target/arm: [tcg,a64] Port to disas_log
[qemu/ar7.git] / target / arm / translate-a64.c
blob1973a3646264de4e6768e062677cee1fa4c85209
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "translate.h"
27 #include "internals.h"
28 #include "qemu/host-utils.h"
30 #include "exec/semihost.h"
31 #include "exec/gen-icount.h"
33 #include "exec/helper-proto.h"
34 #include "exec/helper-gen.h"
35 #include "exec/log.h"
37 #include "trace-tcg.h"
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
46 static const char *regnames[] = {
47 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
48 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
49 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
50 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 enum a64_shift_type {
54 A64_SHIFT_TYPE_LSL = 0,
55 A64_SHIFT_TYPE_LSR = 1,
56 A64_SHIFT_TYPE_ASR = 2,
57 A64_SHIFT_TYPE_ROR = 3
60 /* Table based decoder typedefs - used when the relevant bits for decode
61 * are too awkwardly scattered across the instruction (eg SIMD).
63 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
65 typedef struct AArch64DecodeTable {
66 uint32_t pattern;
67 uint32_t mask;
68 AArch64DecodeFn *disas_fn;
69 } AArch64DecodeTable;
71 /* Function prototype for gen_ functions for calling Neon helpers */
72 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
73 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
74 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
76 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
77 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
78 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
79 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
80 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
81 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
82 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
83 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
84 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
86 /* initialize TCG globals. */
87 void a64_translate_init(void)
89 int i;
91 cpu_pc = tcg_global_mem_new_i64(cpu_env,
92 offsetof(CPUARMState, pc),
93 "pc");
94 for (i = 0; i < 32; i++) {
95 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, xregs[i]),
97 regnames[i]);
100 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, exclusive_high), "exclusive_high");
104 static inline int get_a64_user_mem_index(DisasContext *s)
106 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
107 * if EL1, access as if EL0; otherwise access at current EL
109 ARMMMUIdx useridx;
111 switch (s->mmu_idx) {
112 case ARMMMUIdx_S12NSE1:
113 useridx = ARMMMUIdx_S12NSE0;
114 break;
115 case ARMMMUIdx_S1SE1:
116 useridx = ARMMMUIdx_S1SE0;
117 break;
118 case ARMMMUIdx_S2NS:
119 g_assert_not_reached();
120 default:
121 useridx = s->mmu_idx;
122 break;
124 return arm_to_core_mmu_idx(useridx);
127 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
128 fprintf_function cpu_fprintf, int flags)
130 ARMCPU *cpu = ARM_CPU(cs);
131 CPUARMState *env = &cpu->env;
132 uint32_t psr = pstate_read(env);
133 int i;
134 int el = arm_current_el(env);
135 const char *ns_status;
137 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
138 env->pc, env->xregs[31]);
139 for (i = 0; i < 31; i++) {
140 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
141 if ((i % 4) == 3) {
142 cpu_fprintf(f, "\n");
143 } else {
144 cpu_fprintf(f, " ");
148 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
149 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
150 } else {
151 ns_status = "";
154 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
155 psr,
156 psr & PSTATE_N ? 'N' : '-',
157 psr & PSTATE_Z ? 'Z' : '-',
158 psr & PSTATE_C ? 'C' : '-',
159 psr & PSTATE_V ? 'V' : '-',
160 ns_status,
162 psr & PSTATE_SP ? 'h' : 't');
164 if (flags & CPU_DUMP_FPU) {
165 int numvfpregs = 32;
166 for (i = 0; i < numvfpregs; i += 2) {
167 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
168 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
169 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
170 i, vhi, vlo);
171 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
172 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
173 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
174 i + 1, vhi, vlo);
176 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
177 vfp_get_fpcr(env), vfp_get_fpsr(env));
181 void gen_a64_set_pc_im(uint64_t val)
183 tcg_gen_movi_i64(cpu_pc, val);
186 /* Load the PC from a generic TCG variable.
188 * If address tagging is enabled via the TCR TBI bits, then loading
189 * an address into the PC will clear out any tag in the it:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addressses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * We can avoid doing this for relative-branches, because the
198 * PC + offset can never overflow into the tag bits (assuming
199 * that virtual addresses are less than 56 bits wide, as they
200 * are currently), but we must handle it for branch-to-register.
202 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
205 if (s->current_el <= 1) {
206 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
207 * examine bit 55 of address, can just generate code.
208 * If mixed, then test via generated code
210 if (s->tbi0 && s->tbi1) {
211 TCGv_i64 tmp_reg = tcg_temp_new_i64();
212 /* Both bits set, sign extension from bit 55 into [63:56] will
213 * cover both cases
215 tcg_gen_shli_i64(tmp_reg, src, 8);
216 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
217 tcg_temp_free_i64(tmp_reg);
218 } else if (!s->tbi0 && !s->tbi1) {
219 /* Neither bit set, just load it as-is */
220 tcg_gen_mov_i64(cpu_pc, src);
221 } else {
222 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
223 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
224 TCGv_i64 tcg_zero = tcg_const_i64(0);
226 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
228 if (s->tbi0) {
229 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
230 tcg_gen_andi_i64(tcg_tmpval, src,
231 0x00FFFFFFFFFFFFFFull);
232 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
233 tcg_tmpval, src);
234 } else {
235 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
236 tcg_gen_ori_i64(tcg_tmpval, src,
237 0xFF00000000000000ull);
238 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
241 tcg_temp_free_i64(tcg_zero);
242 tcg_temp_free_i64(tcg_bit55);
243 tcg_temp_free_i64(tcg_tmpval);
245 } else { /* EL > 1 */
246 if (s->tbi0) {
247 /* Force tag byte to all zero */
248 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
249 } else {
250 /* Load unmodified address */
251 tcg_gen_mov_i64(cpu_pc, src);
256 typedef struct DisasCompare64 {
257 TCGCond cond;
258 TCGv_i64 value;
259 } DisasCompare64;
261 static void a64_test_cc(DisasCompare64 *c64, int cc)
263 DisasCompare c32;
265 arm_test_cc(&c32, cc);
267 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
268 * properly. The NE/EQ comparisons are also fine with this choice. */
269 c64->cond = c32.cond;
270 c64->value = tcg_temp_new_i64();
271 tcg_gen_ext_i32_i64(c64->value, c32.value);
273 arm_free_cc(&c32);
276 static void a64_free_cc(DisasCompare64 *c64)
278 tcg_temp_free_i64(c64->value);
281 static void gen_exception_internal(int excp)
283 TCGv_i32 tcg_excp = tcg_const_i32(excp);
285 assert(excp_is_internal(excp));
286 gen_helper_exception_internal(cpu_env, tcg_excp);
287 tcg_temp_free_i32(tcg_excp);
290 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
292 TCGv_i32 tcg_excp = tcg_const_i32(excp);
293 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
294 TCGv_i32 tcg_el = tcg_const_i32(target_el);
296 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
297 tcg_syn, tcg_el);
298 tcg_temp_free_i32(tcg_el);
299 tcg_temp_free_i32(tcg_syn);
300 tcg_temp_free_i32(tcg_excp);
303 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
305 gen_a64_set_pc_im(s->pc - offset);
306 gen_exception_internal(excp);
307 s->base.is_jmp = DISAS_NORETURN;
310 static void gen_exception_insn(DisasContext *s, int offset, int excp,
311 uint32_t syndrome, uint32_t target_el)
313 gen_a64_set_pc_im(s->pc - offset);
314 gen_exception(excp, syndrome, target_el);
315 s->base.is_jmp = DISAS_NORETURN;
318 static void gen_ss_advance(DisasContext *s)
320 /* If the singlestep state is Active-not-pending, advance to
321 * Active-pending.
323 if (s->ss_active) {
324 s->pstate_ss = 0;
325 gen_helper_clear_pstate_ss(cpu_env);
329 static void gen_step_complete_exception(DisasContext *s)
331 /* We just completed step of an insn. Move from Active-not-pending
332 * to Active-pending, and then also take the swstep exception.
333 * This corresponds to making the (IMPDEF) choice to prioritize
334 * swstep exceptions over asynchronous exceptions taken to an exception
335 * level where debug is disabled. This choice has the advantage that
336 * we do not need to maintain internal state corresponding to the
337 * ISV/EX syndrome bits between completion of the step and generation
338 * of the exception, and our syndrome information is always correct.
340 gen_ss_advance(s);
341 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
342 default_exception_el(s));
343 s->base.is_jmp = DISAS_NORETURN;
346 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
348 /* No direct tb linking with singlestep (either QEMU's or the ARM
349 * debug architecture kind) or deterministic io
351 if (s->base.singlestep_enabled || s->ss_active || (s->base.tb->cflags & CF_LAST_IO)) {
352 return false;
355 #ifndef CONFIG_USER_ONLY
356 /* Only link tbs from inside the same guest page */
357 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
358 return false;
360 #endif
362 return true;
365 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
367 TranslationBlock *tb;
369 tb = s->base.tb;
370 if (use_goto_tb(s, n, dest)) {
371 tcg_gen_goto_tb(n);
372 gen_a64_set_pc_im(dest);
373 tcg_gen_exit_tb((intptr_t)tb + n);
374 s->base.is_jmp = DISAS_NORETURN;
375 } else {
376 gen_a64_set_pc_im(dest);
377 if (s->ss_active) {
378 gen_step_complete_exception(s);
379 } else if (s->base.singlestep_enabled) {
380 gen_exception_internal(EXCP_DEBUG);
381 } else {
382 tcg_gen_lookup_and_goto_ptr(cpu_pc);
383 s->base.is_jmp = DISAS_NORETURN;
388 static void unallocated_encoding(DisasContext *s)
390 /* Unallocated and reserved encodings are uncategorized */
391 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
392 default_exception_el(s));
395 #define unsupported_encoding(s, insn) \
396 do { \
397 qemu_log_mask(LOG_UNIMP, \
398 "%s:%d: unsupported instruction encoding 0x%08x " \
399 "at pc=%016" PRIx64 "\n", \
400 __FILE__, __LINE__, insn, s->pc - 4); \
401 unallocated_encoding(s); \
402 } while (0);
404 static void init_tmp_a64_array(DisasContext *s)
406 #ifdef CONFIG_DEBUG_TCG
407 int i;
408 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
409 TCGV_UNUSED_I64(s->tmp_a64[i]);
411 #endif
412 s->tmp_a64_count = 0;
415 static void free_tmp_a64(DisasContext *s)
417 int i;
418 for (i = 0; i < s->tmp_a64_count; i++) {
419 tcg_temp_free_i64(s->tmp_a64[i]);
421 init_tmp_a64_array(s);
424 static TCGv_i64 new_tmp_a64(DisasContext *s)
426 assert(s->tmp_a64_count < TMP_A64_MAX);
427 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
430 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
432 TCGv_i64 t = new_tmp_a64(s);
433 tcg_gen_movi_i64(t, 0);
434 return t;
438 * Register access functions
440 * These functions are used for directly accessing a register in where
441 * changes to the final register value are likely to be made. If you
442 * need to use a register for temporary calculation (e.g. index type
443 * operations) use the read_* form.
445 * B1.2.1 Register mappings
447 * In instruction register encoding 31 can refer to ZR (zero register) or
448 * the SP (stack pointer) depending on context. In QEMU's case we map SP
449 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
450 * This is the point of the _sp forms.
452 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
454 if (reg == 31) {
455 return new_tmp_a64_zero(s);
456 } else {
457 return cpu_X[reg];
461 /* register access for when 31 == SP */
462 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
464 return cpu_X[reg];
467 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
468 * representing the register contents. This TCGv is an auto-freed
469 * temporary so it need not be explicitly freed, and may be modified.
471 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
473 TCGv_i64 v = new_tmp_a64(s);
474 if (reg != 31) {
475 if (sf) {
476 tcg_gen_mov_i64(v, cpu_X[reg]);
477 } else {
478 tcg_gen_ext32u_i64(v, cpu_X[reg]);
480 } else {
481 tcg_gen_movi_i64(v, 0);
483 return v;
486 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
488 TCGv_i64 v = new_tmp_a64(s);
489 if (sf) {
490 tcg_gen_mov_i64(v, cpu_X[reg]);
491 } else {
492 tcg_gen_ext32u_i64(v, cpu_X[reg]);
494 return v;
497 /* We should have at some point before trying to access an FP register
498 * done the necessary access check, so assert that
499 * (a) we did the check and
500 * (b) we didn't then just plough ahead anyway if it failed.
501 * Print the instruction pattern in the abort message so we can figure
502 * out what we need to fix if a user encounters this problem in the wild.
504 static inline void assert_fp_access_checked(DisasContext *s)
506 #ifdef CONFIG_DEBUG_TCG
507 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
508 fprintf(stderr, "target-arm: FP access check missing for "
509 "instruction 0x%08x\n", s->insn);
510 abort();
512 #endif
515 /* Return the offset into CPUARMState of an element of specified
516 * size, 'element' places in from the least significant end of
517 * the FP/vector register Qn.
519 static inline int vec_reg_offset(DisasContext *s, int regno,
520 int element, TCGMemOp size)
522 int offs = 0;
523 #ifdef HOST_WORDS_BIGENDIAN
524 /* This is complicated slightly because vfp.regs[2n] is
525 * still the low half and vfp.regs[2n+1] the high half
526 * of the 128 bit vector, even on big endian systems.
527 * Calculate the offset assuming a fully bigendian 128 bits,
528 * then XOR to account for the order of the two 64 bit halves.
530 offs += (16 - ((element + 1) * (1 << size)));
531 offs ^= 8;
532 #else
533 offs += element * (1 << size);
534 #endif
535 offs += offsetof(CPUARMState, vfp.regs[regno * 2]);
536 assert_fp_access_checked(s);
537 return offs;
540 /* Return the offset into CPUARMState of a slice (from
541 * the least significant end) of FP register Qn (ie
542 * Dn, Sn, Hn or Bn).
543 * (Note that this is not the same mapping as for A32; see cpu.h)
545 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
547 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
548 #ifdef HOST_WORDS_BIGENDIAN
549 offs += (8 - (1 << size));
550 #endif
551 assert_fp_access_checked(s);
552 return offs;
555 /* Offset of the high half of the 128 bit vector Qn */
556 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
558 assert_fp_access_checked(s);
559 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
562 /* Convenience accessors for reading and writing single and double
563 * FP registers. Writing clears the upper parts of the associated
564 * 128 bit vector register, as required by the architecture.
565 * Note that unlike the GP register accessors, the values returned
566 * by the read functions must be manually freed.
568 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
570 TCGv_i64 v = tcg_temp_new_i64();
572 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
573 return v;
576 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
578 TCGv_i32 v = tcg_temp_new_i32();
580 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
581 return v;
584 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
586 TCGv_i64 tcg_zero = tcg_const_i64(0);
588 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
589 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
590 tcg_temp_free_i64(tcg_zero);
593 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
595 TCGv_i64 tmp = tcg_temp_new_i64();
597 tcg_gen_extu_i32_i64(tmp, v);
598 write_fp_dreg(s, reg, tmp);
599 tcg_temp_free_i64(tmp);
602 static TCGv_ptr get_fpstatus_ptr(void)
604 TCGv_ptr statusptr = tcg_temp_new_ptr();
605 int offset;
607 /* In A64 all instructions (both FP and Neon) use the FPCR;
608 * there is no equivalent of the A32 Neon "standard FPSCR value"
609 * and all operations use vfp.fp_status.
611 offset = offsetof(CPUARMState, vfp.fp_status);
612 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
613 return statusptr;
616 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
617 * than the 32 bit equivalent.
619 static inline void gen_set_NZ64(TCGv_i64 result)
621 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
622 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
625 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
626 static inline void gen_logic_CC(int sf, TCGv_i64 result)
628 if (sf) {
629 gen_set_NZ64(result);
630 } else {
631 tcg_gen_extrl_i64_i32(cpu_ZF, result);
632 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
634 tcg_gen_movi_i32(cpu_CF, 0);
635 tcg_gen_movi_i32(cpu_VF, 0);
638 /* dest = T0 + T1; compute C, N, V and Z flags */
639 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
641 if (sf) {
642 TCGv_i64 result, flag, tmp;
643 result = tcg_temp_new_i64();
644 flag = tcg_temp_new_i64();
645 tmp = tcg_temp_new_i64();
647 tcg_gen_movi_i64(tmp, 0);
648 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
650 tcg_gen_extrl_i64_i32(cpu_CF, flag);
652 gen_set_NZ64(result);
654 tcg_gen_xor_i64(flag, result, t0);
655 tcg_gen_xor_i64(tmp, t0, t1);
656 tcg_gen_andc_i64(flag, flag, tmp);
657 tcg_temp_free_i64(tmp);
658 tcg_gen_extrh_i64_i32(cpu_VF, flag);
660 tcg_gen_mov_i64(dest, result);
661 tcg_temp_free_i64(result);
662 tcg_temp_free_i64(flag);
663 } else {
664 /* 32 bit arithmetic */
665 TCGv_i32 t0_32 = tcg_temp_new_i32();
666 TCGv_i32 t1_32 = tcg_temp_new_i32();
667 TCGv_i32 tmp = tcg_temp_new_i32();
669 tcg_gen_movi_i32(tmp, 0);
670 tcg_gen_extrl_i64_i32(t0_32, t0);
671 tcg_gen_extrl_i64_i32(t1_32, t1);
672 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
673 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
674 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
675 tcg_gen_xor_i32(tmp, t0_32, t1_32);
676 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
677 tcg_gen_extu_i32_i64(dest, cpu_NF);
679 tcg_temp_free_i32(tmp);
680 tcg_temp_free_i32(t0_32);
681 tcg_temp_free_i32(t1_32);
685 /* dest = T0 - T1; compute C, N, V and Z flags */
686 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
688 if (sf) {
689 /* 64 bit arithmetic */
690 TCGv_i64 result, flag, tmp;
692 result = tcg_temp_new_i64();
693 flag = tcg_temp_new_i64();
694 tcg_gen_sub_i64(result, t0, t1);
696 gen_set_NZ64(result);
698 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
699 tcg_gen_extrl_i64_i32(cpu_CF, flag);
701 tcg_gen_xor_i64(flag, result, t0);
702 tmp = tcg_temp_new_i64();
703 tcg_gen_xor_i64(tmp, t0, t1);
704 tcg_gen_and_i64(flag, flag, tmp);
705 tcg_temp_free_i64(tmp);
706 tcg_gen_extrh_i64_i32(cpu_VF, flag);
707 tcg_gen_mov_i64(dest, result);
708 tcg_temp_free_i64(flag);
709 tcg_temp_free_i64(result);
710 } else {
711 /* 32 bit arithmetic */
712 TCGv_i32 t0_32 = tcg_temp_new_i32();
713 TCGv_i32 t1_32 = tcg_temp_new_i32();
714 TCGv_i32 tmp;
716 tcg_gen_extrl_i64_i32(t0_32, t0);
717 tcg_gen_extrl_i64_i32(t1_32, t1);
718 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
719 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
720 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
721 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
722 tmp = tcg_temp_new_i32();
723 tcg_gen_xor_i32(tmp, t0_32, t1_32);
724 tcg_temp_free_i32(t0_32);
725 tcg_temp_free_i32(t1_32);
726 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
727 tcg_temp_free_i32(tmp);
728 tcg_gen_extu_i32_i64(dest, cpu_NF);
732 /* dest = T0 + T1 + CF; do not compute flags. */
733 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
735 TCGv_i64 flag = tcg_temp_new_i64();
736 tcg_gen_extu_i32_i64(flag, cpu_CF);
737 tcg_gen_add_i64(dest, t0, t1);
738 tcg_gen_add_i64(dest, dest, flag);
739 tcg_temp_free_i64(flag);
741 if (!sf) {
742 tcg_gen_ext32u_i64(dest, dest);
746 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
747 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
749 if (sf) {
750 TCGv_i64 result, cf_64, vf_64, tmp;
751 result = tcg_temp_new_i64();
752 cf_64 = tcg_temp_new_i64();
753 vf_64 = tcg_temp_new_i64();
754 tmp = tcg_const_i64(0);
756 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
757 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
758 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
759 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
760 gen_set_NZ64(result);
762 tcg_gen_xor_i64(vf_64, result, t0);
763 tcg_gen_xor_i64(tmp, t0, t1);
764 tcg_gen_andc_i64(vf_64, vf_64, tmp);
765 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
767 tcg_gen_mov_i64(dest, result);
769 tcg_temp_free_i64(tmp);
770 tcg_temp_free_i64(vf_64);
771 tcg_temp_free_i64(cf_64);
772 tcg_temp_free_i64(result);
773 } else {
774 TCGv_i32 t0_32, t1_32, tmp;
775 t0_32 = tcg_temp_new_i32();
776 t1_32 = tcg_temp_new_i32();
777 tmp = tcg_const_i32(0);
779 tcg_gen_extrl_i64_i32(t0_32, t0);
780 tcg_gen_extrl_i64_i32(t1_32, t1);
781 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
782 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
784 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
785 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
786 tcg_gen_xor_i32(tmp, t0_32, t1_32);
787 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
788 tcg_gen_extu_i32_i64(dest, cpu_NF);
790 tcg_temp_free_i32(tmp);
791 tcg_temp_free_i32(t1_32);
792 tcg_temp_free_i32(t0_32);
797 * Load/Store generators
801 * Store from GPR register to memory.
803 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
804 TCGv_i64 tcg_addr, int size, int memidx,
805 bool iss_valid,
806 unsigned int iss_srt,
807 bool iss_sf, bool iss_ar)
809 g_assert(size <= 3);
810 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
812 if (iss_valid) {
813 uint32_t syn;
815 syn = syn_data_abort_with_iss(0,
816 size,
817 false,
818 iss_srt,
819 iss_sf,
820 iss_ar,
821 0, 0, 0, 0, 0, false);
822 disas_set_insn_syndrome(s, syn);
826 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
827 TCGv_i64 tcg_addr, int size,
828 bool iss_valid,
829 unsigned int iss_srt,
830 bool iss_sf, bool iss_ar)
832 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
833 iss_valid, iss_srt, iss_sf, iss_ar);
837 * Load from memory to GPR register
839 static void do_gpr_ld_memidx(DisasContext *s,
840 TCGv_i64 dest, TCGv_i64 tcg_addr,
841 int size, bool is_signed,
842 bool extend, int memidx,
843 bool iss_valid, unsigned int iss_srt,
844 bool iss_sf, bool iss_ar)
846 TCGMemOp memop = s->be_data + size;
848 g_assert(size <= 3);
850 if (is_signed) {
851 memop += MO_SIGN;
854 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
856 if (extend && is_signed) {
857 g_assert(size < 3);
858 tcg_gen_ext32u_i64(dest, dest);
861 if (iss_valid) {
862 uint32_t syn;
864 syn = syn_data_abort_with_iss(0,
865 size,
866 is_signed,
867 iss_srt,
868 iss_sf,
869 iss_ar,
870 0, 0, 0, 0, 0, false);
871 disas_set_insn_syndrome(s, syn);
875 static void do_gpr_ld(DisasContext *s,
876 TCGv_i64 dest, TCGv_i64 tcg_addr,
877 int size, bool is_signed, bool extend,
878 bool iss_valid, unsigned int iss_srt,
879 bool iss_sf, bool iss_ar)
881 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
882 get_mem_index(s),
883 iss_valid, iss_srt, iss_sf, iss_ar);
887 * Store from FP register to memory
889 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
891 /* This writes the bottom N bits of a 128 bit wide vector to memory */
892 TCGv_i64 tmp = tcg_temp_new_i64();
893 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
894 if (size < 4) {
895 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
896 s->be_data + size);
897 } else {
898 bool be = s->be_data == MO_BE;
899 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
901 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
902 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
903 s->be_data | MO_Q);
904 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
905 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
906 s->be_data | MO_Q);
907 tcg_temp_free_i64(tcg_hiaddr);
910 tcg_temp_free_i64(tmp);
914 * Load from memory to FP register
916 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
918 /* This always zero-extends and writes to a full 128 bit wide vector */
919 TCGv_i64 tmplo = tcg_temp_new_i64();
920 TCGv_i64 tmphi;
922 if (size < 4) {
923 TCGMemOp memop = s->be_data + size;
924 tmphi = tcg_const_i64(0);
925 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
926 } else {
927 bool be = s->be_data == MO_BE;
928 TCGv_i64 tcg_hiaddr;
930 tmphi = tcg_temp_new_i64();
931 tcg_hiaddr = tcg_temp_new_i64();
933 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
934 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
935 s->be_data | MO_Q);
936 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
937 s->be_data | MO_Q);
938 tcg_temp_free_i64(tcg_hiaddr);
941 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
942 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
944 tcg_temp_free_i64(tmplo);
945 tcg_temp_free_i64(tmphi);
949 * Vector load/store helpers.
951 * The principal difference between this and a FP load is that we don't
952 * zero extend as we are filling a partial chunk of the vector register.
953 * These functions don't support 128 bit loads/stores, which would be
954 * normal load/store operations.
956 * The _i32 versions are useful when operating on 32 bit quantities
957 * (eg for floating point single or using Neon helper functions).
960 /* Get value of an element within a vector register */
961 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
962 int element, TCGMemOp memop)
964 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
965 switch (memop) {
966 case MO_8:
967 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
968 break;
969 case MO_16:
970 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
971 break;
972 case MO_32:
973 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
974 break;
975 case MO_8|MO_SIGN:
976 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
977 break;
978 case MO_16|MO_SIGN:
979 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
980 break;
981 case MO_32|MO_SIGN:
982 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
983 break;
984 case MO_64:
985 case MO_64|MO_SIGN:
986 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
987 break;
988 default:
989 g_assert_not_reached();
993 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
994 int element, TCGMemOp memop)
996 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
997 switch (memop) {
998 case MO_8:
999 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1000 break;
1001 case MO_16:
1002 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1003 break;
1004 case MO_8|MO_SIGN:
1005 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1006 break;
1007 case MO_16|MO_SIGN:
1008 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1009 break;
1010 case MO_32:
1011 case MO_32|MO_SIGN:
1012 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1013 break;
1014 default:
1015 g_assert_not_reached();
1019 /* Set value of an element within a vector register */
1020 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1021 int element, TCGMemOp memop)
1023 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1024 switch (memop) {
1025 case MO_8:
1026 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1027 break;
1028 case MO_16:
1029 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1030 break;
1031 case MO_32:
1032 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1033 break;
1034 case MO_64:
1035 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1036 break;
1037 default:
1038 g_assert_not_reached();
1042 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1043 int destidx, int element, TCGMemOp memop)
1045 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1046 switch (memop) {
1047 case MO_8:
1048 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1049 break;
1050 case MO_16:
1051 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1052 break;
1053 case MO_32:
1054 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1055 break;
1056 default:
1057 g_assert_not_reached();
1061 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
1062 * vector ops all need to do this).
1064 static void clear_vec_high(DisasContext *s, int rd)
1066 TCGv_i64 tcg_zero = tcg_const_i64(0);
1068 write_vec_element(s, tcg_zero, rd, 1, MO_64);
1069 tcg_temp_free_i64(tcg_zero);
1072 /* Store from vector register to memory */
1073 static void do_vec_st(DisasContext *s, int srcidx, int element,
1074 TCGv_i64 tcg_addr, int size)
1076 TCGMemOp memop = s->be_data + size;
1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1079 read_vec_element(s, tcg_tmp, srcidx, element, size);
1080 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1082 tcg_temp_free_i64(tcg_tmp);
1085 /* Load from memory to vector register */
1086 static void do_vec_ld(DisasContext *s, int destidx, int element,
1087 TCGv_i64 tcg_addr, int size)
1089 TCGMemOp memop = s->be_data + size;
1090 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1092 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1093 write_vec_element(s, tcg_tmp, destidx, element, size);
1095 tcg_temp_free_i64(tcg_tmp);
1098 /* Check that FP/Neon access is enabled. If it is, return
1099 * true. If not, emit code to generate an appropriate exception,
1100 * and return false; the caller should not emit any code for
1101 * the instruction. Note that this check must happen after all
1102 * unallocated-encoding checks (otherwise the syndrome information
1103 * for the resulting exception will be incorrect).
1105 static inline bool fp_access_check(DisasContext *s)
1107 assert(!s->fp_access_checked);
1108 s->fp_access_checked = true;
1110 if (!s->fp_excp_el) {
1111 return true;
1114 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1115 s->fp_excp_el);
1116 return false;
1120 * This utility function is for doing register extension with an
1121 * optional shift. You will likely want to pass a temporary for the
1122 * destination register. See DecodeRegExtend() in the ARM ARM.
