These are the MPU registers prior to PMSAv6. Any new
3235 * PMSA core later than the ARM946 will require that we
3236 * implement the PMSAv6 or PMSAv7 registers, which are
3237 * completely different.
3239 assert(!arm_feature(env
, ARM_FEATURE_V6
));
3240 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
3242 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
3244 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
3245 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
3247 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
3248 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
3250 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
3251 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
3253 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
3254 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
3256 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
3257 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
3259 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
3260 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
3262 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
3263 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
3265 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3266 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
3268 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3269 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
3271 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
3272 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
3274 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3275 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
3277 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3278 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3279 * be read-only (ie write causes UNDEF exception).
3282 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
3283 /* Pre-v8 MIDR space.
3284 * Note that the MIDR isn't a simple constant register because
3285 * of the TI925 behaviour where writes to another register can
3286 * cause the MIDR value to change.
3288 * Unimplemented registers in the c15 0 0 0 space default to
3289 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3290 * and friends override accordingly.
3293 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
3294 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
3295 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
3296 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
3297 .type
= ARM_CP_OVERRIDE
},
3298 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3300 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
3301 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3303 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
3304 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3306 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
3307 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3309 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
3310 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3312 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
3313 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3316 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
3317 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3318 * variable-MIDR TI925 behaviour. Instead we have a single
3319 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3321 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3322 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
3323 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3324 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3325 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
3326 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3329 ARMCPRegInfo id_cp_reginfo
[] = {
3330 /* These are common to v8 and pre-v8 */
3332 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
3333 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3334 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
3335 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
3336 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
3337 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3338 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3340 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
3341 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3343 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
3344 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3347 ARMCPRegInfo crn0_wi_reginfo
= {
3348 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
3349 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
3350 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
3352 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
3353 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3355 /* Register the blanket "writes ignored" value first to cover the
3356 * whole space. Then update the specific ID registers to allow write
3357 * access, so that they ignore writes rather than causing them to
3360 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
3361 for (r
= id_pre_v8_midr_cp_reginfo
;
3362 r
->type
!= ARM_CP_SENTINEL
; r
++) {
3365 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3369 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3370 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
3372 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
3374 define_arm_cp_regs(cpu
, id_cp_reginfo
);
3377 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
3378 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
3381 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
3382 ARMCPRegInfo auxcr
= {
3383 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3384 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
3385 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3386 .resetvalue
= cpu
->reset_auxcr
3388 define_one_arm_cp_reg(cpu
, &auxcr
);
3391 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
3392 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3393 /* 32 bit view is [31:18] 0...0 [43:32]. */
3394 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
3395 | extract64(cpu
->reset_cbar
, 32, 12);
3396 ARMCPRegInfo cbar_reginfo
[] = {
3398 .type
= ARM_CP_CONST
,
3399 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3400 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
3401 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3402 .type
= ARM_CP_CONST
,
3403 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
3404 .access
= PL1_R
, .resetvalue
= cbar32
},
3407 /* We don't implement a r/w 64 bit CBAR currently */
3408 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
3409 define_arm_cp_regs(cpu
, cbar_reginfo
);
3411 ARMCPRegInfo cbar
= {
3413 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3414 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
3415 .fieldoffset
= offsetof(CPUARMState
,
3416 cp15
.c15_config_base_address
)
3418 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
3419 cbar
.access
= PL1_R
;
3420 cbar
.fieldoffset
= 0;
3421 cbar
.type
= ARM_CP_CONST
;
3423 define_one_arm_cp_reg(cpu
, &cbar
);
3427 /* Generic registers whose values depend on the implementation */
3429 ARMCPRegInfo sctlr
= {
3430 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
3431 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3433 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
3434 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
3435 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
3436 .raw_writefn
= raw_write
,
3438 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3439 /* Normally we would always end the TB on an SCTLR write, but Linux
3440 * arch/arm/mach-pxa/sleep.S expects two instructions following
3441 * an MMU enable to execute from cache. Imitate this behaviour.
3443 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
3445 define_one_arm_cp_reg(cpu
, &sctlr
);
3449 ARMCPU
*cpu_arm_init(const char *cpu_model
)
3451 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
3454 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
3456 CPUState
*cs
= CPU(cpu
);
3457 CPUARMState
*env
= &cpu
->env
;
3459 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3460 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
3461 aarch64_fpu_gdb_set_reg
,
3462 34, "aarch64-fpu.xml", 0);
3463 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
3464 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3465 51, "arm-neon.xml", 0);
3466 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
3467 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3468 35, "arm-vfp3.xml", 0);
3469 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
3470 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3471 19, "arm-vfp.xml", 0);
3475 /* Sort alphabetically by type name, except for "any". */
3476 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
3478 ObjectClass
*class_a
= (ObjectClass
*)a
;
3479 ObjectClass
*class_b
= (ObjectClass
*)b
;
3480 const char *name_a
, *name_b
;
3482 name_a
= object_class_get_name(class_a
);
3483 name_b
= object_class_get_name(class_b
);
3484 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
3486 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
3489 return strcmp(name_a
, name_b
);
3493 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
3495 ObjectClass
*oc
= data
;
3496 CPUListState
*s
= user_data
;
3497 const char *typename
;
3500 typename
= object_class_get_name(oc
);
3501 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3502 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
3507 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
3511 .cpu_fprintf
= cpu_fprintf
,
3515 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3516 list
= g_slist_sort(list
, arm_cpu_list_compare
);
3517 (*cpu_fprintf
)(f
, "Available CPUs:\n");
3518 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
3521 /* The 'host' CPU type is dynamically registered only if KVM is
3522 * enabled, so we have to special-case it here:
3524 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
3528 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
3530 ObjectClass
*oc
= data
;
3531 CpuDefinitionInfoList
**cpu_list
= user_data
;
3532 CpuDefinitionInfoList
*entry
;
3533 CpuDefinitionInfo
*info
;
3534 const char *typename
;
3536 typename
= object_class_get_name(oc
);
3537 info
= g_malloc0(sizeof(*info
));
3538 info
->name
= g_strndup(typename
,
3539 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3541 entry
= g_malloc0(sizeof(*entry
));
3542 entry
->value
= info
;
3543 entry
->next
= *cpu_list
;
3547 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
3549 CpuDefinitionInfoList
*cpu_list
= NULL
;
3552 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3553 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
3559 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
3560 void *opaque
, int state
, int secstate
,
3561 int crm
, int opc1
, int opc2
)
3563 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3564 * add a single reginfo struct to the hash table.
3566 uint32_t *key
= g_new(uint32_t, 1);
3567 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
3568 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
3569 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
3571 /* Reset the secure state to the specific incoming state. This is
3572 * necessary as the register may have been defined with both states.
3574 r2
->secure
= secstate
;
3576 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3577 /* Register is banked (using both entries in array).
3578 * Overwriting fieldoffset as the array is only used to define
3579 * banked registers but later only fieldoffset is used.
3581 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
3584 if (state
== ARM_CP_STATE_AA32
) {
3585 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3586 /* If the register is banked then we don't need to migrate or
3587 * reset the 32-bit instance in certain cases:
3589 * 1) If the register has both 32-bit and 64-bit instances then we
3590 * can count on the 64-bit instance taking care of the
3592 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3593 * taking care of the secure bank. This requires that separate
3594 * 32 and 64-bit definitions are provided.
3596 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
3597 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
3598 r2
->type
|= ARM_CP_ALIAS
;
3599 r2
->resetfn
= arm_cp_reset_ignore
;
3601 } else if ((secstate
!= r
->secure
) && !ns
) {
3602 /* The register is not banked so we only want to allow migration of
3603 * the non-secure instance.
3605 r2
->type
|= ARM_CP_ALIAS
;
3606 r2
->resetfn
= arm_cp_reset_ignore
;
3609 if (r
->state
== ARM_CP_STATE_BOTH
) {
3610 /* We assume it is a cp15 register if the .cp field is left unset.
3616 #ifdef HOST_WORDS_BIGENDIAN
3617 if (r2
->fieldoffset
) {
3618 r2
->fieldoffset
+= sizeof(uint32_t);
3623 if (state
== ARM_CP_STATE_AA64
) {
3624 /* To allow abbreviation of ARMCPRegInfo
3625 * definitions, we treat cp == 0 as equivalent to
3626 * the value for "standard guest-visible sysreg".
3627 * STATE_BOTH definitions are also always "standard
3628 * sysreg" in their AArch64 view (the .cp value may
3629 * be non-zero for the benefit of the AArch32 view).
3631 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
3632 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
3634 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
3635 r2
->opc0
, opc1
, opc2
);
3637 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
3640 r2
->opaque
= opaque
;
3642 /* reginfo passed to helpers is correct for the actual access,
3643 * and is never ARM_CP_STATE_BOTH:
3646 /* Make sure reginfo passed to helpers for wildcarded regs
3647 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3652 /* By convention, for wildcarded registers only the first
3653 * entry is used for migration; the others are marked as
3654 * ALIAS so we don't try to transfer the register
3655 * multiple times. Special registers (ie NOP/WFI) are
3656 * never migratable and not even raw-accessible.
3658 if ((r
->type
& ARM_CP_SPECIAL
)) {
3659 r2
->type
|= ARM_CP_NO_RAW
;
3661 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
3662 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
3663 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
3664 r2
->type
|= ARM_CP_ALIAS
;
3667 /* Check that raw accesses are either forbidden or handled. Note that
3668 * we can't assert this earlier because the setup of fieldoffset for
3669 * banked registers has to be done first.
3671 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
3672 assert(!raw_accessors_invalid(r2
));
3675 /* Overriding of an existing definition must be explicitly
3678 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
3679 ARMCPRegInfo
*oldreg
;
3680 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
3681 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
3682 fprintf(stderr
, "Register redefined: cp=%d %d bit "
3683 "crn=%d crm=%d opc1=%d opc2=%d, "
3684 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
3685 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
3686 oldreg
->name
, r2
->name
);
3687 g_assert_not_reached();
3690 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
3694 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
3695 const ARMCPRegInfo
*r
, void *opaque
)
3697 /* Define implementations of coprocessor registers.
3698 * We store these in a hashtable because typically
3699 * there are less than 150 registers in a space which
3700 * is 16*16*16*8*8 = 262144 in size.
3701 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3702 * If a register is defined twice then the second definition is
3703 * used, so this can be used to define some generic registers and
3704 * then override them with implementation specific variations.
3705 * At least one of the original and the second definition should
3706 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3707 * against accidental use.
3709 * The state field defines whether the register is to be
3710 * visible in the AArch32 or AArch64 execution state. If the
3711 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3712 * reginfo structure for the AArch32 view, which sees the lower
3713 * 32 bits of the 64 bit register.
3715 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3716 * be wildcarded. AArch64 registers are always considered to be 64
3717 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3718 * the register, if any.
3720 int crm
, opc1
, opc2
, state
;
3721 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
3722 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
3723 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
3724 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
3725 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
3726 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
3727 /* 64 bit registers have only CRm and Opc1 fields */
3728 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
3729 /* op0 only exists in the AArch64 encodings */
3730 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
3731 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3732 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
3733 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3734 * encodes a minimum access level for the register. We roll this
3735 * runtime check into our general permission check code, so check
3736 * here that the reginfo's specified permissions are strict enough
3737 * to encompass the generic architectural permission check.
