2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
35 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
38 BDRVQcow2State
*s
= bs
->opaque
;
39 int new_l1_size2
, ret
, i
;
40 uint64_t *new_l1_table
;
41 int64_t old_l1_table_offset
, old_l1_size
;
42 int64_t new_l1_table_offset
, new_l1_size
;
45 if (min_size
<= s
->l1_size
)
48 /* Do a sanity check on min_size before trying to calculate new_l1_size
49 * (this prevents overflows during the while loop for the calculation of
51 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
56 new_l1_size
= min_size
;
58 /* Bump size up to reduce the number of times we have to grow */
59 new_l1_size
= s
->l1_size
;
60 if (new_l1_size
== 0) {
63 while (min_size
> new_l1_size
) {
64 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
68 if (new_l1_size
> INT_MAX
/ sizeof(uint64_t)) {
73 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
74 s
->l1_size
, new_l1_size
);
77 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
78 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
,
79 align_offset(new_l1_size2
, 512));
80 if (new_l1_table
== NULL
) {
83 memset(new_l1_table
, 0, align_offset(new_l1_size2
, 512));
85 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
87 /* write new table (align to cluster) */
88 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
89 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
90 if (new_l1_table_offset
< 0) {
91 qemu_vfree(new_l1_table
);
92 return new_l1_table_offset
;
95 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
100 /* the L1 position has not yet been updated, so these clusters must
101 * indeed be completely free */
102 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
108 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
109 for(i
= 0; i
< s
->l1_size
; i
++)
110 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
111 ret
= bdrv_pwrite_sync(bs
->file
->bs
, new_l1_table_offset
,
112 new_l1_table
, new_l1_size2
);
115 for(i
= 0; i
< s
->l1_size
; i
++)
116 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
119 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
120 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
121 stq_be_p(data
+ 4, new_l1_table_offset
);
122 ret
= bdrv_pwrite_sync(bs
->file
->bs
, offsetof(QCowHeader
, l1_size
),
127 qemu_vfree(s
->l1_table
);
128 old_l1_table_offset
= s
->l1_table_offset
;
129 s
->l1_table_offset
= new_l1_table_offset
;
130 s
->l1_table
= new_l1_table
;
131 old_l1_size
= s
->l1_size
;
132 s
->l1_size
= new_l1_size
;
133 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
134 QCOW2_DISCARD_OTHER
);
137 qemu_vfree(new_l1_table
);
138 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
139 QCOW2_DISCARD_OTHER
);
146 * Loads a L2 table into memory. If the table is in the cache, the cache
147 * is used; otherwise the L2 table is loaded from the image file.
149 * Returns a pointer to the L2 table on success, or NULL if the read from
150 * the image file failed.
153 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
156 BDRVQcow2State
*s
= bs
->opaque
;
159 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
165 * Writes one sector of the L1 table to the disk (can't update single entries
166 * and we really don't want bdrv_pread to perform a read-modify-write)
168 #define L1_ENTRIES_PER_SECTOR (512 / 8)
169 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
171 BDRVQcow2State
*s
= bs
->opaque
;
172 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
176 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
177 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
180 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
183 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
184 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
189 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
190 ret
= bdrv_pwrite_sync(bs
->file
->bs
,
191 s
->l1_table_offset
+ 8 * l1_start_index
,
203 * Allocate a new l2 entry in the file. If l1_index points to an already
204 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
205 * table) copy the contents of the old L2 table into the newly allocated one.
206 * Otherwise the new table is initialized with zeros.