1124 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1125 int option, unsigned int shift)
1127 int extsize = extract32(option, 0, 2);
1128 bool is_signed = extract32(option, 2, 1);
1130 if (is_signed) {
1131 switch (extsize) {
1132 case 0:
1133 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1134 break;
1135 case 1:
1136 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1137 break;
1138 case 2:
1139 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1140 break;
1141 case 3:
1142 tcg_gen_mov_i64(tcg_out, tcg_in);
1143 break;
1145 } else {
1146 switch (extsize) {
1147 case 0:
1148 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1149 break;
1150 case 1:
1151 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1152 break;
1153 case 2:
1154 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1155 break;
1156 case 3:
1157 tcg_gen_mov_i64(tcg_out, tcg_in);
1158 break;
1162 if (shift) {
1163 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1167 static inline void gen_check_sp_alignment(DisasContext *s)
1169 /* The AArch64 architecture mandates that (if enabled via PSTATE
1170 * or SCTLR bits) there is a check that SP is 16-aligned on every
1171 * SP-relative load or store (with an exception generated if it is not).
1172 * In line with general QEMU practice regarding misaligned accesses,
1173 * we omit these checks for the sake of guest program performance.
1174 * This function is provided as a hook so we can more easily add these
1175 * checks in future (possibly as a "favour catching guest program bugs
1176 * over speed" user selectable option).
1181 * This provides a simple table based table lookup decoder. It is
1182 * intended to be used when the relevant bits for decode are too
1183 * awkwardly placed and switch/if based logic would be confusing and
1184 * deeply nested. Since it's a linear search through the table, tables
1185 * should be kept small.
1187 * It returns the first handler where insn & mask == pattern, or
1188 * NULL if there is no match.
1189 * The table is terminated by an empty mask (i.e. 0)
1191 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1192 uint32_t insn)
1194 const AArch64DecodeTable *tptr = table;
1196 while (tptr->mask) {
1197 if ((insn & tptr->mask) == tptr->pattern) {
1198 return tptr->disas_fn;
1200 tptr++;
1202 return NULL;
1206 * the instruction disassembly implemented here matches
1207 * the instruction encoding classifications in chapter 3 (C3)
1208 * of the ARM Architecture Reference Manual (DDI0487A_a)
1211 /* C3.2.7 Unconditional branch (immediate)
1212 * 31 30 26 25 0
1213 * +----+-----------+-------------------------------------+
1214 * | op | 0 0 1 0 1 | imm26 |
1215 * +----+-----------+-------------------------------------+
1217 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1219 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1221 if (insn & (1U << 31)) {
1222 /* C5.6.26 BL Branch with link */
1223 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1226 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1227 gen_goto_tb(s, 0, addr);
1230 /* C3.2.1 Compare & branch (immediate)
1231 * 31 30 25 24 23 5 4 0
1232 * +----+-------------+----+---------------------+--------+
1233 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1234 * +----+-------------+----+---------------------+--------+
1236 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1238 unsigned int sf, op, rt;
1239 uint64_t addr;
1240 TCGLabel *label_match;
1241 TCGv_i64 tcg_cmp;
1243 sf = extract32(insn, 31, 1);
1244 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1245 rt = extract32(insn, 0, 5);
1246 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1248 tcg_cmp = read_cpu_reg(s, rt, sf);
1249 label_match = gen_new_label();
1251 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1252 tcg_cmp, 0, label_match);
1254 gen_goto_tb(s, 0, s->pc);
1255 gen_set_label(label_match);
1256 gen_goto_tb(s, 1, addr);
1259 /* C3.2.5 Test & branch (immediate)
1260 * 31 30 25 24 23 19 18 5 4 0
1261 * +----+-------------+----+-------+-------------+------+
1262 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1263 * +----+-------------+----+-------+-------------+------+
1265 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1267 unsigned int bit_pos, op, rt;
1268 uint64_t addr;
1269 TCGLabel *label_match;
1270 TCGv_i64 tcg_cmp;
1272 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1273 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1274 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1275 rt = extract32(insn, 0, 5);
1277 tcg_cmp = tcg_temp_new_i64();
1278 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1279 label_match = gen_new_label();
1280 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1281 tcg_cmp, 0, label_match);
1282 tcg_temp_free_i64(tcg_cmp);
1283 gen_goto_tb(s, 0, s->pc);
1284 gen_set_label(label_match);
1285 gen_goto_tb(s, 1, addr);
1288 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1289 * 31 25 24 23 5 4 3 0
1290 * +---------------+----+---------------------+----+------+
1291 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1292 * +---------------+----+---------------------+----+------+
1294 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1296 unsigned int cond;
1297 uint64_t addr;
1299 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1300 unallocated_encoding(s);
1301 return;
1303 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1304 cond = extract32(insn, 0, 4);
1306 if (cond < 0x0e) {
1307 /* genuinely conditional branches */
1308 TCGLabel *label_match = gen_new_label();
1309 arm_gen_test_cc(cond, label_match);
1310 gen_goto_tb(s, 0, s->pc);
1311 gen_set_label(label_match);
1312 gen_goto_tb(s, 1, addr);
1313 } else {
1314 /* 0xe and 0xf are both "always" conditions */
1315 gen_goto_tb(s, 0, addr);
1319 /* C5.6.68 HINT */
1320 static void handle_hint(DisasContext *s, uint32_t insn,
1321 unsigned int op1, unsigned int op2, unsigned int crm)
1323 unsigned int selector = crm << 3 | op2;
1325 if (op1 != 3) {
1326 unallocated_encoding(s);
1327 return;
1330 switch (selector) {
1331 case 0: /* NOP */
1332 return;
1333 case 3: /* WFI */
1334 s->base.is_jmp = DISAS_WFI;
1335 return;
1336 case 1: /* YIELD */
1337 if (!parallel_cpus) {
1338 s->base.is_jmp = DISAS_YIELD;
1340 return;
1341 case 2: /* WFE */
1342 if (!parallel_cpus) {
1343 s->base.is_jmp = DISAS_WFE;
1345 return;
1346 case 4: /* SEV */
1347 case 5: /* SEVL */
1348 /* we treat all as NOP at least for now */
1349 return;
1350 default:
1351 /* default specified as NOP equivalent */
1352 return;
1356 static void gen_clrex(DisasContext *s, uint32_t insn)
1358 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1361 /* CLREX, DSB, DMB, ISB */
1362 static void handle_sync(DisasContext *s, uint32_t insn,
1363 unsigned int op1, unsigned int op2, unsigned int crm)
1365 TCGBar bar;
1367 if (op1 != 3) {
1368 unallocated_encoding(s);
1369 return;
1372 switch (op2) {
1373 case 2: /* CLREX */
1374 gen_clrex(s, insn);
1375 return;
1376 case 4: /* DSB */
1377 case 5: /* DMB */
1378 switch (crm & 3) {
1379 case 1: /* MBReqTypes_Reads */
1380 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1381 break;
1382 case 2: /* MBReqTypes_Writes */
1383 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1384 break;
1385 default: /* MBReqTypes_All */
1386 bar = TCG_BAR_SC | TCG_MO_ALL;
1387 break;
1389 tcg_gen_mb(bar);
1390 return;
1391 case 6: /* ISB */
1392 /* We need to break the TB after this insn to execute
1393 * a self-modified code correctly and also to take
1394 * any pending interrupts immediately.
1396 gen_goto_tb(s, 0, s->pc);
1397 return;
1398 default:
1399 unallocated_encoding(s);
1400 return;
1404 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1405 static void handle_msr_i(DisasContext *s, uint32_t insn,
1406 unsigned int op1, unsigned int op2, unsigned int crm)
1408 int op = op1 << 3 | op2;
1409 switch (op) {
1410 case 0x05: /* SPSel */
1411 if (s->current_el == 0) {
1412 unallocated_encoding(s);
1413 return;
1415 /* fall through */
1416 case 0x1e: /* DAIFSet */
1417 case 0x1f: /* DAIFClear */
1419 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1420 TCGv_i32 tcg_op = tcg_const_i32(op);
1421 gen_a64_set_pc_im(s->pc - 4);
1422 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1423 tcg_temp_free_i32(tcg_imm);
1424 tcg_temp_free_i32(tcg_op);
1425 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1426 gen_a64_set_pc_im(s->pc);
1427 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1428 break;
1430 default:
1431 unallocated_encoding(s);
1432 return;
1436 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1438 TCGv_i32 tmp = tcg_temp_new_i32();
1439 TCGv_i32 nzcv = tcg_temp_new_i32();
1441 /* build bit 31, N */
1442 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1443 /* build bit 30, Z */
1444 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1445 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1446 /* build bit 29, C */
1447 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1448 /* build bit 28, V */
1449 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1450 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1451 /* generate result */
1452 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1454 tcg_temp_free_i32(nzcv);
1455 tcg_temp_free_i32(tmp);
1458 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1461 TCGv_i32 nzcv = tcg_temp_new_i32();
1463 /* take NZCV from R[t] */
1464 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1466 /* bit 31, N */
1467 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1468 /* bit 30, Z */
1469 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1470 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1471 /* bit 29, C */
1472 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1473 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1474 /* bit 28, V */
1475 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1476 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1477 tcg_temp_free_i32(nzcv);
1480 /* C5.6.129 MRS - move from system register
1481 * C5.6.131 MSR (register) - move to system register
1482 * C5.6.204 SYS
1483 * C5.6.205 SYSL
1484 * These are all essentially the same insn in 'read' and 'write'
1485 * versions, with varying op0 fields.
1487 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1488 unsigned int op0, unsigned int op1, unsigned int op2,
1489 unsigned int crn, unsigned int crm, unsigned int rt)
1491 const ARMCPRegInfo *ri;
1492 TCGv_i64 tcg_rt;
1494 ri = get_arm_cp_reginfo(s->cp_regs,
1495 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1496 crn, crm, op0, op1, op2));
1498 if (!ri) {
1499 /* Unknown register; this might be a guest error or a QEMU
1500 * unimplemented feature.
1502 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1503 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1504 isread ? "read" : "write", op0, op1, crn, crm, op2);
1505 unallocated_encoding(s);
1506 return;
1509 /* Check access permissions */
1510 if (!cp_access_ok(s->current_el, ri, isread)) {
1511 unallocated_encoding(s);
1512 return;
1515 if (ri->accessfn) {
1516 /* Emit code to perform further access permissions checks at
1517 * runtime; this may result in an exception.
1519 TCGv_ptr tmpptr;
1520 TCGv_i32 tcg_syn, tcg_isread;
1521 uint32_t syndrome;
1523 gen_a64_set_pc_im(s->pc - 4);
1524 tmpptr = tcg_const_ptr(ri);
1525 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1526 tcg_syn = tcg_const_i32(syndrome);
1527 tcg_isread = tcg_const_i32(isread);
1528 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1529 tcg_temp_free_ptr(tmpptr);
1530 tcg_temp_free_i32(tcg_syn);
1531 tcg_temp_free_i32(tcg_isread);
1534 /* Handle special cases first */
1535 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1536 case ARM_CP_NOP:
1537 return;
1538 case ARM_CP_NZCV:
1539 tcg_rt = cpu_reg(s, rt);
1540 if (isread) {
1541 gen_get_nzcv(tcg_rt);
1542 } else {
1543 gen_set_nzcv(tcg_rt);
1545 return;
1546 case ARM_CP_CURRENTEL:
1547 /* Reads as current EL value from pstate, which is
1548 * guaranteed to be constant by the tb flags.
1550 tcg_rt = cpu_reg(s, rt);
1551 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1552 return;
1553 case ARM_CP_DC_ZVA:
1554 /* Writes clear the aligned block of memory which rt points into. */
1555 tcg_rt = cpu_reg(s, rt);
1556 gen_helper_dc_zva(cpu_env, tcg_rt);
1557 return;
1558 default:
1559 break;
1562 if ((s->base.tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1563 gen_io_start();
1566 tcg_rt = cpu_reg(s, rt);
1568 if (isread) {
1569 if (ri->type & ARM_CP_CONST) {
1570 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1571 } else if (ri->readfn) {
1572 TCGv_ptr tmpptr;
1573 tmpptr = tcg_const_ptr(ri);
1574 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1575 tcg_temp_free_ptr(tmpptr);
1576 } else {
1577 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1579 } else {
1580 if (ri->type & ARM_CP_CONST) {
1581 /* If not forbidden by access permissions, treat as WI */
1582 return;
1583 } else if (ri->writefn) {
1584 TCGv_ptr tmpptr;
1585 tmpptr = tcg_const_ptr(ri);
1586 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1587 tcg_temp_free_ptr(tmpptr);
1588 } else {
1589 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1593 if ((s->base.tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1594 /* I/O operations must end the TB here (whether read or write) */
1595 gen_io_end();
1596 s->base.is_jmp = DISAS_UPDATE;
1597 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1598 /* We default to ending the TB on a coprocessor register write,
1599 * but allow this to be suppressed by the register definition
1600 * (usually only necessary to work around guest bugs).
1602 s->base.is_jmp = DISAS_UPDATE;
1606 /* C3.2.4 System
1607 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1608 * +---------------------+---+-----+-----+-------+-------+-----+------+
1609 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1610 * +---------------------+---+-----+-----+-------+-------+-----+------+
1612 static void disas_system(DisasContext *s, uint32_t insn)
1614 unsigned int l, op0, op1, crn, crm, op2, rt;
1615 l = extract32(insn, 21, 1);
1616 op0 = extract32(insn, 19, 2);
1617 op1 = extract32(insn, 16, 3);
1618 crn = extract32(insn, 12, 4);
1619 crm = extract32(insn, 8, 4);
1620 op2 = extract32(insn, 5, 3);
1621 rt = extract32(insn, 0, 5);
1623 if (op0 == 0) {
1624 if (l || rt != 31) {
1625 unallocated_encoding(s);
1626 return;
1628 switch (crn) {
1629 case 2: /* C5.6.68 HINT */
1630 handle_hint(s, insn, op1, op2, crm);
1631 break;
1632 case 3: /* CLREX, DSB, DMB, ISB */
1633 handle_sync(s, insn, op1, op2, crm);
1634 break;
1635 case 4: /* C5.6.130 MSR (immediate) */
1636 handle_msr_i(s, insn, op1, op2, crm);
1637 break;
1638 default:
1639 unallocated_encoding(s);
1640 break;
1642 return;
1644 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1647 /* C3.2.3 Exception generation
1649 * 31 24 23 21 20 5 4 2 1 0
1650 * +-----------------+-----+------------------------+-----+----+
1651 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1652 * +-----------------------+------------------------+----------+
1654 static void disas_exc(DisasContext *s, uint32_t insn)
1656 int opc = extract32(insn, 21, 3);
1657 int op2_ll = extract32(insn, 0, 5);
1658 int imm16 = extract32(insn, 5, 16);
1659 TCGv_i32 tmp;
1661 switch (opc) {
1662 case 0:
1663 /* For SVC, HVC and SMC we advance the single-step state
1664 * machine before taking the exception. This is architecturally
1665 * mandated, to ensure that single-stepping a system call
1666 * instruction works properly.
1668 switch (op2_ll) {
1669 case 1: /* SVC */
1670 gen_ss_advance(s);
1671 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1672 default_exception_el(s));
1673 break;
1674 case 2: /* HVC */
1675 if (s->current_el == 0) {
1676 unallocated_encoding(s);
1677 break;
1679 /* The pre HVC helper handles cases when HVC gets trapped
1680 * as an undefined insn by runtime configuration.
1682 gen_a64_set_pc_im(s->pc - 4);
1683 gen_helper_pre_hvc(cpu_env);
1684 gen_ss_advance(s);
1685 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1686 break;
1687 case 3: /* SMC */
1688 if (s->current_el == 0) {
1689 unallocated_encoding(s);
1690 break;
1692 gen_a64_set_pc_im(s->pc - 4);
1693 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1694 gen_helper_pre_smc(cpu_env, tmp);
1695 tcg_temp_free_i32(tmp);
1696 gen_ss_advance(s);
1697 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1698 break;
1699 default:
1700 unallocated_encoding(s);
1701 break;
1703 break;
1704 case 1:
1705 if (op2_ll != 0) {
1706 unallocated_encoding(s);
1707 break;
1709 /* BRK */
1710 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1711 default_exception_el(s));
1712 break;
1713 case 2:
1714 if (op2_ll != 0) {
1715 unallocated_encoding(s);
1716 break;
1718 /* HLT. This has two purposes.
1719 * Architecturally, it is an external halting debug instruction.
1720 * Since QEMU doesn't implement external debug, we treat this as
1721 * it is required for halting debug disabled: it will UNDEF.
1722 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1724 if (semihosting_enabled() && imm16 == 0xf000) {
1725 #ifndef CONFIG_USER_ONLY
1726 /* In system mode, don't allow userspace access to semihosting,
1727 * to provide some semblance of security (and for consistency
1728 * with our 32-bit semihosting).
1730 if (s->current_el == 0) {
1731 unsupported_encoding(s, insn);
1732 break;
1734 #endif
1735 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1736 } else {
1737 unsupported_encoding(s, insn);
1739 break;
1740 case 5:
1741 if (op2_ll < 1 || op2_ll > 3) {
1742 unallocated_encoding(s);
1743 break;
1745 /* DCPS1, DCPS2, DCPS3 */
1746 unsupported_encoding(s, insn);
1747 break;
1748 default:
1749 unallocated_encoding(s);
1750 break;
1754 /* C3.2.7 Unconditional branch (register)
1755 * 31 25 24 21 20 16 15 10 9 5 4 0
1756 * +---------------+-------+-------+-------+------+-------+
1757 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1758 * +---------------+-------+-------+-------+------+-------+
1760 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1762 unsigned int opc, op2, op3, rn, op4;
1764 opc = extract32(insn, 21, 4);
1765 op2 = extract32(insn, 16, 5);
1766 op3 = extract32(insn, 10, 6);
1767 rn = extract32(insn, 5, 5);
1768 op4 = extract32(insn, 0, 5);
1770 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1771 unallocated_encoding(s);
1772 return;
1775 switch (opc) {
1776 case 0: /* BR */
1777 case 1: /* BLR */
1778 case 2: /* RET */
1779 gen_a64_set_pc(s, cpu_reg(s, rn));
1780 /* BLR also needs to load return address */
1781 if (opc == 1) {
1782 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1784 break;
1785 case 4: /* ERET */
1786 if (s->current_el == 0) {
1787 unallocated_encoding(s);
1788 return;
1790 gen_helper_exception_return(cpu_env);
1791 /* Must exit loop to check un-masked IRQs */
1792 s->base.is_jmp = DISAS_EXIT;
1793 return;
1794 case 5: /* DRPS */
1795 if (rn != 0x1f) {
1796 unallocated_encoding(s);
1797 } else {
1798 unsupported_encoding(s, insn);
1800 return;
1801 default:
1802 unallocated_encoding(s);
1803 return;
1806 s->base.is_jmp = DISAS_JUMP;
1809 /* C3.2 Branches, exception generating and system instructions */
1810 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1812 switch (extract32(insn, 25, 7)) {
1813 case 0x0a: case 0x0b:
1814 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1815 disas_uncond_b_imm(s, insn);
1816 break;
1817 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1818 disas_comp_b_imm(s, insn);
1819 break;
1820 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1821 disas_test_b_imm(s, insn);
1822 break;
1823 case 0x2a: /* Conditional branch (immediate) */
1824 disas_cond_b_imm(s, insn);
1825 break;
1826 case 0x6a: /* Exception generation / System */
1827 if (insn & (1 << 24)) {
1828 disas_system(s, insn);
1829 } else {
1830 disas_exc(s, insn);
1832 break;
1833 case 0x6b: /* Unconditional branch (register) */
1834 disas_uncond_b_reg(s, insn);
1835 break;
1836 default:
1837 unallocated_encoding(s);
1838 break;
1843 * Load/Store exclusive instructions are implemented by remembering
1844 * the value/address loaded, and seeing if these are the same
1845 * when the store is performed. This is not actually the architecturally
1846 * mandated semantics, but it works for typical guest code sequences
1847 * and avoids having to monitor regular stores.
1849 * The store exclusive uses the atomic cmpxchg primitives to avoid
1850 * races in multi-threaded linux-user and when MTTCG softmmu is
1851 * enabled.
1853 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1854 TCGv_i64 addr, int size, bool is_pair)
1856 int idx = get_mem_index(s);
1857 TCGMemOp memop = s->be_data;
1859 g_assert(size <= 3);
1860 if (is_pair) {
1861 g_assert(size >= 2);
1862 if (size == 2) {
1863 /* The pair must be single-copy atomic for the doubleword. */
1864 memop |= MO_64 | MO_ALIGN;
1865 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1866 if (s->be_data == MO_LE) {
1867 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
1868 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
1869 } else {
1870 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
1871 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
1873 } else {
1874 /* The pair must be single-copy atomic for *each* doubleword, not
1875 the entire quadword, however it must be quadword aligned. */
1876 memop |= MO_64;
1877 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
1878 memop | MO_ALIGN_16);
1880 TCGv_i64 addr2 = tcg_temp_new_i64();
1881 tcg_gen_addi_i64(addr2, addr, 8);
1882 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
1883 tcg_temp_free_i64(addr2);
1885 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
1886 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
1888 } else {
1889 memop |= size | MO_ALIGN;
1890 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1891 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
1893 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1896 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1897 TCGv_i64 inaddr, int size, int is_pair)
1899 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1900 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1901 * [addr] = {Rt};
1902 * if (is_pair) {
1903 * [addr + datasize] = {Rt2};
1905 * {Rd} = 0;
1906 * } else {
1907 * {Rd} = 1;
1909 * env->exclusive_addr = -1;
1911 TCGLabel *fail_label = gen_new_label();
1912 TCGLabel *done_label = gen_new_label();
1913 TCGv_i64 addr = tcg_temp_local_new_i64();
1914 TCGv_i64 tmp;
1916 /* Copy input into a local temp so it is not trashed when the
1917 * basic block ends at the branch insn.
1919 tcg_gen_mov_i64(addr, inaddr);
1920 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1922 tmp = tcg_temp_new_i64();
1923 if (is_pair) {
1924 if (size == 2) {
1925 if (s->be_data == MO_LE) {
1926 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
1927 } else {
1928 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
1930 tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, tmp,
1931 get_mem_index(s),
1932 MO_64 | MO_ALIGN | s->be_data);
1933 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1934 } else if (s->be_data == MO_LE) {
1935 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, addr, cpu_reg(s, rt),
1936 cpu_reg(s, rt2));
1937 } else {
1938 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, addr, cpu_reg(s, rt),
1939 cpu_reg(s, rt2));
1941 } else {
1942 TCGv_i64 val = cpu_reg(s, rt);
1943 tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, val,
1944 get_mem_index(s),
1945 size | MO_ALIGN | s->be_data);
1946 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1949 tcg_temp_free_i64(addr);
1951 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
1952 tcg_temp_free_i64(tmp);
1953 tcg_gen_br(done_label);
1955 gen_set_label(fail_label);
1956 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1957 gen_set_label(done_label);
1958 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1961 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
1962 * from the ARMv8 specs for LDR (Shared decode for all encodings).
1964 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
1966 int opc0 = extract32(opc, 0, 1);
1967 int regsize;
1969 if (is_signed) {
1970 regsize = opc0 ? 32 : 64;
1971 } else {
1972 regsize = size == 3 ? 64 : 32;
1974 return regsize == 64;
1977 /* C3.3.6 Load/store exclusive
1979 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1980 * +-----+-------------+----+---+----+------+----+-------+------+------+
1981 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1982 * +-----+-------------+----+---+----+------+----+-------+------+------+
1984 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1985 * L: 0 -> store, 1 -> load
1986 * o2: 0 -> exclusive, 1 -> not
1987 * o1: 0 -> single register, 1 -> register pair
1988 * o0: 1 -> load-acquire/store-release, 0 -> not
1990 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1992 int rt = extract32(insn, 0, 5);
1993 int rn = extract32(insn, 5, 5);
1994 int rt2 = extract32(insn, 10, 5);
1995 int is_lasr = extract32(insn, 15, 1);
1996 int rs = extract32(insn, 16, 5);
1997 int is_pair = extract32(insn, 21, 1);
1998 int is_store = !extract32(insn, 22, 1);
1999 int is_excl = !extract32(insn, 23, 1);
2000 int size = extract32(insn, 30, 2);
2001 TCGv_i64 tcg_addr;
2003 if ((!is_excl && !is_pair && !is_lasr) ||
2004 (!is_excl && is_pair) ||
2005 (is_pair && size < 2)) {
2006 unallocated_encoding(s);
2007 return;
2010 if (rn == 31) {
2011 gen_check_sp_alignment(s);
2013 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2015 /* Note that since TCG is single threaded load-acquire/store-release
2016 * semantics require no extra if (is_lasr) { ... } handling.
2019 if (is_excl) {
2020 if (!is_store) {
2021 s->is_ldex = true;
2022 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2023 if (is_lasr) {
2024 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2026 } else {
2027 if (is_lasr) {
2028 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2030 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2032 } else {
2033 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2034 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2036 /* Generate ISS for non-exclusive accesses including LASR. */
2037 if (is_store) {
2038 if (is_lasr) {
2039 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2041 do_gpr_st(s, tcg_rt, tcg_addr, size,
2042 true, rt, iss_sf, is_lasr);
2043 } else {
2044 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2045 true, rt, iss_sf, is_lasr);
2046 if (is_lasr) {
2047 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2054 * C3.3.5 Load register (literal)
2056 * 31 30 29 27 26 25 24 23 5 4 0
2057 * +-----+-------+---+-----+-------------------+-------+
2058 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2059 * +-----+-------+---+-----+-------------------+-------+
2061 * V: 1 -> vector (simd/fp)
2062 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2063 * 10-> 32 bit signed, 11 -> prefetch
2064 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2066 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2068 int rt = extract32(insn, 0, 5);
2069 int64_t imm = sextract32(insn, 5, 19) << 2;
2070 bool is_vector = extract32(insn, 26, 1);
2071 int opc = extract32(insn, 30, 2);
2072 bool is_signed = false;
2073 int size = 2;
2074 TCGv_i64 tcg_rt, tcg_addr;
2076 if (is_vector) {
2077 if (opc == 3) {
2078 unallocated_encoding(s);
2079 return;
2081 size = 2 + opc;
2082 if (!fp_access_check(s)) {
2083 return;
2085 } else {
2086 if (opc == 3) {
2087 /* PRFM (literal) : prefetch */
2088 return;
2090 size = 2 + extract32(opc, 0, 1);
2091 is_signed = extract32(opc, 1, 1);
2094 tcg_rt = cpu_reg(s, rt);
2096 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2097 if (is_vector) {
2098 do_fp_ld(s, rt, tcg_addr, size);
2099 } else {
2100 /* Only unsigned 32bit loads target 32bit registers. */
2101 bool iss_sf = opc != 0;
2103 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2104 true, rt, iss_sf, false);
2106 tcg_temp_free_i64(tcg_addr);
2110 * C5.6.80 LDNP (Load Pair - non-temporal hint)
2111 * C5.6.81 LDP (Load Pair - non vector)
2112 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
2113 * C5.6.176 STNP (Store Pair - non-temporal hint)
2114 * C5.6.177 STP (Store Pair - non vector)
2115 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
2116 * C6.3.165 LDP (Load Pair of SIMD&FP)
2117 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
2118 * C6.3.284 STP (Store Pair of SIMD&FP)
2120 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2121 * +-----+-------+---+---+-------+---+-----------------------------+
2122 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2123 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2125 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2126 * LDPSW 01
2127 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2128 * V: 0 -> GPR, 1 -> Vector
2129 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2130 * 10 -> signed offset, 11 -> pre-index
2131 * L: 0 -> Store 1 -> Load
2133 * Rt, Rt2 = GPR or SIMD registers to be stored
2134 * Rn = general purpose register containing address
2135 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2137 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2139 int rt = extract32(insn, 0, 5);
2140 int rn = extract32(insn, 5, 5);
2141 int rt2 = extract32(insn, 10, 5);
2142 uint64_t offset = sextract64(insn, 15, 7);
2143 int index = extract32(insn, 23, 2);
2144 bool is_vector = extract32(insn, 26, 1);
2145 bool is_load = extract32(insn, 22, 1);
2146 int opc = extract32(insn, 30, 2);
2148 bool is_signed = false;
2149 bool postindex = false;
2150 bool wback = false;
2152 TCGv_i64 tcg_addr; /* calculated address */
2153 int size;
2155 if (opc == 3) {
2156 unallocated_encoding(s);
2157 return;
2160 if (is_vector) {
2161 size = 2 + opc;
2162 } else {
2163 size = 2 + extract32(opc, 1, 1);
2164 is_signed = extract32(opc, 0, 1);
2165 if (!is_load && is_signed) {
2166 unallocated_encoding(s);
2167 return;
2171 switch (index) {
2172 case 1: /* post-index */
2173 postindex = true;
2174 wback = true;
2175 break;
2176 case 0:
2177 /* signed offset with "non-temporal" hint. Since we don't emulate
2178 * caches we don't care about hints to the cache system about
2179 * data access patterns, and handle this identically to plain
2180 * signed offset.