3739 if (r
->state
!= ARM_CP_STATE_AA32
) {
3742 case 0: case 1: case 2:
3755 /* unallocated encoding, so not possible */
3763 /* min_EL EL1, secure mode only (we don't check the latter) */
3767 /* broken reginfo with out-of-range opc1 */
3771 /* assert our permissions are not too lax (stricter is fine) */
3772 assert((r
->access
& ~mask
) == 0);
3775 /* Check that the register definition has enough info to handle
3776 * reads and writes if they are permitted.
3778 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
3779 if (r
->access
& PL3_R
) {
3780 assert((r
->fieldoffset
||
3781 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3784 if (r
->access
& PL3_W
) {
3785 assert((r
->fieldoffset
||
3786 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3790 /* Bad type field probably means missing sentinel at end of reg list */
3791 assert(cptype_valid(r
->type
));
3792 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
3793 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
3794 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
3795 for (state
= ARM_CP_STATE_AA32
;
3796 state
<= ARM_CP_STATE_AA64
; state
++) {
3797 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
3800 if (state
== ARM_CP_STATE_AA32
) {
3801 /* Under AArch32 CP registers can be common
3802 * (same for secure and non-secure world) or banked.
3804 switch (r
->secure
) {
3805 case ARM_CP_SECSTATE_S
:
3806 case ARM_CP_SECSTATE_NS
:
3807 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3808 r
->secure
, crm
, opc1
, opc2
);
3811 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3814 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3820 /* AArch64 registers get mapped to non-secure instance
3822 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3832 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
3833 const ARMCPRegInfo
*regs
, void *opaque
)
3835 /* Define a whole list of registers */
3836 const ARMCPRegInfo
*r
;
3837 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3838 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
3842 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
3844 return g_hash_table_lookup(cpregs
, &encoded_cp
);
3847 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3850 /* Helper coprocessor write function for write-ignore registers */
3853 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3855 /* Helper coprocessor write function for read-as-zero registers */
3859 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
3861 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3864 static int bad_mode_switch(CPUARMState
*env
, int mode
)
3866 /* Return true if it is not valid for us to switch to
3867 * this CPU mode (ie all the UNPREDICTABLE cases in
3868 * the ARM ARM CPSRWriteByInstr pseudocode).
3871 case ARM_CPU_MODE_USR
:
3872 case ARM_CPU_MODE_SYS
:
3873 case ARM_CPU_MODE_SVC
:
3874 case ARM_CPU_MODE_ABT
:
3875 case ARM_CPU_MODE_UND
:
3876 case ARM_CPU_MODE_IRQ
:
3877 case ARM_CPU_MODE_FIQ
:
3879 case ARM_CPU_MODE_MON
:
3880 return !arm_is_secure(env
);
3886 uint32_t cpsr_read(CPUARMState
*env
)
3889 ZF
= (env
->ZF
== 0);
3890 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
3891 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
3892 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
3893 | ((env
->condexec_bits
& 0xfc) << 8)
3894 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
3897 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
3899 uint32_t changed_daif
;
3901 if (mask
& CPSR_NZCV
) {
3902 env
->ZF
= (~val
) & CPSR_Z
;
3904 env
->CF
= (val
>> 29) & 1;
3905 env
->VF
= (val
<< 3) & 0x80000000;
3908 env
->QF
= ((val
& CPSR_Q
) != 0);
3910 env
->thumb
= ((val
& CPSR_T
) != 0);
3911 if (mask
& CPSR_IT_0_1
) {
3912 env
->condexec_bits
&= ~3;
3913 env
->condexec_bits
|= (val
>> 25) & 3;
3915 if (mask
& CPSR_IT_2_7
) {
3916 env
->condexec_bits
&= 3;
3917 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3919 if (mask
& CPSR_GE
) {
3920 env
->GE
= (val
>> 16) & 0xf;
3923 /* In a V7 implementation that includes the security extensions but does
3924 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3925 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3926 * bits respectively.
3928 * In a V8 implementation, it is permitted for privileged software to
3929 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3931 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
3932 arm_feature(env
, ARM_FEATURE_EL3
) &&
3933 !arm_feature(env
, ARM_FEATURE_EL2
) &&
3934 !arm_is_secure(env
)) {
3936 changed_daif
= (env
->daif
^ val
) & mask
;
3938 if (changed_daif
& CPSR_A
) {
3939 /* Check to see if we are allowed to change the masking of async
3940 * abort exceptions from a non-secure state.
3942 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
3943 qemu_log_mask(LOG_GUEST_ERROR
,
3944 "Ignoring attempt to switch CPSR_A flag from "
3945 "non-secure world with SCR.AW bit clear\n");
3950 if (changed_daif
& CPSR_F
) {
3951 /* Check to see if we are allowed to change the masking of FIQ
3952 * exceptions from a non-secure state.
3954 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
3955 qemu_log_mask(LOG_GUEST_ERROR
,
3956 "Ignoring attempt to switch CPSR_F flag from "
3957 "non-secure world with SCR.FW bit clear\n");
3961 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3962 * If this bit is set software is not allowed to mask
3963 * FIQs, but is allowed to set CPSR_F to 0.
3965 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
3967 qemu_log_mask(LOG_GUEST_ERROR
,
3968 "Ignoring attempt to enable CPSR_F flag "
3969 "(non-maskable FIQ [NMFI] support enabled)\n");
3975 env
->daif
&= ~(CPSR_AIF
& mask
);
3976 env
->daif
|= val
& CPSR_AIF
& mask
;
3978 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3979 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3980 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3981 * We choose to ignore the attempt and leave the CPSR M field
3986 switch_mode(env
, val
& CPSR_M
);
3989 mask
&= ~CACHED_CPSR_BITS
;
3990 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3993 /* Sign/zero extend */
3994 uint32_t HELPER(sxtb16
)(uint32_t x
)
3997 res
= (uint16_t)(int8_t)x
;
3998 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
4002 uint32_t HELPER(uxtb16
)(uint32_t x
)
4005 res
= (uint16_t)(uint8_t)x
;
4006 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
4010 uint32_t HELPER(clz
)(uint32_t x
)
4015 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
4019 if (num
== INT_MIN
&& den
== -1)
4024 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
4031 uint32_t HELPER(rbit
)(uint32_t x
)
4033 x
= ((x
& 0xff000000) >> 24)
4034 | ((x
& 0x00ff0000) >> 8)
4035 | ((x
& 0x0000ff00) << 8)
4036 | ((x
& 0x000000ff) << 24);
4037 x
= ((x
& 0xf0f0f0f0) >> 4)
4038 | ((x
& 0x0f0f0f0f) << 4);
4039 x
= ((x
& 0x88888888) >> 3)
4040 | ((x
& 0x44444444) >> 1)
4041 | ((x
& 0x22222222) << 1)
4042 | ((x
& 0x11111111) << 3);
4046 #if defined(CONFIG_USER_ONLY)
4048 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
4051 ARMCPU
*cpu
= ARM_CPU(cs
);
4052 CPUARMState
*env
= &cpu
->env
;
4054 env
->exception
.vaddress
= address
;
4056 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4058 cs
->exception_index
= EXCP_DATA_ABORT
;
4063 /* These should probably raise undefined insn exceptions. */
4064 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4066 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4068 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
4071 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4073 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4075 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
4079 void switch_mode(CPUARMState
*env
, int mode
)
4081 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4083 if (mode
!= ARM_CPU_MODE_USR
) {
4084 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
4088 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4090 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4092 cpu_abort(CPU(cpu
), "banked r13 write\n");
4095 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4097 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4099 cpu_abort(CPU(cpu
), "banked r13 read\n");
4103 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4108 void aarch64_sync_64_to_32(CPUARMState
*env
)
4110 g_assert_not_reached();
4115 /* Map CPU modes onto saved register banks. */
4116 int bank_number(int mode
)
4119 case ARM_CPU_MODE_USR
:
4120 case ARM_CPU_MODE_SYS
:
4122 case ARM_CPU_MODE_SVC
:
4124 case ARM_CPU_MODE_ABT
:
4126 case ARM_CPU_MODE_UND
:
4128 case ARM_CPU_MODE_IRQ
:
4130 case ARM_CPU_MODE_FIQ
:
4132 case ARM_CPU_MODE_HYP
:
4134 case ARM_CPU_MODE_MON
:
4137 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
4140 void switch_mode(CPUARMState
*env
, int mode
)
4145 old_mode
= env
->uncached_cpsr
& CPSR_M
;
4146 if (mode
== old_mode
)
4149 if (old_mode
== ARM_CPU_MODE_FIQ
) {
4150 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
4151 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
4152 } else if (mode
== ARM_CPU_MODE_FIQ
) {
4153 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
4154 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
4157 i
= bank_number(old_mode
);
4158 env
->banked_r13
[i
] = env
->regs
[13];
4159 env
->banked_r14
[i
] = env
->regs
[14];
4160 env
->banked_spsr
[i
] = env
->spsr
;
4162 i
= bank_number(mode
);
4163 env
->regs
[13] = env
->banked_r13
[i
];
4164 env
->regs
[14] = env
->banked_r14
[i
];
4165 env
->spsr
= env
->banked_spsr
[i
];
4168 /* Physical Interrupt Target EL Lookup Table
4170 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4172 * The below multi-dimensional table is used for looking up the target
4173 * exception level given numerous condition criteria. Specifically, the
4174 * target EL is based on SCR and HCR routing controls as well as the
4175 * currently executing EL and secure state.
4178 * target_el_table[2][2][2][2][2][4]
4179 * | | | | | +--- Current EL
4180 * | | | | +------ Non-secure(0)/Secure(1)
4181 * | | | +--------- HCR mask override
4182 * | | +------------ SCR exec state control
4183 * | +--------------- SCR mask override
4184 * +------------------ 32-bit(0)/64-bit(1) EL3
4186 * The table values are as such:
4190 * The ARM ARM target EL table includes entries indicating that an "exception
4191 * is not taken". The two cases where this is applicable are:
4192 * 1) An exception is taken from EL3 but the SCR does not have the exception
4194 * 2) An exception is taken from EL2 but the HCR does not have the exception
4196 * In these two cases, the below table contain a target of EL1. This value is
4197 * returned as it is expected that the consumer of the table data will check
4198 * for "target EL >= current EL" to ensure the exception is not taken.
4202 * BIT IRQ IMO Non-secure Secure
4203 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4205 const int8_t target_el_table
[2][2][2][2][2][4] = {
4206 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4207 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4208 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4209 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4210 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4211 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4212 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4213 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4214 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4215 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4216 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4217 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4218 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4219 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4220 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4221 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4225 * Determine the target EL for physical exceptions
4227 static inline uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
4228 uint32_t cur_el
, bool secure
)
4230 CPUARMState
*env
= cs
->env_ptr
;
4231 int rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
4235 int is64
= arm_el_is_aa64(env
, 3);
4239 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
4240 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
4243 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
4244 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
4247 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
4248 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
4252 /* If HCR.TGE is set then HCR is treated as being 1 */
4253 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
4255 /* Perform a table-lookup for the target EL given the current state */
4256 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
4258 assert(target_el
> 0);
4264 * Determine the target EL for a given exception type.