210 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
212 BDRVQcow2State
*s
= bs
->opaque
;
213 uint64_t old_l2_offset
;
214 uint64_t *l2_table
= NULL
;
218 old_l2_offset
= s
->l1_table
[l1_index
];
220 trace_qcow2_l2_allocate(bs
, l1_index
);
222 /* allocate a new l2 entry */
224 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
230 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
235 /* allocate a new entry in the l2 cache */
237 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
238 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
245 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
246 /* if there was no old l2 table, clear the new table */
247 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
251 /* if there was an old l2 table, read it from the disk */
252 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
253 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
254 old_l2_offset
& L1E_OFFSET_MASK
,
255 (void**) &old_table
);
260 memcpy(l2_table
, old_table
, s
->cluster_size
);
262 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &old_table
);
265 /* write the l2 table to the file */
266 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
268 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
269 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
270 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
275 /* update the L1 entry */
276 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
277 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
278 ret
= qcow2_write_l1_entry(bs
, l1_index
);
284 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
288 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
289 if (l2_table
!= NULL
) {
290 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
292 s
->l1_table
[l1_index
] = old_l2_offset
;
294 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
295 QCOW2_DISCARD_ALWAYS
);
301 * Checks how many clusters in a given L2 table are contiguous in the image
302 * file. As soon as one of the flags in the bitmask stop_flags changes compared
303 * to the first cluster, the search is stopped and the cluster is not counted
304 * as contiguous. (This allows it, for example, to stop at the first compressed
305 * cluster which may require a different handling)
307 static int count_contiguous_clusters(int nb_clusters
, int cluster_size
,
308 uint64_t *l2_table
, uint64_t stop_flags
)
311 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
312 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
313 uint64_t offset
= first_entry
& mask
;
318 assert(qcow2_get_cluster_type(first_entry
) == QCOW2_CLUSTER_NORMAL
);
320 for (i
= 0; i
< nb_clusters
; i
++) {
321 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
322 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
330 static int count_contiguous_clusters_by_type(int nb_clusters
,
336 for (i
= 0; i
< nb_clusters
; i
++) {
337 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
339 if (type
!= wanted_type
) {
347 /* The crypt function is compatible with the linux cryptoloop
348 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
350 int qcow2_encrypt_sectors(BDRVQcow2State
*s
, int64_t sector_num
,
351 uint8_t *out_buf
, const uint8_t *in_buf
,
352 int nb_sectors
, bool enc
,
362 for(i
= 0; i
< nb_sectors
; i
++) {
363 ivec
.ll
[0] = cpu_to_le64(sector_num
);
365 if (qcrypto_cipher_setiv(s
->cipher
,
366 ivec
.b
, G_N_ELEMENTS(ivec
.b
),
371 ret
= qcrypto_cipher_encrypt(s
->cipher
,
377 ret
= qcrypto_cipher_decrypt(s
->cipher
,
393 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
395 uint64_t cluster_offset
,
396 int n_start
, int n_end
)
398 BDRVQcow2State
*s
= bs
->opaque
;
408 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
409 iov
.iov_base
= qemu_try_blockalign(bs
, iov
.iov_len
);
410 if (iov
.iov_base
== NULL
) {
414 qemu_iovec_init_external(&qiov
, &iov
, 1);
416 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
423 /* Call .bdrv_co_readv() directly instead of using the public block-layer
424 * interface. This avoids double I/O throttling and request tracking,
425 * which can lead to deadlock when block layer copy-on-read is enabled.
427 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
435 if (qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
436 iov
.iov_base
, iov
.iov_base
, n
,
444 ret
= qcow2_pre_write_overlap_check(bs
, 0,
445 cluster_offset
+ n_start
* BDRV_SECTOR_SIZE
, n
* BDRV_SECTOR_SIZE
);
450 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
451 ret
= bdrv_co_writev(bs
->file
->bs
, (cluster_offset
>> 9) + n_start
, n
,
459 qemu_vfree(iov
.iov_base
);
467 * For a given offset of the disk image, find the cluster offset in
468 * qcow2 file. The offset is stored in *cluster_offset.
470 * on entry, *num is the number of contiguous sectors we'd like to
471 * access following offset.
473 * on exit, *num is the number of contiguous sectors we can read.
475 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
478 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
479 int *num
, uint64_t *cluster_offset
)
481 BDRVQcow2State
*s
= bs
->opaque
;
482 unsigned int l2_index
;
483 uint64_t l1_index
, l2_offset
, *l2_table
;
485 unsigned int index_in_cluster
, nb_clusters
;
486 uint64_t nb_available
, nb_needed
;
489 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
490 nb_needed
= *num
+ index_in_cluster
;
492 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
494 /* compute how many bytes there are between the offset and
495 * the end of the l1 entry
498 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
500 /* compute the number of available sectors */
502 nb_available
= (nb_available
>> 9) + index_in_cluster
;
504 if (nb_needed
> nb_available
) {
505 nb_needed
= nb_available
;
507 assert(nb_needed
<= INT_MAX
);
511 /* seek to the l2 offset in the l1 table */
513 l1_index
= offset
>> l1_bits
;
514 if (l1_index
>= s
->l1_size
) {
515 ret
= QCOW2_CLUSTER_UNALLOCATED
;
519 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
521 ret
= QCOW2_CLUSTER_UNALLOCATED
;
525 if (offset_into_cluster(s
, l2_offset
)) {
526 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
527 " unaligned (L1 index: %#" PRIx64
")",
528 l2_offset
, l1_index
);
532 /* load the l2 table in memory */
534 ret
= l2_load(bs
, l2_offset
, &l2_table
);
539 /* find the cluster offset for the given disk offset */
541 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
542 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
544 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
545 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
547 ret
= qcow2_get_cluster_type(*cluster_offset
);
549 case QCOW2_CLUSTER_COMPRESSED
:
550 /* Compressed clusters can only be processed one by one */
552 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
554 case QCOW2_CLUSTER_ZERO
:
555 if (s
->qcow_version
< 3) {
556 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
557 " in pre-v3 image (L2 offset: %#" PRIx64
558 ", L2 index: %#x)", l2_offset
, l2_index
);
562 c
= count_contiguous_clusters_by_type(nb_clusters
, &l2_table
[l2_index
],
566 case QCOW2_CLUSTER_UNALLOCATED
:
567 /* how many empty clusters ? */
568 c
= count_contiguous_clusters_by_type(nb_clusters
, &l2_table
[l2_index
],
569 QCOW2_CLUSTER_UNALLOCATED
);
572 case QCOW2_CLUSTER_NORMAL
:
573 /* how many allocated clusters ? */
574 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
575 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
576 *cluster_offset
&= L2E_OFFSET_MASK
;
577 if (offset_into_cluster(s
, *cluster_offset
)) {
578 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset %#"
579 PRIx64
" unaligned (L2 offset: %#" PRIx64
580 ", L2 index: %#x)", *cluster_offset
,
581 l2_offset
, l2_index
);
590 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
592 nb_available
= (c
* s
->cluster_sectors
);
595 if (nb_available
> nb_needed
)
596 nb_available
= nb_needed
;
598 *num
= nb_available
- index_in_cluster
;
603 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
610 * for a given disk offset, load (and allocate if needed)
613 * the l2 table offset in the qcow2 file and the cluster index
614 * in the l2 table are given to the caller.