2182 if (is_signed) {
2183 /* There is no non-temporal-hint version of LDPSW */
2184 unallocated_encoding(s);
2185 return;
2187 postindex = false;
2188 break;
2189 case 2: /* signed offset, rn not updated */
2190 postindex = false;
2191 break;
2192 case 3: /* pre-index */
2193 postindex = false;
2194 wback = true;
2195 break;
2198 if (is_vector && !fp_access_check(s)) {
2199 return;
2202 offset <<= size;
2204 if (rn == 31) {
2205 gen_check_sp_alignment(s);
2208 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2210 if (!postindex) {
2211 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2214 if (is_vector) {
2215 if (is_load) {
2216 do_fp_ld(s, rt, tcg_addr, size);
2217 } else {
2218 do_fp_st(s, rt, tcg_addr, size);
2220 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2221 if (is_load) {
2222 do_fp_ld(s, rt2, tcg_addr, size);
2223 } else {
2224 do_fp_st(s, rt2, tcg_addr, size);
2226 } else {
2227 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2228 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2230 if (is_load) {
2231 TCGv_i64 tmp = tcg_temp_new_i64();
2233 /* Do not modify tcg_rt before recognizing any exception
2234 * from the second load.
2236 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2237 false, 0, false, false);
2238 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2239 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2240 false, 0, false, false);
2242 tcg_gen_mov_i64(tcg_rt, tmp);
2243 tcg_temp_free_i64(tmp);
2244 } else {
2245 do_gpr_st(s, tcg_rt, tcg_addr, size,
2246 false, 0, false, false);
2247 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2248 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2249 false, 0, false, false);
2253 if (wback) {
2254 if (postindex) {
2255 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2256 } else {
2257 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2259 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2264 * C3.3.8 Load/store (immediate post-indexed)
2265 * C3.3.9 Load/store (immediate pre-indexed)
2266 * C3.3.12 Load/store (unscaled immediate)
2268 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2269 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2270 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2271 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2273 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2274 10 -> unprivileged
2275 * V = 0 -> non-vector
2276 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2277 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2279 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2280 int opc,
2281 int size,
2282 int rt,
2283 bool is_vector)
2285 int rn = extract32(insn, 5, 5);
2286 int imm9 = sextract32(insn, 12, 9);
2287 int idx = extract32(insn, 10, 2);
2288 bool is_signed = false;
2289 bool is_store = false;
2290 bool is_extended = false;
2291 bool is_unpriv = (idx == 2);
2292 bool iss_valid = !is_vector;
2293 bool post_index;
2294 bool writeback;
2296 TCGv_i64 tcg_addr;
2298 if (is_vector) {
2299 size |= (opc & 2) << 1;
2300 if (size > 4 || is_unpriv) {
2301 unallocated_encoding(s);
2302 return;
2304 is_store = ((opc & 1) == 0);
2305 if (!fp_access_check(s)) {
2306 return;
2308 } else {
2309 if (size == 3 && opc == 2) {
2310 /* PRFM - prefetch */
2311 if (is_unpriv) {
2312 unallocated_encoding(s);
2313 return;
2315 return;
2317 if (opc == 3 && size > 1) {
2318 unallocated_encoding(s);
2319 return;
2321 is_store = (opc == 0);
2322 is_signed = extract32(opc, 1, 1);
2323 is_extended = (size < 3) && extract32(opc, 0, 1);
2326 switch (idx) {
2327 case 0:
2328 case 2:
2329 post_index = false;
2330 writeback = false;
2331 break;
2332 case 1:
2333 post_index = true;
2334 writeback = true;
2335 break;
2336 case 3:
2337 post_index = false;
2338 writeback = true;
2339 break;
2342 if (rn == 31) {
2343 gen_check_sp_alignment(s);
2345 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2347 if (!post_index) {
2348 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2351 if (is_vector) {
2352 if (is_store) {
2353 do_fp_st(s, rt, tcg_addr, size);
2354 } else {
2355 do_fp_ld(s, rt, tcg_addr, size);
2357 } else {
2358 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2359 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2360 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2362 if (is_store) {
2363 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2364 iss_valid, rt, iss_sf, false);
2365 } else {
2366 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2367 is_signed, is_extended, memidx,
2368 iss_valid, rt, iss_sf, false);
2372 if (writeback) {
2373 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2374 if (post_index) {
2375 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2377 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2382 * C3.3.10 Load/store (register offset)
2384 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2385 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2386 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2387 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2389 * For non-vector:
2390 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2391 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2392 * For vector:
2393 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2394 * opc<0>: 0 -> store, 1 -> load
2395 * V: 1 -> vector/simd
2396 * opt: extend encoding (see DecodeRegExtend)
2397 * S: if S=1 then scale (essentially index by sizeof(size))
2398 * Rt: register to transfer into/out of
2399 * Rn: address register or SP for base
2400 * Rm: offset register or ZR for offset
2402 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2403 int opc,
2404 int size,
2405 int rt,
2406 bool is_vector)
2408 int rn = extract32(insn, 5, 5);
2409 int shift = extract32(insn, 12, 1);
2410 int rm = extract32(insn, 16, 5);
2411 int opt = extract32(insn, 13, 3);
2412 bool is_signed = false;
2413 bool is_store = false;
2414 bool is_extended = false;
2416 TCGv_i64 tcg_rm;
2417 TCGv_i64 tcg_addr;
2419 if (extract32(opt, 1, 1) == 0) {
2420 unallocated_encoding(s);
2421 return;
2424 if (is_vector) {
2425 size |= (opc & 2) << 1;
2426 if (size > 4) {
2427 unallocated_encoding(s);
2428 return;
2430 is_store = !extract32(opc, 0, 1);
2431 if (!fp_access_check(s)) {
2432 return;
2434 } else {
2435 if (size == 3 && opc == 2) {
2436 /* PRFM - prefetch */
2437 return;
2439 if (opc == 3 && size > 1) {
2440 unallocated_encoding(s);
2441 return;
2443 is_store = (opc == 0);
2444 is_signed = extract32(opc, 1, 1);
2445 is_extended = (size < 3) && extract32(opc, 0, 1);
2448 if (rn == 31) {
2449 gen_check_sp_alignment(s);
2451 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2453 tcg_rm = read_cpu_reg(s, rm, 1);
2454 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2456 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2458 if (is_vector) {
2459 if (is_store) {
2460 do_fp_st(s, rt, tcg_addr, size);
2461 } else {
2462 do_fp_ld(s, rt, tcg_addr, size);
2464 } else {
2465 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2466 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2467 if (is_store) {
2468 do_gpr_st(s, tcg_rt, tcg_addr, size,
2469 true, rt, iss_sf, false);
2470 } else {
2471 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2472 is_signed, is_extended,
2473 true, rt, iss_sf, false);
2479 * C3.3.13 Load/store (unsigned immediate)
2481 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2482 * +----+-------+---+-----+-----+------------+-------+------+
2483 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2484 * +----+-------+---+-----+-----+------------+-------+------+
2486 * For non-vector:
2487 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2488 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2489 * For vector:
2490 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2491 * opc<0>: 0 -> store, 1 -> load
2492 * Rn: base address register (inc SP)
2493 * Rt: target register
2495 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2496 int opc,
2497 int size,
2498 int rt,
2499 bool is_vector)
2501 int rn = extract32(insn, 5, 5);
2502 unsigned int imm12 = extract32(insn, 10, 12);
2503 unsigned int offset;
2505 TCGv_i64 tcg_addr;
2507 bool is_store;
2508 bool is_signed = false;
2509 bool is_extended = false;
2511 if (is_vector) {
2512 size |= (opc & 2) << 1;
2513 if (size > 4) {
2514 unallocated_encoding(s);
2515 return;
2517 is_store = !extract32(opc, 0, 1);
2518 if (!fp_access_check(s)) {
2519 return;
2521 } else {
2522 if (size == 3 && opc == 2) {
2523 /* PRFM - prefetch */
2524 return;
2526 if (opc == 3 && size > 1) {
2527 unallocated_encoding(s);
2528 return;
2530 is_store = (opc == 0);
2531 is_signed = extract32(opc, 1, 1);
2532 is_extended = (size < 3) && extract32(opc, 0, 1);
2535 if (rn == 31) {
2536 gen_check_sp_alignment(s);
2538 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2539 offset = imm12 << size;
2540 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2542 if (is_vector) {
2543 if (is_store) {
2544 do_fp_st(s, rt, tcg_addr, size);
2545 } else {
2546 do_fp_ld(s, rt, tcg_addr, size);
2548 } else {
2549 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2550 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2551 if (is_store) {
2552 do_gpr_st(s, tcg_rt, tcg_addr, size,
2553 true, rt, iss_sf, false);
2554 } else {
2555 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2556 true, rt, iss_sf, false);
2561 /* Load/store register (all forms) */
2562 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2564 int rt = extract32(insn, 0, 5);
2565 int opc = extract32(insn, 22, 2);
2566 bool is_vector = extract32(insn, 26, 1);
2567 int size = extract32(insn, 30, 2);
2569 switch (extract32(insn, 24, 2)) {
2570 case 0:
2571 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2572 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2573 } else {
2574 /* Load/store register (unscaled immediate)
2575 * Load/store immediate pre/post-indexed
2576 * Load/store register unprivileged
2578 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2580 break;
2581 case 1:
2582 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2583 break;
2584 default:
2585 unallocated_encoding(s);
2586 break;
2590 /* C3.3.1 AdvSIMD load/store multiple structures
2592 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2593 * +---+---+---------------+---+-------------+--------+------+------+------+
2594 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2595 * +---+---+---------------+---+-------------+--------+------+------+------+
2597 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2599 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2600 * +---+---+---------------+---+---+---------+--------+------+------+------+
2601 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2602 * +---+---+---------------+---+---+---------+--------+------+------+------+
2604 * Rt: first (or only) SIMD&FP register to be transferred
2605 * Rn: base address or SP
2606 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2608 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2610 int rt = extract32(insn, 0, 5);
2611 int rn = extract32(insn, 5, 5);
2612 int size = extract32(insn, 10, 2);
2613 int opcode = extract32(insn, 12, 4);
2614 bool is_store = !extract32(insn, 22, 1);
2615 bool is_postidx = extract32(insn, 23, 1);
2616 bool is_q = extract32(insn, 30, 1);
2617 TCGv_i64 tcg_addr, tcg_rn;
2619 int ebytes = 1 << size;
2620 int elements = (is_q ? 128 : 64) / (8 << size);
2621 int rpt; /* num iterations */
2622 int selem; /* structure elements */
2623 int r;
2625 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2626 unallocated_encoding(s);
2627 return;
2630 /* From the shared decode logic */
2631 switch (opcode) {
2632 case 0x0:
2633 rpt = 1;
2634 selem = 4;
2635 break;
2636 case 0x2:
2637 rpt = 4;
2638 selem = 1;
2639 break;
2640 case 0x4:
2641 rpt = 1;
2642 selem = 3;
2643 break;
2644 case 0x6:
2645 rpt = 3;
2646 selem = 1;
2647 break;
2648 case 0x7:
2649 rpt = 1;
2650 selem = 1;
2651 break;
2652 case 0x8:
2653 rpt = 1;
2654 selem = 2;
2655 break;
2656 case 0xa:
2657 rpt = 2;
2658 selem = 1;
2659 break;
2660 default:
2661 unallocated_encoding(s);
2662 return;
2665 if (size == 3 && !is_q && selem != 1) {
2666 /* reserved */
2667 unallocated_encoding(s);
2668 return;
2671 if (!fp_access_check(s)) {
2672 return;
2675 if (rn == 31) {
2676 gen_check_sp_alignment(s);
2679 tcg_rn = cpu_reg_sp(s, rn);
2680 tcg_addr = tcg_temp_new_i64();
2681 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2683 for (r = 0; r < rpt; r++) {
2684 int e;
2685 for (e = 0; e < elements; e++) {
2686 int tt = (rt + r) % 32;
2687 int xs;
2688 for (xs = 0; xs < selem; xs++) {
2689 if (is_store) {
2690 do_vec_st(s, tt, e, tcg_addr, size);
2691 } else {
2692 do_vec_ld(s, tt, e, tcg_addr, size);
2694 /* For non-quad operations, setting a slice of the low
2695 * 64 bits of the register clears the high 64 bits (in
2696 * the ARM ARM pseudocode this is implicit in the fact
2697 * that 'rval' is a 64 bit wide variable). We optimize
2698 * by noticing that we only need to do this the first
2699 * time we touch a register.
2701 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2702 clear_vec_high(s, tt);
2705 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2706 tt = (tt + 1) % 32;
2711 if (is_postidx) {
2712 int rm = extract32(insn, 16, 5);
2713 if (rm == 31) {
2714 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2715 } else {
2716 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2719 tcg_temp_free_i64(tcg_addr);
2722 /* C3.3.3 AdvSIMD load/store single structure
2724 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2725 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2726 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2727 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2729 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2731 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2732 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2733 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2734 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2736 * Rt: first (or only) SIMD&FP register to be transferred
2737 * Rn: base address or SP
2738 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2739 * index = encoded in Q:S:size dependent on size
2741 * lane_size = encoded in R, opc
2742 * transfer width = encoded in opc, S, size
2744 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2746 int rt = extract32(insn, 0, 5);
2747 int rn = extract32(insn, 5, 5);
2748 int size = extract32(insn, 10, 2);
2749 int S = extract32(insn, 12, 1);
2750 int opc = extract32(insn, 13, 3);
2751 int R = extract32(insn, 21, 1);
2752 int is_load = extract32(insn, 22, 1);
2753 int is_postidx = extract32(insn, 23, 1);
2754 int is_q = extract32(insn, 30, 1);
2756 int scale = extract32(opc, 1, 2);
2757 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2758 bool replicate = false;
2759 int index = is_q << 3 | S << 2 | size;
2760 int ebytes, xs;
2761 TCGv_i64 tcg_addr, tcg_rn;
2763 switch (scale) {
2764 case 3:
2765 if (!is_load || S) {
2766 unallocated_encoding(s);
2767 return;
2769 scale = size;
2770 replicate = true;
2771 break;
2772 case 0:
2773 break;
2774 case 1:
2775 if (extract32(size, 0, 1)) {
2776 unallocated_encoding(s);
2777 return;
2779 index >>= 1;
2780 break;
2781 case 2:
2782 if (extract32(size, 1, 1)) {
2783 unallocated_encoding(s);
2784 return;
2786 if (!extract32(size, 0, 1)) {
2787 index >>= 2;
2788 } else {
2789 if (S) {
2790 unallocated_encoding(s);
2791 return;
2793 index >>= 3;
2794 scale = 3;
2796 break;
2797 default:
2798 g_assert_not_reached();
2801 if (!fp_access_check(s)) {
2802 return;
2805 ebytes = 1 << scale;
2807 if (rn == 31) {
2808 gen_check_sp_alignment(s);
2811 tcg_rn = cpu_reg_sp(s, rn);
2812 tcg_addr = tcg_temp_new_i64();
2813 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2815 for (xs = 0; xs < selem; xs++) {
2816 if (replicate) {
2817 /* Load and replicate to all elements */
2818 uint64_t mulconst;
2819 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2821 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2822 get_mem_index(s), s->be_data + scale);
2823 switch (scale) {
2824 case 0:
2825 mulconst = 0x0101010101010101ULL;
2826 break;
2827 case 1:
2828 mulconst = 0x0001000100010001ULL;
2829 break;
2830 case 2:
2831 mulconst = 0x0000000100000001ULL;
2832 break;
2833 case 3:
2834 mulconst = 0;
2835 break;
2836 default:
2837 g_assert_not_reached();
2839 if (mulconst) {
2840 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2842 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2843 if (is_q) {
2844 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2845 } else {
2846 clear_vec_high(s, rt);
2848 tcg_temp_free_i64(tcg_tmp);
2849 } else {
2850 /* Load/store one element per register */
2851 if (is_load) {
2852 do_vec_ld(s, rt, index, tcg_addr, scale);
2853 } else {
2854 do_vec_st(s, rt, index, tcg_addr, scale);
2857 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2858 rt = (rt + 1) % 32;
2861 if (is_postidx) {
2862 int rm = extract32(insn, 16, 5);
2863 if (rm == 31) {
2864 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2865 } else {
2866 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2869 tcg_temp_free_i64(tcg_addr);
2872 /* C3.3 Loads and stores */
2873 static void disas_ldst(DisasContext *s, uint32_t insn)
2875 switch (extract32(insn, 24, 6)) {
2876 case 0x08: /* Load/store exclusive */
2877 disas_ldst_excl(s, insn);
2878 break;
2879 case 0x18: case 0x1c: /* Load register (literal) */
2880 disas_ld_lit(s, insn);
2881 break;
2882 case 0x28: case 0x29:
2883 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2884 disas_ldst_pair(s, insn);
2885 break;
2886 case 0x38: case 0x39:
2887 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2888 disas_ldst_reg(s, insn);
2889 break;
2890 case 0x0c: /* AdvSIMD load/store multiple structures */
2891 disas_ldst_multiple_struct(s, insn);
2892 break;
2893 case 0x0d: /* AdvSIMD load/store single structure */
2894 disas_ldst_single_struct(s, insn);
2895 break;
2896 default:
2897 unallocated_encoding(s);
2898 break;
2902 /* C3.4.6 PC-rel. addressing
2903 * 31 30 29 28 24 23 5 4 0
2904 * +----+-------+-----------+-------------------+------+
2905 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2906 * +----+-------+-----------+-------------------+------+
2908 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2910 unsigned int page, rd;
2911 uint64_t base;
2912 uint64_t offset;
2914 page = extract32(insn, 31, 1);
2915 /* SignExtend(immhi:immlo) -> offset */
2916 offset = sextract64(insn, 5, 19);
2917 offset = offset << 2 | extract32(insn, 29, 2);
2918 rd = extract32(insn, 0, 5);
2919 base = s->pc - 4;
2921 if (page) {
2922 /* ADRP (page based) */
2923 base &= ~0xfff;
2924 offset <<= 12;
2927 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2931 * C3.4.1 Add/subtract (immediate)
2933 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2934 * +--+--+--+-----------+-----+-------------+-----+-----+
2935 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2936 * +--+--+--+-----------+-----+-------------+-----+-----+
2938 * sf: 0 -> 32bit, 1 -> 64bit
2939 * op: 0 -> add , 1 -> sub
2940 * S: 1 -> set flags
2941 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2943 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2945 int rd = extract32(insn, 0, 5);
2946 int rn = extract32(insn, 5, 5);
2947 uint64_t imm = extract32(insn, 10, 12);
2948 int shift = extract32(insn, 22, 2);
2949 bool setflags = extract32(insn, 29, 1);
2950 bool sub_op = extract32(insn, 30, 1);
2951 bool is_64bit = extract32(insn, 31, 1);
2953 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2954 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2955 TCGv_i64 tcg_result;
2957 switch (shift) {
2958 case 0x0:
2959 break;
2960 case 0x1:
2961 imm <<= 12;
2962 break;
2963 default:
2964 unallocated_encoding(s);
2965 return;
2968 tcg_result = tcg_temp_new_i64();
2969 if (!setflags) {
2970 if (sub_op) {
2971 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2972 } else {
2973 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2975 } else {
2976 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2977 if (sub_op) {
2978 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2979 } else {
2980 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2982 tcg_temp_free_i64(tcg_imm);
2985 if (is_64bit) {
2986 tcg_gen_mov_i64(tcg_rd, tcg_result);
2987 } else {
2988 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2991 tcg_temp_free_i64(tcg_result);
2994 /* The input should be a value in the bottom e bits (with higher
2995 * bits zero); returns that value replicated into every element
2996 * of size e in a 64 bit integer.
2998 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3000 assert(e != 0);
3001 while (e < 64) {
3002 mask |= mask << e;
3003 e *= 2;
3005 return mask;
3008 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3009 static inline uint64_t bitmask64(unsigned int length)
3011 assert(length > 0 && length <= 64);
3012 return ~0ULL >> (64 - length);
3015 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3016 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3017 * value (ie should cause a guest UNDEF exception), and true if they are
3018 * valid, in which case the decoded bit pattern is written to result.
3020 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3021 unsigned int imms, unsigned int immr)
3023 uint64_t mask;
3024 unsigned e, levels, s, r;
3025 int len;
3027 assert(immn < 2 && imms < 64 && immr < 64);
3029 /* The bit patterns we create here are 64 bit patterns which
3030 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3031 * 64 bits each. Each element contains the same value: a run
3032 * of between 1 and e-1 non-zero bits, rotated within the
3033 * element by between 0 and e-1 bits.
3035 * The element size and run length are encoded into immn (1 bit)
3036 * and imms (6 bits) as follows:
3037 * 64 bit elements: immn = 1, imms = <length of run - 1>
3038 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3039 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3040 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3041 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3042 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3043 * Notice that immn = 0, imms = 11111x is the only combination
3044 * not covered by one of the above options; this is reserved.
3045 * Further, <length of run - 1> all-ones is a reserved pattern.
3047 * In all cases the rotation is by immr % e (and immr is 6 bits).
3050 /* First determine the element size */
3051 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3052 if (len < 1) {
3053 /* This is the immn == 0, imms == 0x11111x case */
3054 return false;
3056 e = 1 << len;
3058 levels = e - 1;
3059 s = imms & levels;
3060 r = immr & levels;
3062 if (s == levels) {
3063 /* <length of run - 1> mustn't be all-ones. */
3064 return false;
3067 /* Create the value of one element: s+1 set bits rotated
3068 * by r within the element (which is e bits wide)...
3070 mask = bitmask64(s + 1);
3071 if (r) {
3072 mask = (mask >> r) | (mask << (e - r));
3073 mask &= bitmask64(e);
3075 /* ...then replicate the element over the whole 64 bit value */
3076 mask = bitfield_replicate(mask, e);
3077 *result = mask;
3078 return true;
3081 /* C3.4.4 Logical (immediate)
3082 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3083 * +----+-----+-------------+---+------+------+------+------+
3084 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3085 * +----+-----+-------------+---+------+------+------+------+
3087 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3089 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3090 TCGv_i64 tcg_rd, tcg_rn;
3091 uint64_t wmask;
3092 bool is_and = false;
3094 sf = extract32(insn, 31, 1);
3095 opc = extract32(insn, 29, 2);
3096 is_n = extract32(insn, 22, 1);
3097 immr = extract32(insn, 16, 6);
3098 imms = extract32(insn, 10, 6);
3099 rn = extract32(insn, 5, 5);
3100 rd = extract32(insn, 0, 5);
3102 if (!sf && is_n) {
3103 unallocated_encoding(s);
3104 return;
3107 if (opc == 0x3) { /* ANDS */
3108 tcg_rd = cpu_reg(s, rd);
3109 } else {
3110 tcg_rd = cpu_reg_sp(s, rd);
3112 tcg_rn = cpu_reg(s, rn);
3114 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3115 /* some immediate field values are reserved */
3116 unallocated_encoding(s);
3117 return;
3120 if (!sf) {
3121 wmask &= 0xffffffff;
3124 switch (opc) {
3125 case 0x3: /* ANDS */
3126 case 0x0: /* AND */
3127 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3128 is_and = true;
3129 break;
3130 case 0x1: /* ORR */
3131 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3132 break;
3133 case 0x2: /* EOR */
3134 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3135 break;
3136 default:
3137 assert(FALSE); /* must handle all above */
3138 break;
3141 if (!sf && !is_and) {
3142 /* zero extend final result; we know we can skip this for AND
3143 * since the immediate had the high 32 bits clear.
3145 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3148 if (opc == 3) { /* ANDS */
3149 gen_logic_CC(sf, tcg_rd);
3154 * C3.4.5 Move wide (immediate)
3156 * 31 30 29 28 23 22 21 20 5 4 0
3157 * +--+-----+-------------+-----+----------------+------+
3158 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3159 * +--+-----+-------------+-----+----------------+------+
3161 * sf: 0 -> 32 bit, 1 -> 64 bit
3162 * opc: 00 -> N, 10 -> Z, 11 -> K
3163 * hw: shift/16 (0,16, and sf only 32, 48)
3165 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3167 int rd = extract32(insn, 0, 5);
3168 uint64_t imm = extract32(insn, 5, 16);
3169 int sf = extract32(insn, 31, 1);
3170 int opc = extract32(insn, 29, 2);
3171 int pos = extract32(insn, 21, 2) << 4;
3172 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3173 TCGv_i64 tcg_imm;
3175 if (!sf && (pos >= 32)) {
3176 unallocated_encoding(s);
3177 return;
3180 switch (opc) {
3181 case 0: /* MOVN */
3182 case 2: /* MOVZ */
3183 imm <<= pos;
3184 if (opc == 0) {
3185 imm = ~imm;
3187 if (!sf) {
3188 imm &= 0xffffffffu;
3190 tcg_gen_movi_i64(tcg_rd, imm);
3191 break;
3192 case 3: /* MOVK */
3193 tcg_imm = tcg_const_i64(imm);
3194 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3195 tcg_temp_free_i64(tcg_imm);
3196 if (!sf) {
3197 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3199 break;
3200 default:
3201 unallocated_encoding(s);
3202 break;
3206 /* C3.4.2 Bitfield
3207 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3208 * +----+-----+-------------+---+------+------+------+------+
3209 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3210 * +----+-----+-------------+---+------+------+------+------+
3212 static void disas_bitfield(DisasContext *s, uint32_t insn)
3214 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3215 TCGv_i64 tcg_rd, tcg_tmp;
3217 sf = extract32(insn, 31, 1);
3218 opc = extract32(insn, 29, 2);
3219 n = extract32(insn, 22, 1);
3220 ri = extract32(insn, 16, 6);
3221 si = extract32(insn, 10, 6);
3222 rn = extract32(insn, 5, 5);
3223 rd = extract32(insn, 0, 5);
3224 bitsize = sf ? 64 : 32;
3226 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3227 unallocated_encoding(s);
3228 return;
3231 tcg_rd = cpu_reg(s, rd);
3233 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3234 to be smaller than bitsize, we'll never reference data outside the
3235 low 32-bits anyway. */
3236 tcg_tmp = read_cpu_reg(s, rn, 1);
3238 /* Recognize simple(r) extractions. */
3239 if (si >= ri) {
3240 /* Wd<s-r:0> = Wn<s:r> */
3241 len = (si - ri) + 1;
3242 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3243 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3244 goto done;
3245 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3246 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3247 return;
3249 /* opc == 1, BXFIL fall through to deposit */
3250 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3251 pos = 0;
3252 } else {
3253 /* Handle the ri > si case with a deposit
3254 * Wd<32+s-r,32-r> = Wn<s:0>
3256 len = si + 1;
3257 pos = (bitsize - ri) & (bitsize - 1);
3260 if (opc == 0 && len < ri) {
3261 /* SBFM: sign extend the destination field from len to fill
3262 the balance of the word. Let the deposit below insert all
3263 of those sign bits. */
3264 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3265 len = ri;
3268 if (opc == 1) { /* BFM, BXFIL */
3269 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3270 } else {
3271 /* SBFM or UBFM: We start with zero, and we haven't modified
3272 any bits outside bitsize, therefore the zero-extension
3273 below is unneeded. */
3274 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3275 return;
3278 done:
3279 if (!sf) { /* zero extend final result */
3280 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3284 /* C3.4.3 Extract
3285 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3286 * +----+------+-------------+---+----+------+--------+------+------+
3287 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3288 * +----+------+-------------+---+----+------+--------+------+------+
3290 static void disas_extract(DisasContext *s, uint32_t insn)
3292 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3294 sf = extract32(insn, 31, 1);
3295 n = extract32(insn, 22, 1);
3296 rm = extract32(insn, 16, 5);
3297 imm = extract32(insn, 10, 6);
3298 rn = extract32(insn, 5, 5);
3299 rd = extract32(insn, 0, 5);
3300 op21 = extract32(insn, 29, 2);
3301 op0 = extract32(insn, 21, 1);
3302 bitsize = sf ? 64 : 32;
3304 if (sf != n || op21 || op0 || imm >= bitsize) {
3305 unallocated_encoding(s);
3306 } else {
3307 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3309 tcg_rd = cpu_reg(s, rd);
3311 if (unlikely(imm == 0)) {
3312 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3313 * so an extract from bit 0 is a special case.
3315 if (sf) {
3316 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3317 } else {
3318 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3320 } else if (rm == rn) { /* ROR */
3321 tcg_rm = cpu_reg(s, rm);
3322 if (sf) {
3323 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3324 } else {
3325 TCGv_i32 tmp = tcg_temp_new_i32();
3326 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3327 tcg_gen_rotri_i32(tmp, tmp, imm);
3328 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3329 tcg_temp_free_i32(tmp);
3331 } else {
3332 tcg_rm = read_cpu_reg(s, rm, sf);
3333 tcg_rn = read_cpu_reg(s, rn, sf);
3334 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3335 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3336 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3337 if (!sf) {
3338 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3344 /* C3.4 Data processing - immediate */
3345 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3347 switch (extract32(insn, 23, 6)) {
3348 case 0x20: case 0x21: /* PC-rel. addressing */
3349 disas_pc_rel_adr(s, insn);
3350 break;
3351 case 0x22: case 0x23: /* Add/subtract (immediate) */
3352 disas_add_sub_imm(s, insn);
3353 break;
3354 case 0x24: /* Logical (immediate) */
3355 disas_logic_imm(s, insn);
3356 break;
3357 case 0x25: /* Move wide (immediate) */
3358 disas_movw_imm(s, insn);
3359 break;
3360 case 0x26: /* Bitfield */
3361 disas_bitfield(s, insn);
3362 break;
3363 case 0x27: /* Extract */
3364 disas_extract(s, insn);
3365 break;
3366 default:
3367 unallocated_encoding(s);
3368 break;
3372 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3373 * Note that it is the caller's responsibility to ensure that the
3374 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3375 * mandated semantics for out of range shifts.