4266 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4268 ARMCPU
*cpu
= ARM_CPU(cs
);
4269 CPUARMState
*env
= &cpu
->env
;
4270 unsigned int cur_el
= arm_current_el(env
);
4271 unsigned int target_el
;
4272 bool secure
= arm_is_secure(env
);
4284 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
4291 target_el
= MAX(cur_el
, 1);
4297 static void v7m_push(CPUARMState
*env
, uint32_t val
)
4299 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4302 stl_phys(cs
->as
, env
->regs
[13], val
);
4305 static uint32_t v7m_pop(CPUARMState
*env
)
4307 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4310 val
= ldl_phys(cs
->as
, env
->regs
[13]);
4315 /* Switch to V7M main or process stack pointer. */
4316 static void switch_v7m_sp(CPUARMState
*env
, int process
)
4319 if (env
->v7m
.current_sp
!= process
) {
4320 tmp
= env
->v7m
.other_sp
;
4321 env
->v7m
.other_sp
= env
->regs
[13];
4322 env
->regs
[13] = tmp
;
4323 env
->v7m
.current_sp
= process
;
4327 static void do_v7m_exception_exit(CPUARMState
*env
)
4332 type
= env
->regs
[15];
4333 if (env
->v7m
.exception
!= 0)
4334 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
4336 /* Switch to the target stack. */
4337 switch_v7m_sp(env
, (type
& 4) != 0);
4338 /* Pop registers. */
4339 env
->regs
[0] = v7m_pop(env
);
4340 env
->regs
[1] = v7m_pop(env
);
4341 env
->regs
[2] = v7m_pop(env
);
4342 env
->regs
[3] = v7m_pop(env
);
4343 env
->regs
[12] = v7m_pop(env
);
4344 env
->regs
[14] = v7m_pop(env
);
4345 env
->regs
[15] = v7m_pop(env
);
4346 if (env
->regs
[15] & 1) {
4347 qemu_log_mask(LOG_GUEST_ERROR
,
4348 "M profile return from interrupt with misaligned "
4349 "PC is UNPREDICTABLE\n");
4350 /* Actual hardware seems to ignore the lsbit, and there are several
4351 * RTOSes out there which incorrectly assume the r15 in the stack
4352 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4354 env
->regs
[15] &= ~1U;
4356 xpsr
= v7m_pop(env
);
4357 xpsr_write(env
, xpsr
, 0xfffffdff);
4358 /* Undo stack alignment. */
4361 /* ??? The exception return type specifies Thread/Handler mode. However
4362 this is also implied by the xPSR value. Not sure what to do
4363 if there is a mismatch. */
4364 /* ??? Likewise for mismatches between the CONTROL register and the stack
4368 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
4370 ARMCPU
*cpu
= ARM_CPU(cs
);
4371 CPUARMState
*env
= &cpu
->env
;
4372 uint32_t xpsr
= xpsr_read(env
);
4376 arm_log_exception(cs
->exception_index
);
4379 if (env
->v7m
.current_sp
)
4381 if (env
->v7m
.exception
== 0)
4384 /* For exceptions we just mark as pending on the NVIC, and let that
4386 /* TODO: Need to escalate if the current priority is higher than the
4387 one we're raising. */
4388 switch (cs
->exception_index
) {
4390 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
4393 /* The PC already points to the next instruction. */
4394 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
4396 case EXCP_PREFETCH_ABORT
:
4397 case EXCP_DATA_ABORT
:
4398 /* TODO: if we implemented the MPU registers, this is where we
4399 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4401 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
4404 if (semihosting_enabled
) {
4406 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4409 env
->regs
[0] = do_arm_semihosting(env
);
4410 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4414 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
4417 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
4419 case EXCP_EXCEPTION_EXIT
:
4420 do_v7m_exception_exit(env
);
4423 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4424 return; /* Never happens. Keep compiler happy. */
4427 /* Align stack pointer. */
4428 /* ??? Should only do this if Configuration Control Register
4429 STACKALIGN bit is set. */
4430 if (env
->regs
[13] & 4) {
4434 /* Switch to the handler mode. */
4435 v7m_push(env
, xpsr
);
4436 v7m_push(env
, env
->regs
[15]);
4437 v7m_push(env
, env
->regs
[14]);
4438 v7m_push(env
, env
->regs
[12]);
4439 v7m_push(env
, env
->regs
[3]);
4440 v7m_push(env
, env
->regs
[2]);
4441 v7m_push(env
, env
->regs
[1]);
4442 v7m_push(env
, env
->regs
[0]);
4443 switch_v7m_sp(env
, 0);
4445 env
->condexec_bits
= 0;
4447 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
4448 env
->regs
[15] = addr
& 0xfffffffe;
4449 env
->thumb
= addr
& 1;
4452 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4453 * register set. This is necessary when switching between AArch32 and AArch64
4456 void aarch64_sync_32_to_64(CPUARMState
*env
)
4459 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
4461 /* We can blanket copy R[0:7] to X[0:7] */
4462 for (i
= 0; i
< 8; i
++) {
4463 env
->xregs
[i
] = env
->regs
[i
];
4466 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4467 * Otherwise, they come from the banked user regs.
4469 if (mode
== ARM_CPU_MODE_FIQ
) {
4470 for (i
= 8; i
< 13; i
++) {
4471 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
4474 for (i
= 8; i
< 13; i
++) {
4475 env
->xregs
[i
] = env
->regs
[i
];
4479 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4480 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4481 * from the mode banked register.
4483 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
4484 env
->xregs
[13] = env
->regs
[13];
4485 env
->xregs
[14] = env
->regs
[14];
4487 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
4488 /* HYP is an exception in that it is copied from r14 */
4489 if (mode
== ARM_CPU_MODE_HYP
) {
4490 env
->xregs
[14] = env
->regs
[14];
4492 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
4496 if (mode
== ARM_CPU_MODE_HYP
) {
4497 env
->xregs
[15] = env
->regs
[13];
4499 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
4502 if (mode
== ARM_CPU_MODE_IRQ
) {
4503 env
->xregs
[16] = env
->regs
[13];
4504 env
->xregs
[17] = env
->regs
[14];
4506 env
->xregs
[16] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
4507 env
->xregs
[17] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
4510 if (mode
== ARM_CPU_MODE_SVC
) {
4511 env
->xregs
[18] = env
->regs
[13];
4512 env
->xregs
[19] = env
->regs
[14];
4514 env
->xregs
[18] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
4515 env
->xregs
[19] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
4518 if (mode
== ARM_CPU_MODE_ABT
) {
4519 env
->xregs
[20] = env
->regs
[13];
4520 env
->xregs
[21] = env
->regs
[14];
4522 env
->xregs
[20] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
4523 env
->xregs
[21] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
4526 if (mode
== ARM_CPU_MODE_UND
) {
4527 env
->xregs
[22] = env
->regs
[13];
4528 env
->xregs
[23] = env
->regs
[14];
4530 env
->xregs
[22] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
4531 env
->xregs
[23] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
4534 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4535 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4536 * FIQ bank for r8-r14.
4538 if (mode
== ARM_CPU_MODE_FIQ
) {
4539 for (i
= 24; i
< 31; i
++) {
4540 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
4543 for (i
= 24; i
< 29; i
++) {
4544 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
4546 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
4547 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
4550 env
->pc
= env
->regs
[15];
4553 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4554 * register set. This is necessary when switching between AArch32 and AArch64
4557 void aarch64_sync_64_to_32(CPUARMState
*env
)
4560 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
4562 /* We can blanket copy X[0:7] to R[0:7] */
4563 for (i
= 0; i
< 8; i
++) {
4564 env
->regs
[i
] = env
->xregs
[i
];
4567 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4568 * Otherwise, we copy x8-x12 into the banked user regs.
4570 if (mode
== ARM_CPU_MODE_FIQ
) {
4571 for (i
= 8; i
< 13; i
++) {
4572 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
4575 for (i
= 8; i
< 13; i
++) {
4576 env
->regs
[i
] = env
->xregs
[i
];
4580 /* Registers r13 & r14 depend on the current mode.
4581 * If we are in a given mode, we copy the corresponding x registers to r13
4582 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4585 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
4586 env
->regs
[13] = env
->xregs
[13];
4587 env
->regs
[14] = env
->xregs
[14];
4589 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
4591 /* HYP is an exception in that it does not have its own banked r14 but
4592 * shares the USR r14
4594 if (mode
== ARM_CPU_MODE_HYP
) {
4595 env
->regs
[14] = env
->xregs
[14];
4597 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
4601 if (mode
== ARM_CPU_MODE_HYP
) {
4602 env
->regs
[13] = env
->xregs
[15];
4604 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
4607 if (mode
== ARM_CPU_MODE_IRQ
) {
4608 env
->regs
[13] = env
->xregs
[16];
4609 env
->regs
[14] = env
->xregs
[17];
4611 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
4612 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
4615 if (mode
== ARM_CPU_MODE_SVC
) {
4616 env
->regs
[13] = env
->xregs
[18];
4617 env
->regs
[14] = env
->xregs
[19];
4619 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
4620 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
4623 if (mode
== ARM_CPU_MODE_ABT
) {
4624 env
->regs
[13] = env
->xregs
[20];
4625 env
->regs
[14] = env
->xregs
[21];
4627 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
4628 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
4631 if (mode
== ARM_CPU_MODE_UND
) {
4632 env
->regs
[13] = env
->xregs
[22];
4633 env
->regs
[14] = env
->xregs
[23];
4635 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
4636 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
4639 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4640 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4641 * FIQ bank for r8-r14.