616 * Returns 0 on success, -errno in failure case
618 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
619 uint64_t **new_l2_table
,
622 BDRVQcow2State
*s
= bs
->opaque
;
623 unsigned int l2_index
;
624 uint64_t l1_index
, l2_offset
;
625 uint64_t *l2_table
= NULL
;
628 /* seek to the l2 offset in the l1 table */
630 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
631 if (l1_index
>= s
->l1_size
) {
632 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
638 assert(l1_index
< s
->l1_size
);
639 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
640 if (offset_into_cluster(s
, l2_offset
)) {
641 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
642 " unaligned (L1 index: %#" PRIx64
")",
643 l2_offset
, l1_index
);
647 /* seek the l2 table of the given l2 offset */
649 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
650 /* load the l2 table in memory */
651 ret
= l2_load(bs
, l2_offset
, &l2_table
);
656 /* First allocate a new L2 table (and do COW if needed) */
657 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
662 /* Then decrease the refcount of the old table */
664 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
665 QCOW2_DISCARD_OTHER
);
669 /* find the cluster offset for the given disk offset */
671 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
673 *new_l2_table
= l2_table
;
674 *new_l2_index
= l2_index
;
680 * alloc_compressed_cluster_offset
682 * For a given offset of the disk image, return cluster offset in
685 * If the offset is not found, allocate a new compressed cluster.
687 * Return the cluster offset if successful,
688 * Return 0, otherwise.
692 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
696 BDRVQcow2State
*s
= bs
->opaque
;
699 int64_t cluster_offset
;
702 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
707 /* Compression can't overwrite anything. Fail if the cluster was already
709 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
710 if (cluster_offset
& L2E_OFFSET_MASK
) {
711 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
715 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
716 if (cluster_offset
< 0) {
717 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
721 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
722 (cluster_offset
>> 9);
724 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
725 ((uint64_t)nb_csectors
<< s
->csize_shift
);
727 /* update L2 table */
729 /* compressed clusters never have the copied flag */
731 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
732 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
733 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
734 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
736 return cluster_offset
;
739 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
741 BDRVQcow2State
*s
= bs
->opaque
;
744 if (r
->nb_sectors
== 0) {
748 qemu_co_mutex_unlock(&s
->lock
);
749 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
750 r
->offset
/ BDRV_SECTOR_SIZE
,
751 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
752 qemu_co_mutex_lock(&s
->lock
);
759 * Before we update the L2 table to actually point to the new cluster, we
760 * need to be sure that the refcounts have been increased and COW was
763 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
768 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
770 BDRVQcow2State
*s
= bs
->opaque
;
771 int i
, j
= 0, l2_index
, ret
;
772 uint64_t *old_cluster
, *l2_table
;
773 uint64_t cluster_offset
= m
->alloc_offset
;
775 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
776 assert(m
->nb_clusters
> 0);
778 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
779 if (old_cluster
== NULL
) {
784 /* copy content of unmodified sectors */
785 ret
= perform_cow(bs
, m
, &m
->cow_start
);
790 ret
= perform_cow(bs
, m
, &m
->cow_end
);
795 /* Update L2 table. */
796 if (s
->use_lazy_refcounts
) {
797 qcow2_mark_dirty(bs
);
799 if (qcow2_need_accurate_refcounts(s
)) {
800 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
801 s
->refcount_block_cache
);
804 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
808 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
810 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
811 for (i
= 0; i
< m
->nb_clusters
; i
++) {
812 /* if two concurrent writes happen to the same unallocated cluster
813 * each write allocates separate cluster and writes data concurrently.