3377 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3378 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3380 switch (shift_type) {
3381 case A64_SHIFT_TYPE_LSL:
3382 tcg_gen_shl_i64(dst, src, shift_amount);
3383 break;
3384 case A64_SHIFT_TYPE_LSR:
3385 tcg_gen_shr_i64(dst, src, shift_amount);
3386 break;
3387 case A64_SHIFT_TYPE_ASR:
3388 if (!sf) {
3389 tcg_gen_ext32s_i64(dst, src);
3391 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3392 break;
3393 case A64_SHIFT_TYPE_ROR:
3394 if (sf) {
3395 tcg_gen_rotr_i64(dst, src, shift_amount);
3396 } else {
3397 TCGv_i32 t0, t1;
3398 t0 = tcg_temp_new_i32();
3399 t1 = tcg_temp_new_i32();
3400 tcg_gen_extrl_i64_i32(t0, src);
3401 tcg_gen_extrl_i64_i32(t1, shift_amount);
3402 tcg_gen_rotr_i32(t0, t0, t1);
3403 tcg_gen_extu_i32_i64(dst, t0);
3404 tcg_temp_free_i32(t0);
3405 tcg_temp_free_i32(t1);
3407 break;
3408 default:
3409 assert(FALSE); /* all shift types should be handled */
3410 break;
3413 if (!sf) { /* zero extend final result */
3414 tcg_gen_ext32u_i64(dst, dst);
3418 /* Shift a TCGv src by immediate, put result in dst.
3419 * The shift amount must be in range (this should always be true as the
3420 * relevant instructions will UNDEF on bad shift immediates).
3422 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3423 enum a64_shift_type shift_type, unsigned int shift_i)
3425 assert(shift_i < (sf ? 64 : 32));
3427 if (shift_i == 0) {
3428 tcg_gen_mov_i64(dst, src);
3429 } else {
3430 TCGv_i64 shift_const;
3432 shift_const = tcg_const_i64(shift_i);
3433 shift_reg(dst, src, sf, shift_type, shift_const);
3434 tcg_temp_free_i64(shift_const);
3438 /* C3.5.10 Logical (shifted register)
3439 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3440 * +----+-----+-----------+-------+---+------+--------+------+------+
3441 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3442 * +----+-----+-----------+-------+---+------+--------+------+------+
3444 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3446 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3447 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3449 sf = extract32(insn, 31, 1);
3450 opc = extract32(insn, 29, 2);
3451 shift_type = extract32(insn, 22, 2);
3452 invert = extract32(insn, 21, 1);
3453 rm = extract32(insn, 16, 5);
3454 shift_amount = extract32(insn, 10, 6);
3455 rn = extract32(insn, 5, 5);
3456 rd = extract32(insn, 0, 5);
3458 if (!sf && (shift_amount & (1 << 5))) {
3459 unallocated_encoding(s);
3460 return;
3463 tcg_rd = cpu_reg(s, rd);
3465 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3466 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3467 * register-register MOV and MVN, so it is worth special casing.
3469 tcg_rm = cpu_reg(s, rm);
3470 if (invert) {
3471 tcg_gen_not_i64(tcg_rd, tcg_rm);
3472 if (!sf) {
3473 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3475 } else {
3476 if (sf) {
3477 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3478 } else {
3479 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3482 return;
3485 tcg_rm = read_cpu_reg(s, rm, sf);
3487 if (shift_amount) {
3488 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3491 tcg_rn = cpu_reg(s, rn);
3493 switch (opc | (invert << 2)) {
3494 case 0: /* AND */
3495 case 3: /* ANDS */
3496 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3497 break;
3498 case 1: /* ORR */
3499 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3500 break;
3501 case 2: /* EOR */
3502 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3503 break;
3504 case 4: /* BIC */
3505 case 7: /* BICS */
3506 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3507 break;
3508 case 5: /* ORN */
3509 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3510 break;
3511 case 6: /* EON */
3512 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3513 break;
3514 default:
3515 assert(FALSE);
3516 break;
3519 if (!sf) {
3520 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3523 if (opc == 3) {
3524 gen_logic_CC(sf, tcg_rd);
3529 * C3.5.1 Add/subtract (extended register)
3531 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3532 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3533 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3534 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3536 * sf: 0 -> 32bit, 1 -> 64bit
3537 * op: 0 -> add , 1 -> sub
3538 * S: 1 -> set flags
3539 * opt: 00
3540 * option: extension type (see DecodeRegExtend)
3541 * imm3: optional shift to Rm
3543 * Rd = Rn + LSL(extend(Rm), amount)
3545 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3547 int rd = extract32(insn, 0, 5);
3548 int rn = extract32(insn, 5, 5);
3549 int imm3 = extract32(insn, 10, 3);
3550 int option = extract32(insn, 13, 3);
3551 int rm = extract32(insn, 16, 5);
3552 bool setflags = extract32(insn, 29, 1);
3553 bool sub_op = extract32(insn, 30, 1);
3554 bool sf = extract32(insn, 31, 1);
3556 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3557 TCGv_i64 tcg_rd;
3558 TCGv_i64 tcg_result;
3560 if (imm3 > 4) {
3561 unallocated_encoding(s);
3562 return;
3565 /* non-flag setting ops may use SP */
3566 if (!setflags) {
3567 tcg_rd = cpu_reg_sp(s, rd);
3568 } else {
3569 tcg_rd = cpu_reg(s, rd);
3571 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3573 tcg_rm = read_cpu_reg(s, rm, sf);
3574 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3576 tcg_result = tcg_temp_new_i64();
3578 if (!setflags) {
3579 if (sub_op) {
3580 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3581 } else {
3582 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3584 } else {
3585 if (sub_op) {
3586 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3587 } else {
3588 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3592 if (sf) {
3593 tcg_gen_mov_i64(tcg_rd, tcg_result);
3594 } else {
3595 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3598 tcg_temp_free_i64(tcg_result);
3602 * C3.5.2 Add/subtract (shifted register)
3604 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3605 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3606 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3607 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3609 * sf: 0 -> 32bit, 1 -> 64bit
3610 * op: 0 -> add , 1 -> sub
3611 * S: 1 -> set flags
3612 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3613 * imm6: Shift amount to apply to Rm before the add/sub
3615 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3617 int rd = extract32(insn, 0, 5);
3618 int rn = extract32(insn, 5, 5);
3619 int imm6 = extract32(insn, 10, 6);
3620 int rm = extract32(insn, 16, 5);
3621 int shift_type = extract32(insn, 22, 2);
3622 bool setflags = extract32(insn, 29, 1);
3623 bool sub_op = extract32(insn, 30, 1);
3624 bool sf = extract32(insn, 31, 1);
3626 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3627 TCGv_i64 tcg_rn, tcg_rm;
3628 TCGv_i64 tcg_result;
3630 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3631 unallocated_encoding(s);
3632 return;
3635 tcg_rn = read_cpu_reg(s, rn, sf);
3636 tcg_rm = read_cpu_reg(s, rm, sf);
3638 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3640 tcg_result = tcg_temp_new_i64();
3642 if (!setflags) {
3643 if (sub_op) {
3644 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3645 } else {
3646 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3648 } else {
3649 if (sub_op) {
3650 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3651 } else {
3652 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3656 if (sf) {
3657 tcg_gen_mov_i64(tcg_rd, tcg_result);
3658 } else {
3659 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3662 tcg_temp_free_i64(tcg_result);
3665 /* C3.5.9 Data-processing (3 source)
3667 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3668 +--+------+-----------+------+------+----+------+------+------+
3669 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3670 +--+------+-----------+------+------+----+------+------+------+
3673 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3675 int rd = extract32(insn, 0, 5);
3676 int rn = extract32(insn, 5, 5);
3677 int ra = extract32(insn, 10, 5);
3678 int rm = extract32(insn, 16, 5);
3679 int op_id = (extract32(insn, 29, 3) << 4) |
3680 (extract32(insn, 21, 3) << 1) |
3681 extract32(insn, 15, 1);
3682 bool sf = extract32(insn, 31, 1);
3683 bool is_sub = extract32(op_id, 0, 1);
3684 bool is_high = extract32(op_id, 2, 1);
3685 bool is_signed = false;
3686 TCGv_i64 tcg_op1;
3687 TCGv_i64 tcg_op2;
3688 TCGv_i64 tcg_tmp;
3690 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3691 switch (op_id) {
3692 case 0x42: /* SMADDL */
3693 case 0x43: /* SMSUBL */
3694 case 0x44: /* SMULH */
3695 is_signed = true;
3696 break;
3697 case 0x0: /* MADD (32bit) */
3698 case 0x1: /* MSUB (32bit) */
3699 case 0x40: /* MADD (64bit) */
3700 case 0x41: /* MSUB (64bit) */
3701 case 0x4a: /* UMADDL */
3702 case 0x4b: /* UMSUBL */
3703 case 0x4c: /* UMULH */
3704 break;
3705 default:
3706 unallocated_encoding(s);
3707 return;
3710 if (is_high) {
3711 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3712 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3713 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3714 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3716 if (is_signed) {
3717 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3718 } else {
3719 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3722 tcg_temp_free_i64(low_bits);
3723 return;
3726 tcg_op1 = tcg_temp_new_i64();
3727 tcg_op2 = tcg_temp_new_i64();
3728 tcg_tmp = tcg_temp_new_i64();
3730 if (op_id < 0x42) {
3731 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3732 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3733 } else {
3734 if (is_signed) {
3735 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3736 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3737 } else {
3738 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3739 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3743 if (ra == 31 && !is_sub) {
3744 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3745 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3746 } else {
3747 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3748 if (is_sub) {
3749 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3750 } else {
3751 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3755 if (!sf) {
3756 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3759 tcg_temp_free_i64(tcg_op1);
3760 tcg_temp_free_i64(tcg_op2);
3761 tcg_temp_free_i64(tcg_tmp);
3764 /* C3.5.3 - Add/subtract (with carry)
3765 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3766 * +--+--+--+------------------------+------+---------+------+-----+
3767 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3768 * +--+--+--+------------------------+------+---------+------+-----+
3769 * [000000]
3772 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3774 unsigned int sf, op, setflags, rm, rn, rd;
3775 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3777 if (extract32(insn, 10, 6) != 0) {
3778 unallocated_encoding(s);
3779 return;
3782 sf = extract32(insn, 31, 1);
3783 op = extract32(insn, 30, 1);
3784 setflags = extract32(insn, 29, 1);
3785 rm = extract32(insn, 16, 5);
3786 rn = extract32(insn, 5, 5);
3787 rd = extract32(insn, 0, 5);
3789 tcg_rd = cpu_reg(s, rd);
3790 tcg_rn = cpu_reg(s, rn);
3792 if (op) {
3793 tcg_y = new_tmp_a64(s);
3794 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3795 } else {
3796 tcg_y = cpu_reg(s, rm);
3799 if (setflags) {
3800 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3801 } else {
3802 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3806 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3807 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3808 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3809 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3810 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3811 * [1] y [0] [0]
3813 static void disas_cc(DisasContext *s, uint32_t insn)
3815 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3816 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3817 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3818 DisasCompare c;
3820 if (!extract32(insn, 29, 1)) {
3821 unallocated_encoding(s);
3822 return;
3824 if (insn & (1 << 10 | 1 << 4)) {
3825 unallocated_encoding(s);
3826 return;
3828 sf = extract32(insn, 31, 1);
3829 op = extract32(insn, 30, 1);
3830 is_imm = extract32(insn, 11, 1);
3831 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3832 cond = extract32(insn, 12, 4);
3833 rn = extract32(insn, 5, 5);
3834 nzcv = extract32(insn, 0, 4);
3836 /* Set T0 = !COND. */
3837 tcg_t0 = tcg_temp_new_i32();
3838 arm_test_cc(&c, cond);
3839 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3840 arm_free_cc(&c);
3842 /* Load the arguments for the new comparison. */
3843 if (is_imm) {
3844 tcg_y = new_tmp_a64(s);
3845 tcg_gen_movi_i64(tcg_y, y);
3846 } else {
3847 tcg_y = cpu_reg(s, y);
3849 tcg_rn = cpu_reg(s, rn);
3851 /* Set the flags for the new comparison. */
3852 tcg_tmp = tcg_temp_new_i64();
3853 if (op) {
3854 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3855 } else {
3856 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3858 tcg_temp_free_i64(tcg_tmp);
3860 /* If COND was false, force the flags to #nzcv. Compute two masks
3861 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3862 * For tcg hosts that support ANDC, we can make do with just T1.
3863 * In either case, allow the tcg optimizer to delete any unused mask.
3865 tcg_t1 = tcg_temp_new_i32();
3866 tcg_t2 = tcg_temp_new_i32();
3867 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3868 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3870 if (nzcv & 8) { /* N */
3871 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3872 } else {
3873 if (TCG_TARGET_HAS_andc_i32) {
3874 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3875 } else {
3876 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3879 if (nzcv & 4) { /* Z */
3880 if (TCG_TARGET_HAS_andc_i32) {
3881 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3882 } else {
3883 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3885 } else {
3886 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3888 if (nzcv & 2) { /* C */
3889 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3890 } else {
3891 if (TCG_TARGET_HAS_andc_i32) {
3892 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3893 } else {
3894 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3897 if (nzcv & 1) { /* V */
3898 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3899 } else {
3900 if (TCG_TARGET_HAS_andc_i32) {
3901 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3902 } else {
3903 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3906 tcg_temp_free_i32(tcg_t0);
3907 tcg_temp_free_i32(tcg_t1);
3908 tcg_temp_free_i32(tcg_t2);
3911 /* C3.5.6 Conditional select
3912 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3913 * +----+----+---+-----------------+------+------+-----+------+------+
3914 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3915 * +----+----+---+-----------------+------+------+-----+------+------+
3917 static void disas_cond_select(DisasContext *s, uint32_t insn)
3919 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3920 TCGv_i64 tcg_rd, zero;
3921 DisasCompare64 c;
3923 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3924 /* S == 1 or op2<1> == 1 */
3925 unallocated_encoding(s);
3926 return;
3928 sf = extract32(insn, 31, 1);
3929 else_inv = extract32(insn, 30, 1);
3930 rm = extract32(insn, 16, 5);
3931 cond = extract32(insn, 12, 4);
3932 else_inc = extract32(insn, 10, 1);
3933 rn = extract32(insn, 5, 5);
3934 rd = extract32(insn, 0, 5);
3936 tcg_rd = cpu_reg(s, rd);
3938 a64_test_cc(&c, cond);
3939 zero = tcg_const_i64(0);
3941 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3942 /* CSET & CSETM. */
3943 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3944 if (else_inv) {
3945 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3947 } else {
3948 TCGv_i64 t_true = cpu_reg(s, rn);
3949 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3950 if (else_inv && else_inc) {
3951 tcg_gen_neg_i64(t_false, t_false);
3952 } else if (else_inv) {
3953 tcg_gen_not_i64(t_false, t_false);
3954 } else if (else_inc) {
3955 tcg_gen_addi_i64(t_false, t_false, 1);
3957 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3960 tcg_temp_free_i64(zero);
3961 a64_free_cc(&c);
3963 if (!sf) {
3964 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3968 static void handle_clz(DisasContext *s, unsigned int sf,
3969 unsigned int rn, unsigned int rd)
3971 TCGv_i64 tcg_rd, tcg_rn;
3972 tcg_rd = cpu_reg(s, rd);
3973 tcg_rn = cpu_reg(s, rn);
3975 if (sf) {
3976 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
3977 } else {
3978 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3979 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3980 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
3981 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3982 tcg_temp_free_i32(tcg_tmp32);
3986 static void handle_cls(DisasContext *s, unsigned int sf,
3987 unsigned int rn, unsigned int rd)
3989 TCGv_i64 tcg_rd, tcg_rn;
3990 tcg_rd = cpu_reg(s, rd);
3991 tcg_rn = cpu_reg(s, rn);
3993 if (sf) {
3994 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
3995 } else {
3996 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3997 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3998 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
3999 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4000 tcg_temp_free_i32(tcg_tmp32);
4004 static void handle_rbit(DisasContext *s, unsigned int sf,
4005 unsigned int rn, unsigned int rd)
4007 TCGv_i64 tcg_rd, tcg_rn;
4008 tcg_rd = cpu_reg(s, rd);
4009 tcg_rn = cpu_reg(s, rn);
4011 if (sf) {
4012 gen_helper_rbit64(tcg_rd, tcg_rn);
4013 } else {
4014 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4015 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4016 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4017 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4018 tcg_temp_free_i32(tcg_tmp32);
4022 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
4023 static void handle_rev64(DisasContext *s, unsigned int sf,
4024 unsigned int rn, unsigned int rd)
4026 if (!sf) {
4027 unallocated_encoding(s);
4028 return;
4030 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4033 /* C5.6.149 REV with sf==0, opcode==2
4034 * C5.6.151 REV32 (sf==1, opcode==2)
4036 static void handle_rev32(DisasContext *s, unsigned int sf,
4037 unsigned int rn, unsigned int rd)
4039 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4041 if (sf) {
4042 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4043 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4045 /* bswap32_i64 requires zero high word */
4046 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4047 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4048 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4049 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4050 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4052 tcg_temp_free_i64(tcg_tmp);
4053 } else {
4054 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4055 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4059 /* C5.6.150 REV16 (opcode==1) */
4060 static void handle_rev16(DisasContext *s, unsigned int sf,
4061 unsigned int rn, unsigned int rd)
4063 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4064 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4065 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4066 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4068 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4069 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4070 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4071 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4072 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4074 tcg_temp_free_i64(mask);
4075 tcg_temp_free_i64(tcg_tmp);
4078 /* C3.5.7 Data-processing (1 source)
4079 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4080 * +----+---+---+-----------------+---------+--------+------+------+
4081 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4082 * +----+---+---+-----------------+---------+--------+------+------+
4084 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4086 unsigned int sf, opcode, rn, rd;
4088 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4089 unallocated_encoding(s);
4090 return;
4093 sf = extract32(insn, 31, 1);
4094 opcode = extract32(insn, 10, 6);
4095 rn = extract32(insn, 5, 5);
4096 rd = extract32(insn, 0, 5);
4098 switch (opcode) {
4099 case 0: /* RBIT */
4100 handle_rbit(s, sf, rn, rd);
4101 break;
4102 case 1: /* REV16 */
4103 handle_rev16(s, sf, rn, rd);
4104 break;
4105 case 2: /* REV32 */
4106 handle_rev32(s, sf, rn, rd);
4107 break;
4108 case 3: /* REV64 */
4109 handle_rev64(s, sf, rn, rd);
4110 break;
4111 case 4: /* CLZ */
4112 handle_clz(s, sf, rn, rd);
4113 break;
4114 case 5: /* CLS */
4115 handle_cls(s, sf, rn, rd);
4116 break;
4120 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4121 unsigned int rm, unsigned int rn, unsigned int rd)
4123 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4124 tcg_rd = cpu_reg(s, rd);
4126 if (!sf && is_signed) {
4127 tcg_n = new_tmp_a64(s);
4128 tcg_m = new_tmp_a64(s);
4129 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4130 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4131 } else {
4132 tcg_n = read_cpu_reg(s, rn, sf);
4133 tcg_m = read_cpu_reg(s, rm, sf);
4136 if (is_signed) {
4137 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4138 } else {
4139 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4142 if (!sf) { /* zero extend final result */
4143 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4147 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
4148 static void handle_shift_reg(DisasContext *s,
4149 enum a64_shift_type shift_type, unsigned int sf,
4150 unsigned int rm, unsigned int rn, unsigned int rd)
4152 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4153 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4154 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4156 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4157 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4158 tcg_temp_free_i64(tcg_shift);
4161 /* CRC32[BHWX], CRC32C[BHWX] */
4162 static void handle_crc32(DisasContext *s,
4163 unsigned int sf, unsigned int sz, bool crc32c,
4164 unsigned int rm, unsigned int rn, unsigned int rd)
4166 TCGv_i64 tcg_acc, tcg_val;
4167 TCGv_i32 tcg_bytes;
4169 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4170 || (sf == 1 && sz != 3)
4171 || (sf == 0 && sz == 3)) {
4172 unallocated_encoding(s);
4173 return;
4176 if (sz == 3) {
4177 tcg_val = cpu_reg(s, rm);
4178 } else {
4179 uint64_t mask;
4180 switch (sz) {
4181 case 0:
4182 mask = 0xFF;
4183 break;
4184 case 1:
4185 mask = 0xFFFF;
4186 break;
4187 case 2:
4188 mask = 0xFFFFFFFF;
4189 break;
4190 default:
4191 g_assert_not_reached();
4193 tcg_val = new_tmp_a64(s);
4194 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4197 tcg_acc = cpu_reg(s, rn);
4198 tcg_bytes = tcg_const_i32(1 << sz);
4200 if (crc32c) {
4201 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4202 } else {
4203 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4206 tcg_temp_free_i32(tcg_bytes);
4209 /* C3.5.8 Data-processing (2 source)
4210 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4211 * +----+---+---+-----------------+------+--------+------+------+
4212 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4213 * +----+---+---+-----------------+------+--------+------+------+
4215 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4217 unsigned int sf, rm, opcode, rn, rd;
4218 sf = extract32(insn, 31, 1);
4219 rm = extract32(insn, 16, 5);
4220 opcode = extract32(insn, 10, 6);
4221 rn = extract32(insn, 5, 5);
4222 rd = extract32(insn, 0, 5);
4224 if (extract32(insn, 29, 1)) {
4225 unallocated_encoding(s);
4226 return;
4229 switch (opcode) {
4230 case 2: /* UDIV */
4231 handle_div(s, false, sf, rm, rn, rd);
4232 break;
4233 case 3: /* SDIV */
4234 handle_div(s, true, sf, rm, rn, rd);
4235 break;
4236 case 8: /* LSLV */
4237 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4238 break;
4239 case 9: /* LSRV */
4240 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4241 break;
4242 case 10: /* ASRV */
4243 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4244 break;
4245 case 11: /* RORV */
4246 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4247 break;
4248 case 16:
4249 case 17:
4250 case 18:
4251 case 19:
4252 case 20:
4253 case 21:
4254 case 22:
4255 case 23: /* CRC32 */
4257 int sz = extract32(opcode, 0, 2);
4258 bool crc32c = extract32(opcode, 2, 1);
4259 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4260 break;
4262 default:
4263 unallocated_encoding(s);
4264 break;
4268 /* C3.5 Data processing - register */
4269 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4271 switch (extract32(insn, 24, 5)) {
4272 case 0x0a: /* Logical (shifted register) */
4273 disas_logic_reg(s, insn);
4274 break;
4275 case 0x0b: /* Add/subtract */
4276 if (insn & (1 << 21)) { /* (extended register) */
4277 disas_add_sub_ext_reg(s, insn);
4278 } else {
4279 disas_add_sub_reg(s, insn);
4281 break;
4282 case 0x1b: /* Data-processing (3 source) */
4283 disas_data_proc_3src(s, insn);
4284 break;
4285 case 0x1a:
4286 switch (extract32(insn, 21, 3)) {
4287 case 0x0: /* Add/subtract (with carry) */
4288 disas_adc_sbc(s, insn);
4289 break;
4290 case 0x2: /* Conditional compare */
4291 disas_cc(s, insn); /* both imm and reg forms */
4292 break;
4293 case 0x4: /* Conditional select */
4294 disas_cond_select(s, insn);
4295 break;
4296 case 0x6: /* Data-processing */
4297 if (insn & (1 << 30)) { /* (1 source) */
4298 disas_data_proc_1src(s, insn);
4299 } else { /* (2 source) */
4300 disas_data_proc_2src(s, insn);
4302 break;
4303 default:
4304 unallocated_encoding(s);
4305 break;
4307 break;
4308 default:
4309 unallocated_encoding(s);
4310 break;
4314 static void handle_fp_compare(DisasContext *s, bool is_double,
4315 unsigned int rn, unsigned int rm,
4316 bool cmp_with_zero, bool signal_all_nans)
4318 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4319 TCGv_ptr fpst = get_fpstatus_ptr();
4321 if (is_double) {
4322 TCGv_i64 tcg_vn, tcg_vm;
4324 tcg_vn = read_fp_dreg(s, rn);
4325 if (cmp_with_zero) {
4326 tcg_vm = tcg_const_i64(0);
4327 } else {
4328 tcg_vm = read_fp_dreg(s, rm);
4330 if (signal_all_nans) {
4331 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4332 } else {
4333 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4335 tcg_temp_free_i64(tcg_vn);
4336 tcg_temp_free_i64(tcg_vm);
4337 } else {
4338 TCGv_i32 tcg_vn, tcg_vm;
4340 tcg_vn = read_fp_sreg(s, rn);
4341 if (cmp_with_zero) {
4342 tcg_vm = tcg_const_i32(0);
4343 } else {
4344 tcg_vm = read_fp_sreg(s, rm);
4346 if (signal_all_nans) {
4347 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4348 } else {
4349 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4351 tcg_temp_free_i32(tcg_vn);
4352 tcg_temp_free_i32(tcg_vm);
4355 tcg_temp_free_ptr(fpst);
4357 gen_set_nzcv(tcg_flags);
4359 tcg_temp_free_i64(tcg_flags);
4362 /* C3.6.22 Floating point compare
4363 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4364 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4365 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4366 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4368 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4370 unsigned int mos, type, rm, op, rn, opc, op2r;
4372 mos = extract32(insn, 29, 3);
4373 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4374 rm = extract32(insn, 16, 5);
4375 op = extract32(insn, 14, 2);
4376 rn = extract32(insn, 5, 5);
4377 opc = extract32(insn, 3, 2);
4378 op2r = extract32(insn, 0, 3);
4380 if (mos || op || op2r || type > 1) {
4381 unallocated_encoding(s);
4382 return;
4385 if (!fp_access_check(s)) {
4386 return;
4389 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4392 /* C3.6.23 Floating point conditional compare
4393 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4394 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4395 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4396 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4398 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4400 unsigned int mos, type, rm, cond, rn, op, nzcv;
4401 TCGv_i64 tcg_flags;
4402 TCGLabel *label_continue = NULL;
4404 mos = extract32(insn, 29, 3);
4405 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4406 rm = extract32(insn, 16, 5);
4407 cond = extract32(insn, 12, 4);
4408 rn = extract32(insn, 5, 5);
4409 op = extract32(insn, 4, 1);
4410 nzcv = extract32(insn, 0, 4);
4412 if (mos || type > 1) {
4413 unallocated_encoding(s);
4414 return;
4417 if (!fp_access_check(s)) {
4418 return;
4421 if (cond < 0x0e) { /* not always */
4422 TCGLabel *label_match = gen_new_label();
4423 label_continue = gen_new_label();
4424 arm_gen_test_cc(cond, label_match);
4425 /* nomatch: */
4426 tcg_flags = tcg_const_i64(nzcv << 28);
4427 gen_set_nzcv(tcg_flags);
4428 tcg_temp_free_i64(tcg_flags);
4429 tcg_gen_br(label_continue);
4430 gen_set_label(label_match);
4433 handle_fp_compare(s, type, rn, rm, false, op);
4435 if (cond < 0x0e) {
4436 gen_set_label(label_continue);
4440 /* C3.6.24 Floating point conditional select
4441 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4442 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4443 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4444 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4446 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4448 unsigned int mos, type, rm, cond, rn, rd;
4449 TCGv_i64 t_true, t_false, t_zero;
4450 DisasCompare64 c;
4452 mos = extract32(insn, 29, 3);
4453 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4454 rm = extract32(insn, 16, 5);
4455 cond = extract32(insn, 12, 4);
4456 rn = extract32(insn, 5, 5);
4457 rd = extract32(insn, 0, 5);
4459 if (mos || type > 1) {
4460 unallocated_encoding(s);
4461 return;
4464 if (!fp_access_check(s)) {
4465 return;
4468 /* Zero extend sreg inputs to 64 bits now. */
4469 t_true = tcg_temp_new_i64();
4470 t_false = tcg_temp_new_i64();
4471 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4472 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4474 a64_test_cc(&c, cond);
4475 t_zero = tcg_const_i64(0);
4476 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4477 tcg_temp_free_i64(t_zero);
4478 tcg_temp_free_i64(t_false);
4479 a64_free_cc(&c);
4481 /* Note that sregs write back zeros to the high bits,
4482 and we've already done the zero-extension. */
4483 write_fp_dreg(s, rd, t_true);
4484 tcg_temp_free_i64(t_true);