4643 if (mode
== ARM_CPU_MODE_FIQ
) {
4644 for (i
= 24; i
< 31; i
++) {
4645 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
4648 for (i
= 24; i
< 29; i
++) {
4649 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
4651 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
4652 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
4655 env
->regs
[15] = env
->pc
;
4658 /* Handle a CPU exception. */
4659 void arm_cpu_do_interrupt(CPUState
*cs
)
4661 ARMCPU
*cpu
= ARM_CPU(cs
);
4662 CPUARMState
*env
= &cpu
->env
;
4671 arm_log_exception(cs
->exception_index
);
4673 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
4674 arm_handle_psci_call(cpu
);
4675 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
4679 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4680 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
4682 case EC_BREAKPOINT_SAME_EL
:
4686 case EC_WATCHPOINT_SAME_EL
:
4692 case EC_VECTORCATCH
:
4701 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
4704 /* TODO: Vectored interrupt controller. */
4705 switch (cs
->exception_index
) {
4707 new_mode
= ARM_CPU_MODE_UND
;
4716 if (semihosting_enabled
) {
4717 /* Check for semihosting interrupt. */
4719 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
4722 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
4725 /* Only intercept calls from privileged modes, to provide some
4726 semblance of security. */
4727 if (((mask
== 0x123456 && !env
->thumb
)
4728 || (mask
== 0xab && env
->thumb
))
4729 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4730 env
->regs
[0] = do_arm_semihosting(env
);
4731 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4735 new_mode
= ARM_CPU_MODE_SVC
;
4738 /* The PC already points to the next instruction. */
4742 /* See if this is a semihosting syscall. */
4743 if (env
->thumb
&& semihosting_enabled
) {
4744 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4746 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4748 env
->regs
[0] = do_arm_semihosting(env
);
4749 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4753 env
->exception
.fsr
= 2;
4754 /* Fall through to prefetch abort. */
4755 case EXCP_PREFETCH_ABORT
:
4756 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
4757 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
4758 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
4759 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
4760 new_mode
= ARM_CPU_MODE_ABT
;
4762 mask
= CPSR_A
| CPSR_I
;
4765 case EXCP_DATA_ABORT
:
4766 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
4767 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
4768 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
4770 (uint32_t)env
->exception
.vaddress
);
4771 new_mode
= ARM_CPU_MODE_ABT
;
4773 mask
= CPSR_A
| CPSR_I
;
4777 new_mode
= ARM_CPU_MODE_IRQ
;
4779 /* Disable IRQ and imprecise data aborts. */
4780 mask
= CPSR_A
| CPSR_I
;
4782 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
4783 /* IRQ routed to monitor mode */
4784 new_mode
= ARM_CPU_MODE_MON
;
4789 new_mode
= ARM_CPU_MODE_FIQ
;
4791 /* Disable FIQ, IRQ and imprecise data aborts. */
4792 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4793 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
4794 /* FIQ routed to monitor mode */
4795 new_mode
= ARM_CPU_MODE_MON
;
4800 new_mode
= ARM_CPU_MODE_MON
;
4802 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4806 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4807 return; /* Never happens. Keep compiler happy. */
4810 if (new_mode
== ARM_CPU_MODE_MON
) {
4811 addr
+= env
->cp15
.mvbar
;
4812 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
4813 /* High vectors. When enabled, base address cannot be remapped. */
4816 /* ARM v7 architectures provide a vector base address register to remap
4817 * the interrupt vector table.
4818 * This register is only followed in non-monitor mode, and is banked.
4819 * Note: only bits 31:5 are valid.
4821 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
4824 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
4825 env
->cp15
.scr_el3
&= ~SCR_NS
;
4828 switch_mode (env
, new_mode
);
4829 /* For exceptions taken to AArch32 we must clear the SS bit in both
4830 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4832 env
->uncached_cpsr
&= ~PSTATE_SS
;
4833 env
->spsr
= cpsr_read(env
);
4834 /* Clear IT bits. */
4835 env
->condexec_bits
= 0;
4836 /* Switch to the new mode, and to the correct instruction set. */
4837 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
4839 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4840 * and we should just guard the thumb mode on V4 */
4841 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
4842 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
4844 env
->regs
[14] = env
->regs
[15] + offset
;
4845 env
->regs
[15] = addr
;
4846 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
4850 /* Return the exception level which controls this address translation regime */
4851 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4854 case ARMMMUIdx_S2NS
:
4855 case ARMMMUIdx_S1E2
:
4857 case ARMMMUIdx_S1E3
:
4859 case ARMMMUIdx_S1SE0
:
4860 return arm_el_is_aa64(env
, 3) ? 1 : 3;
4861 case ARMMMUIdx_S1SE1
:
4862 case ARMMMUIdx_S1NSE0
:
4863 case ARMMMUIdx_S1NSE1
:
4866 g_assert_not_reached();
4870 /* Return true if this address translation regime is secure */
4871 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4874 case ARMMMUIdx_S12NSE0
:
4875 case ARMMMUIdx_S12NSE1
:
4876 case ARMMMUIdx_S1NSE0
:
4877 case ARMMMUIdx_S1NSE1
:
4878 case ARMMMUIdx_S1E2
:
4879 case ARMMMUIdx_S2NS
:
4881 case ARMMMUIdx_S1E3
:
4882 case ARMMMUIdx_S1SE0
:
4883 case ARMMMUIdx_S1SE1
:
4886 g_assert_not_reached();
4890 /* Return the SCTLR value which controls this address translation regime */
4891 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4893 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
4896 /* Return true if the specified stage of address translation is disabled */
4897 static inline bool regime_translation_disabled(CPUARMState
*env
,
4900 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4901 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
4903 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
4906 /* Return the TCR controlling this translation regime */
4907 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4909 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4910 /* TODO: return VTCR_EL2 */
4911 g_assert_not_reached();
4913 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
4916 /* Return true if the translation regime is using LPAE format page tables */
4917 static inline bool regime_using_lpae_format(CPUARMState
*env
,
4920 int el
= regime_el(env
, mmu_idx
);
4921 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
4924 if (arm_feature(env
, ARM_FEATURE_LPAE
)
4925 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
4931 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4934 case ARMMMUIdx_S1SE0
:
4935 case ARMMMUIdx_S1NSE0
:
4939 case ARMMMUIdx_S12NSE0
:
4940 case ARMMMUIdx_S12NSE1
:
4941 g_assert_not_reached();
4945 /* Translate section/page access permissions to page
4946 * R/W protection flags
4949 * @mmu_idx: MMU index indicating required translation regime
4950 * @ap: The 3-bit access permissions (AP[2:0])
4951 * @domain_prot: The 2-bit domain access permissions
4953 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
4954 int ap
, int domain_prot
)
4956 bool is_user
= regime_is_user(env
, mmu_idx
);
4958 if (domain_prot
== 3) {
4959 return PAGE_READ
| PAGE_WRITE
;
4964 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4967 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
4969 return is_user
? 0 : PAGE_READ
;
4976 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
4981 return PAGE_READ
| PAGE_WRITE
;
4984 return PAGE_READ
| PAGE_WRITE
;
4985 case 4: /* Reserved. */
4988 return is_user
? 0 : PAGE_READ
;
4992 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
4997 g_assert_not_reached();
5001 /* Translate section/page access permissions to page
5002 * R/W protection flags.
5004 * @ap: The 2-bit simple AP (AP[2:1])
5005 * @is_user: TRUE if accessing from PL0
5007 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
5011 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
5013 return PAGE_READ
| PAGE_WRITE
;
5015 return is_user
? 0 : PAGE_READ
;
5019 g_assert_not_reached();
5024 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
5026 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
5029 /* Translate section/page access permissions to protection flags
5032 * @mmu_idx: MMU index indicating required translation regime
5033 * @is_aa64: TRUE if AArch64
5034 * @ap: The 2-bit simple AP (AP[2:1])
5035 * @ns: NS (non-secure) bit
5036 * @xn: XN (execute-never) bit
5037 * @pxn: PXN (privileged execute-never) bit
5039 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
5040 int ap
, int ns
, int xn
, int pxn
)
5042 bool is_user
= regime_is_user(env
, mmu_idx
);
5043 int prot_rw
, user_rw
;
5047 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
5049 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
5053 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
5056 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
5060 /* TODO have_wxn should be replaced with
5061 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5062 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5063 * compatible processors have EL2, which is required for [U]WXN.
5065 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
5068 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
5072 switch (regime_el(env
, mmu_idx
)) {
5075 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
5082 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
5083 switch (regime_el(env
, mmu_idx
)) {
5087 xn
= xn
|| !(user_rw
& PAGE_READ
);
5091 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
5093 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
5094 (uwxn
&& (user_rw
& PAGE_WRITE
));
5104 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
5107 return prot_rw
| PAGE_EXEC
;
5110 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5111 uint32_t *table
, uint32_t address
)
5113 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5114 int el
= regime_el(env
, mmu_idx
);
5115 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
5117 if (address
& tcr
->mask
) {
5118 if (tcr
->raw_tcr
& TTBCR_PD1
) {
5119 /* Translation table walk disabled for TTBR1 */
5122 *table
= env
->cp15
.ttbr1_el
[el
] & 0xffffc000;
5124 if (tcr
->raw_tcr
& TTBCR_PD0
) {
5125 /* Translation table walk disabled for TTBR0 */
5128 *table
= env
->cp15
.ttbr0_el
[el
] & tcr
->base_mask
;
5130 *table
|= (address
>> 18) & 0x3ffc;
5134 /* All loads done in the course of a page table walk go through here.
5135 * TODO: rather than ignoring errors from physical memory reads (which
5136 * are external aborts in ARM terminology) we should propagate this
5137 * error out so that we can turn it into a Data Abort if this walk
5138 * was being done for a CPU load/store or an address translation instruction
5139 * (but not if it was for a debug access).
5141 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
5143 MemTxAttrs attrs
= {};
5145 attrs
.secure
= is_secure
;
5146 return address_space_ldl(cs
->as
, addr
, attrs
, NULL
);
5149 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
5151 MemTxAttrs attrs
= {};
5153 attrs
.secure
= is_secure
;
5154 return address_space_ldq(cs
->as
, addr
, attrs
, NULL
);
5157 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
5158 ARMMMUIdx mmu_idx
, hwaddr
*phys_ptr
,
5159 int *prot
, target_ulong
*page_size
)
5161 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5172 /* Pagetable walk. */
5173 /* Lookup l1 descriptor. */
5174 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
5175 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5179 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5181 domain
= (desc
>> 5) & 0x0f;
5182 if (regime_el(env
, mmu_idx
) == 1) {
5183 dacr
= env
->cp15
.dacr_ns
;
5185 dacr
= env
->cp15
.dacr_s
;
5187 domain_prot
= (dacr
>> (domain
* 2)) & 3;
5189 /* Section translation fault. */
5193 if (domain_prot
== 0 || domain_prot
== 2) {
5195 code
= 9; /* Section domain fault. */
5197 code
= 11; /* Page domain fault. */
5202 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
5203 ap
= (desc
>> 10) & 3;
5205 *page_size
= 1024 * 1024;
5207 /* Lookup l2 entry. */
5209 /* Coarse pagetable. */
5210 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
5212 /* Fine pagetable. */
5213 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
5215 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5217 case 0: /* Page translation fault. */
5220 case 1: /* 64k page. */
5221 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
5222 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
5223 *page_size
= 0x10000;
5225 case 2: /* 4k page. */
5226 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5227 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
5228 *page_size
= 0x1000;
5230 case 3: /* 1k page. */
5232 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5233 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5235 /* Page translation fault. */
5240 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
5242 ap
= (desc
>> 4) & 3;
5246 /* Never happens, but compiler isn't smart enough to tell. */
5251 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
5252 *prot
|= *prot
? PAGE_EXEC
: 0;
5253 if (!(*prot
& (1 << access_type
))) {
5254 /* Access permission fault. */
5257 *phys_ptr
= phys_addr
;
5260 return code
| (domain
<< 4);
5263 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
5264 ARMMMUIdx mmu_idx
, hwaddr
*phys_ptr
,
5266 int *prot
, target_ulong
*page_size
)
5268 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5282 /* Pagetable walk. */
5283 /* Lookup l1 descriptor. */
5284 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
5285 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5289 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5291 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
5292 /* Section translation fault, or attempt to use the encoding
5293 * which is Reserved on implementations without PXN.