814 * The first one to complete updates l2 table with pointer to its
815 * cluster the second one has to do RMW (which is done above by
816 * copy_sectors()), update l2 table with its cluster pointer and free
817 * old cluster. This is what this loop does */
818 if(l2_table
[l2_index
+ i
] != 0)
819 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
821 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
822 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
826 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
829 * If this was a COW, we need to decrease the refcount of the old cluster.
831 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
832 * clusters), the next write will reuse them anyway.
835 for (i
= 0; i
< j
; i
++) {
836 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
837 QCOW2_DISCARD_NEVER
);
848 * Returns the number of contiguous clusters that can be used for an allocating
849 * write, but require COW to be performed (this includes yet unallocated space,
850 * which must copy from the backing file)
852 static int count_cow_clusters(BDRVQcow2State
*s
, int nb_clusters
,
853 uint64_t *l2_table
, int l2_index
)
857 for (i
= 0; i
< nb_clusters
; i
++) {
858 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
859 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
861 switch(cluster_type
) {
862 case QCOW2_CLUSTER_NORMAL
:
863 if (l2_entry
& QCOW_OFLAG_COPIED
) {
867 case QCOW2_CLUSTER_UNALLOCATED
:
868 case QCOW2_CLUSTER_COMPRESSED
:
869 case QCOW2_CLUSTER_ZERO
:
877 assert(i
<= nb_clusters
);
882 * Check if there already is an AIO write request in flight which allocates
883 * the same cluster. In this case we need to wait until the previous
884 * request has completed and updated the L2 table accordingly.
887 * 0 if there was no dependency. *cur_bytes indicates the number of
888 * bytes from guest_offset that can be read before the next
889 * dependency must be processed (or the request is complete)
891 * -EAGAIN if we had to wait for another request, previously gathered
892 * information on cluster allocation may be invalid now. The caller
893 * must start over anyway, so consider *cur_bytes undefined.
895 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
896 uint64_t *cur_bytes
, QCowL2Meta
**m
)
898 BDRVQcow2State
*s
= bs
->opaque
;
899 QCowL2Meta
*old_alloc
;
900 uint64_t bytes
= *cur_bytes
;
902 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
904 uint64_t start
= guest_offset
;
905 uint64_t end
= start
+ bytes
;
906 uint64_t old_start
= l2meta_cow_start(old_alloc
);
907 uint64_t old_end
= l2meta_cow_end(old_alloc
);
909 if (end
<= old_start
|| start
>= old_end
) {
910 /* No intersection */
912 if (start
< old_start
) {
913 /* Stop at the start of a running allocation */
914 bytes
= old_start
- start
;
919 /* Stop if already an l2meta exists. After yielding, it wouldn't
920 * be valid any more, so we'd have to clean up the old L2Metas
921 * and deal with requests depending on them before starting to
922 * gather new ones. Not worth the trouble. */
923 if (bytes
== 0 && *m
) {
929 /* Wait for the dependency to complete. We need to recheck
930 * the free/allocated clusters when we continue. */
931 qemu_co_mutex_unlock(&s
->lock
);
932 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
933 qemu_co_mutex_lock(&s
->lock
);
939 /* Make sure that existing clusters and new allocations are only used up to
940 * the next dependency if we shortened the request above */
947 * Checks how many already allocated clusters that don't require a copy on
948 * write there are at the given guest_offset (up to *bytes). If
949 * *host_offset is not zero, only physically contiguous clusters beginning at
950 * this host offset are counted.
952 * Note that guest_offset may not be cluster aligned. In this case, the
953 * returned *host_offset points to exact byte referenced by guest_offset and
954 * therefore isn't cluster aligned as well.
957 * 0: if no allocated clusters are available at the given offset.
958 * *bytes is normally unchanged. It is set to 0 if the cluster
959 * is allocated and doesn't need COW, but doesn't have the right
962 * 1: if allocated clusters that don't require a COW are available at
963 * the requested offset. *bytes may have decreased and describes
964 * the length of the area that can be written to.
966 * -errno: in error cases
968 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
969 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
971 BDRVQcow2State
*s
= bs
->opaque
;
973 uint64_t cluster_offset
;
975 uint64_t nb_clusters
;
976 unsigned int keep_clusters
;
979 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
982 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
983 == offset_into_cluster(s
, *host_offset
));
986 * Calculate the number of clusters to look for. We stop at L2 table
987 * boundaries to keep things simple.