4487 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4488 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4490 TCGv_ptr fpst;
4491 TCGv_i32 tcg_op;
4492 TCGv_i32 tcg_res;
4494 fpst = get_fpstatus_ptr();
4495 tcg_op = read_fp_sreg(s, rn);
4496 tcg_res = tcg_temp_new_i32();
4498 switch (opcode) {
4499 case 0x0: /* FMOV */
4500 tcg_gen_mov_i32(tcg_res, tcg_op);
4501 break;
4502 case 0x1: /* FABS */
4503 gen_helper_vfp_abss(tcg_res, tcg_op);
4504 break;
4505 case 0x2: /* FNEG */
4506 gen_helper_vfp_negs(tcg_res, tcg_op);
4507 break;
4508 case 0x3: /* FSQRT */
4509 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4510 break;
4511 case 0x8: /* FRINTN */
4512 case 0x9: /* FRINTP */
4513 case 0xa: /* FRINTM */
4514 case 0xb: /* FRINTZ */
4515 case 0xc: /* FRINTA */
4517 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4519 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4520 gen_helper_rints(tcg_res, tcg_op, fpst);
4522 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4523 tcg_temp_free_i32(tcg_rmode);
4524 break;
4526 case 0xe: /* FRINTX */
4527 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4528 break;
4529 case 0xf: /* FRINTI */
4530 gen_helper_rints(tcg_res, tcg_op, fpst);
4531 break;
4532 default:
4533 abort();
4536 write_fp_sreg(s, rd, tcg_res);
4538 tcg_temp_free_ptr(fpst);
4539 tcg_temp_free_i32(tcg_op);
4540 tcg_temp_free_i32(tcg_res);
4543 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4544 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4546 TCGv_ptr fpst;
4547 TCGv_i64 tcg_op;
4548 TCGv_i64 tcg_res;
4550 fpst = get_fpstatus_ptr();
4551 tcg_op = read_fp_dreg(s, rn);
4552 tcg_res = tcg_temp_new_i64();
4554 switch (opcode) {
4555 case 0x0: /* FMOV */
4556 tcg_gen_mov_i64(tcg_res, tcg_op);
4557 break;
4558 case 0x1: /* FABS */
4559 gen_helper_vfp_absd(tcg_res, tcg_op);
4560 break;
4561 case 0x2: /* FNEG */
4562 gen_helper_vfp_negd(tcg_res, tcg_op);
4563 break;
4564 case 0x3: /* FSQRT */
4565 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4566 break;
4567 case 0x8: /* FRINTN */
4568 case 0x9: /* FRINTP */
4569 case 0xa: /* FRINTM */
4570 case 0xb: /* FRINTZ */
4571 case 0xc: /* FRINTA */
4573 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4575 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4576 gen_helper_rintd(tcg_res, tcg_op, fpst);
4578 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4579 tcg_temp_free_i32(tcg_rmode);
4580 break;
4582 case 0xe: /* FRINTX */
4583 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4584 break;
4585 case 0xf: /* FRINTI */
4586 gen_helper_rintd(tcg_res, tcg_op, fpst);
4587 break;
4588 default:
4589 abort();
4592 write_fp_dreg(s, rd, tcg_res);
4594 tcg_temp_free_ptr(fpst);
4595 tcg_temp_free_i64(tcg_op);
4596 tcg_temp_free_i64(tcg_res);
4599 static void handle_fp_fcvt(DisasContext *s, int opcode,
4600 int rd, int rn, int dtype, int ntype)
4602 switch (ntype) {
4603 case 0x0:
4605 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4606 if (dtype == 1) {
4607 /* Single to double */
4608 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4609 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4610 write_fp_dreg(s, rd, tcg_rd);
4611 tcg_temp_free_i64(tcg_rd);
4612 } else {
4613 /* Single to half */
4614 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4615 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4616 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4617 write_fp_sreg(s, rd, tcg_rd);
4618 tcg_temp_free_i32(tcg_rd);
4620 tcg_temp_free_i32(tcg_rn);
4621 break;
4623 case 0x1:
4625 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4626 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4627 if (dtype == 0) {
4628 /* Double to single */
4629 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4630 } else {
4631 /* Double to half */
4632 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4633 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4635 write_fp_sreg(s, rd, tcg_rd);
4636 tcg_temp_free_i32(tcg_rd);
4637 tcg_temp_free_i64(tcg_rn);
4638 break;
4640 case 0x3:
4642 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4643 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4644 if (dtype == 0) {
4645 /* Half to single */
4646 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4647 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4648 write_fp_sreg(s, rd, tcg_rd);
4649 tcg_temp_free_i32(tcg_rd);
4650 } else {
4651 /* Half to double */
4652 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4653 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4654 write_fp_dreg(s, rd, tcg_rd);
4655 tcg_temp_free_i64(tcg_rd);
4657 tcg_temp_free_i32(tcg_rn);
4658 break;
4660 default:
4661 abort();
4665 /* C3.6.25 Floating point data-processing (1 source)
4666 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4667 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4668 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4669 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4671 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4673 int type = extract32(insn, 22, 2);
4674 int opcode = extract32(insn, 15, 6);
4675 int rn = extract32(insn, 5, 5);
4676 int rd = extract32(insn, 0, 5);
4678 switch (opcode) {
4679 case 0x4: case 0x5: case 0x7:
4681 /* FCVT between half, single and double precision */
4682 int dtype = extract32(opcode, 0, 2);
4683 if (type == 2 || dtype == type) {
4684 unallocated_encoding(s);
4685 return;
4687 if (!fp_access_check(s)) {
4688 return;
4691 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4692 break;
4694 case 0x0 ... 0x3:
4695 case 0x8 ... 0xc:
4696 case 0xe ... 0xf:
4697 /* 32-to-32 and 64-to-64 ops */
4698 switch (type) {
4699 case 0:
4700 if (!fp_access_check(s)) {
4701 return;
4704 handle_fp_1src_single(s, opcode, rd, rn);
4705 break;
4706 case 1:
4707 if (!fp_access_check(s)) {
4708 return;
4711 handle_fp_1src_double(s, opcode, rd, rn);
4712 break;
4713 default:
4714 unallocated_encoding(s);
4716 break;
4717 default:
4718 unallocated_encoding(s);
4719 break;
4723 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4724 static void handle_fp_2src_single(DisasContext *s, int opcode,
4725 int rd, int rn, int rm)
4727 TCGv_i32 tcg_op1;
4728 TCGv_i32 tcg_op2;
4729 TCGv_i32 tcg_res;
4730 TCGv_ptr fpst;
4732 tcg_res = tcg_temp_new_i32();
4733 fpst = get_fpstatus_ptr();
4734 tcg_op1 = read_fp_sreg(s, rn);
4735 tcg_op2 = read_fp_sreg(s, rm);
4737 switch (opcode) {
4738 case 0x0: /* FMUL */
4739 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4740 break;
4741 case 0x1: /* FDIV */
4742 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4743 break;
4744 case 0x2: /* FADD */
4745 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4746 break;
4747 case 0x3: /* FSUB */
4748 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4749 break;
4750 case 0x4: /* FMAX */
4751 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4752 break;
4753 case 0x5: /* FMIN */
4754 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4755 break;
4756 case 0x6: /* FMAXNM */
4757 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4758 break;
4759 case 0x7: /* FMINNM */
4760 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4761 break;
4762 case 0x8: /* FNMUL */
4763 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4764 gen_helper_vfp_negs(tcg_res, tcg_res);
4765 break;
4768 write_fp_sreg(s, rd, tcg_res);
4770 tcg_temp_free_ptr(fpst);
4771 tcg_temp_free_i32(tcg_op1);
4772 tcg_temp_free_i32(tcg_op2);
4773 tcg_temp_free_i32(tcg_res);
4776 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4777 static void handle_fp_2src_double(DisasContext *s, int opcode,
4778 int rd, int rn, int rm)
4780 TCGv_i64 tcg_op1;
4781 TCGv_i64 tcg_op2;
4782 TCGv_i64 tcg_res;
4783 TCGv_ptr fpst;
4785 tcg_res = tcg_temp_new_i64();
4786 fpst = get_fpstatus_ptr();
4787 tcg_op1 = read_fp_dreg(s, rn);
4788 tcg_op2 = read_fp_dreg(s, rm);
4790 switch (opcode) {
4791 case 0x0: /* FMUL */
4792 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4793 break;
4794 case 0x1: /* FDIV */
4795 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4796 break;
4797 case 0x2: /* FADD */
4798 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4799 break;
4800 case 0x3: /* FSUB */
4801 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4802 break;
4803 case 0x4: /* FMAX */
4804 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4805 break;
4806 case 0x5: /* FMIN */
4807 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4808 break;
4809 case 0x6: /* FMAXNM */
4810 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4811 break;
4812 case 0x7: /* FMINNM */
4813 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4814 break;
4815 case 0x8: /* FNMUL */
4816 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4817 gen_helper_vfp_negd(tcg_res, tcg_res);
4818 break;
4821 write_fp_dreg(s, rd, tcg_res);
4823 tcg_temp_free_ptr(fpst);
4824 tcg_temp_free_i64(tcg_op1);
4825 tcg_temp_free_i64(tcg_op2);
4826 tcg_temp_free_i64(tcg_res);
4829 /* C3.6.26 Floating point data-processing (2 source)
4830 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4831 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4832 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4833 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4835 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4837 int type = extract32(insn, 22, 2);
4838 int rd = extract32(insn, 0, 5);
4839 int rn = extract32(insn, 5, 5);
4840 int rm = extract32(insn, 16, 5);
4841 int opcode = extract32(insn, 12, 4);
4843 if (opcode > 8) {
4844 unallocated_encoding(s);
4845 return;
4848 switch (type) {
4849 case 0:
4850 if (!fp_access_check(s)) {
4851 return;
4853 handle_fp_2src_single(s, opcode, rd, rn, rm);
4854 break;
4855 case 1:
4856 if (!fp_access_check(s)) {
4857 return;
4859 handle_fp_2src_double(s, opcode, rd, rn, rm);
4860 break;
4861 default:
4862 unallocated_encoding(s);
4866 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4867 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4868 int rd, int rn, int rm, int ra)
4870 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4871 TCGv_i32 tcg_res = tcg_temp_new_i32();
4872 TCGv_ptr fpst = get_fpstatus_ptr();
4874 tcg_op1 = read_fp_sreg(s, rn);
4875 tcg_op2 = read_fp_sreg(s, rm);
4876 tcg_op3 = read_fp_sreg(s, ra);
4878 /* These are fused multiply-add, and must be done as one
4879 * floating point operation with no rounding between the
4880 * multiplication and addition steps.
4881 * NB that doing the negations here as separate steps is
4882 * correct : an input NaN should come out with its sign bit
4883 * flipped if it is a negated-input.
4885 if (o1 == true) {
4886 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4889 if (o0 != o1) {
4890 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4893 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4895 write_fp_sreg(s, rd, tcg_res);
4897 tcg_temp_free_ptr(fpst);
4898 tcg_temp_free_i32(tcg_op1);
4899 tcg_temp_free_i32(tcg_op2);
4900 tcg_temp_free_i32(tcg_op3);
4901 tcg_temp_free_i32(tcg_res);
4904 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4905 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4906 int rd, int rn, int rm, int ra)
4908 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4909 TCGv_i64 tcg_res = tcg_temp_new_i64();
4910 TCGv_ptr fpst = get_fpstatus_ptr();
4912 tcg_op1 = read_fp_dreg(s, rn);
4913 tcg_op2 = read_fp_dreg(s, rm);
4914 tcg_op3 = read_fp_dreg(s, ra);
4916 /* These are fused multiply-add, and must be done as one
4917 * floating point operation with no rounding between the
4918 * multiplication and addition steps.
4919 * NB that doing the negations here as separate steps is
4920 * correct : an input NaN should come out with its sign bit
4921 * flipped if it is a negated-input.
4923 if (o1 == true) {
4924 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4927 if (o0 != o1) {
4928 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4931 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4933 write_fp_dreg(s, rd, tcg_res);
4935 tcg_temp_free_ptr(fpst);
4936 tcg_temp_free_i64(tcg_op1);
4937 tcg_temp_free_i64(tcg_op2);
4938 tcg_temp_free_i64(tcg_op3);
4939 tcg_temp_free_i64(tcg_res);
4942 /* C3.6.27 Floating point data-processing (3 source)
4943 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4944 * +---+---+---+-----------+------+----+------+----+------+------+------+
4945 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4946 * +---+---+---+-----------+------+----+------+----+------+------+------+
4948 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4950 int type = extract32(insn, 22, 2);
4951 int rd = extract32(insn, 0, 5);
4952 int rn = extract32(insn, 5, 5);
4953 int ra = extract32(insn, 10, 5);
4954 int rm = extract32(insn, 16, 5);
4955 bool o0 = extract32(insn, 15, 1);
4956 bool o1 = extract32(insn, 21, 1);
4958 switch (type) {
4959 case 0:
4960 if (!fp_access_check(s)) {
4961 return;
4963 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4964 break;
4965 case 1:
4966 if (!fp_access_check(s)) {
4967 return;
4969 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4970 break;
4971 default:
4972 unallocated_encoding(s);
4976 /* C3.6.28 Floating point immediate
4977 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4978 * +---+---+---+-----------+------+---+------------+-------+------+------+
4979 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4980 * +---+---+---+-----------+------+---+------------+-------+------+------+
4982 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4984 int rd = extract32(insn, 0, 5);
4985 int imm8 = extract32(insn, 13, 8);
4986 int is_double = extract32(insn, 22, 2);
4987 uint64_t imm;
4988 TCGv_i64 tcg_res;
4990 if (is_double > 1) {
4991 unallocated_encoding(s);
4992 return;
4995 if (!fp_access_check(s)) {
4996 return;
4999 /* The imm8 encodes the sign bit, enough bits to represent
5000 * an exponent in the range 01....1xx to 10....0xx,
5001 * and the most significant 4 bits of the mantissa; see
5002 * VFPExpandImm() in the v8 ARM ARM.
5004 if (is_double) {
5005 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5006 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5007 extract32(imm8, 0, 6);
5008 imm <<= 48;
5009 } else {
5010 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5011 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5012 (extract32(imm8, 0, 6) << 3);
5013 imm <<= 16;
5016 tcg_res = tcg_const_i64(imm);
5017 write_fp_dreg(s, rd, tcg_res);
5018 tcg_temp_free_i64(tcg_res);
5021 /* Handle floating point <=> fixed point conversions. Note that we can
5022 * also deal with fp <=> integer conversions as a special case (scale == 64)
5023 * OPTME: consider handling that special case specially or at least skipping
5024 * the call to scalbn in the helpers for zero shifts.
5026 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5027 bool itof, int rmode, int scale, int sf, int type)
5029 bool is_signed = !(opcode & 1);
5030 bool is_double = type;
5031 TCGv_ptr tcg_fpstatus;
5032 TCGv_i32 tcg_shift;
5034 tcg_fpstatus = get_fpstatus_ptr();
5036 tcg_shift = tcg_const_i32(64 - scale);
5038 if (itof) {
5039 TCGv_i64 tcg_int = cpu_reg(s, rn);
5040 if (!sf) {
5041 TCGv_i64 tcg_extend = new_tmp_a64(s);
5043 if (is_signed) {
5044 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5045 } else {
5046 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5049 tcg_int = tcg_extend;
5052 if (is_double) {
5053 TCGv_i64 tcg_double = tcg_temp_new_i64();
5054 if (is_signed) {
5055 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5056 tcg_shift, tcg_fpstatus);
5057 } else {
5058 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5059 tcg_shift, tcg_fpstatus);
5061 write_fp_dreg(s, rd, tcg_double);
5062 tcg_temp_free_i64(tcg_double);
5063 } else {
5064 TCGv_i32 tcg_single = tcg_temp_new_i32();
5065 if (is_signed) {
5066 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5067 tcg_shift, tcg_fpstatus);
5068 } else {
5069 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5070 tcg_shift, tcg_fpstatus);
5072 write_fp_sreg(s, rd, tcg_single);
5073 tcg_temp_free_i32(tcg_single);
5075 } else {
5076 TCGv_i64 tcg_int = cpu_reg(s, rd);
5077 TCGv_i32 tcg_rmode;
5079 if (extract32(opcode, 2, 1)) {
5080 /* There are too many rounding modes to all fit into rmode,
5081 * so FCVTA[US] is a special case.
5083 rmode = FPROUNDING_TIEAWAY;
5086 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5088 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5090 if (is_double) {
5091 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5092 if (is_signed) {
5093 if (!sf) {
5094 gen_helper_vfp_tosld(tcg_int, tcg_double,
5095 tcg_shift, tcg_fpstatus);
5096 } else {
5097 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5098 tcg_shift, tcg_fpstatus);
5100 } else {
5101 if (!sf) {
5102 gen_helper_vfp_tould(tcg_int, tcg_double,
5103 tcg_shift, tcg_fpstatus);
5104 } else {
5105 gen_helper_vfp_touqd(tcg_int, tcg_double,
5106 tcg_shift, tcg_fpstatus);
5109 tcg_temp_free_i64(tcg_double);
5110 } else {
5111 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5112 if (sf) {
5113 if (is_signed) {
5114 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5115 tcg_shift, tcg_fpstatus);
5116 } else {
5117 gen_helper_vfp_touqs(tcg_int, tcg_single,
5118 tcg_shift, tcg_fpstatus);
5120 } else {
5121 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5122 if (is_signed) {
5123 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5124 tcg_shift, tcg_fpstatus);
5125 } else {
5126 gen_helper_vfp_touls(tcg_dest, tcg_single,
5127 tcg_shift, tcg_fpstatus);
5129 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5130 tcg_temp_free_i32(tcg_dest);
5132 tcg_temp_free_i32(tcg_single);
5135 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5136 tcg_temp_free_i32(tcg_rmode);
5138 if (!sf) {
5139 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5143 tcg_temp_free_ptr(tcg_fpstatus);
5144 tcg_temp_free_i32(tcg_shift);
5147 /* C3.6.29 Floating point <-> fixed point conversions
5148 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5149 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5150 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5151 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5153 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5155 int rd = extract32(insn, 0, 5);
5156 int rn = extract32(insn, 5, 5);
5157 int scale = extract32(insn, 10, 6);
5158 int opcode = extract32(insn, 16, 3);
5159 int rmode = extract32(insn, 19, 2);
5160 int type = extract32(insn, 22, 2);
5161 bool sbit = extract32(insn, 29, 1);
5162 bool sf = extract32(insn, 31, 1);
5163 bool itof;
5165 if (sbit || (type > 1)
5166 || (!sf && scale < 32)) {
5167 unallocated_encoding(s);
5168 return;
5171 switch ((rmode << 3) | opcode) {
5172 case 0x2: /* SCVTF */
5173 case 0x3: /* UCVTF */
5174 itof = true;
5175 break;
5176 case 0x18: /* FCVTZS */
5177 case 0x19: /* FCVTZU */
5178 itof = false;
5179 break;
5180 default:
5181 unallocated_encoding(s);
5182 return;
5185 if (!fp_access_check(s)) {
5186 return;
5189 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5192 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5194 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5195 * without conversion.
5198 if (itof) {
5199 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5201 switch (type) {
5202 case 0:
5204 /* 32 bit */
5205 TCGv_i64 tmp = tcg_temp_new_i64();
5206 tcg_gen_ext32u_i64(tmp, tcg_rn);
5207 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5208 tcg_gen_movi_i64(tmp, 0);
5209 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5210 tcg_temp_free_i64(tmp);
5211 break;
5213 case 1:
5215 /* 64 bit */
5216 TCGv_i64 tmp = tcg_const_i64(0);
5217 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5218 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5219 tcg_temp_free_i64(tmp);
5220 break;
5222 case 2:
5223 /* 64 bit to top half. */
5224 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5225 break;
5227 } else {
5228 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5230 switch (type) {
5231 case 0:
5232 /* 32 bit */
5233 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5234 break;
5235 case 1:
5236 /* 64 bit */
5237 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5238 break;
5239 case 2:
5240 /* 64 bits from top half */
5241 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5242 break;
5247 /* C3.6.30 Floating point <-> integer conversions
5248 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5249 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5250 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5251 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5253 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5255 int rd = extract32(insn, 0, 5);
5256 int rn = extract32(insn, 5, 5);
5257 int opcode = extract32(insn, 16, 3);
5258 int rmode = extract32(insn, 19, 2);
5259 int type = extract32(insn, 22, 2);
5260 bool sbit = extract32(insn, 29, 1);
5261 bool sf = extract32(insn, 31, 1);
5263 if (sbit) {
5264 unallocated_encoding(s);
5265 return;
5268 if (opcode > 5) {
5269 /* FMOV */
5270 bool itof = opcode & 1;
5272 if (rmode >= 2) {
5273 unallocated_encoding(s);
5274 return;
5277 switch (sf << 3 | type << 1 | rmode) {
5278 case 0x0: /* 32 bit */
5279 case 0xa: /* 64 bit */
5280 case 0xd: /* 64 bit to top half of quad */
5281 break;
5282 default:
5283 /* all other sf/type/rmode combinations are invalid */
5284 unallocated_encoding(s);
5285 break;
5288 if (!fp_access_check(s)) {
5289 return;
5291 handle_fmov(s, rd, rn, type, itof);
5292 } else {
5293 /* actual FP conversions */
5294 bool itof = extract32(opcode, 1, 1);
5296 if (type > 1 || (rmode != 0 && opcode > 1)) {
5297 unallocated_encoding(s);
5298 return;
5301 if (!fp_access_check(s)) {
5302 return;
5304 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5308 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5309 * 31 30 29 28 25 24 0
5310 * +---+---+---+---------+-----------------------------+
5311 * | | 0 | | 1 1 1 1 | |
5312 * +---+---+---+---------+-----------------------------+
5314 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5316 if (extract32(insn, 24, 1)) {
5317 /* Floating point data-processing (3 source) */
5318 disas_fp_3src(s, insn);
5319 } else if (extract32(insn, 21, 1) == 0) {
5320 /* Floating point to fixed point conversions */
5321 disas_fp_fixed_conv(s, insn);
5322 } else {
5323 switch (extract32(insn, 10, 2)) {
5324 case 1:
5325 /* Floating point conditional compare */
5326 disas_fp_ccomp(s, insn);
5327 break;
5328 case 2:
5329 /* Floating point data-processing (2 source) */
5330 disas_fp_2src(s, insn);
5331 break;
5332 case 3:
5333 /* Floating point conditional select */
5334 disas_fp_csel(s, insn);
5335 break;
5336 case 0:
5337 switch (ctz32(extract32(insn, 12, 4))) {
5338 case 0: /* [15:12] == xxx1 */
5339 /* Floating point immediate */
5340 disas_fp_imm(s, insn);
5341 break;
5342 case 1: /* [15:12] == xx10 */
5343 /* Floating point compare */
5344 disas_fp_compare(s, insn);
5345 break;
5346 case 2: /* [15:12] == x100 */
5347 /* Floating point data-processing (1 source) */
5348 disas_fp_1src(s, insn);
5349 break;
5350 case 3: /* [15:12] == 1000 */
5351 unallocated_encoding(s);
5352 break;
5353 default: /* [15:12] == 0000 */
5354 /* Floating point <-> integer conversions */
5355 disas_fp_int_conv(s, insn);
5356 break;
5358 break;
5363 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5364 int pos)
5366 /* Extract 64 bits from the middle of two concatenated 64 bit
5367 * vector register slices left:right. The extracted bits start
5368 * at 'pos' bits into the right (least significant) side.
5369 * We return the result in tcg_right, and guarantee not to
5370 * trash tcg_left.
5372 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5373 assert(pos > 0 && pos < 64);
5375 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5376 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5377 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5379 tcg_temp_free_i64(tcg_tmp);
5382 /* C3.6.1 EXT
5383 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5384 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5385 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5386 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5388 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5390 int is_q = extract32(insn, 30, 1);
5391 int op2 = extract32(insn, 22, 2);
5392 int imm4 = extract32(insn, 11, 4);
5393 int rm = extract32(insn, 16, 5);
5394 int rn = extract32(insn, 5, 5);
5395 int rd = extract32(insn, 0, 5);
5396 int pos = imm4 << 3;
5397 TCGv_i64 tcg_resl, tcg_resh;
5399 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5400 unallocated_encoding(s);
5401 return;
5404 if (!fp_access_check(s)) {
5405 return;
5408 tcg_resh = tcg_temp_new_i64();
5409 tcg_resl = tcg_temp_new_i64();
5411 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5412 * either extracting 128 bits from a 128:128 concatenation, or
5413 * extracting 64 bits from a 64:64 concatenation.
5415 if (!is_q) {
5416 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5417 if (pos != 0) {
5418 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5419 do_ext64(s, tcg_resh, tcg_resl, pos);
5421 tcg_gen_movi_i64(tcg_resh, 0);
5422 } else {
5423 TCGv_i64 tcg_hh;
5424 typedef struct {
5425 int reg;
5426 int elt;
5427 } EltPosns;
5428 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5429 EltPosns *elt = eltposns;
5431 if (pos >= 64) {
5432 elt++;
5433 pos -= 64;
5436 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5437 elt++;
5438 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5439 elt++;
5440 if (pos != 0) {
5441 do_ext64(s, tcg_resh, tcg_resl, pos);
5442 tcg_hh = tcg_temp_new_i64();
5443 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5444 do_ext64(s, tcg_hh, tcg_resh, pos);
5445 tcg_temp_free_i64(tcg_hh);
5449 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5450 tcg_temp_free_i64(tcg_resl);
5451 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5452 tcg_temp_free_i64(tcg_resh);
5455 /* C3.6.2 TBL/TBX
5456 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5457 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5458 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5459 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5461 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5463 int op2 = extract32(insn, 22, 2);
5464 int is_q = extract32(insn, 30, 1);
5465 int rm = extract32(insn, 16, 5);
5466 int rn = extract32(insn, 5, 5);
5467 int rd = extract32(insn, 0, 5);
5468 int is_tblx = extract32(insn, 12, 1);
5469 int len = extract32(insn, 13, 2);
5470 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5471 TCGv_i32 tcg_regno, tcg_numregs;
5473 if (op2 != 0) {
5474 unallocated_encoding(s);
5475 return;
5478 if (!fp_access_check(s)) {
5479 return;
5482 /* This does a table lookup: for every byte element in the input
5483 * we index into a table formed from up to four vector registers,
5484 * and then the output is the result of the lookups. Our helper
5485 * function does the lookup operation for a single 64 bit part of
5486 * the input.
5488 tcg_resl = tcg_temp_new_i64();
5489 tcg_resh = tcg_temp_new_i64();
5491 if (is_tblx) {
5492 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5493 } else {
5494 tcg_gen_movi_i64(tcg_resl, 0);
5496 if (is_tblx && is_q) {
5497 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5498 } else {
5499 tcg_gen_movi_i64(tcg_resh, 0);
5502 tcg_idx = tcg_temp_new_i64();
5503 tcg_regno = tcg_const_i32(rn);
5504 tcg_numregs = tcg_const_i32(len + 1);
5505 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5506 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5507 tcg_regno, tcg_numregs);
5508 if (is_q) {
5509 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5510 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5511 tcg_regno, tcg_numregs);
5513 tcg_temp_free_i64(tcg_idx);
5514 tcg_temp_free_i32(tcg_regno);
5515 tcg_temp_free_i32(tcg_numregs);
5517 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5518 tcg_temp_free_i64(tcg_resl);
5519 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5520 tcg_temp_free_i64(tcg_resh);
5523 /* C3.6.3 ZIP/UZP/TRN
5524 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5525 * +---+---+-------------+------+---+------+---+------------------+------+
5526 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5527 * +---+---+-------------+------+---+------+---+------------------+------+
5529 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5531 int rd = extract32(insn, 0, 5);
5532 int rn = extract32(insn, 5, 5);
5533 int rm = extract32(insn, 16, 5);
5534 int size = extract32(insn, 22, 2);
5535 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5536 * bit 2 indicates 1 vs 2 variant of the insn.
5538 int opcode = extract32(insn, 12, 2);
5539 bool part = extract32(insn, 14, 1);
5540 bool is_q = extract32(insn, 30, 1);
5541 int esize = 8 << size;
5542 int i, ofs;
5543 int datasize = is_q ? 128 : 64;
5544 int elements = datasize / esize;
5545 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5547 if (opcode == 0 || (size == 3 && !is_q)) {
5548 unallocated_encoding(s);
5549 return;
5552 if (!fp_access_check(s)) {
5553 return;
5556 tcg_resl = tcg_const_i64(0);
5557 tcg_resh = tcg_const_i64(0);
5558 tcg_res = tcg_temp_new_i64();
5560 for (i = 0; i < elements; i++) {
5561 switch (opcode) {
5562 case 1: /* UZP1/2 */
5564 int midpoint = elements / 2;
5565 if (i < midpoint) {
5566 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5567 } else {
5568 read_vec_element(s, tcg_res, rm,
5569 2 * (i - midpoint) + part, size);
5571 break;
5573 case 2: /* TRN1/2 */
5574 if (i & 1) {
5575 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5576 } else {
5577 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5579 break;
5580 case 3: /* ZIP1/2 */
5582 int base = part * elements / 2;
5583 if (i & 1) {
5584 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5585 } else {
5586 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5588 break;
5590 default:
5591 g_assert_not_reached();
5594 ofs = i * esize;
5595 if (ofs < 64) {
5596 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5597 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5598 } else {
5599 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5600 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5604 tcg_temp_free_i64(tcg_res);
5606 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5607 tcg_temp_free_i64(tcg_resl);
5608 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5609 tcg_temp_free_i64(tcg_resh);
5612 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5613 int opc, bool is_min, TCGv_ptr fpst)
5615 /* Helper function for disas_simd_across_lanes: do a single precision
5616 * min/max operation on the specified two inputs,
5617 * and return the result in tcg_elt1.