5298 if ((type
== 1) || !(desc
& (1 << 18))) {
5299 /* Page or Section. */
5300 domain
= (desc
>> 5) & 0x0f;
5302 if (regime_el(env
, mmu_idx
) == 1) {
5303 dacr
= env
->cp15
.dacr_ns
;
5305 dacr
= env
->cp15
.dacr_s
;
5307 domain_prot
= (dacr
>> (domain
* 2)) & 3;
5308 if (domain_prot
== 0 || domain_prot
== 2) {
5310 code
= 9; /* Section domain fault. */
5312 code
= 11; /* Page domain fault. */
5317 if (desc
& (1 << 18)) {
5319 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
5320 *page_size
= 0x1000000;
5323 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
5324 *page_size
= 0x100000;
5326 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
5327 xn
= desc
& (1 << 4);
5330 ns
= extract32(desc
, 19, 1);
5332 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
5333 pxn
= (desc
>> 2) & 1;
5335 ns
= extract32(desc
, 3, 1);
5336 /* Lookup l2 entry. */
5337 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
5338 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5339 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
5341 case 0: /* Page translation fault. */
5344 case 1: /* 64k page. */
5345 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
5346 xn
= desc
& (1 << 15);
5347 *page_size
= 0x10000;
5349 case 2: case 3: /* 4k page. */
5350 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5352 *page_size
= 0x1000;
5355 /* Never happens, but compiler isn't smart enough to tell. */
5360 if (domain_prot
== 3) {
5361 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5363 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
5366 if (xn
&& access_type
== 2)
5369 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
5370 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
5371 /* The simplified model uses AP[0] as an access control bit. */
5372 if ((ap
& 1) == 0) {
5373 /* Access flag fault. */
5374 code
= (code
== 15) ? 6 : 3;
5377 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
5379 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
5384 if (!(*prot
& (1 << access_type
))) {
5385 /* Access permission fault. */
5390 /* The NS bit will (as required by the architecture) have no effect if
5391 * the CPU doesn't support TZ or this is a non-secure translation
5392 * regime, because the attribute will already be non-secure.
5394 attrs
->secure
= false;
5396 *phys_ptr
= phys_addr
;
5399 return code
| (domain
<< 4);
5402 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5403 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5406 translation_fault
= 1,
5408 permission_fault
= 3,
5411 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
5412 int access_type
, ARMMMUIdx mmu_idx
,
5413 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
5414 target_ulong
*page_size_ptr
)
5416 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5417 /* Read an LPAE long-descriptor translation table. */
5418 MMUFaultType fault_type
= translation_fault
;
5425 hwaddr descaddr
, descmask
;
5426 uint32_t tableattrs
;
5427 target_ulong page_size
;
5429 int32_t granule_sz
= 9;
5430 int32_t va_size
= 32;
5432 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
5433 int ap
, ns
, xn
, pxn
;
5436 * This code assumes we're either a 64-bit EL1 or a 32-bit PL1;
5437 * it doesn't handle the different format TCR for TCR_EL2, TCR_EL3,
5438 * and VTCR_EL2, or the fact that those regimes don't have a split
5439 * TTBR0/TTBR1. Attribute and permission bit handling should also
5440 * be checked when adding support for those page table walks.
5442 if (arm_el_is_aa64(env
, regime_el(env
, mmu_idx
))) {
5444 if (extract64(address
, 55, 1))
5445 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
5447 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
5451 /* Determine whether this address is in the region controlled by
5452 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5453 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5454 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5456 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
5457 if (va_size
== 64) {
5458 t0sz
= MIN(t0sz
, 39);
5459 t0sz
= MAX(t0sz
, 16);
5461 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
5462 if (va_size
== 64) {
5463 t1sz
= MIN(t1sz
, 39);
5464 t1sz
= MAX(t1sz
, 16);
5466 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
5467 /* there is a ttbr0 region and we are in it (high bits all zero) */
5469 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
5470 /* there is a ttbr1 region and we are in it (high bits all one) */
5473 /* ttbr0 region is "everything not in the ttbr1 region" */
5476 /* ttbr1 region is "everything not in the ttbr0 region" */
5479 /* in the gap between the two regions, this is a Translation fault */
5480 fault_type
= translation_fault
;
5484 /* Note that QEMU ignores shareability and cacheability attributes,
5485 * so we don't need to do anything with the SH, ORGN, IRGN fields
5486 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5487 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5488 * implement any ASID-like capability so we can ignore it (instead
5489 * we will always flush the TLB any time the ASID is changed).
5491 if (ttbr_select
== 0) {
5492 ttbr
= A32_BANKED_CURRENT_REG_GET(env
, ttbr0
);
5493 epd
= extract32(tcr
->raw_tcr
, 7, 1);
5496 tg
= extract32(tcr
->raw_tcr
, 14, 2);
5497 if (tg
== 1) { /* 64KB pages */
5500 if (tg
== 2) { /* 16KB pages */
5504 ttbr
= A32_BANKED_CURRENT_REG_GET(env
, ttbr1
);
5505 epd
= extract32(tcr
->raw_tcr
, 23, 1);
5508 tg
= extract32(tcr
->raw_tcr
, 30, 2);
5509 if (tg
== 3) { /* 64KB pages */
5512 if (tg
== 1) { /* 16KB pages */
5517 /* Here we should have set up all the parameters for the translation:
5518 * va_size, ttbr, epd, tsz, granule_sz, tbi
5522 /* Translation table walk disabled => Translation fault on TLB miss */
5526 /* The starting level depends on the virtual address size (which can be
5527 * up to 48 bits) and the translation granule size. It indicates the number
5528 * of strides (granule_sz bits at a time) needed to consume the bits
5529 * of the input address. In the pseudocode this is:
5530 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5531 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5532 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5533 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5534 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5535 * = 4 - (va_size - tsz - 4) / granule_sz;
5537 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
5539 /* Clear the vaddr bits which aren't part of the within-region address,
5540 * so that we don't have to special case things when calculating the
5541 * first descriptor address.
5544 address
&= (1ULL << (va_size
- tsz
)) - 1;
5547 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
5549 /* Now we can extract the actual base address from the TTBR */
5550 descaddr
= extract64(ttbr
, 0, 48);
5551 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
5553 /* Secure accesses start with the page table in secure memory and
5554 * can be downgraded to non-secure at any step. Non-secure accesses
5555 * remain non-secure. We implement this by just ORing in the NSTable/NS
5556 * bits at each step.
5558 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
5560 uint64_t descriptor
;
5563 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
5565 nstable
= extract32(tableattrs
, 4, 1);
5566 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
);
5567 if (!(descriptor
& 1) ||
5568 (!(descriptor
& 2) && (level
== 3))) {
5569 /* Invalid, or the Reserved level 3 encoding */
5572 descaddr
= descriptor
& 0xfffffff000ULL
;
5574 if ((descriptor
& 2) && (level
< 3)) {
5575 /* Table entry. The top five bits are attributes which may
5576 * propagate down through lower levels of the table (and
5577 * which are all arranged so that 0 means "no effect", so
5578 * we can gather them up by ORing in the bits at each level).
5580 tableattrs
|= extract64(descriptor
, 59, 5);
5584 /* Block entry at level 1 or 2, or page entry at level 3.
5585 * These are basically the same thing, although the number
5586 * of bits we pull in from the vaddr varies.
5588 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
5589 descaddr
|= (address
& (page_size
- 1));
5590 /* Extract attributes from the descriptor and merge with table attrs */
5591 attrs
= extract64(descriptor
, 2, 10)
5592 | (extract64(descriptor
, 52, 12) << 10);
5593 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
5594 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
5595 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5596 * means "force PL1 access only", which means forcing AP[1] to 0.
5598 if (extract32(tableattrs
, 2, 1)) {
5601 attrs
|= nstable
<< 3; /* NS */
5604 /* Here descaddr is the final physical address, and attributes
5607 fault_type
= access_fault
;
5608 if ((attrs
& (1 << 8)) == 0) {
5613 ap
= extract32(attrs
, 4, 2);
5614 ns
= extract32(attrs
, 3, 1);
5615 xn
= extract32(attrs
, 12, 1);
5616 pxn
= extract32(attrs
, 11, 1);
5618 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
5620 fault_type
= permission_fault
;
5621 if (!(*prot
& (1 << access_type
))) {
5626 /* The NS bit will (as required by the architecture) have no effect if
5627 * the CPU doesn't support TZ or this is a non-secure translation
5628 * regime, because the attribute will already be non-secure.
5630 txattrs
->secure
= false;
5632 *phys_ptr
= descaddr
;
5633 *page_size_ptr
= page_size
;
5637 /* Long-descriptor format IFSR/DFSR value */
5638 return (1 << 9) | (fault_type
<< 2) | level
;
5641 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
5642 int access_type
, ARMMMUIdx mmu_idx
,
5643 hwaddr
*phys_ptr
, int *prot
)
5648 bool is_user
= regime_is_user(env
, mmu_idx
);
5650 *phys_ptr
= address
;
5651 for (n
= 7; n
>= 0; n
--) {
5652 base
= env
->cp15
.c6_region
[n
];
5653 if ((base
& 1) == 0) {
5656 mask
= 1 << ((base
>> 1) & 0x1f);
5657 /* Keep this shift separate from the above to avoid an
5658 (undefined) << 32. */
5659 mask
= (mask
<< 1) - 1;
5660 if (((base
^ address
) & ~mask
) == 0) {
5668 if (access_type
== 2) {
5669 mask
= env
->cp15
.pmsav5_insn_ap
;
5671 mask
= env
->cp15
.pmsav5_data_ap
;
5673 mask
= (mask
>> (n
* 4)) & 0xf;
5681 *prot
= PAGE_READ
| PAGE_WRITE
;
5686 *prot
|= PAGE_WRITE
;
5690 *prot
= PAGE_READ
| PAGE_WRITE
;
5702 /* Bad permission. */
5709 /* get_phys_addr - get the physical address for this virtual address
5711 * Find the physical address corresponding to the given virtual address,
5712 * by doing a translation table walk on MMU based systems or using the
5713 * MPU state on MPU based systems.
5715 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
5716 * prot and page_size may not be filled in, and the return value provides
5717 * information on why the translation aborted, in the format of a
5718 * DFSR/IFSR fault register, with the following caveats:
5719 * * we honour the short vs long DFSR format differences.
5720 * * the WnR bit is never set (the caller must do this).
5721 * * for MPU based systems we don't bother to return a full FSR format
5725 * @address: virtual address to get physical address for
5726 * @access_type: 0 for read, 1 for write, 2 for execute
5727 * @mmu_idx: MMU index indicating required translation regime
5728 * @phys_ptr: set to the physical address corresponding to the virtual address
5729 * @attrs: set to the memory transaction attributes to use
5730 * @prot: set to the permissions for the page containing phys_ptr
5731 * @page_size: set to the size of the page containing phys_ptr
5733 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
5734 int access_type
, ARMMMUIdx mmu_idx
,
5735 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
5736 target_ulong
*page_size
)
5738 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
5739 /* TODO: when we support EL2 we should here call ourselves recursively
5740 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
5741 * functions will also need changing to perform ARMMMUIdx_S2NS loads
5742 * rather than direct physical memory loads when appropriate.
5743 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5745 assert(!arm_feature(env
, ARM_FEATURE_EL2
));
5746 mmu_idx
+= ARMMMUIdx_S1NSE0
;
5749 /* The page table entries may downgrade secure to non-secure, but
5750 * cannot upgrade an non-secure translation regime's attributes
5753 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
5754 attrs
->user
= regime_is_user(env
, mmu_idx
);
5756 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5757 * In v7 and earlier it affects all stage 1 translations.