990 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
992 l2_index
= offset_to_l2_index(s
, guest_offset
);
993 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
994 assert(nb_clusters
<= INT_MAX
);
996 /* Find L2 entry for the first involved cluster */
997 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1002 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
1004 /* Check how many clusters are already allocated and don't need COW */
1005 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
1006 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1008 /* If a specific host_offset is required, check it */
1009 bool offset_matches
=
1010 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
1012 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
1013 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1014 "%#llx unaligned (guest offset: %#" PRIx64
1015 ")", cluster_offset
& L2E_OFFSET_MASK
,
1021 if (*host_offset
!= 0 && !offset_matches
) {
1027 /* We keep all QCOW_OFLAG_COPIED clusters */
1029 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1030 &l2_table
[l2_index
],
1031 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1032 assert(keep_clusters
<= nb_clusters
);
1034 *bytes
= MIN(*bytes
,
1035 keep_clusters
* s
->cluster_size
1036 - offset_into_cluster(s
, guest_offset
));
1045 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1047 /* Only return a host offset if we actually made progress. Otherwise we
1048 * would make requirements for handle_alloc() that it can't fulfill */
1050 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1051 + offset_into_cluster(s
, guest_offset
);
1058 * Allocates new clusters for the given guest_offset.
1060 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1061 * contain the number of clusters that have been allocated and are contiguous
1062 * in the image file.
1064 * If *host_offset is non-zero, it specifies the offset in the image file at
1065 * which the new clusters must start. *nb_clusters can be 0 on return in this
1066 * case if the cluster at host_offset is already in use. If *host_offset is
1067 * zero, the clusters can be allocated anywhere in the image file.
1069 * *host_offset is updated to contain the offset into the image file at which
1070 * the first allocated cluster starts.
1072 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1073 * function has been waiting for another request and the allocation must be
1074 * restarted, but the whole request should not be failed.
1076 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1077 uint64_t *host_offset
, uint64_t *nb_clusters
)
1079 BDRVQcow2State
*s
= bs
->opaque
;
1081 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1082 *host_offset
, *nb_clusters
);
1084 /* Allocate new clusters */
1085 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1086 if (*host_offset
== 0) {
1087 int64_t cluster_offset
=
1088 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1089 if (cluster_offset
< 0) {
1090 return cluster_offset
;
1092 *host_offset
= cluster_offset
;
1095 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1105 * Allocates new clusters for an area that either is yet unallocated or needs a
1106 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1107 * the new allocation can match the specified host offset.
1109 * Note that guest_offset may not be cluster aligned. In this case, the
1110 * returned *host_offset points to exact byte referenced by guest_offset and
1111 * therefore isn't cluster aligned as well.
1114 * 0: if no clusters could be allocated. *bytes is set to 0,
1115 * *host_offset is left unchanged.
1117 * 1: if new clusters were allocated. *bytes may be decreased if the
1118 * new allocation doesn't cover all of the requested area.
1119 * *host_offset is updated to contain the host offset of the first
1120 * newly allocated cluster.
1122 * -errno: in error cases
1124 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1125 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1127 BDRVQcow2State
*s
= bs
->opaque
;
1131 uint64_t nb_clusters
;
1134 uint64_t alloc_cluster_offset
;
1136 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1141 * Calculate the number of clusters to look for. We stop at L2 table
1142 * boundaries to keep things simple.
1145 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1147 l2_index
= offset_to_l2_index(s
, guest_offset
);
1148 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1149 assert(nb_clusters
<= INT_MAX
);
1151 /* Find L2 entry for the first involved cluster */
1152 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1157 entry
= be64_to_cpu(l2_table
[l2_index
]);
1159 /* For the moment, overwrite compressed clusters one by one */
1160 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1163 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1166 /* This function is only called when there were no non-COW clusters, so if
1167 * we can't find any unallocated or COW clusters either, something is
1168 * wrong with our code. */
1169 assert(nb_clusters
> 0);
1171 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1173 /* Allocate, if necessary at a given offset in the image file */
1174 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1175 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1181 /* Can't extend contiguous allocation */
1182 if (nb_clusters
== 0) {
1187 /* !*host_offset would overwrite the image header and is reserved for "no
1188 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1189 * following overlap check; do that now to avoid having an invalid value in
1191 if (!alloc_cluster_offset
) {
1192 ret
= qcow2_pre_write_overlap_check(bs
, 0, alloc_cluster_offset
,
1193 nb_clusters
* s
->cluster_size
);
1199 * Save info needed for meta data update.
1201 * requested_sectors: Number of sectors from the start of the first
1202 * newly allocated cluster to the end of the (possibly shortened
1203 * before) write request.
1205 * avail_sectors: Number of sectors from the start of the first
1206 * newly allocated to the end of the last newly allocated cluster.