5619 if (opc == 0xc) {
5620 if (is_min) {
5621 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5622 } else {
5623 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5625 } else {
5626 assert(opc == 0xf);
5627 if (is_min) {
5628 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5629 } else {
5630 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5635 /* C3.6.4 AdvSIMD across lanes
5636 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5637 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5638 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5639 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5641 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5643 int rd = extract32(insn, 0, 5);
5644 int rn = extract32(insn, 5, 5);
5645 int size = extract32(insn, 22, 2);
5646 int opcode = extract32(insn, 12, 5);
5647 bool is_q = extract32(insn, 30, 1);
5648 bool is_u = extract32(insn, 29, 1);
5649 bool is_fp = false;
5650 bool is_min = false;
5651 int esize;
5652 int elements;
5653 int i;
5654 TCGv_i64 tcg_res, tcg_elt;
5656 switch (opcode) {
5657 case 0x1b: /* ADDV */
5658 if (is_u) {
5659 unallocated_encoding(s);
5660 return;
5662 /* fall through */
5663 case 0x3: /* SADDLV, UADDLV */
5664 case 0xa: /* SMAXV, UMAXV */
5665 case 0x1a: /* SMINV, UMINV */
5666 if (size == 3 || (size == 2 && !is_q)) {
5667 unallocated_encoding(s);
5668 return;
5670 break;
5671 case 0xc: /* FMAXNMV, FMINNMV */
5672 case 0xf: /* FMAXV, FMINV */
5673 if (!is_u || !is_q || extract32(size, 0, 1)) {
5674 unallocated_encoding(s);
5675 return;
5677 /* Bit 1 of size field encodes min vs max, and actual size is always
5678 * 32 bits: adjust the size variable so following code can rely on it
5680 is_min = extract32(size, 1, 1);
5681 is_fp = true;
5682 size = 2;
5683 break;
5684 default:
5685 unallocated_encoding(s);
5686 return;
5689 if (!fp_access_check(s)) {
5690 return;
5693 esize = 8 << size;
5694 elements = (is_q ? 128 : 64) / esize;
5696 tcg_res = tcg_temp_new_i64();
5697 tcg_elt = tcg_temp_new_i64();
5699 /* These instructions operate across all lanes of a vector
5700 * to produce a single result. We can guarantee that a 64
5701 * bit intermediate is sufficient:
5702 * + for [US]ADDLV the maximum element size is 32 bits, and
5703 * the result type is 64 bits
5704 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5705 * same as the element size, which is 32 bits at most
5706 * For the integer operations we can choose to work at 64
5707 * or 32 bits and truncate at the end; for simplicity
5708 * we use 64 bits always. The floating point
5709 * ops do require 32 bit intermediates, though.
5711 if (!is_fp) {
5712 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5714 for (i = 1; i < elements; i++) {
5715 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5717 switch (opcode) {
5718 case 0x03: /* SADDLV / UADDLV */
5719 case 0x1b: /* ADDV */
5720 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5721 break;
5722 case 0x0a: /* SMAXV / UMAXV */
5723 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5724 tcg_res,
5725 tcg_res, tcg_elt, tcg_res, tcg_elt);
5726 break;
5727 case 0x1a: /* SMINV / UMINV */
5728 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5729 tcg_res,
5730 tcg_res, tcg_elt, tcg_res, tcg_elt);
5731 break;
5732 break;
5733 default:
5734 g_assert_not_reached();
5738 } else {
5739 /* Floating point ops which work on 32 bit (single) intermediates.
5740 * Note that correct NaN propagation requires that we do these
5741 * operations in exactly the order specified by the pseudocode.
5743 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5744 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5745 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5746 TCGv_ptr fpst = get_fpstatus_ptr();
5748 assert(esize == 32);
5749 assert(elements == 4);
5751 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5752 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5753 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5754 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5756 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5758 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5759 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5760 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5761 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5763 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5765 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5767 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5768 tcg_temp_free_i32(tcg_elt1);
5769 tcg_temp_free_i32(tcg_elt2);
5770 tcg_temp_free_i32(tcg_elt3);
5771 tcg_temp_free_ptr(fpst);
5774 tcg_temp_free_i64(tcg_elt);
5776 /* Now truncate the result to the width required for the final output */
5777 if (opcode == 0x03) {
5778 /* SADDLV, UADDLV: result is 2*esize */
5779 size++;
5782 switch (size) {
5783 case 0:
5784 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5785 break;
5786 case 1:
5787 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5788 break;
5789 case 2:
5790 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5791 break;
5792 case 3:
5793 break;
5794 default:
5795 g_assert_not_reached();
5798 write_fp_dreg(s, rd, tcg_res);
5799 tcg_temp_free_i64(tcg_res);
5802 /* C6.3.31 DUP (Element, Vector)
5804 * 31 30 29 21 20 16 15 10 9 5 4 0
5805 * +---+---+-------------------+--------+-------------+------+------+
5806 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5807 * +---+---+-------------------+--------+-------------+------+------+
5809 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5811 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5812 int imm5)
5814 int size = ctz32(imm5);
5815 int esize = 8 << size;
5816 int elements = (is_q ? 128 : 64) / esize;
5817 int index, i;
5818 TCGv_i64 tmp;
5820 if (size > 3 || (size == 3 && !is_q)) {
5821 unallocated_encoding(s);
5822 return;
5825 if (!fp_access_check(s)) {
5826 return;
5829 index = imm5 >> (size + 1);
5831 tmp = tcg_temp_new_i64();
5832 read_vec_element(s, tmp, rn, index, size);
5834 for (i = 0; i < elements; i++) {
5835 write_vec_element(s, tmp, rd, i, size);
5838 if (!is_q) {
5839 clear_vec_high(s, rd);
5842 tcg_temp_free_i64(tmp);
5845 /* C6.3.31 DUP (element, scalar)
5846 * 31 21 20 16 15 10 9 5 4 0
5847 * +-----------------------+--------+-------------+------+------+
5848 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5849 * +-----------------------+--------+-------------+------+------+
5851 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5852 int imm5)
5854 int size = ctz32(imm5);
5855 int index;
5856 TCGv_i64 tmp;
5858 if (size > 3) {
5859 unallocated_encoding(s);
5860 return;
5863 if (!fp_access_check(s)) {
5864 return;
5867 index = imm5 >> (size + 1);
5869 /* This instruction just extracts the specified element and
5870 * zero-extends it into the bottom of the destination register.
5872 tmp = tcg_temp_new_i64();
5873 read_vec_element(s, tmp, rn, index, size);
5874 write_fp_dreg(s, rd, tmp);
5875 tcg_temp_free_i64(tmp);
5878 /* C6.3.32 DUP (General)
5880 * 31 30 29 21 20 16 15 10 9 5 4 0
5881 * +---+---+-------------------+--------+-------------+------+------+
5882 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5883 * +---+---+-------------------+--------+-------------+------+------+
5885 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5887 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5888 int imm5)
5890 int size = ctz32(imm5);
5891 int esize = 8 << size;
5892 int elements = (is_q ? 128 : 64)/esize;
5893 int i = 0;
5895 if (size > 3 || ((size == 3) && !is_q)) {
5896 unallocated_encoding(s);
5897 return;
5900 if (!fp_access_check(s)) {
5901 return;
5904 for (i = 0; i < elements; i++) {
5905 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5907 if (!is_q) {
5908 clear_vec_high(s, rd);
5912 /* C6.3.150 INS (Element)
5914 * 31 21 20 16 15 14 11 10 9 5 4 0
5915 * +-----------------------+--------+------------+---+------+------+
5916 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5917 * +-----------------------+--------+------------+---+------+------+
5919 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5920 * index: encoded in imm5<4:size+1>
5922 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5923 int imm4, int imm5)
5925 int size = ctz32(imm5);
5926 int src_index, dst_index;
5927 TCGv_i64 tmp;
5929 if (size > 3) {
5930 unallocated_encoding(s);
5931 return;
5934 if (!fp_access_check(s)) {
5935 return;
5938 dst_index = extract32(imm5, 1+size, 5);
5939 src_index = extract32(imm4, size, 4);
5941 tmp = tcg_temp_new_i64();
5943 read_vec_element(s, tmp, rn, src_index, size);
5944 write_vec_element(s, tmp, rd, dst_index, size);
5946 tcg_temp_free_i64(tmp);
5950 /* C6.3.151 INS (General)
5952 * 31 21 20 16 15 10 9 5 4 0
5953 * +-----------------------+--------+-------------+------+------+
5954 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5955 * +-----------------------+--------+-------------+------+------+
5957 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5958 * index: encoded in imm5<4:size+1>
5960 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5962 int size = ctz32(imm5);
5963 int idx;
5965 if (size > 3) {
5966 unallocated_encoding(s);
5967 return;
5970 if (!fp_access_check(s)) {
5971 return;
5974 idx = extract32(imm5, 1 + size, 4 - size);
5975 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5979 * C6.3.321 UMOV (General)
5980 * C6.3.237 SMOV (General)
5982 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5983 * +---+---+-------------------+--------+-------------+------+------+
5984 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5985 * +---+---+-------------------+--------+-------------+------+------+
5987 * U: unsigned when set
5988 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5990 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5991 int rn, int rd, int imm5)
5993 int size = ctz32(imm5);
5994 int element;
5995 TCGv_i64 tcg_rd;
5997 /* Check for UnallocatedEncodings */
5998 if (is_signed) {
5999 if (size > 2 || (size == 2 && !is_q)) {
6000 unallocated_encoding(s);
6001 return;
6003 } else {
6004 if (size > 3
6005 || (size < 3 && is_q)
6006 || (size == 3 && !is_q)) {
6007 unallocated_encoding(s);
6008 return;
6012 if (!fp_access_check(s)) {
6013 return;
6016 element = extract32(imm5, 1+size, 4);
6018 tcg_rd = cpu_reg(s, rd);
6019 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6020 if (is_signed && !is_q) {
6021 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6025 /* C3.6.5 AdvSIMD copy
6026 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6027 * +---+---+----+-----------------+------+---+------+---+------+------+
6028 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6029 * +---+---+----+-----------------+------+---+------+---+------+------+
6031 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6033 int rd = extract32(insn, 0, 5);
6034 int rn = extract32(insn, 5, 5);
6035 int imm4 = extract32(insn, 11, 4);
6036 int op = extract32(insn, 29, 1);
6037 int is_q = extract32(insn, 30, 1);
6038 int imm5 = extract32(insn, 16, 5);
6040 if (op) {
6041 if (is_q) {
6042 /* INS (element) */
6043 handle_simd_inse(s, rd, rn, imm4, imm5);
6044 } else {
6045 unallocated_encoding(s);
6047 } else {
6048 switch (imm4) {
6049 case 0:
6050 /* DUP (element - vector) */
6051 handle_simd_dupe(s, is_q, rd, rn, imm5);
6052 break;
6053 case 1:
6054 /* DUP (general) */
6055 handle_simd_dupg(s, is_q, rd, rn, imm5);
6056 break;
6057 case 3:
6058 if (is_q) {
6059 /* INS (general) */
6060 handle_simd_insg(s, rd, rn, imm5);
6061 } else {
6062 unallocated_encoding(s);
6064 break;
6065 case 5:
6066 case 7:
6067 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6068 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6069 break;
6070 default:
6071 unallocated_encoding(s);
6072 break;
6077 /* C3.6.6 AdvSIMD modified immediate
6078 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6079 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6080 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6081 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6083 * There are a number of operations that can be carried out here:
6084 * MOVI - move (shifted) imm into register
6085 * MVNI - move inverted (shifted) imm into register
6086 * ORR - bitwise OR of (shifted) imm with register
6087 * BIC - bitwise clear of (shifted) imm with register
6089 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6091 int rd = extract32(insn, 0, 5);
6092 int cmode = extract32(insn, 12, 4);
6093 int cmode_3_1 = extract32(cmode, 1, 3);
6094 int cmode_0 = extract32(cmode, 0, 1);
6095 int o2 = extract32(insn, 11, 1);
6096 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6097 bool is_neg = extract32(insn, 29, 1);
6098 bool is_q = extract32(insn, 30, 1);
6099 uint64_t imm = 0;
6100 TCGv_i64 tcg_rd, tcg_imm;
6101 int i;
6103 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6104 unallocated_encoding(s);
6105 return;
6108 if (!fp_access_check(s)) {
6109 return;
6112 /* See AdvSIMDExpandImm() in ARM ARM */
6113 switch (cmode_3_1) {
6114 case 0: /* Replicate(Zeros(24):imm8, 2) */
6115 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6116 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6117 case 3: /* Replicate(imm8:Zeros(24), 2) */
6119 int shift = cmode_3_1 * 8;
6120 imm = bitfield_replicate(abcdefgh << shift, 32);
6121 break;
6123 case 4: /* Replicate(Zeros(8):imm8, 4) */
6124 case 5: /* Replicate(imm8:Zeros(8), 4) */
6126 int shift = (cmode_3_1 & 0x1) * 8;
6127 imm = bitfield_replicate(abcdefgh << shift, 16);
6128 break;
6130 case 6:
6131 if (cmode_0) {
6132 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6133 imm = (abcdefgh << 16) | 0xffff;
6134 } else {
6135 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6136 imm = (abcdefgh << 8) | 0xff;
6138 imm = bitfield_replicate(imm, 32);
6139 break;
6140 case 7:
6141 if (!cmode_0 && !is_neg) {
6142 imm = bitfield_replicate(abcdefgh, 8);
6143 } else if (!cmode_0 && is_neg) {
6144 int i;
6145 imm = 0;
6146 for (i = 0; i < 8; i++) {
6147 if ((abcdefgh) & (1 << i)) {
6148 imm |= 0xffULL << (i * 8);
6151 } else if (cmode_0) {
6152 if (is_neg) {
6153 imm = (abcdefgh & 0x3f) << 48;
6154 if (abcdefgh & 0x80) {
6155 imm |= 0x8000000000000000ULL;
6157 if (abcdefgh & 0x40) {
6158 imm |= 0x3fc0000000000000ULL;
6159 } else {
6160 imm |= 0x4000000000000000ULL;
6162 } else {
6163 imm = (abcdefgh & 0x3f) << 19;
6164 if (abcdefgh & 0x80) {
6165 imm |= 0x80000000;
6167 if (abcdefgh & 0x40) {
6168 imm |= 0x3e000000;
6169 } else {
6170 imm |= 0x40000000;
6172 imm |= (imm << 32);
6175 break;
6178 if (cmode_3_1 != 7 && is_neg) {
6179 imm = ~imm;
6182 tcg_imm = tcg_const_i64(imm);
6183 tcg_rd = new_tmp_a64(s);
6185 for (i = 0; i < 2; i++) {
6186 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6188 if (i == 1 && !is_q) {
6189 /* non-quad ops clear high half of vector */
6190 tcg_gen_movi_i64(tcg_rd, 0);
6191 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6192 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6193 if (is_neg) {
6194 /* AND (BIC) */
6195 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6196 } else {
6197 /* ORR */
6198 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6200 } else {
6201 /* MOVI */
6202 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6204 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6207 tcg_temp_free_i64(tcg_imm);
6210 /* C3.6.7 AdvSIMD scalar copy
6211 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6212 * +-----+----+-----------------+------+---+------+---+------+------+
6213 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6214 * +-----+----+-----------------+------+---+------+---+------+------+
6216 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6218 int rd = extract32(insn, 0, 5);
6219 int rn = extract32(insn, 5, 5);
6220 int imm4 = extract32(insn, 11, 4);
6221 int imm5 = extract32(insn, 16, 5);
6222 int op = extract32(insn, 29, 1);
6224 if (op != 0 || imm4 != 0) {
6225 unallocated_encoding(s);
6226 return;
6229 /* DUP (element, scalar) */
6230 handle_simd_dupes(s, rd, rn, imm5);
6233 /* C3.6.8 AdvSIMD scalar pairwise
6234 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6235 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6236 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6237 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6239 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6241 int u = extract32(insn, 29, 1);
6242 int size = extract32(insn, 22, 2);
6243 int opcode = extract32(insn, 12, 5);
6244 int rn = extract32(insn, 5, 5);
6245 int rd = extract32(insn, 0, 5);
6246 TCGv_ptr fpst;
6248 /* For some ops (the FP ones), size[1] is part of the encoding.
6249 * For ADDP strictly it is not but size[1] is always 1 for valid
6250 * encodings.
6252 opcode |= (extract32(size, 1, 1) << 5);
6254 switch (opcode) {
6255 case 0x3b: /* ADDP */
6256 if (u || size != 3) {
6257 unallocated_encoding(s);
6258 return;
6260 if (!fp_access_check(s)) {
6261 return;
6264 TCGV_UNUSED_PTR(fpst);
6265 break;
6266 case 0xc: /* FMAXNMP */
6267 case 0xd: /* FADDP */
6268 case 0xf: /* FMAXP */
6269 case 0x2c: /* FMINNMP */
6270 case 0x2f: /* FMINP */
6271 /* FP op, size[0] is 32 or 64 bit */
6272 if (!u) {
6273 unallocated_encoding(s);
6274 return;
6276 if (!fp_access_check(s)) {
6277 return;
6280 size = extract32(size, 0, 1) ? 3 : 2;
6281 fpst = get_fpstatus_ptr();
6282 break;
6283 default:
6284 unallocated_encoding(s);
6285 return;
6288 if (size == 3) {
6289 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6290 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6291 TCGv_i64 tcg_res = tcg_temp_new_i64();
6293 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6294 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6296 switch (opcode) {
6297 case 0x3b: /* ADDP */
6298 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6299 break;
6300 case 0xc: /* FMAXNMP */
6301 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6302 break;
6303 case 0xd: /* FADDP */
6304 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6305 break;
6306 case 0xf: /* FMAXP */
6307 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6308 break;
6309 case 0x2c: /* FMINNMP */
6310 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6311 break;
6312 case 0x2f: /* FMINP */
6313 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6314 break;
6315 default:
6316 g_assert_not_reached();
6319 write_fp_dreg(s, rd, tcg_res);
6321 tcg_temp_free_i64(tcg_op1);
6322 tcg_temp_free_i64(tcg_op2);
6323 tcg_temp_free_i64(tcg_res);
6324 } else {
6325 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6326 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6327 TCGv_i32 tcg_res = tcg_temp_new_i32();
6329 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6330 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6332 switch (opcode) {
6333 case 0xc: /* FMAXNMP */
6334 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6335 break;
6336 case 0xd: /* FADDP */
6337 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6338 break;
6339 case 0xf: /* FMAXP */
6340 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6341 break;
6342 case 0x2c: /* FMINNMP */
6343 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6344 break;
6345 case 0x2f: /* FMINP */
6346 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6347 break;
6348 default:
6349 g_assert_not_reached();
6352 write_fp_sreg(s, rd, tcg_res);
6354 tcg_temp_free_i32(tcg_op1);
6355 tcg_temp_free_i32(tcg_op2);
6356 tcg_temp_free_i32(tcg_res);
6359 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6360 tcg_temp_free_ptr(fpst);
6365 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6367 * This code is handles the common shifting code and is used by both
6368 * the vector and scalar code.
6370 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6371 TCGv_i64 tcg_rnd, bool accumulate,
6372 bool is_u, int size, int shift)
6374 bool extended_result = false;
6375 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6376 int ext_lshift = 0;
6377 TCGv_i64 tcg_src_hi;
6379 if (round && size == 3) {
6380 extended_result = true;
6381 ext_lshift = 64 - shift;
6382 tcg_src_hi = tcg_temp_new_i64();
6383 } else if (shift == 64) {
6384 if (!accumulate && is_u) {
6385 /* result is zero */
6386 tcg_gen_movi_i64(tcg_res, 0);
6387 return;
6391 /* Deal with the rounding step */
6392 if (round) {
6393 if (extended_result) {
6394 TCGv_i64 tcg_zero = tcg_const_i64(0);
6395 if (!is_u) {
6396 /* take care of sign extending tcg_res */
6397 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6398 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6399 tcg_src, tcg_src_hi,
6400 tcg_rnd, tcg_zero);
6401 } else {
6402 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6403 tcg_src, tcg_zero,
6404 tcg_rnd, tcg_zero);
6406 tcg_temp_free_i64(tcg_zero);
6407 } else {
6408 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6412 /* Now do the shift right */
6413 if (round && extended_result) {
6414 /* extended case, >64 bit precision required */
6415 if (ext_lshift == 0) {
6416 /* special case, only high bits matter */
6417 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6418 } else {
6419 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6420 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6421 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6423 } else {
6424 if (is_u) {
6425 if (shift == 64) {
6426 /* essentially shifting in 64 zeros */
6427 tcg_gen_movi_i64(tcg_src, 0);
6428 } else {
6429 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6431 } else {
6432 if (shift == 64) {
6433 /* effectively extending the sign-bit */
6434 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6435 } else {
6436 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6441 if (accumulate) {
6442 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6443 } else {
6444 tcg_gen_mov_i64(tcg_res, tcg_src);
6447 if (extended_result) {
6448 tcg_temp_free_i64(tcg_src_hi);
6452 /* Common SHL/SLI - Shift left with an optional insert */
6453 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6454 bool insert, int shift)
6456 if (insert) { /* SLI */
6457 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6458 } else { /* SHL */
6459 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6463 /* SRI: shift right with insert */
6464 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6465 int size, int shift)
6467 int esize = 8 << size;
6469 /* shift count same as element size is valid but does nothing;
6470 * special case to avoid potential shift by 64.
6472 if (shift != esize) {
6473 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6474 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6478 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6479 static void handle_scalar_simd_shri(DisasContext *s,
6480 bool is_u, int immh, int immb,
6481 int opcode, int rn, int rd)
6483 const int size = 3;
6484 int immhb = immh << 3 | immb;
6485 int shift = 2 * (8 << size) - immhb;
6486 bool accumulate = false;
6487 bool round = false;
6488 bool insert = false;
6489 TCGv_i64 tcg_rn;
6490 TCGv_i64 tcg_rd;
6491 TCGv_i64 tcg_round;
6493 if (!extract32(immh, 3, 1)) {
6494 unallocated_encoding(s);
6495 return;
6498 if (!fp_access_check(s)) {
6499 return;
6502 switch (opcode) {
6503 case 0x02: /* SSRA / USRA (accumulate) */
6504 accumulate = true;
6505 break;
6506 case 0x04: /* SRSHR / URSHR (rounding) */
6507 round = true;
6508 break;
6509 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6510 accumulate = round = true;
6511 break;
6512 case 0x08: /* SRI */
6513 insert = true;
6514 break;
6517 if (round) {
6518 uint64_t round_const = 1ULL << (shift - 1);
6519 tcg_round = tcg_const_i64(round_const);
6520 } else {
6521 TCGV_UNUSED_I64(tcg_round);
6524 tcg_rn = read_fp_dreg(s, rn);
6525 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6527 if (insert) {
6528 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6529 } else {
6530 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6531 accumulate, is_u, size, shift);
6534 write_fp_dreg(s, rd, tcg_rd);
6536 tcg_temp_free_i64(tcg_rn);
6537 tcg_temp_free_i64(tcg_rd);
6538 if (round) {
6539 tcg_temp_free_i64(tcg_round);
6543 /* SHL/SLI - Scalar shift left */
6544 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6545 int immh, int immb, int opcode,
6546 int rn, int rd)
6548 int size = 32 - clz32(immh) - 1;
6549 int immhb = immh << 3 | immb;
6550 int shift = immhb - (8 << size);
6551 TCGv_i64 tcg_rn = new_tmp_a64(s);
6552 TCGv_i64 tcg_rd = new_tmp_a64(s);
6554 if (!extract32(immh, 3, 1)) {
6555 unallocated_encoding(s);
6556 return;
6559 if (!fp_access_check(s)) {
6560 return;
6563 tcg_rn = read_fp_dreg(s, rn);
6564 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6566 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6568 write_fp_dreg(s, rd, tcg_rd);
6570 tcg_temp_free_i64(tcg_rn);
6571 tcg_temp_free_i64(tcg_rd);
6574 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6575 * (signed/unsigned) narrowing */
6576 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6577 bool is_u_shift, bool is_u_narrow,
6578 int immh, int immb, int opcode,
6579 int rn, int rd)
6581 int immhb = immh << 3 | immb;
6582 int size = 32 - clz32(immh) - 1;
6583 int esize = 8 << size;
6584 int shift = (2 * esize) - immhb;
6585 int elements = is_scalar ? 1 : (64 / esize);
6586 bool round = extract32(opcode, 0, 1);
6587 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6588 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6589 TCGv_i32 tcg_rd_narrowed;
6590 TCGv_i64 tcg_final;
6592 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6593 { gen_helper_neon_narrow_sat_s8,
6594 gen_helper_neon_unarrow_sat8 },
6595 { gen_helper_neon_narrow_sat_s16,
6596 gen_helper_neon_unarrow_sat16 },
6597 { gen_helper_neon_narrow_sat_s32,
6598 gen_helper_neon_unarrow_sat32 },
6599 { NULL, NULL },
6601 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6602 gen_helper_neon_narrow_sat_u8,
6603 gen_helper_neon_narrow_sat_u16,
6604 gen_helper_neon_narrow_sat_u32,
6605 NULL
6607 NeonGenNarrowEnvFn *narrowfn;
6609 int i;
6611 assert(size < 4);
6613 if (extract32(immh, 3, 1)) {
6614 unallocated_encoding(s);
6615 return;
6618 if (!fp_access_check(s)) {
6619 return;
6622 if (is_u_shift) {
6623 narrowfn = unsigned_narrow_fns[size];
6624 } else {
6625 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6628 tcg_rn = tcg_temp_new_i64();
6629 tcg_rd = tcg_temp_new_i64();
6630 tcg_rd_narrowed = tcg_temp_new_i32();
6631 tcg_final = tcg_const_i64(0);
6633 if (round) {
6634 uint64_t round_const = 1ULL << (shift - 1);
6635 tcg_round = tcg_const_i64(round_const);
6636 } else {
6637 TCGV_UNUSED_I64(tcg_round);
6640 for (i = 0; i < elements; i++) {
6641 read_vec_element(s, tcg_rn, rn, i, ldop);
6642 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6643 false, is_u_shift, size+1, shift);
6644 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6645 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6646 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6649 if (!is_q) {
6650 clear_vec_high(s, rd);
6651 write_vec_element(s, tcg_final, rd, 0, MO_64);
6652 } else {
6653 write_vec_element(s, tcg_final, rd, 1, MO_64);
6656 if (round) {
6657 tcg_temp_free_i64(tcg_round);
6659 tcg_temp_free_i64(tcg_rn);
6660 tcg_temp_free_i64(tcg_rd);
6661 tcg_temp_free_i32(tcg_rd_narrowed);
6662 tcg_temp_free_i64(tcg_final);
6663 return;
6666 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6667 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6668 bool src_unsigned, bool dst_unsigned,
6669 int immh, int immb, int rn, int rd)
6671 int immhb = immh << 3 | immb;
6672 int size = 32 - clz32(immh) - 1;
6673 int shift = immhb - (8 << size);
6674 int pass;
6676 assert(immh != 0);
6677 assert(!(scalar && is_q));
6679 if (!scalar) {
6680 if (!is_q && extract32(immh, 3, 1)) {
6681 unallocated_encoding(s);
6682 return;
6685 /* Since we use the variable-shift helpers we must
6686 * replicate the shift count into each element of
6687 * the tcg_shift value.