5759 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
5760 && !arm_feature(env
, ARM_FEATURE_V8
)) {
5761 if (regime_el(env
, mmu_idx
) == 3) {
5762 address
+= env
->cp15
.fcseidr_s
;
5764 address
+= env
->cp15
.fcseidr_ns
;
5768 if (regime_translation_disabled(env
, mmu_idx
)) {
5769 /* MMU/MPU disabled. */
5770 *phys_ptr
= address
;
5771 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5772 *page_size
= TARGET_PAGE_SIZE
;
5776 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
5777 *page_size
= TARGET_PAGE_SIZE
;
5778 return get_phys_addr_mpu(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5782 if (regime_using_lpae_format(env
, mmu_idx
)) {
5783 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5784 attrs
, prot
, page_size
);
5785 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
5786 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5787 attrs
, prot
, page_size
);
5789 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5794 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
5795 int access_type
, int mmu_idx
)
5797 ARMCPU
*cpu
= ARM_CPU(cs
);
5798 CPUARMState
*env
= &cpu
->env
;
5800 target_ulong page_size
;
5804 bool same_el
= (arm_current_el(env
) != 0);
5805 MemTxAttrs attrs
= {};
5807 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
5808 &attrs
, &prot
, &page_size
);
5810 /* Map a single [sub]page. */
5811 phys_addr
&= TARGET_PAGE_MASK
;
5812 address
&= TARGET_PAGE_MASK
;
5813 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
5814 prot
, mmu_idx
, page_size
);
5818 /* AArch64 syndrome does not have an LPAE bit */
5819 syn
= ret
& ~(1 << 9);
5821 /* For insn and data aborts we assume there is no instruction syndrome
5822 * information; this is always true for exceptions reported to EL1.
5824 if (access_type
== 2) {
5825 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
5826 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
5828 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
5829 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
5832 cs
->exception_index
= EXCP_DATA_ABORT
;
5835 env
->exception
.syndrome
= syn
;
5836 env
->exception
.vaddress
= address
;
5837 env
->exception
.fsr
= ret
;
5841 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
5843 ARMCPU
*cpu
= ARM_CPU(cs
);
5844 CPUARMState
*env
= &cpu
->env
;
5846 target_ulong page_size
;
5849 MemTxAttrs attrs
= {};
5851 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
), &phys_addr
,
5852 &attrs
, &prot
, &page_size
);
5861 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5863 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5864 env
->regs
[13] = val
;
5866 env
->banked_r13
[bank_number(mode
)] = val
;
5870 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5872 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5873 return env
->regs
[13];
5875 return env
->banked_r13
[bank_number(mode
)];
5879 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5881 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5885 return xpsr_read(env
) & 0xf8000000;
5887 return xpsr_read(env
) & 0xf80001ff;
5889 return xpsr_read(env
) & 0xff00fc00;
5891 return xpsr_read(env
) & 0xff00fdff;
5893 return xpsr_read(env
) & 0x000001ff;
5895 return xpsr_read(env
) & 0x0700fc00;
5897 return xpsr_read(env
) & 0x0700edff;
5899 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
5901 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
5902 case 16: /* PRIMASK */
5903 return (env
->daif
& PSTATE_I
) != 0;
5904 case 17: /* BASEPRI */
5905 case 18: /* BASEPRI_MAX */
5906 return env
->v7m
.basepri
;
5907 case 19: /* FAULTMASK */
5908 return (env
->daif
& PSTATE_F
) != 0;
5909 case 20: /* CONTROL */
5910 return env
->v7m
.control
;
5912 /* ??? For debugging only. */
5913 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
5918 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5920 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5924 xpsr_write(env
, val
, 0xf8000000);
5927 xpsr_write(env
, val
, 0xf8000000);
5930 xpsr_write(env
, val
, 0xfe00fc00);
5933 xpsr_write(env
, val
, 0xfe00fc00);
5936 /* IPSR bits are readonly. */
5939 xpsr_write(env
, val
, 0x0600fc00);
5942 xpsr_write(env
, val
, 0x0600fc00);
5945 if (env
->v7m
.current_sp
)
5946 env
->v7m
.other_sp
= val
;
5948 env
->regs
[13] = val
;
5951 if (env
->v7m
.current_sp
)
5952 env
->regs
[13] = val
;
5954 env
->v7m
.other_sp
= val
;
5956 case 16: /* PRIMASK */
5958 env
->daif
|= PSTATE_I
;
5960 env
->daif
&= ~PSTATE_I
;
5963 case 17: /* BASEPRI */
5964 env
->v7m
.basepri
= val
& 0xff;
5966 case 18: /* BASEPRI_MAX */
5968 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
5969 env
->v7m
.basepri
= val
;
5971 case 19: /* FAULTMASK */
5973 env
->daif
|= PSTATE_F
;
5975 env
->daif
&= ~PSTATE_F
;
5978 case 20: /* CONTROL */
5979 env
->v7m
.control
= val
& 3;
5980 switch_v7m_sp(env
, (val
& 2) != 0);
5983 /* ??? For debugging only. */
5984 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
5991 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
5993 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
5994 * Note that we do not implement the (architecturally mandated)
5995 * alignment fault for attempts to use this on Device memory
5996 * (which matches the usual QEMU behaviour of not implementing either
5997 * alignment faults or any memory attribute handling).
6000 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6001 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
6002 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
6004 #ifndef CONFIG_USER_ONLY
6006 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6007 * the block size so we might have to do more than one TLB lookup.
6008 * We know that in fact for any v8 CPU the page size is at least 4K
6009 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6010 * 1K as an artefact of legacy v5 subpage support being present in the
6011 * same QEMU executable.
6013 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
6014 void *hostaddr
[maxidx
];
6017 for (try = 0; try < 2; try++) {
6019 for (i
= 0; i
< maxidx
; i
++) {
6020 hostaddr
[i
] = tlb_vaddr_to_host(env
,
6021 vaddr
+ TARGET_PAGE_SIZE
* i
,
6022 1, cpu_mmu_index(env
));
6028 /* If it's all in the TLB it's fair game for just writing to;
6029 * we know we don't need to update dirty status, etc.
6031 for (i
= 0; i
< maxidx
- 1; i
++) {
6032 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
6034 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
6037 /* OK, try a store and see if we can populate the tlb. This
6038 * might cause an exception if the memory isn't writable,
6039 * in which case we will longjmp out of here. We must for
6040 * this purpose use the actual register value passed to us
6041 * so that we get the fault address right.
6043 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
6044 /* Now we can populate the other TLB entries, if any */
6045 for (i
= 0; i
< maxidx
; i
++) {
6046 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
6047 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
6048 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
6053 /* Slow path (probably attempt to do this to an I/O device or
6054 * similar, or clearing of a block of code we have translations
6055 * cached for). Just do a series of byte writes as the architecture
6056 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6057 * memset(), unmap() sequence here because:
6058 * + we'd need to account for the blocksize being larger than a page
6059 * + the direct-RAM access case is almost always going to be dealt
6060 * with in the fastpath code above, so there's no speed benefit
6061 * + we would have to deal with the map returning NULL because the
6062 * bounce buffer was in use
6064 for (i
= 0; i
< blocklen
; i
++) {
6065 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
6069 memset(g2h(vaddr
), 0, blocklen
);
6073 /* Note that signed overflow is undefined in C. The following routines are
6074 careful to use unsigned types where modulo arithmetic is required.
6075 Failure to do so _will_ break on newer gcc. */
6077 /* Signed saturating arithmetic. */
6079 /* Perform 16-bit signed saturating addition. */
6080 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
6085 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
6094 /* Perform 8-bit signed saturating addition. */
6095 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
6100 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
6109 /* Perform 16-bit signed saturating subtraction. */
6110 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
6115 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
6124 /* Perform 8-bit signed saturating subtraction. */
6125 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
6130 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
6139 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6140 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6141 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6142 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6145 #include "op_addsub.h"
6147 /* Unsigned saturating arithmetic. */
6148 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
6157 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
6165 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
6174 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
6182 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6183 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6184 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6185 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6188 #include "op_addsub.h"
6190 /* Signed modulo arithmetic. */
6191 #define SARITH16(a, b, n, op) do { \
6193 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6194 RESULT(sum, n, 16); \
6196 ge |= 3 << (n * 2); \
6199 #define SARITH8(a, b, n, op) do { \
6201 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6202 RESULT(sum, n, 8); \
6208 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6209 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6210 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6211 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6215 #include "op_addsub.h"
6217 /* Unsigned modulo arithmetic. */
6218 #define ADD16(a, b, n) do { \
6220 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6221 RESULT(sum, n, 16); \
6222 if ((sum >> 16) == 1) \
6223 ge |= 3 << (n * 2); \
6226 #define ADD8(a, b, n) do { \
6228 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6229 RESULT(sum, n, 8); \
6230 if ((sum >> 8) == 1) \
6234 #define SUB16(a, b, n) do { \
6236 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6237 RESULT(sum, n, 16); \
6238 if ((sum >> 16) == 0) \
6239 ge |= 3 << (n * 2); \
6242 #define SUB8(a, b, n) do { \
6244 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6245 RESULT(sum, n, 8); \
6246 if ((sum >> 8) == 0) \
6253 #include "op_addsub.h"
6255 /* Halved signed arithmetic. */
6256 #define ADD16(a, b, n) \
6257 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6258 #define SUB16(a, b, n) \
6259 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6260 #define ADD8(a, b, n) \
6261 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6262 #define SUB8(a, b, n) \
6263 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6266 #include "op_addsub.h"
6268 /* Halved unsigned arithmetic. */
6269 #define ADD16(a, b, n) \
6270 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6271 #define SUB16(a, b, n) \
6272 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6273 #define ADD8(a, b, n) \
6274 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6275 #define SUB8(a, b, n) \
6276 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6279 #include "op_addsub.h"
6281 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
6289 /* Unsigned sum of absolute byte differences. */
6290 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
6293 sum
= do_usad(a
, b
);
6294 sum
+= do_usad(a
>> 8, b
>> 8);
6295 sum
+= do_usad(a
>> 16, b
>>16);
6296 sum
+= do_usad(a
>> 24, b
>> 24);
6300 /* For ARMv6 SEL instruction. */
6301 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
6314 return (a
& mask
) | (b
& ~mask
);
6317 /* VFP support. We follow the convention used for VFP instructions:
6318 Single precision routines have a "s" suffix, double precision a
6321 /* Convert host exception flags to vfp form. */
6322 static inline int vfp_exceptbits_from_host(int host_bits
)
6324 int target_bits
= 0;
6326 if (host_bits
& float_flag_invalid
)
6328 if (host_bits
& float_flag_divbyzero
)
6330 if (host_bits
& float_flag_overflow
)
6332 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
6334 if (host_bits
& float_flag_inexact
)
6335 target_bits
|= 0x10;
6336 if (host_bits
& float_flag_input_denormal
)
6337 target_bits
|= 0x80;
6341 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
6346 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
6347 | (env
->vfp
.vec_len
<< 16)
6348 | (env
->vfp
.vec_stride
<< 20);
6349 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
6350 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
6351 fpscr
|= vfp_exceptbits_from_host(i
);
6355 uint32_t vfp_get_fpscr(CPUARMState
*env
)
6357 return HELPER(vfp_get_fpscr
)(env
);
6360 /* Convert vfp exception flags to target form. */
6361 static inline int vfp_exceptbits_to_host(int target_bits
)
6365 if (target_bits
& 1)
6366 host_bits
|= float_flag_invalid
;
6367 if (target_bits
& 2)
6368 host_bits
|= float_flag_divbyzero
;
6369 if (target_bits
& 4)
6370 host_bits
|= float_flag_overflow
;
6371 if (target_bits
& 8)
6372 host_bits
|= float_flag_underflow
;
6373 if (target_bits
& 0x10)
6374 host_bits
|= float_flag_inexact
;
6375 if (target_bits
& 0x80)
6376 host_bits
|= float_flag_input_denormal
;
6380 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
6385 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
6386 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
6387 env
->vfp
.vec_len
= (val
>> 16) & 7;
6388 env
->vfp
.vec_stride
= (val
>> 20) & 3;
6391 if (changed
& (3 << 22)) {
6392 i
= (val
>> 22) & 3;
6394 case FPROUNDING_TIEEVEN
:
6395 i
= float_round_nearest_even
;
6397 case FPROUNDING_POSINF
:
6400 case FPROUNDING_NEGINF
:
6401 i
= float_round_down
;
6403 case FPROUNDING_ZERO
:
6404 i
= float_round_to_zero
;
6407 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
6409 if (changed
& (1 << 24)) {
6410 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
6411 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
6413 if (changed
& (1 << 25))
6414 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
6416 i
= vfp_exceptbits_to_host(val
);
6417 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
6418 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
6421 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
6423 HELPER(vfp_set_fpscr
)(env
, val
);
6426 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6428 #define VFP_BINOP(name) \
6429 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6431 float_status *fpst = fpstp; \