1208 * nb_sectors: The number of sectors from the start of the first
1209 * newly allocated cluster to the end of the area that the write
1210 * request actually writes to (excluding COW at the end)
1212 int requested_sectors
=
1213 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1214 >> BDRV_SECTOR_BITS
;
1215 int avail_sectors
= nb_clusters
1216 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1217 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1218 >> BDRV_SECTOR_BITS
;
1219 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1220 QCowL2Meta
*old_m
= *m
;
1222 *m
= g_malloc0(sizeof(**m
));
1224 **m
= (QCowL2Meta
) {
1227 .alloc_offset
= alloc_cluster_offset
,
1228 .offset
= start_of_cluster(s
, guest_offset
),
1229 .nb_clusters
= nb_clusters
,
1230 .nb_available
= nb_sectors
,
1234 .nb_sectors
= alloc_n_start
,
1237 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1238 .nb_sectors
= avail_sectors
- nb_sectors
,
1241 qemu_co_queue_init(&(*m
)->dependent_requests
);
1242 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1244 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1245 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1246 - offset_into_cluster(s
, guest_offset
));
1247 assert(*bytes
!= 0);
1252 if (*m
&& (*m
)->nb_clusters
> 0) {
1253 QLIST_REMOVE(*m
, next_in_flight
);
1259 * alloc_cluster_offset
1261 * For a given offset on the virtual disk, find the cluster offset in qcow2
1262 * file. If the offset is not found, allocate a new cluster.
1264 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1265 * other fields in m are meaningless.
1267 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1268 * contiguous clusters that have been allocated. In this case, the other
1269 * fields of m are valid and contain information about the first allocated
1272 * If the request conflicts with another write request in flight, the coroutine
1273 * is queued and will be reentered when the dependency has completed.
1275 * Return 0 on success and -errno in error cases
1277 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1278 int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1280 BDRVQcow2State
*s
= bs
->opaque
;
1281 uint64_t start
, remaining
;
1282 uint64_t cluster_offset
;
1286 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *num
);
1288 assert((offset
& ~BDRV_SECTOR_MASK
) == 0);
1292 remaining
= (uint64_t)*num
<< BDRV_SECTOR_BITS
;
1300 if (!*host_offset
) {
1301 *host_offset
= start_of_cluster(s
, cluster_offset
);
1304 assert(remaining
>= cur_bytes
);
1307 remaining
-= cur_bytes
;
1308 cluster_offset
+= cur_bytes
;
1310 if (remaining
== 0) {
1314 cur_bytes
= remaining
;
1317 * Now start gathering as many contiguous clusters as possible:
1319 * 1. Check for overlaps with in-flight allocations
1321 * a) Overlap not in the first cluster -> shorten this request and
1322 * let the caller handle the rest in its next loop iteration.
1324 * b) Real overlaps of two requests. Yield and restart the search
1325 * for contiguous clusters (the situation could have changed
1326 * while we were sleeping)
1328 * c) TODO: Request starts in the same cluster as the in-flight
1329 * allocation ends. Shorten the COW of the in-fight allocation,
1330 * set cluster_offset to write to the same cluster and set up
1331 * the right synchronisation between the in-flight request and
1334 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1335 if (ret
== -EAGAIN
) {
1336 /* Currently handle_dependencies() doesn't yield if we already had
1337 * an allocation. If it did, we would have to clean up the L2Meta
1338 * structs before starting over. */
1341 } else if (ret
< 0) {
1343 } else if (cur_bytes
== 0) {
1346 /* handle_dependencies() may have decreased cur_bytes (shortened
1347 * the allocations below) so that the next dependency is processed
1348 * correctly during the next loop iteration. */
1352 * 2. Count contiguous COPIED clusters.
1354 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1359 } else if (cur_bytes
== 0) {
1364 * 3. If the request still hasn't completed, allocate new clusters,
1365 * considering any cluster_offset of steps 1c or 2.
1367 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1373 assert(cur_bytes
== 0);
1378 *num
-= remaining
>> BDRV_SECTOR_BITS
;
1380 assert(*host_offset
!= 0);
1385 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1386 const uint8_t *buf
, int buf_size
)
1388 z_stream strm1
, *strm
= &strm1
;
1391 memset(strm
, 0, sizeof(*strm
));
1393 strm
->next_in
= (uint8_t *)buf
;
1394 strm
->avail_in
= buf_size
;
1395 strm
->next_out
= out_buf
;
1396 strm
->avail_out
= out_buf_size
;
1398 ret
= inflateInit2(strm
, -12);
1401 ret
= inflate(strm
, Z_FINISH
);
1402 out_len
= strm
->next_out
- out_buf
;
1403 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1404 out_len
!= out_buf_size
) {
1412 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1414 BDRVQcow2State
*s
= bs
->opaque
;
1415 int ret
, csize
, nb_csectors
, sector_offset
;
1418 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1419 if (s
->cluster_cache_offset
!= coffset
) {
1420 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1421 sector_offset
= coffset
& 511;
1422 csize
= nb_csectors
* 512 - sector_offset
;
1423 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1424 ret
= bdrv_read(bs
->file
->bs
, coffset
>> 9, s
->cluster_data
,
1429 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1430 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1433 s
->cluster_cache_offset
= coffset
;
1439 * This discards as many clusters of nb_clusters as possible at once (i.e.