6689 switch (size) {
6690 case 0:
6691 shift |= shift << 8;
6692 /* fall through */
6693 case 1:
6694 shift |= shift << 16;
6695 break;
6696 case 2:
6697 case 3:
6698 break;
6699 default:
6700 g_assert_not_reached();
6704 if (!fp_access_check(s)) {
6705 return;
6708 if (size == 3) {
6709 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6710 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6711 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6712 { NULL, gen_helper_neon_qshl_u64 },
6714 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6715 int maxpass = is_q ? 2 : 1;
6717 for (pass = 0; pass < maxpass; pass++) {
6718 TCGv_i64 tcg_op = tcg_temp_new_i64();
6720 read_vec_element(s, tcg_op, rn, pass, MO_64);
6721 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6722 write_vec_element(s, tcg_op, rd, pass, MO_64);
6724 tcg_temp_free_i64(tcg_op);
6726 tcg_temp_free_i64(tcg_shift);
6728 if (!is_q) {
6729 clear_vec_high(s, rd);
6731 } else {
6732 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6733 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6735 { gen_helper_neon_qshl_s8,
6736 gen_helper_neon_qshl_s16,
6737 gen_helper_neon_qshl_s32 },
6738 { gen_helper_neon_qshlu_s8,
6739 gen_helper_neon_qshlu_s16,
6740 gen_helper_neon_qshlu_s32 }
6741 }, {
6742 { NULL, NULL, NULL },
6743 { gen_helper_neon_qshl_u8,
6744 gen_helper_neon_qshl_u16,
6745 gen_helper_neon_qshl_u32 }
6748 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6749 TCGMemOp memop = scalar ? size : MO_32;
6750 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6752 for (pass = 0; pass < maxpass; pass++) {
6753 TCGv_i32 tcg_op = tcg_temp_new_i32();
6755 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6756 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6757 if (scalar) {
6758 switch (size) {
6759 case 0:
6760 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6761 break;
6762 case 1:
6763 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6764 break;
6765 case 2:
6766 break;
6767 default:
6768 g_assert_not_reached();
6770 write_fp_sreg(s, rd, tcg_op);
6771 } else {
6772 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6775 tcg_temp_free_i32(tcg_op);
6777 tcg_temp_free_i32(tcg_shift);
6779 if (!is_q && !scalar) {
6780 clear_vec_high(s, rd);
6785 /* Common vector code for handling integer to FP conversion */
6786 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6787 int elements, int is_signed,
6788 int fracbits, int size)
6790 bool is_double = size == 3 ? true : false;
6791 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6792 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6793 TCGv_i64 tcg_int = tcg_temp_new_i64();
6794 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6795 int pass;
6797 for (pass = 0; pass < elements; pass++) {
6798 read_vec_element(s, tcg_int, rn, pass, mop);
6800 if (is_double) {
6801 TCGv_i64 tcg_double = tcg_temp_new_i64();
6802 if (is_signed) {
6803 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6804 tcg_shift, tcg_fpst);
6805 } else {
6806 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6807 tcg_shift, tcg_fpst);
6809 if (elements == 1) {
6810 write_fp_dreg(s, rd, tcg_double);
6811 } else {
6812 write_vec_element(s, tcg_double, rd, pass, MO_64);
6814 tcg_temp_free_i64(tcg_double);
6815 } else {
6816 TCGv_i32 tcg_single = tcg_temp_new_i32();
6817 if (is_signed) {
6818 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6819 tcg_shift, tcg_fpst);
6820 } else {
6821 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6822 tcg_shift, tcg_fpst);
6824 if (elements == 1) {
6825 write_fp_sreg(s, rd, tcg_single);
6826 } else {
6827 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6829 tcg_temp_free_i32(tcg_single);
6833 if (!is_double && elements == 2) {
6834 clear_vec_high(s, rd);
6837 tcg_temp_free_i64(tcg_int);
6838 tcg_temp_free_ptr(tcg_fpst);
6839 tcg_temp_free_i32(tcg_shift);
6842 /* UCVTF/SCVTF - Integer to FP conversion */
6843 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6844 bool is_q, bool is_u,
6845 int immh, int immb, int opcode,
6846 int rn, int rd)
6848 bool is_double = extract32(immh, 3, 1);
6849 int size = is_double ? MO_64 : MO_32;
6850 int elements;
6851 int immhb = immh << 3 | immb;
6852 int fracbits = (is_double ? 128 : 64) - immhb;
6854 if (!extract32(immh, 2, 2)) {
6855 unallocated_encoding(s);
6856 return;
6859 if (is_scalar) {
6860 elements = 1;
6861 } else {
6862 elements = is_double ? 2 : is_q ? 4 : 2;
6863 if (is_double && !is_q) {
6864 unallocated_encoding(s);
6865 return;
6869 if (!fp_access_check(s)) {
6870 return;
6873 /* immh == 0 would be a failure of the decode logic */
6874 g_assert(immh);
6876 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6879 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6880 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6881 bool is_q, bool is_u,
6882 int immh, int immb, int rn, int rd)
6884 bool is_double = extract32(immh, 3, 1);
6885 int immhb = immh << 3 | immb;
6886 int fracbits = (is_double ? 128 : 64) - immhb;
6887 int pass;
6888 TCGv_ptr tcg_fpstatus;
6889 TCGv_i32 tcg_rmode, tcg_shift;
6891 if (!extract32(immh, 2, 2)) {
6892 unallocated_encoding(s);
6893 return;
6896 if (!is_scalar && !is_q && is_double) {
6897 unallocated_encoding(s);
6898 return;
6901 if (!fp_access_check(s)) {
6902 return;
6905 assert(!(is_scalar && is_q));
6907 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6908 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6909 tcg_fpstatus = get_fpstatus_ptr();
6910 tcg_shift = tcg_const_i32(fracbits);
6912 if (is_double) {
6913 int maxpass = is_scalar ? 1 : 2;
6915 for (pass = 0; pass < maxpass; pass++) {
6916 TCGv_i64 tcg_op = tcg_temp_new_i64();
6918 read_vec_element(s, tcg_op, rn, pass, MO_64);
6919 if (is_u) {
6920 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6921 } else {
6922 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6924 write_vec_element(s, tcg_op, rd, pass, MO_64);
6925 tcg_temp_free_i64(tcg_op);
6927 if (!is_q) {
6928 clear_vec_high(s, rd);
6930 } else {
6931 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6932 for (pass = 0; pass < maxpass; pass++) {
6933 TCGv_i32 tcg_op = tcg_temp_new_i32();
6935 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6936 if (is_u) {
6937 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6938 } else {
6939 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6941 if (is_scalar) {
6942 write_fp_sreg(s, rd, tcg_op);
6943 } else {
6944 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6946 tcg_temp_free_i32(tcg_op);
6948 if (!is_q && !is_scalar) {
6949 clear_vec_high(s, rd);
6953 tcg_temp_free_ptr(tcg_fpstatus);
6954 tcg_temp_free_i32(tcg_shift);
6955 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6956 tcg_temp_free_i32(tcg_rmode);
6959 /* C3.6.9 AdvSIMD scalar shift by immediate
6960 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6961 * +-----+---+-------------+------+------+--------+---+------+------+
6962 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6963 * +-----+---+-------------+------+------+--------+---+------+------+
6965 * This is the scalar version so it works on a fixed sized registers
6967 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6969 int rd = extract32(insn, 0, 5);
6970 int rn = extract32(insn, 5, 5);
6971 int opcode = extract32(insn, 11, 5);
6972 int immb = extract32(insn, 16, 3);
6973 int immh = extract32(insn, 19, 4);
6974 bool is_u = extract32(insn, 29, 1);
6976 if (immh == 0) {
6977 unallocated_encoding(s);
6978 return;
6981 switch (opcode) {
6982 case 0x08: /* SRI */
6983 if (!is_u) {
6984 unallocated_encoding(s);
6985 return;
6987 /* fall through */
6988 case 0x00: /* SSHR / USHR */
6989 case 0x02: /* SSRA / USRA */
6990 case 0x04: /* SRSHR / URSHR */
6991 case 0x06: /* SRSRA / URSRA */
6992 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6993 break;
6994 case 0x0a: /* SHL / SLI */
6995 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6996 break;
6997 case 0x1c: /* SCVTF, UCVTF */
6998 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6999 opcode, rn, rd);
7000 break;
7001 case 0x10: /* SQSHRUN, SQSHRUN2 */
7002 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7003 if (!is_u) {
7004 unallocated_encoding(s);
7005 return;
7007 handle_vec_simd_sqshrn(s, true, false, false, true,
7008 immh, immb, opcode, rn, rd);
7009 break;
7010 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7011 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7012 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7013 immh, immb, opcode, rn, rd);
7014 break;
7015 case 0xc: /* SQSHLU */
7016 if (!is_u) {
7017 unallocated_encoding(s);
7018 return;
7020 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7021 break;
7022 case 0xe: /* SQSHL, UQSHL */
7023 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7024 break;
7025 case 0x1f: /* FCVTZS, FCVTZU */
7026 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7027 break;
7028 default:
7029 unallocated_encoding(s);
7030 break;
7034 /* C3.6.10 AdvSIMD scalar three different
7035 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7036 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7037 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7038 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7040 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7042 bool is_u = extract32(insn, 29, 1);
7043 int size = extract32(insn, 22, 2);
7044 int opcode = extract32(insn, 12, 4);
7045 int rm = extract32(insn, 16, 5);
7046 int rn = extract32(insn, 5, 5);
7047 int rd = extract32(insn, 0, 5);
7049 if (is_u) {
7050 unallocated_encoding(s);
7051 return;
7054 switch (opcode) {
7055 case 0x9: /* SQDMLAL, SQDMLAL2 */
7056 case 0xb: /* SQDMLSL, SQDMLSL2 */
7057 case 0xd: /* SQDMULL, SQDMULL2 */
7058 if (size == 0 || size == 3) {
7059 unallocated_encoding(s);
7060 return;
7062 break;
7063 default:
7064 unallocated_encoding(s);
7065 return;
7068 if (!fp_access_check(s)) {
7069 return;
7072 if (size == 2) {
7073 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7074 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7075 TCGv_i64 tcg_res = tcg_temp_new_i64();
7077 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7078 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7080 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7081 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7083 switch (opcode) {
7084 case 0xd: /* SQDMULL, SQDMULL2 */
7085 break;
7086 case 0xb: /* SQDMLSL, SQDMLSL2 */
7087 tcg_gen_neg_i64(tcg_res, tcg_res);
7088 /* fall through */
7089 case 0x9: /* SQDMLAL, SQDMLAL2 */
7090 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7091 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7092 tcg_res, tcg_op1);
7093 break;
7094 default:
7095 g_assert_not_reached();
7098 write_fp_dreg(s, rd, tcg_res);
7100 tcg_temp_free_i64(tcg_op1);
7101 tcg_temp_free_i64(tcg_op2);
7102 tcg_temp_free_i64(tcg_res);
7103 } else {
7104 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7105 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7106 TCGv_i64 tcg_res = tcg_temp_new_i64();
7108 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7109 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7111 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7112 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7114 switch (opcode) {
7115 case 0xd: /* SQDMULL, SQDMULL2 */
7116 break;
7117 case 0xb: /* SQDMLSL, SQDMLSL2 */
7118 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7119 /* fall through */
7120 case 0x9: /* SQDMLAL, SQDMLAL2 */
7122 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7123 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7124 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7125 tcg_res, tcg_op3);
7126 tcg_temp_free_i64(tcg_op3);
7127 break;
7129 default:
7130 g_assert_not_reached();
7133 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7134 write_fp_dreg(s, rd, tcg_res);
7136 tcg_temp_free_i32(tcg_op1);
7137 tcg_temp_free_i32(tcg_op2);
7138 tcg_temp_free_i64(tcg_res);
7142 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7143 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7145 /* Handle 64x64->64 opcodes which are shared between the scalar
7146 * and vector 3-same groups. We cover every opcode where size == 3
7147 * is valid in either the three-reg-same (integer, not pairwise)
7148 * or scalar-three-reg-same groups. (Some opcodes are not yet
7149 * implemented.)
7151 TCGCond cond;
7153 switch (opcode) {
7154 case 0x1: /* SQADD */
7155 if (u) {
7156 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7157 } else {
7158 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7160 break;
7161 case 0x5: /* SQSUB */
7162 if (u) {
7163 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7164 } else {
7165 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7167 break;
7168 case 0x6: /* CMGT, CMHI */
7169 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7170 * We implement this using setcond (test) and then negating.
7172 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7173 do_cmop:
7174 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7175 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7176 break;
7177 case 0x7: /* CMGE, CMHS */
7178 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7179 goto do_cmop;
7180 case 0x11: /* CMTST, CMEQ */
7181 if (u) {
7182 cond = TCG_COND_EQ;
7183 goto do_cmop;
7185 /* CMTST : test is "if (X & Y != 0)". */
7186 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7187 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7188 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7189 break;
7190 case 0x8: /* SSHL, USHL */
7191 if (u) {
7192 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7193 } else {
7194 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7196 break;
7197 case 0x9: /* SQSHL, UQSHL */
7198 if (u) {
7199 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7200 } else {
7201 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7203 break;
7204 case 0xa: /* SRSHL, URSHL */
7205 if (u) {
7206 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7207 } else {
7208 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7210 break;
7211 case 0xb: /* SQRSHL, UQRSHL */
7212 if (u) {
7213 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7214 } else {
7215 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7217 break;
7218 case 0x10: /* ADD, SUB */
7219 if (u) {
7220 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7221 } else {
7222 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7224 break;
7225 default:
7226 g_assert_not_reached();
7230 /* Handle the 3-same-operands float operations; shared by the scalar
7231 * and vector encodings. The caller must filter out any encodings
7232 * not allocated for the encoding it is dealing with.
7234 static void handle_3same_float(DisasContext *s, int size, int elements,
7235 int fpopcode, int rd, int rn, int rm)
7237 int pass;
7238 TCGv_ptr fpst = get_fpstatus_ptr();
7240 for (pass = 0; pass < elements; pass++) {
7241 if (size) {
7242 /* Double */
7243 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7244 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7245 TCGv_i64 tcg_res = tcg_temp_new_i64();
7247 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7248 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7250 switch (fpopcode) {
7251 case 0x39: /* FMLS */
7252 /* As usual for ARM, separate negation for fused multiply-add */
7253 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7254 /* fall through */
7255 case 0x19: /* FMLA */
7256 read_vec_element(s, tcg_res, rd, pass, MO_64);
7257 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7258 tcg_res, fpst);
7259 break;
7260 case 0x18: /* FMAXNM */
7261 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7262 break;
7263 case 0x1a: /* FADD */
7264 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7265 break;
7266 case 0x1b: /* FMULX */
7267 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7268 break;
7269 case 0x1c: /* FCMEQ */
7270 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7271 break;
7272 case 0x1e: /* FMAX */
7273 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7274 break;
7275 case 0x1f: /* FRECPS */
7276 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7277 break;
7278 case 0x38: /* FMINNM */
7279 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7280 break;
7281 case 0x3a: /* FSUB */
7282 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7283 break;
7284 case 0x3e: /* FMIN */
7285 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7286 break;
7287 case 0x3f: /* FRSQRTS */
7288 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7289 break;
7290 case 0x5b: /* FMUL */
7291 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7292 break;
7293 case 0x5c: /* FCMGE */
7294 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7295 break;
7296 case 0x5d: /* FACGE */
7297 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7298 break;
7299 case 0x5f: /* FDIV */
7300 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7301 break;
7302 case 0x7a: /* FABD */
7303 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7304 gen_helper_vfp_absd(tcg_res, tcg_res);
7305 break;
7306 case 0x7c: /* FCMGT */
7307 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7308 break;
7309 case 0x7d: /* FACGT */
7310 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7311 break;
7312 default:
7313 g_assert_not_reached();
7316 write_vec_element(s, tcg_res, rd, pass, MO_64);
7318 tcg_temp_free_i64(tcg_res);
7319 tcg_temp_free_i64(tcg_op1);
7320 tcg_temp_free_i64(tcg_op2);
7321 } else {
7322 /* Single */
7323 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7324 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7325 TCGv_i32 tcg_res = tcg_temp_new_i32();
7327 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7328 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7330 switch (fpopcode) {
7331 case 0x39: /* FMLS */
7332 /* As usual for ARM, separate negation for fused multiply-add */
7333 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7334 /* fall through */
7335 case 0x19: /* FMLA */
7336 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7337 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7338 tcg_res, fpst);
7339 break;
7340 case 0x1a: /* FADD */
7341 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7342 break;
7343 case 0x1b: /* FMULX */
7344 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7345 break;
7346 case 0x1c: /* FCMEQ */
7347 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7348 break;
7349 case 0x1e: /* FMAX */
7350 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7351 break;
7352 case 0x1f: /* FRECPS */
7353 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7354 break;
7355 case 0x18: /* FMAXNM */
7356 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7357 break;
7358 case 0x38: /* FMINNM */
7359 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7360 break;
7361 case 0x3a: /* FSUB */
7362 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7363 break;
7364 case 0x3e: /* FMIN */
7365 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7366 break;
7367 case 0x3f: /* FRSQRTS */
7368 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7369 break;
7370 case 0x5b: /* FMUL */
7371 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7372 break;
7373 case 0x5c: /* FCMGE */
7374 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7375 break;
7376 case 0x5d: /* FACGE */
7377 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7378 break;
7379 case 0x5f: /* FDIV */
7380 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7381 break;
7382 case 0x7a: /* FABD */
7383 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7384 gen_helper_vfp_abss(tcg_res, tcg_res);
7385 break;
7386 case 0x7c: /* FCMGT */
7387 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7388 break;
7389 case 0x7d: /* FACGT */
7390 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7391 break;
7392 default:
7393 g_assert_not_reached();
7396 if (elements == 1) {
7397 /* scalar single so clear high part */
7398 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7400 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7401 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7402 tcg_temp_free_i64(tcg_tmp);
7403 } else {
7404 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7407 tcg_temp_free_i32(tcg_res);
7408 tcg_temp_free_i32(tcg_op1);
7409 tcg_temp_free_i32(tcg_op2);
7413 tcg_temp_free_ptr(fpst);
7415 if ((elements << size) < 4) {
7416 /* scalar, or non-quad vector op */
7417 clear_vec_high(s, rd);
7421 /* C3.6.11 AdvSIMD scalar three same
7422 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7423 * +-----+---+-----------+------+---+------+--------+---+------+------+
7424 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7425 * +-----+---+-----------+------+---+------+--------+---+------+------+
7427 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7429 int rd = extract32(insn, 0, 5);
7430 int rn = extract32(insn, 5, 5);
7431 int opcode = extract32(insn, 11, 5);
7432 int rm = extract32(insn, 16, 5);
7433 int size = extract32(insn, 22, 2);
7434 bool u = extract32(insn, 29, 1);
7435 TCGv_i64 tcg_rd;
7437 if (opcode >= 0x18) {
7438 /* Floating point: U, size[1] and opcode indicate operation */
7439 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7440 switch (fpopcode) {
7441 case 0x1b: /* FMULX */
7442 case 0x1f: /* FRECPS */
7443 case 0x3f: /* FRSQRTS */
7444 case 0x5d: /* FACGE */
7445 case 0x7d: /* FACGT */
7446 case 0x1c: /* FCMEQ */
7447 case 0x5c: /* FCMGE */
7448 case 0x7c: /* FCMGT */
7449 case 0x7a: /* FABD */
7450 break;
7451 default:
7452 unallocated_encoding(s);
7453 return;
7456 if (!fp_access_check(s)) {
7457 return;
7460 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7461 return;
7464 switch (opcode) {
7465 case 0x1: /* SQADD, UQADD */
7466 case 0x5: /* SQSUB, UQSUB */
7467 case 0x9: /* SQSHL, UQSHL */
7468 case 0xb: /* SQRSHL, UQRSHL */
7469 break;
7470 case 0x8: /* SSHL, USHL */
7471 case 0xa: /* SRSHL, URSHL */
7472 case 0x6: /* CMGT, CMHI */
7473 case 0x7: /* CMGE, CMHS */
7474 case 0x11: /* CMTST, CMEQ */
7475 case 0x10: /* ADD, SUB (vector) */
7476 if (size != 3) {
7477 unallocated_encoding(s);
7478 return;
7480 break;
7481 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7482 if (size != 1 && size != 2) {
7483 unallocated_encoding(s);
7484 return;
7486 break;
7487 default:
7488 unallocated_encoding(s);
7489 return;
7492 if (!fp_access_check(s)) {
7493 return;
7496 tcg_rd = tcg_temp_new_i64();
7498 if (size == 3) {
7499 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7500 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7502 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7503 tcg_temp_free_i64(tcg_rn);
7504 tcg_temp_free_i64(tcg_rm);
7505 } else {
7506 /* Do a single operation on the lowest element in the vector.
7507 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7508 * no side effects for all these operations.
7509 * OPTME: special-purpose helpers would avoid doing some
7510 * unnecessary work in the helper for the 8 and 16 bit cases.
7512 NeonGenTwoOpEnvFn *genenvfn;
7513 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7514 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7515 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7517 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7518 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7520 switch (opcode) {
7521 case 0x1: /* SQADD, UQADD */
7523 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7524 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7525 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7526 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7528 genenvfn = fns[size][u];
7529 break;
7531 case 0x5: /* SQSUB, UQSUB */
7533 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7534 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7535 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7536 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7538 genenvfn = fns[size][u];
7539 break;
7541 case 0x9: /* SQSHL, UQSHL */
7543 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7544 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7545 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7546 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7548 genenvfn = fns[size][u];
7549 break;
7551 case 0xb: /* SQRSHL, UQRSHL */
7553 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7554 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7555 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7556 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7558 genenvfn = fns[size][u];
7559 break;
7561 case 0x16: /* SQDMULH, SQRDMULH */
7563 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7564 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7565 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7567 assert(size == 1 || size == 2);
7568 genenvfn = fns[size - 1][u];
7569 break;
7571 default:
7572 g_assert_not_reached();
7575 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7576 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7577 tcg_temp_free_i32(tcg_rd32);
7578 tcg_temp_free_i32(tcg_rn);
7579 tcg_temp_free_i32(tcg_rm);
7582 write_fp_dreg(s, rd, tcg_rd);
7584 tcg_temp_free_i64(tcg_rd);
7587 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7588 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7589 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7591 /* Handle 64->64 opcodes which are shared between the scalar and
7592 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7593 * is valid in either group and also the double-precision fp ops.
7594 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7595 * requires them.
7597 TCGCond cond;
7599 switch (opcode) {
7600 case 0x4: /* CLS, CLZ */
7601 if (u) {
7602 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7603 } else {
7604 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7606 break;
7607 case 0x5: /* NOT */
7608 /* This opcode is shared with CNT and RBIT but we have earlier
7609 * enforced that size == 3 if and only if this is the NOT insn.
7611 tcg_gen_not_i64(tcg_rd, tcg_rn);
7612 break;
7613 case 0x7: /* SQABS, SQNEG */
7614 if (u) {
7615 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7616 } else {
7617 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7619 break;
7620 case 0xa: /* CMLT */
7621 /* 64 bit integer comparison against zero, result is
7622 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7623 * subtracting 1.
7625 cond = TCG_COND_LT;
7626 do_cmop:
7627 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7628 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7629 break;
7630 case 0x8: /* CMGT, CMGE */
7631 cond = u ? TCG_COND_GE : TCG_COND_GT;
7632 goto do_cmop;
7633 case 0x9: /* CMEQ, CMLE */
7634 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7635 goto do_cmop;
7636 case 0xb: /* ABS, NEG */
7637 if (u) {
7638 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7639 } else {
7640 TCGv_i64 tcg_zero = tcg_const_i64(0);
7641 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7642 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7643 tcg_rn, tcg_rd);
7644 tcg_temp_free_i64(tcg_zero);
7646 break;
7647 case 0x2f: /* FABS */
7648 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7649 break;
7650 case 0x6f: /* FNEG */
7651 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7652 break;
7653 case 0x7f: /* FSQRT */
7654 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7655 break;
7656 case 0x1a: /* FCVTNS */
7657 case 0x1b: /* FCVTMS */
7658 case 0x1c: /* FCVTAS */
7659 case 0x3a: /* FCVTPS */
7660 case 0x3b: /* FCVTZS */
7662 TCGv_i32 tcg_shift = tcg_const_i32(0);
7663 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7664 tcg_temp_free_i32(tcg_shift);
7665 break;
7667 case 0x5a: /* FCVTNU */
7668 case 0x5b: /* FCVTMU */
7669 case 0x5c: /* FCVTAU */
7670 case 0x7a: /* FCVTPU */
7671 case 0x7b: /* FCVTZU */
7673 TCGv_i32 tcg_shift = tcg_const_i32(0);
7674 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7675 tcg_temp_free_i32(tcg_shift);
7676 break;
7678 case 0x18: /* FRINTN */
7679 case 0x19: /* FRINTM */
7680 case 0x38: /* FRINTP */
7681 case 0x39: /* FRINTZ */
7682 case 0x58: /* FRINTA */
7683 case 0x79: /* FRINTI */
7684 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7685 break;
7686 case 0x59: /* FRINTX */
7687 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7688 break;
7689 default:
7690 g_assert_not_reached();
7694 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7695 bool is_scalar, bool is_u, bool is_q,
7696 int size, int rn, int rd)
7698 bool is_double = (size == 3);
7699 TCGv_ptr fpst;
7701 if (!fp_access_check(s)) {
7702 return;
7705 fpst = get_fpstatus_ptr();
7707 if (is_double) {
7708 TCGv_i64 tcg_op = tcg_temp_new_i64();
7709 TCGv_i64 tcg_zero = tcg_const_i64(0);
7710 TCGv_i64 tcg_res = tcg_temp_new_i64();
7711 NeonGenTwoDoubleOPFn *genfn;
7712 bool swap = false;
7713 int pass;
7715 switch (opcode) {
7716 case 0x2e: /* FCMLT (zero) */
7717 swap = true;
7718 /* fallthrough */
7719 case 0x2c: /* FCMGT (zero) */
7720 genfn = gen_helper_neon_cgt_f64;
7721 break;
7722 case 0x2d: /* FCMEQ (zero) */
7723 genfn = gen_helper_neon_ceq_f64;
7724 break;
7725 case 0x6d: /* FCMLE (zero) */
7726 swap = true;
7727 /* fall through */
7728 case 0x6c: /* FCMGE (zero) */
7729 genfn = gen_helper_neon_cge_f64;
7730 break;
7731 default:
7732 g_assert_not_reached();
7735 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7736 read_vec_element(s, tcg_op, rn, pass, MO_64);
7737 if (swap) {
7738 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7739 } else {
7740 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7742 write_vec_element(s, tcg_res, rd, pass, MO_64);
7744 if (is_scalar) {
7745 clear_vec_high(s, rd);
7748 tcg_temp_free_i64(tcg_res);
7749 tcg_temp_free_i64(tcg_zero);
7750 tcg_temp_free_i64(tcg_op);
7751 } else {
7752 TCGv_i32 tcg_op = tcg_temp_new_i32();
7753 TCGv_i32 tcg_zero = tcg_const_i32(0);
7754 TCGv_i32 tcg_res = tcg_temp_new_i32();
7755 NeonGenTwoSingleOPFn *genfn;
7756 bool swap = false;
7757 int pass, maxpasses;
7759 switch (opcode) {
7760 case 0x2e: /* FCMLT (zero) */
7761 swap = true;
7762 /* fall through */
7763 case 0x2c: /* FCMGT (zero) */
7764 genfn = gen_helper_neon_cgt_f32;
7765 break;
7766 case 0x2d: /* FCMEQ (zero) */
7767 genfn = gen_helper_neon_ceq_f32;
7768 break;
7769 case 0x6d: /* FCMLE (zero) */
7770 swap = true;
7771 /* fall through */
7772 case 0x6c: /* FCMGE (zero) */
7773 genfn = gen_helper_neon_cge_f32;
7774 break;
7775 default:
7776 g_assert_not_reached();
7779 if (is_scalar) {
7780 maxpasses = 1;
7781 } else {
7782 maxpasses = is_q ? 4 : 2;
7785 for (pass = 0; pass < maxpasses; pass++) {
7786 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7787 if (swap) {
7788 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7789 } else {
7790 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7792 if (is_scalar) {
7793 write_fp_sreg(s, rd, tcg_res);
7794 } else {
7795 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7798 tcg_temp_free_i32(tcg_res);
7799 tcg_temp_free_i32(tcg_zero);
7800 tcg_temp_free_i32(tcg_op);
7801 if (!is_q && !is_scalar) {
7802 clear_vec_high(s, rd);
7806 tcg_temp_free_ptr(fpst);
7809 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7810 bool is_scalar, bool is_u, bool is_q,
7811 int size, int rn, int rd)
7813 bool is_double = (size == 3);
7814 TCGv_ptr fpst = get_fpstatus_ptr();
7816 if (is_double) {
7817 TCGv_i64 tcg_op = tcg_temp_new_i64();
7818 TCGv_i64 tcg_res = tcg_temp_new_i64();
7819 int pass;
7821 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7822 read_vec_element(s, tcg_op, rn, pass, MO_64);
7823 switch (opcode) {
7824 case 0x3d: /* FRECPE */
7825 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7826 break;
7827 case 0x3f: /* FRECPX */
7828 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7829 break;
7830 case 0x7d: /* FRSQRTE */
7831 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7832 break;
7833 default:
7834 g_assert_not_reached();
7836 write_vec_element(s, tcg_res, rd, pass, MO_64);
7838 if (is_scalar) {
7839 clear_vec_high(s, rd);
7842 tcg_temp_free_i64(tcg_res);
7843 tcg_temp_free_i64(tcg_op);
7844 } else {
7845 TCGv_i32 tcg_op = tcg_temp_new_i32();
7846 TCGv_i32 tcg_res = tcg_temp_new_i32();
7847 int pass, maxpasses;
7849 if (is_scalar) {
7850 maxpasses = 1;
7851 } else {
7852 maxpasses = is_q ? 4 : 2;
7855 for (pass = 0; pass < maxpasses; pass++) {
7856 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7858 switch (opcode) {
7859 case 0x3c: /* URECPE */
7860 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7861 break;
7862 case 0x3d: /* FRECPE */
7863 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7864 break;
7865 case 0x3f: /* FRECPX */
7866 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7867 break;
7868 case 0x7d: /* FRSQRTE */
7869 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7870 break;
7871 default:
7872 g_assert_not_reached();
7875 if (is_scalar) {
7876 write_fp_sreg(s, rd, tcg_res);
7877 } else {
7878 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7881 tcg_temp_free_i32(tcg_res);
7882 tcg_temp_free_i32(tcg_op);
7883 if (!is_q && !is_scalar) {
7884 clear_vec_high(s, rd);
7887 tcg_temp_free_ptr(fpst);
7890 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7891 int opcode, bool u, bool is_q,
7892 int size, int rn, int rd)
7894 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7895 * in the source becomes a size element in the destination).