6432 return float32_ ## name(a, b, fpst); \
6434 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6436 float_status *fpst = fpstp; \
6437 return float64_ ## name(a, b, fpst); \
6449 float32
VFP_HELPER(neg
, s
)(float32 a
)
6451 return float32_chs(a
);
6454 float64
VFP_HELPER(neg
, d
)(float64 a
)
6456 return float64_chs(a
);
6459 float32
VFP_HELPER(abs
, s
)(float32 a
)
6461 return float32_abs(a
);
6464 float64
VFP_HELPER(abs
, d
)(float64 a
)
6466 return float64_abs(a
);
6469 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
6471 return float32_sqrt(a
, &env
->vfp
.fp_status
);
6474 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
6476 return float64_sqrt(a
, &env
->vfp
.fp_status
);
6479 /* XXX: check quiet/signaling case */
6480 #define DO_VFP_cmp(p, type) \
6481 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6484 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6485 case 0: flags = 0x6; break; \
6486 case -1: flags = 0x8; break; \
6487 case 1: flags = 0x2; break; \
6488 default: case 2: flags = 0x3; break; \
6490 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6491 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6493 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6496 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6497 case 0: flags = 0x6; break; \
6498 case -1: flags = 0x8; break; \
6499 case 1: flags = 0x2; break; \
6500 default: case 2: flags = 0x3; break; \
6502 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6503 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6505 DO_VFP_cmp(s
, float32
)
6506 DO_VFP_cmp(d
, float64
)
6509 /* Integer to float and float to integer conversions */
6511 #define CONV_ITOF(name, fsz, sign) \
6512 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6514 float_status *fpst = fpstp; \
6515 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6518 #define CONV_FTOI(name, fsz, sign, round) \
6519 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6521 float_status *fpst = fpstp; \
6522 if (float##fsz##_is_any_nan(x)) { \
6523 float_raise(float_flag_invalid, fpst); \
6526 return float##fsz##_to_##sign##int32##round(x, fpst); \
6529 #define FLOAT_CONVS(name, p, fsz, sign) \
6530 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6531 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6532 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6534 FLOAT_CONVS(si
, s
, 32, )
6535 FLOAT_CONVS(si
, d
, 64, )
6536 FLOAT_CONVS(ui
, s
, 32, u
)
6537 FLOAT_CONVS(ui
, d
, 64, u
)
6543 /* floating point conversion */
6544 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
6546 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
6547 /* ARM requires that S<->D conversion of any kind of NaN generates
6548 * a quiet NaN by forcing the most significant frac bit to 1.
6550 return float64_maybe_silence_nan(r
);
6553 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
6555 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
6556 /* ARM requires that S<->D conversion of any kind of NaN generates
6557 * a quiet NaN by forcing the most significant frac bit to 1.
6559 return float32_maybe_silence_nan(r
);
6562 /* VFP3 fixed point conversion. */
6563 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6564 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6567 float_status *fpst = fpstp; \
6569 tmp = itype##_to_##float##fsz(x, fpst); \
6570 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6573 /* Notice that we want only input-denormal exception flags from the
6574 * scalbn operation: the other possible flags (overflow+inexact if
6575 * we overflow to infinity, output-denormal) aren't correct for the
6576 * complete scale-and-convert operation.
6578 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6579 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6583 float_status *fpst = fpstp; \
6584 int old_exc_flags = get_float_exception_flags(fpst); \
6586 if (float##fsz##_is_any_nan(x)) { \
6587 float_raise(float_flag_invalid, fpst); \
6590 tmp = float##fsz##_scalbn(x, shift, fpst); \
6591 old_exc_flags |= get_float_exception_flags(fpst) \
6592 & float_flag_input_denormal; \
6593 set_float_exception_flags(old_exc_flags, fpst); \
6594 return float##fsz##_to_##itype##round(tmp, fpst); \
6597 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6598 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6599 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6600 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6602 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6603 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6604 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6606 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
6607 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
6608 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
6609 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
6610 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
6611 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
6612 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
6613 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
6614 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
6615 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
6616 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
6617 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
6619 #undef VFP_CONV_FIX_FLOAT
6620 #undef VFP_CONV_FLOAT_FIX_ROUND
6622 /* Set the current fp rounding mode and return the old one.
6623 * The argument is a softfloat float_round_ value.
6625 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
6627 float_status
*fp_status
= &env
->vfp
.fp_status
;
6629 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
6630 set_float_rounding_mode(rmode
, fp_status
);
6635 /* Set the current fp rounding mode in the standard fp status and return
6636 * the old one. This is for NEON instructions that need to change the
6637 * rounding mode but wish to use the standard FPSCR values for everything
6638 * else. Always set the rounding mode back to the correct value after
6640 * The argument is a softfloat float_round_ value.
6642 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
6644 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
6646 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
6647 set_float_rounding_mode(rmode
, fp_status
);
6652 /* Half precision conversions. */
6653 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
6655 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6656 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
6658 return float32_maybe_silence_nan(r
);
6663 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
6665 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6666 float16 r
= float32_to_float16(a
, ieee
, s
);
6668 r
= float16_maybe_silence_nan(r
);
6670 return float16_val(r
);
6673 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
6675 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
6678 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6680 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
6683 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
6685 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
6688 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6690 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
6693 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
6695 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6696 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
6698 return float64_maybe_silence_nan(r
);
6703 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
6705 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6706 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
6708 r
= float16_maybe_silence_nan(r
);
6710 return float16_val(r
);
6713 #define float32_two make_float32(0x40000000)
6714 #define float32_three make_float32(0x40400000)
6715 #define float32_one_point_five make_float32(0x3fc00000)
6717 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6719 float_status
*s
= &env
->vfp
.standard_fp_status
;
6720 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6721 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6722 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6723 float_raise(float_flag_input_denormal
, s
);
6727 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
6730 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6732 float_status
*s
= &env
->vfp
.standard_fp_status
;
6734 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6735 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6736 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6737 float_raise(float_flag_input_denormal
, s
);
6739 return float32_one_point_five
;
6741 product
= float32_mul(a
, b
, s
);
6742 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
6747 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6748 * int->float conversions at run-time. */
6749 #define float64_256 make_float64(0x4070000000000000LL)
6750 #define float64_512 make_float64(0x4080000000000000LL)
6751 #define float32_maxnorm make_float32(0x7f7fffff)
6752 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6754 /* Reciprocal functions
6756 * The algorithm that must be used to calculate the estimate
6757 * is specified by the ARM ARM, see FPRecipEstimate()
6760 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
6762 /* These calculations mustn't set any fp exception flags,
6763 * so we use a local copy of the fp_status.
6765 float_status dummy_status
= *real_fp_status
;
6766 float_status
*s
= &dummy_status
;
6767 /* q = (int)(a * 512.0) */
6768 float64 q
= float64_mul(float64_512
, a
, s
);
6769 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6771 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6772 q
= int64_to_float64(q_int
, s
);
6773 q
= float64_add(q
, float64_half
, s
);
6774 q
= float64_div(q
, float64_512
, s
);
6775 q
= float64_div(float64_one
, q
, s
);
6777 /* s = (int)(256.0 * r + 0.5) */
6778 q
= float64_mul(q
, float64_256
, s
);
6779 q
= float64_add(q
, float64_half
, s
);
6780 q_int
= float64_to_int64_round_to_zero(q
, s
);
6782 /* return (double)s / 256.0 */
6783 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
6786 /* Common wrapper to call recip_estimate */
6787 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
6789 uint64_t val64
= float64_val(num
);
6790 uint64_t frac
= extract64(val64
, 0, 52);
6791 int64_t exp
= extract64(val64
, 52, 11);
6793 float64 scaled
, estimate
;
6795 /* Generate the scaled number for the estimate function */
6797 if (extract64(frac
, 51, 1) == 0) {
6799 frac
= extract64(frac
, 0, 50) << 2;
6801 frac
= extract64(frac
, 0, 51) << 1;
6805 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6806 scaled
= make_float64((0x3feULL
<< 52)
6807 | extract64(frac
, 44, 8) << 44);
6809 estimate
= recip_estimate(scaled
, fpst
);
6811 /* Build new result */
6812 val64
= float64_val(estimate
);
6813 sbit
= 0x8000000000000000ULL
& val64
;
6815 frac
= extract64(val64
, 0, 52);
6818 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
6819 } else if (exp
== -1) {
6820 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
6824 return make_float64(sbit
| (exp
<< 52) | frac
);
6827 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
6829 switch (fpst
->float_rounding_mode
) {
6830 case float_round_nearest_even
: /* Round to Nearest */
6832 case float_round_up
: /* Round to +Inf */
6834 case float_round_down
: /* Round to -Inf */
6836 case float_round_to_zero
: /* Round to Zero */
6840 g_assert_not_reached();
6843 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
6845 float_status
*fpst
= fpstp
;
6846 float32 f32
= float32_squash_input_denormal(input
, fpst
);
6847 uint32_t f32_val
= float32_val(f32
);
6848 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
6849 int32_t f32_exp
= extract32(f32_val
, 23, 8);
6850 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
6856 if (float32_is_any_nan(f32
)) {
6858 if (float32_is_signaling_nan(f32
)) {
6859 float_raise(float_flag_invalid
, fpst
);
6860 nan
= float32_maybe_silence_nan(f32
);
6862 if (fpst
->default_nan_mode
) {
6863 nan
= float32_default_nan
;
6866 } else if (float32_is_infinity(f32
)) {
6867 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6868 } else if (float32_is_zero(f32
)) {
6869 float_raise(float_flag_divbyzero
, fpst
);
6870 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6871 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
6872 /* Abs(value) < 2.0^-128 */
6873 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6874 if (round_to_inf(fpst
, f32_sbit
)) {
6875 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6877 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
6879 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
6880 float_raise(float_flag_underflow
, fpst
);
6881 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6885 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
6886 r64
= call_recip_estimate(f64
, 253, fpst
);
6887 r64_val
= float64_val(r64
);
6888 r64_exp
= extract64(r64_val
, 52, 11);
6889 r64_frac
= extract64(r64_val
, 0, 52);
6891 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6892 return make_float32(f32_sbit
|
6893 (r64_exp
& 0xff) << 23 |
6894 extract64(r64_frac
, 29, 24));
6897 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
6899 float_status
*fpst
= fpstp
;
6900 float64 f64
= float64_squash_input_denormal(input
, fpst
);
6901 uint64_t f64_val
= float64_val(f64
);
6902 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
6903 int64_t f64_exp
= extract64(f64_val
, 52, 11);
6909 /* Deal with any special cases */
6910 if (float64_is_any_nan(f64
)) {
6912 if (float64_is_signaling_nan(f64
)) {
6913 float_raise(float_flag_invalid
, fpst
);
6914 nan
= float64_maybe_silence_nan(f64
);
6916 if (fpst
->default_nan_mode
) {
6917 nan
= float64_default_nan
;
6920 } else if (float64_is_infinity(f64
)) {
6921 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6922 } else if (float64_is_zero(f64
)) {
6923 float_raise(float_flag_divbyzero
, fpst
);
6924 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6925 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
6926 /* Abs(value) < 2.0^-1024 */
6927 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6928 if (round_to_inf(fpst
, f64_sbit
)) {
6929 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6931 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
6933 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
6934 float_raise(float_flag_underflow
, fpst
);
6935 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6938 r64
= call_recip_estimate(f64
, 2045, fpst
);
6939 r64_val
= float64_val(r64
);
6940 r64_exp
= extract64(r64_val
, 52, 11);
6941 r64_frac
= extract64(r64_val
, 0, 52);
6943 /* result = sign : result_exp<10:0> : fraction<51:0> */
6944 return make_float64(f64_sbit
|
6945 ((r64_exp
& 0x7ff) << 52) |
6949 /* The algorithm that must be used to calculate the estimate
6950 * is specified by the ARM ARM.