1440 * all clusters in the same L2 table) and returns the number of discarded
1443 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1444 uint64_t nb_clusters
, enum qcow2_discard_type type
,
1447 BDRVQcow2State
*s
= bs
->opaque
;
1453 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1458 /* Limit nb_clusters to one L2 table */
1459 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1460 assert(nb_clusters
<= INT_MAX
);
1462 for (i
= 0; i
< nb_clusters
; i
++) {
1463 uint64_t old_l2_entry
;
1465 old_l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1468 * If full_discard is false, make sure that a discarded area reads back
1469 * as zeroes for v3 images (we cannot do it for v2 without actually
1470 * writing a zero-filled buffer). We can skip the operation if the
1471 * cluster is already marked as zero, or if it's unallocated and we
1472 * don't have a backing file.
1474 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1475 * holding s->lock, so that doesn't work today.
1477 * If full_discard is true, the sector should not read back as zeroes,
1478 * but rather fall through to the backing file.
1480 switch (qcow2_get_cluster_type(old_l2_entry
)) {
1481 case QCOW2_CLUSTER_UNALLOCATED
:
1482 if (full_discard
|| !bs
->backing
) {
1487 case QCOW2_CLUSTER_ZERO
:
1488 if (!full_discard
) {
1493 case QCOW2_CLUSTER_NORMAL
:
1494 case QCOW2_CLUSTER_COMPRESSED
:
1501 /* First remove L2 entries */
1502 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1503 if (!full_discard
&& s
->qcow_version
>= 3) {
1504 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1506 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1509 /* Then decrease the refcount */
1510 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1513 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1518 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1519 int nb_sectors
, enum qcow2_discard_type type
, bool full_discard
)
1521 BDRVQcow2State
*s
= bs
->opaque
;
1522 uint64_t end_offset
;
1523 uint64_t nb_clusters
;
1526 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1528 /* Round start up and end down */
1529 offset
= align_offset(offset
, s
->cluster_size
);
1530 end_offset
= start_of_cluster(s
, end_offset
);
1532 if (offset
> end_offset
) {
1536 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1538 s
->cache_discards
= true;
1540 /* Each L2 table is handled by its own loop iteration */
1541 while (nb_clusters
> 0) {
1542 ret
= discard_single_l2(bs
, offset
, nb_clusters
, type
, full_discard
);
1548 offset
+= (ret
* s
->cluster_size
);
1553 s
->cache_discards
= false;
1554 qcow2_process_discards(bs
, ret
);
1560 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1561 * all clusters in the same L2 table) and returns the number of zeroed
1564 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1565 uint64_t nb_clusters
)
1567 BDRVQcow2State
*s
= bs
->opaque
;
1573 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1578 /* Limit nb_clusters to one L2 table */
1579 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1580 assert(nb_clusters
<= INT_MAX
);
1582 for (i
= 0; i
< nb_clusters
; i
++) {
1583 uint64_t old_offset
;
1585 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1587 /* Update L2 entries */
1588 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1589 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1590 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1591 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1593 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1597 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1602 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1604 BDRVQcow2State
*s
= bs
->opaque
;
1605 uint64_t nb_clusters
;
1608 /* The zero flag is only supported by version 3 and newer */
1609 if (s
->qcow_version
< 3) {
1613 /* Each L2 table is handled by its own loop iteration */
1614 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1616 s
->cache_discards
= true;
1618 while (nb_clusters
> 0) {
1619 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1625 offset
+= (ret
* s
->cluster_size
);
1630 s
->cache_discards
= false;
1631 qcow2_process_discards(bs
, ret
);
1637 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1638 * non-backed non-pre-allocated zero clusters).
1640 * l1_entries and *visited_l1_entries are used to keep track of progress for
1641 * status_cb(). l1_entries contains the total number of L1 entries and
1642 * *visited_l1_entries counts all visited L1 entries.