6952 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
6954 /* These calculations mustn't set any fp exception flags,
6955 * so we use a local copy of the fp_status.
6957 float_status dummy_status
= *real_fp_status
;
6958 float_status
*s
= &dummy_status
;
6962 if (float64_lt(a
, float64_half
, s
)) {
6963 /* range 0.25 <= a < 0.5 */
6965 /* a in units of 1/512 rounded down */
6966 /* q0 = (int)(a * 512.0); */
6967 q
= float64_mul(float64_512
, a
, s
);
6968 q_int
= float64_to_int64_round_to_zero(q
, s
);
6970 /* reciprocal root r */
6971 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
6972 q
= int64_to_float64(q_int
, s
);
6973 q
= float64_add(q
, float64_half
, s
);
6974 q
= float64_div(q
, float64_512
, s
);
6975 q
= float64_sqrt(q
, s
);
6976 q
= float64_div(float64_one
, q
, s
);
6978 /* range 0.5 <= a < 1.0 */
6980 /* a in units of 1/256 rounded down */
6981 /* q1 = (int)(a * 256.0); */
6982 q
= float64_mul(float64_256
, a
, s
);
6983 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6985 /* reciprocal root r */
6986 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
6987 q
= int64_to_float64(q_int
, s
);
6988 q
= float64_add(q
, float64_half
, s
);
6989 q
= float64_div(q
, float64_256
, s
);
6990 q
= float64_sqrt(q
, s
);
6991 q
= float64_div(float64_one
, q
, s
);
6993 /* r in units of 1/256 rounded to nearest */
6994 /* s = (int)(256.0 * r + 0.5); */
6996 q
= float64_mul(q
, float64_256
,s
);
6997 q
= float64_add(q
, float64_half
, s
);
6998 q_int
= float64_to_int64_round_to_zero(q
, s
);
7000 /* return (double)s / 256.0;*/
7001 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
7004 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
7006 float_status
*s
= fpstp
;
7007 float32 f32
= float32_squash_input_denormal(input
, s
);
7008 uint32_t val
= float32_val(f32
);
7009 uint32_t f32_sbit
= 0x80000000 & val
;
7010 int32_t f32_exp
= extract32(val
, 23, 8);
7011 uint32_t f32_frac
= extract32(val
, 0, 23);
7017 if (float32_is_any_nan(f32
)) {
7019 if (float32_is_signaling_nan(f32
)) {
7020 float_raise(float_flag_invalid
, s
);
7021 nan
= float32_maybe_silence_nan(f32
);
7023 if (s
->default_nan_mode
) {
7024 nan
= float32_default_nan
;
7027 } else if (float32_is_zero(f32
)) {
7028 float_raise(float_flag_divbyzero
, s
);
7029 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
7030 } else if (float32_is_neg(f32
)) {
7031 float_raise(float_flag_invalid
, s
);
7032 return float32_default_nan
;
7033 } else if (float32_is_infinity(f32
)) {
7034 return float32_zero
;
7037 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7038 * preserving the parity of the exponent. */
7040 f64_frac
= ((uint64_t) f32_frac
) << 29;
7042 while (extract64(f64_frac
, 51, 1) == 0) {
7043 f64_frac
= f64_frac
<< 1;
7044 f32_exp
= f32_exp
-1;
7046 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
7049 if (extract64(f32_exp
, 0, 1) == 0) {
7050 f64
= make_float64(((uint64_t) f32_sbit
) << 32
7054 f64
= make_float64(((uint64_t) f32_sbit
) << 32
7059 result_exp
= (380 - f32_exp
) / 2;
7061 f64
= recip_sqrt_estimate(f64
, s
);
7063 val64
= float64_val(f64
);
7065 val
= ((result_exp
& 0xff) << 23)
7066 | ((val64
>> 29) & 0x7fffff);
7067 return make_float32(val
);
7070 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
7072 float_status
*s
= fpstp
;
7073 float64 f64
= float64_squash_input_denormal(input
, s
);
7074 uint64_t val
= float64_val(f64
);
7075 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
7076 int64_t f64_exp
= extract64(val
, 52, 11);
7077 uint64_t f64_frac
= extract64(val
, 0, 52);
7079 uint64_t result_frac
;
7081 if (float64_is_any_nan(f64
)) {
7083 if (float64_is_signaling_nan(f64
)) {
7084 float_raise(float_flag_invalid
, s
);
7085 nan
= float64_maybe_silence_nan(f64
);
7087 if (s
->default_nan_mode
) {
7088 nan
= float64_default_nan
;
7091 } else if (float64_is_zero(f64
)) {
7092 float_raise(float_flag_divbyzero
, s
);
7093 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
7094 } else if (float64_is_neg(f64
)) {
7095 float_raise(float_flag_invalid
, s
);
7096 return float64_default_nan
;
7097 } else if (float64_is_infinity(f64
)) {
7098 return float64_zero
;
7101 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7102 * preserving the parity of the exponent. */
7105 while (extract64(f64_frac
, 51, 1) == 0) {
7106 f64_frac
= f64_frac
<< 1;
7107 f64_exp
= f64_exp
- 1;
7109 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
7112 if (extract64(f64_exp
, 0, 1) == 0) {
7113 f64
= make_float64(f64_sbit
7117 f64
= make_float64(f64_sbit
7122 result_exp
= (3068 - f64_exp
) / 2;
7124 f64
= recip_sqrt_estimate(f64
, s
);
7126 result_frac
= extract64(float64_val(f64
), 0, 52);
7128 return make_float64(f64_sbit
|
7129 ((result_exp
& 0x7ff) << 52) |
7133 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
7135 float_status
*s
= fpstp
;
7138 if ((a
& 0x80000000) == 0) {
7142 f64
= make_float64((0x3feULL
<< 52)
7143 | ((int64_t)(a
& 0x7fffffff) << 21));
7145 f64
= recip_estimate(f64
, s
);
7147 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
7150 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
7152 float_status
*fpst
= fpstp
;
7155 if ((a
& 0xc0000000) == 0) {
7159 if (a
& 0x80000000) {
7160 f64
= make_float64((0x3feULL
<< 52)
7161 | ((uint64_t)(a
& 0x7fffffff) << 21));
7162 } else { /* bits 31-30 == '01' */
7163 f64
= make_float64((0x3fdULL
<< 52)
7164 | ((uint64_t)(a
& 0x3fffffff) << 22));
7167 f64
= recip_sqrt_estimate(f64
, fpst
);
7169 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
7172 /* VFPv4 fused multiply-accumulate */
7173 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
7175 float_status
*fpst
= fpstp
;
7176 return float32_muladd(a
, b
, c
, 0, fpst
);
7179 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
7181 float_status
*fpst
= fpstp
;
7182 return float64_muladd(a
, b
, c
, 0, fpst
);
7185 /* ARMv8 round to integral */
7186 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
7188 return float32_round_to_int(x
, fp_status
);
7191 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
7193 return float64_round_to_int(x
, fp_status
);
7196 float32
HELPER(rints
)(float32 x
, void *fp_status
)
7198 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
7201 ret
= float32_round_to_int(x
, fp_status
);
7203 /* Suppress any inexact exceptions the conversion produced */
7204 if (!(old_flags
& float_flag_inexact
)) {
7205 new_flags
= get_float_exception_flags(fp_status
);
7206 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
7212 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
7214 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
7217 ret
= float64_round_to_int(x
, fp_status
);
7219 new_flags
= get_float_exception_flags(fp_status
);
7221 /* Suppress any inexact exceptions the conversion produced */
7222 if (!(old_flags
& float_flag_inexact
)) {
7223 new_flags
= get_float_exception_flags(fp_status
);
7224 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
7230 /* Convert ARM rounding mode to softfloat */
7231 int arm_rmode_to_sf(int rmode
)
7234 case FPROUNDING_TIEAWAY
:
7235 rmode
= float_round_ties_away
;
7237 case FPROUNDING_ODD
:
7238 /* FIXME: add support for TIEAWAY and ODD */
7239 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
7241 case FPROUNDING_TIEEVEN
:
7243 rmode
= float_round_nearest_even
;
7245 case FPROUNDING_POSINF
:
7246 rmode
= float_round_up
;
7248 case FPROUNDING_NEGINF
:
7249 rmode
= float_round_down
;
7251 case FPROUNDING_ZERO
:
7252 rmode
= float_round_to_zero
;
7259 * The upper bytes of val (above the number specified by 'bytes') must have
7260 * been zeroed out by the caller.
7262 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
7268 /* zlib crc32 converts the accumulator and output to one's complement. */
7269 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
7272 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
7278 /* Linux crc32c converts the output to one's complement. */
7279 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;