1644 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1645 int l1_size
, int64_t *visited_l1_entries
,
1647 BlockDriverAmendStatusCB
*status_cb
,
1650 BDRVQcow2State
*s
= bs
->opaque
;
1651 bool is_active_l1
= (l1_table
== s
->l1_table
);
1652 uint64_t *l2_table
= NULL
;
1656 if (!is_active_l1
) {
1657 /* inactive L2 tables require a buffer to be stored in when loading
1659 l2_table
= qemu_try_blockalign(bs
->file
->bs
, s
->cluster_size
);
1660 if (l2_table
== NULL
) {
1665 for (i
= 0; i
< l1_size
; i
++) {
1666 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1667 bool l2_dirty
= false;
1668 uint64_t l2_refcount
;
1672 (*visited_l1_entries
)++;
1674 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1679 if (offset_into_cluster(s
, l2_offset
)) {
1680 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1681 PRIx64
" unaligned (L1 index: %#x)",
1688 /* get active L2 tables from cache */
1689 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1690 (void **)&l2_table
);
1692 /* load inactive L2 tables from disk */
1693 ret
= bdrv_read(bs
->file
->bs
, l2_offset
/ BDRV_SECTOR_SIZE
,
1694 (void *)l2_table
, s
->cluster_sectors
);
1700 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1706 for (j
= 0; j
< s
->l2_size
; j
++) {
1707 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1708 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1709 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1710 bool preallocated
= offset
!= 0;
1712 if (cluster_type
!= QCOW2_CLUSTER_ZERO
) {
1716 if (!preallocated
) {
1718 /* not backed; therefore we can simply deallocate the
1725 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1731 if (l2_refcount
> 1) {
1732 /* For shared L2 tables, set the refcount accordingly (it is
1733 * already 1 and needs to be l2_refcount) */
1734 ret
= qcow2_update_cluster_refcount(bs
,
1735 offset
>> s
->cluster_bits
,
1736 refcount_diff(1, l2_refcount
), false,
1737 QCOW2_DISCARD_OTHER
);
1739 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1740 QCOW2_DISCARD_OTHER
);
1746 if (offset_into_cluster(s
, offset
)) {
1747 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1748 "%#" PRIx64
" unaligned (L2 offset: %#"
1749 PRIx64
", L2 index: %#x)", offset
,
1751 if (!preallocated
) {
1752 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1753 QCOW2_DISCARD_ALWAYS
);
1759 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1761 if (!preallocated
) {
1762 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1763 QCOW2_DISCARD_ALWAYS
);
1768 ret
= bdrv_write_zeroes(bs
->file
->bs
, offset
/ BDRV_SECTOR_SIZE
,
1769 s
->cluster_sectors
, 0);
1771 if (!preallocated
) {
1772 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1773 QCOW2_DISCARD_ALWAYS
);
1778 if (l2_refcount
== 1) {
1779 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1781 l2_table
[j
] = cpu_to_be64(offset
);
1788 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1789 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1791 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1794 ret
= qcow2_pre_write_overlap_check(bs
,
1795 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1801 ret
= bdrv_write(bs
->file
->bs
, l2_offset
/ BDRV_SECTOR_SIZE
,
1802 (void *)l2_table
, s
->cluster_sectors
);
1809 (*visited_l1_entries
)++;
1811 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1819 if (!is_active_l1
) {
1820 qemu_vfree(l2_table
);
1822 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1829 * For backed images, expands all zero clusters on the image. For non-backed
1830 * images, deallocates all non-pre-allocated zero clusters (and claims the
1831 * allocation for pre-allocated ones). This is important for downgrading to a
1832 * qcow2 version which doesn't yet support metadata zero clusters.
1834 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
1835 BlockDriverAmendStatusCB
*status_cb
,
1838 BDRVQcow2State
*s
= bs
->opaque
;
1839 uint64_t *l1_table
= NULL
;
1840 int64_t l1_entries
= 0, visited_l1_entries
= 0;
1845 l1_entries
= s
->l1_size
;
1846 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1847 l1_entries
+= s
->snapshots
[i
].l1_size
;
1851 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
1852 &visited_l1_entries
, l1_entries
,
1853 status_cb
, cb_opaque
);
1858 /* Inactive L1 tables may point to active L2 tables - therefore it is
1859 * necessary to flush the L2 table cache before trying to access the L2
1860 * tables pointed to by inactive L1 entries (else we might try to expand
1861 * zero clusters that have already been expanded); furthermore, it is also
1862 * necessary to empty the L2 table cache, since it may contain tables which
1863 * are now going to be modified directly on disk, bypassing the cache.
1864 * qcow2_cache_empty() does both for us. */
1865 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
1870 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1871 int l1_sectors
= (s
->snapshots
[i
].l1_size
* sizeof(uint64_t) +
1872 BDRV_SECTOR_SIZE
- 1) / BDRV_SECTOR_SIZE
;
1874 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
1876 ret
= bdrv_read(bs
->file
->bs
,
1877 s
->snapshots
[i
].l1_table_offset
/ BDRV_SECTOR_SIZE
,
1878 (void *)l1_table
, l1_sectors
);
1883 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
1884 be64_to_cpus(&l1_table
[j
]);
1887 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
1888 &visited_l1_entries
, l1_entries
,
1889 status_cb
, cb_opaque
);