7897 int pass;
7898 TCGv_i32 tcg_res[2];
7899 int destelt = is_q ? 2 : 0;
7900 int passes = scalar ? 1 : 2;
7902 if (scalar) {
7903 tcg_res[1] = tcg_const_i32(0);
7906 for (pass = 0; pass < passes; pass++) {
7907 TCGv_i64 tcg_op = tcg_temp_new_i64();
7908 NeonGenNarrowFn *genfn = NULL;
7909 NeonGenNarrowEnvFn *genenvfn = NULL;
7911 if (scalar) {
7912 read_vec_element(s, tcg_op, rn, pass, size + 1);
7913 } else {
7914 read_vec_element(s, tcg_op, rn, pass, MO_64);
7916 tcg_res[pass] = tcg_temp_new_i32();
7918 switch (opcode) {
7919 case 0x12: /* XTN, SQXTUN */
7921 static NeonGenNarrowFn * const xtnfns[3] = {
7922 gen_helper_neon_narrow_u8,
7923 gen_helper_neon_narrow_u16,
7924 tcg_gen_extrl_i64_i32,
7926 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7927 gen_helper_neon_unarrow_sat8,
7928 gen_helper_neon_unarrow_sat16,
7929 gen_helper_neon_unarrow_sat32,
7931 if (u) {
7932 genenvfn = sqxtunfns[size];
7933 } else {
7934 genfn = xtnfns[size];
7936 break;
7938 case 0x14: /* SQXTN, UQXTN */
7940 static NeonGenNarrowEnvFn * const fns[3][2] = {
7941 { gen_helper_neon_narrow_sat_s8,
7942 gen_helper_neon_narrow_sat_u8 },
7943 { gen_helper_neon_narrow_sat_s16,
7944 gen_helper_neon_narrow_sat_u16 },
7945 { gen_helper_neon_narrow_sat_s32,
7946 gen_helper_neon_narrow_sat_u32 },
7948 genenvfn = fns[size][u];
7949 break;
7951 case 0x16: /* FCVTN, FCVTN2 */
7952 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7953 if (size == 2) {
7954 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7955 } else {
7956 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7957 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7958 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7959 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7960 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7961 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7962 tcg_temp_free_i32(tcg_lo);
7963 tcg_temp_free_i32(tcg_hi);
7965 break;
7966 case 0x56: /* FCVTXN, FCVTXN2 */
7967 /* 64 bit to 32 bit float conversion
7968 * with von Neumann rounding (round to odd)
7970 assert(size == 2);
7971 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7972 break;
7973 default:
7974 g_assert_not_reached();
7977 if (genfn) {
7978 genfn(tcg_res[pass], tcg_op);
7979 } else if (genenvfn) {
7980 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7983 tcg_temp_free_i64(tcg_op);
7986 for (pass = 0; pass < 2; pass++) {
7987 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7988 tcg_temp_free_i32(tcg_res[pass]);
7990 if (!is_q) {
7991 clear_vec_high(s, rd);
7995 /* Remaining saturating accumulating ops */
7996 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7997 bool is_q, int size, int rn, int rd)
7999 bool is_double = (size == 3);
8001 if (is_double) {
8002 TCGv_i64 tcg_rn = tcg_temp_new_i64();
8003 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8004 int pass;
8006 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8007 read_vec_element(s, tcg_rn, rn, pass, MO_64);
8008 read_vec_element(s, tcg_rd, rd, pass, MO_64);
8010 if (is_u) { /* USQADD */
8011 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8012 } else { /* SUQADD */
8013 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8015 write_vec_element(s, tcg_rd, rd, pass, MO_64);
8017 if (is_scalar) {
8018 clear_vec_high(s, rd);
8021 tcg_temp_free_i64(tcg_rd);
8022 tcg_temp_free_i64(tcg_rn);
8023 } else {
8024 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8025 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8026 int pass, maxpasses;
8028 if (is_scalar) {
8029 maxpasses = 1;
8030 } else {
8031 maxpasses = is_q ? 4 : 2;
8034 for (pass = 0; pass < maxpasses; pass++) {
8035 if (is_scalar) {
8036 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8037 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8038 } else {
8039 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8040 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8043 if (is_u) { /* USQADD */
8044 switch (size) {
8045 case 0:
8046 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8047 break;
8048 case 1:
8049 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8050 break;
8051 case 2:
8052 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8053 break;
8054 default:
8055 g_assert_not_reached();
8057 } else { /* SUQADD */
8058 switch (size) {
8059 case 0:
8060 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8061 break;
8062 case 1:
8063 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8064 break;
8065 case 2:
8066 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8067 break;
8068 default:
8069 g_assert_not_reached();
8073 if (is_scalar) {
8074 TCGv_i64 tcg_zero = tcg_const_i64(0);
8075 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8076 tcg_temp_free_i64(tcg_zero);
8078 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8081 if (!is_q) {
8082 clear_vec_high(s, rd);
8085 tcg_temp_free_i32(tcg_rd);
8086 tcg_temp_free_i32(tcg_rn);
8090 /* C3.6.12 AdvSIMD scalar two reg misc
8091 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8092 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8093 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8094 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8096 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8098 int rd = extract32(insn, 0, 5);
8099 int rn = extract32(insn, 5, 5);
8100 int opcode = extract32(insn, 12, 5);
8101 int size = extract32(insn, 22, 2);
8102 bool u = extract32(insn, 29, 1);
8103 bool is_fcvt = false;
8104 int rmode;
8105 TCGv_i32 tcg_rmode;
8106 TCGv_ptr tcg_fpstatus;
8108 switch (opcode) {
8109 case 0x3: /* USQADD / SUQADD*/
8110 if (!fp_access_check(s)) {
8111 return;
8113 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8114 return;
8115 case 0x7: /* SQABS / SQNEG */
8116 break;
8117 case 0xa: /* CMLT */
8118 if (u) {
8119 unallocated_encoding(s);
8120 return;
8122 /* fall through */
8123 case 0x8: /* CMGT, CMGE */
8124 case 0x9: /* CMEQ, CMLE */
8125 case 0xb: /* ABS, NEG */
8126 if (size != 3) {
8127 unallocated_encoding(s);
8128 return;
8130 break;
8131 case 0x12: /* SQXTUN */
8132 if (!u) {
8133 unallocated_encoding(s);
8134 return;
8136 /* fall through */
8137 case 0x14: /* SQXTN, UQXTN */
8138 if (size == 3) {
8139 unallocated_encoding(s);
8140 return;
8142 if (!fp_access_check(s)) {
8143 return;
8145 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8146 return;
8147 case 0xc ... 0xf:
8148 case 0x16 ... 0x1d:
8149 case 0x1f:
8150 /* Floating point: U, size[1] and opcode indicate operation;
8151 * size[0] indicates single or double precision.
8153 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8154 size = extract32(size, 0, 1) ? 3 : 2;
8155 switch (opcode) {
8156 case 0x2c: /* FCMGT (zero) */
8157 case 0x2d: /* FCMEQ (zero) */
8158 case 0x2e: /* FCMLT (zero) */
8159 case 0x6c: /* FCMGE (zero) */
8160 case 0x6d: /* FCMLE (zero) */
8161 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8162 return;
8163 case 0x1d: /* SCVTF */
8164 case 0x5d: /* UCVTF */
8166 bool is_signed = (opcode == 0x1d);
8167 if (!fp_access_check(s)) {
8168 return;
8170 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8171 return;
8173 case 0x3d: /* FRECPE */
8174 case 0x3f: /* FRECPX */
8175 case 0x7d: /* FRSQRTE */
8176 if (!fp_access_check(s)) {
8177 return;
8179 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8180 return;
8181 case 0x1a: /* FCVTNS */
8182 case 0x1b: /* FCVTMS */
8183 case 0x3a: /* FCVTPS */
8184 case 0x3b: /* FCVTZS */
8185 case 0x5a: /* FCVTNU */
8186 case 0x5b: /* FCVTMU */
8187 case 0x7a: /* FCVTPU */
8188 case 0x7b: /* FCVTZU */
8189 is_fcvt = true;
8190 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8191 break;
8192 case 0x1c: /* FCVTAS */
8193 case 0x5c: /* FCVTAU */
8194 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8195 is_fcvt = true;
8196 rmode = FPROUNDING_TIEAWAY;
8197 break;
8198 case 0x56: /* FCVTXN, FCVTXN2 */
8199 if (size == 2) {
8200 unallocated_encoding(s);
8201 return;
8203 if (!fp_access_check(s)) {
8204 return;
8206 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8207 return;
8208 default:
8209 unallocated_encoding(s);
8210 return;
8212 break;
8213 default:
8214 unallocated_encoding(s);
8215 return;
8218 if (!fp_access_check(s)) {
8219 return;
8222 if (is_fcvt) {
8223 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8224 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8225 tcg_fpstatus = get_fpstatus_ptr();
8226 } else {
8227 TCGV_UNUSED_I32(tcg_rmode);
8228 TCGV_UNUSED_PTR(tcg_fpstatus);
8231 if (size == 3) {
8232 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8233 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8235 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8236 write_fp_dreg(s, rd, tcg_rd);
8237 tcg_temp_free_i64(tcg_rd);
8238 tcg_temp_free_i64(tcg_rn);
8239 } else {
8240 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8241 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8243 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8245 switch (opcode) {
8246 case 0x7: /* SQABS, SQNEG */
8248 NeonGenOneOpEnvFn *genfn;
8249 static NeonGenOneOpEnvFn * const fns[3][2] = {
8250 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8251 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8252 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8254 genfn = fns[size][u];
8255 genfn(tcg_rd, cpu_env, tcg_rn);
8256 break;
8258 case 0x1a: /* FCVTNS */
8259 case 0x1b: /* FCVTMS */
8260 case 0x1c: /* FCVTAS */
8261 case 0x3a: /* FCVTPS */
8262 case 0x3b: /* FCVTZS */
8264 TCGv_i32 tcg_shift = tcg_const_i32(0);
8265 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8266 tcg_temp_free_i32(tcg_shift);
8267 break;
8269 case 0x5a: /* FCVTNU */
8270 case 0x5b: /* FCVTMU */
8271 case 0x5c: /* FCVTAU */
8272 case 0x7a: /* FCVTPU */
8273 case 0x7b: /* FCVTZU */
8275 TCGv_i32 tcg_shift = tcg_const_i32(0);
8276 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8277 tcg_temp_free_i32(tcg_shift);
8278 break;
8280 default:
8281 g_assert_not_reached();
8284 write_fp_sreg(s, rd, tcg_rd);
8285 tcg_temp_free_i32(tcg_rd);
8286 tcg_temp_free_i32(tcg_rn);
8289 if (is_fcvt) {
8290 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8291 tcg_temp_free_i32(tcg_rmode);
8292 tcg_temp_free_ptr(tcg_fpstatus);
8296 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8297 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8298 int immh, int immb, int opcode, int rn, int rd)
8300 int size = 32 - clz32(immh) - 1;
8301 int immhb = immh << 3 | immb;
8302 int shift = 2 * (8 << size) - immhb;
8303 bool accumulate = false;
8304 bool round = false;
8305 bool insert = false;
8306 int dsize = is_q ? 128 : 64;
8307 int esize = 8 << size;
8308 int elements = dsize/esize;
8309 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8310 TCGv_i64 tcg_rn = new_tmp_a64(s);
8311 TCGv_i64 tcg_rd = new_tmp_a64(s);
8312 TCGv_i64 tcg_round;
8313 int i;
8315 if (extract32(immh, 3, 1) && !is_q) {
8316 unallocated_encoding(s);
8317 return;
8320 if (size > 3 && !is_q) {
8321 unallocated_encoding(s);
8322 return;
8325 if (!fp_access_check(s)) {
8326 return;
8329 switch (opcode) {
8330 case 0x02: /* SSRA / USRA (accumulate) */
8331 accumulate = true;
8332 break;
8333 case 0x04: /* SRSHR / URSHR (rounding) */
8334 round = true;
8335 break;
8336 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8337 accumulate = round = true;
8338 break;
8339 case 0x08: /* SRI */
8340 insert = true;
8341 break;
8344 if (round) {
8345 uint64_t round_const = 1ULL << (shift - 1);
8346 tcg_round = tcg_const_i64(round_const);
8347 } else {
8348 TCGV_UNUSED_I64(tcg_round);
8351 for (i = 0; i < elements; i++) {
8352 read_vec_element(s, tcg_rn, rn, i, memop);
8353 if (accumulate || insert) {
8354 read_vec_element(s, tcg_rd, rd, i, memop);
8357 if (insert) {
8358 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8359 } else {
8360 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8361 accumulate, is_u, size, shift);
8364 write_vec_element(s, tcg_rd, rd, i, size);
8367 if (!is_q) {
8368 clear_vec_high(s, rd);
8371 if (round) {
8372 tcg_temp_free_i64(tcg_round);
8376 /* SHL/SLI - Vector shift left */
8377 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8378 int immh, int immb, int opcode, int rn, int rd)
8380 int size = 32 - clz32(immh) - 1;
8381 int immhb = immh << 3 | immb;
8382 int shift = immhb - (8 << size);
8383 int dsize = is_q ? 128 : 64;
8384 int esize = 8 << size;
8385 int elements = dsize/esize;
8386 TCGv_i64 tcg_rn = new_tmp_a64(s);
8387 TCGv_i64 tcg_rd = new_tmp_a64(s);
8388 int i;
8390 if (extract32(immh, 3, 1) && !is_q) {
8391 unallocated_encoding(s);
8392 return;
8395 if (size > 3 && !is_q) {
8396 unallocated_encoding(s);
8397 return;
8400 if (!fp_access_check(s)) {
8401 return;
8404 for (i = 0; i < elements; i++) {
8405 read_vec_element(s, tcg_rn, rn, i, size);
8406 if (insert) {
8407 read_vec_element(s, tcg_rd, rd, i, size);
8410 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8412 write_vec_element(s, tcg_rd, rd, i, size);
8415 if (!is_q) {
8416 clear_vec_high(s, rd);
8420 /* USHLL/SHLL - Vector shift left with widening */
8421 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8422 int immh, int immb, int opcode, int rn, int rd)
8424 int size = 32 - clz32(immh) - 1;
8425 int immhb = immh << 3 | immb;
8426 int shift = immhb - (8 << size);
8427 int dsize = 64;
8428 int esize = 8 << size;
8429 int elements = dsize/esize;
8430 TCGv_i64 tcg_rn = new_tmp_a64(s);
8431 TCGv_i64 tcg_rd = new_tmp_a64(s);
8432 int i;
8434 if (size >= 3) {
8435 unallocated_encoding(s);
8436 return;
8439 if (!fp_access_check(s)) {
8440 return;
8443 /* For the LL variants the store is larger than the load,
8444 * so if rd == rn we would overwrite parts of our input.
8445 * So load everything right now and use shifts in the main loop.
8447 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8449 for (i = 0; i < elements; i++) {
8450 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8451 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8452 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8453 write_vec_element(s, tcg_rd, rd, i, size + 1);
8457 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8458 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8459 int immh, int immb, int opcode, int rn, int rd)
8461 int immhb = immh << 3 | immb;
8462 int size = 32 - clz32(immh) - 1;
8463 int dsize = 64;
8464 int esize = 8 << size;
8465 int elements = dsize/esize;
8466 int shift = (2 * esize) - immhb;
8467 bool round = extract32(opcode, 0, 1);
8468 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8469 TCGv_i64 tcg_round;
8470 int i;
8472 if (extract32(immh, 3, 1)) {
8473 unallocated_encoding(s);
8474 return;
8477 if (!fp_access_check(s)) {
8478 return;
8481 tcg_rn = tcg_temp_new_i64();
8482 tcg_rd = tcg_temp_new_i64();
8483 tcg_final = tcg_temp_new_i64();
8484 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8486 if (round) {
8487 uint64_t round_const = 1ULL << (shift - 1);
8488 tcg_round = tcg_const_i64(round_const);
8489 } else {
8490 TCGV_UNUSED_I64(tcg_round);
8493 for (i = 0; i < elements; i++) {
8494 read_vec_element(s, tcg_rn, rn, i, size+1);
8495 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8496 false, true, size+1, shift);
8498 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8501 if (!is_q) {
8502 clear_vec_high(s, rd);
8503 write_vec_element(s, tcg_final, rd, 0, MO_64);
8504 } else {
8505 write_vec_element(s, tcg_final, rd, 1, MO_64);
8508 if (round) {
8509 tcg_temp_free_i64(tcg_round);
8511 tcg_temp_free_i64(tcg_rn);
8512 tcg_temp_free_i64(tcg_rd);
8513 tcg_temp_free_i64(tcg_final);
8514 return;
8518 /* C3.6.14 AdvSIMD shift by immediate
8519 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8520 * +---+---+---+-------------+------+------+--------+---+------+------+
8521 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8522 * +---+---+---+-------------+------+------+--------+---+------+------+
8524 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8526 int rd = extract32(insn, 0, 5);
8527 int rn = extract32(insn, 5, 5);
8528 int opcode = extract32(insn, 11, 5);
8529 int immb = extract32(insn, 16, 3);
8530 int immh = extract32(insn, 19, 4);
8531 bool is_u = extract32(insn, 29, 1);
8532 bool is_q = extract32(insn, 30, 1);
8534 switch (opcode) {
8535 case 0x08: /* SRI */
8536 if (!is_u) {
8537 unallocated_encoding(s);
8538 return;
8540 /* fall through */
8541 case 0x00: /* SSHR / USHR */
8542 case 0x02: /* SSRA / USRA (accumulate) */
8543 case 0x04: /* SRSHR / URSHR (rounding) */
8544 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8545 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8546 break;
8547 case 0x0a: /* SHL / SLI */
8548 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8549 break;
8550 case 0x10: /* SHRN */
8551 case 0x11: /* RSHRN / SQRSHRUN */
8552 if (is_u) {
8553 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8554 opcode, rn, rd);
8555 } else {
8556 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8558 break;
8559 case 0x12: /* SQSHRN / UQSHRN */
8560 case 0x13: /* SQRSHRN / UQRSHRN */
8561 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8562 opcode, rn, rd);
8563 break;
8564 case 0x14: /* SSHLL / USHLL */
8565 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8566 break;
8567 case 0x1c: /* SCVTF / UCVTF */
8568 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8569 opcode, rn, rd);
8570 break;
8571 case 0xc: /* SQSHLU */
8572 if (!is_u) {
8573 unallocated_encoding(s);
8574 return;
8576 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8577 break;
8578 case 0xe: /* SQSHL, UQSHL */
8579 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8580 break;
8581 case 0x1f: /* FCVTZS/ FCVTZU */
8582 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8583 return;
8584 default:
8585 unallocated_encoding(s);
8586 return;
8590 /* Generate code to do a "long" addition or subtraction, ie one done in
8591 * TCGv_i64 on vector lanes twice the width specified by size.
8593 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8594 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8596 static NeonGenTwo64OpFn * const fns[3][2] = {
8597 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8598 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8599 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8601 NeonGenTwo64OpFn *genfn;
8602 assert(size < 3);
8604 genfn = fns[size][is_sub];
8605 genfn(tcg_res, tcg_op1, tcg_op2);
8608 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8609 int opcode, int rd, int rn, int rm)
8611 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8612 TCGv_i64 tcg_res[2];
8613 int pass, accop;
8615 tcg_res[0] = tcg_temp_new_i64();
8616 tcg_res[1] = tcg_temp_new_i64();
8618 /* Does this op do an adding accumulate, a subtracting accumulate,
8619 * or no accumulate at all?
8621 switch (opcode) {
8622 case 5:
8623 case 8:
8624 case 9:
8625 accop = 1;
8626 break;
8627 case 10:
8628 case 11:
8629 accop = -1;
8630 break;
8631 default:
8632 accop = 0;
8633 break;
8636 if (accop != 0) {
8637 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8638 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8641 /* size == 2 means two 32x32->64 operations; this is worth special
8642 * casing because we can generally handle it inline.
8644 if (size == 2) {
8645 for (pass = 0; pass < 2; pass++) {
8646 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8647 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8648 TCGv_i64 tcg_passres;
8649 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8651 int elt = pass + is_q * 2;
8653 read_vec_element(s, tcg_op1, rn, elt, memop);
8654 read_vec_element(s, tcg_op2, rm, elt, memop);
8656 if (accop == 0) {
8657 tcg_passres = tcg_res[pass];
8658 } else {
8659 tcg_passres = tcg_temp_new_i64();
8662 switch (opcode) {
8663 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8664 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8665 break;
8666 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8667 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8668 break;
8669 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8670 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8672 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8673 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8675 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8676 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8677 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8678 tcg_passres,
8679 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8680 tcg_temp_free_i64(tcg_tmp1);
8681 tcg_temp_free_i64(tcg_tmp2);
8682 break;
8684 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8685 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8686 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8687 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8688 break;
8689 case 9: /* SQDMLAL, SQDMLAL2 */
8690 case 11: /* SQDMLSL, SQDMLSL2 */
8691 case 13: /* SQDMULL, SQDMULL2 */
8692 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8693 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8694 tcg_passres, tcg_passres);
8695 break;
8696 default:
8697 g_assert_not_reached();
8700 if (opcode == 9 || opcode == 11) {
8701 /* saturating accumulate ops */
8702 if (accop < 0) {
8703 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8705 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8706 tcg_res[pass], tcg_passres);
8707 } else if (accop > 0) {
8708 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8709 } else if (accop < 0) {
8710 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8713 if (accop != 0) {
8714 tcg_temp_free_i64(tcg_passres);
8717 tcg_temp_free_i64(tcg_op1);
8718 tcg_temp_free_i64(tcg_op2);
8720 } else {
8721 /* size 0 or 1, generally helper functions */
8722 for (pass = 0; pass < 2; pass++) {
8723 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8724 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8725 TCGv_i64 tcg_passres;
8726 int elt = pass + is_q * 2;
8728 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8729 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8731 if (accop == 0) {
8732 tcg_passres = tcg_res[pass];
8733 } else {
8734 tcg_passres = tcg_temp_new_i64();
8737 switch (opcode) {
8738 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8739 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8741 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8742 static NeonGenWidenFn * const widenfns[2][2] = {
8743 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8744 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8746 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8748 widenfn(tcg_op2_64, tcg_op2);
8749 widenfn(tcg_passres, tcg_op1);
8750 gen_neon_addl(size, (opcode == 2), tcg_passres,
8751 tcg_passres, tcg_op2_64);
8752 tcg_temp_free_i64(tcg_op2_64);
8753 break;
8755 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8756 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8757 if (size == 0) {
8758 if (is_u) {
8759 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8760 } else {
8761 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8763 } else {
8764 if (is_u) {
8765 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8766 } else {
8767 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8770 break;
8771 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8772 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8773 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8774 if (size == 0) {
8775 if (is_u) {
8776 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8777 } else {
8778 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8780 } else {
8781 if (is_u) {
8782 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8783 } else {
8784 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8787 break;
8788 case 9: /* SQDMLAL, SQDMLAL2 */
8789 case 11: /* SQDMLSL, SQDMLSL2 */
8790 case 13: /* SQDMULL, SQDMULL2 */
8791 assert(size == 1);
8792 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8793 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8794 tcg_passres, tcg_passres);
8795 break;
8796 case 14: /* PMULL */
8797 assert(size == 0);
8798 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8799 break;
8800 default:
8801 g_assert_not_reached();
8803 tcg_temp_free_i32(tcg_op1);
8804 tcg_temp_free_i32(tcg_op2);
8806 if (accop != 0) {
8807 if (opcode == 9 || opcode == 11) {
8808 /* saturating accumulate ops */
8809 if (accop < 0) {
8810 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8812 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8813 tcg_res[pass],
8814 tcg_passres);
8815 } else {
8816 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8817 tcg_res[pass], tcg_passres);
8819 tcg_temp_free_i64(tcg_passres);
8824 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8825 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8826 tcg_temp_free_i64(tcg_res[0]);
8827 tcg_temp_free_i64(tcg_res[1]);
8830 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8831 int opcode, int rd, int rn, int rm)
8833 TCGv_i64 tcg_res[2];
8834 int part = is_q ? 2 : 0;
8835 int pass;
8837 for (pass = 0; pass < 2; pass++) {
8838 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8839 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8840 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8841 static NeonGenWidenFn * const widenfns[3][2] = {
8842 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8843 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8844 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8846 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8848 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8849 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8850 widenfn(tcg_op2_wide, tcg_op2);
8851 tcg_temp_free_i32(tcg_op2);
8852 tcg_res[pass] = tcg_temp_new_i64();
8853 gen_neon_addl(size, (opcode == 3),
8854 tcg_res[pass], tcg_op1, tcg_op2_wide);
8855 tcg_temp_free_i64(tcg_op1);
8856 tcg_temp_free_i64(tcg_op2_wide);
8859 for (pass = 0; pass < 2; pass++) {
8860 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8861 tcg_temp_free_i64(tcg_res[pass]);
8865 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8867 tcg_gen_addi_i64(in, in, 1U << 31);
8868 tcg_gen_extrh_i64_i32(res, in);
8871 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8872 int opcode, int rd, int rn, int rm)
8874 TCGv_i32 tcg_res[2];
8875 int part = is_q ? 2 : 0;
8876 int pass;
8878 for (pass = 0; pass < 2; pass++) {
8879 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8880 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8881 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8882 static NeonGenNarrowFn * const narrowfns[3][2] = {
8883 { gen_helper_neon_narrow_high_u8,
8884 gen_helper_neon_narrow_round_high_u8 },
8885 { gen_helper_neon_narrow_high_u16,
8886 gen_helper_neon_narrow_round_high_u16 },
8887 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8889 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8891 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8892 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8894 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8896 tcg_temp_free_i64(tcg_op1);
8897 tcg_temp_free_i64(tcg_op2);
8899 tcg_res[pass] = tcg_temp_new_i32();
8900 gennarrow(tcg_res[pass], tcg_wideres);
8901 tcg_temp_free_i64(tcg_wideres);
8904 for (pass = 0; pass < 2; pass++) {
8905 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8906 tcg_temp_free_i32(tcg_res[pass]);
8908 if (!is_q) {
8909 clear_vec_high(s, rd);
8913 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8915 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8916 * is the only three-reg-diff instruction which produces a
8917 * 128-bit wide result from a single operation. However since
8918 * it's possible to calculate the two halves more or less
8919 * separately we just use two helper calls.
8921 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8922 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8923 TCGv_i64 tcg_res = tcg_temp_new_i64();
8925 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8926 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8927 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8928 write_vec_element(s, tcg_res, rd, 0, MO_64);
8929 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8930 write_vec_element(s, tcg_res, rd, 1, MO_64);
8932 tcg_temp_free_i64(tcg_op1);
8933 tcg_temp_free_i64(tcg_op2);
8934 tcg_temp_free_i64(tcg_res);
8937 /* C3.6.15 AdvSIMD three different
8938 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8939 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8940 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8941 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8943 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8945 /* Instructions in this group fall into three basic classes
8946 * (in each case with the operation working on each element in
8947 * the input vectors):
8948 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8949 * 128 bit input)
8950 * (2) wide 64 x 128 -> 128
8951 * (3) narrowing 128 x 128 -> 64
8952 * Here we do initial decode, catch unallocated cases and
8953 * dispatch to separate functions for each class.
8955 int is_q = extract32(insn, 30, 1);
8956 int is_u = extract32(insn, 29, 1);
8957 int size = extract32(insn, 22, 2);
8958 int opcode = extract32(insn, 12, 4);
8959 int rm = extract32(insn, 16, 5);
8960 int rn = extract32(insn, 5, 5);
8961 int rd = extract32(insn, 0, 5);
8963 switch (opcode) {
8964 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8965 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8966 /* 64 x 128 -> 128 */
8967 if (size == 3) {
8968 unallocated_encoding(s);
8969 return;
8971 if (!fp_access_check(s)) {
8972 return;
8974 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8975 break;
8976 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8977 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8978 /* 128 x 128 -> 64 */
8979 if (size == 3) {
8980 unallocated_encoding(s);
8981 return;
8983 if (!fp_access_check(s)) {
8984 return;
8986 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8987 break;
8988 case 14: /* PMULL, PMULL2 */
8989 if (is_u || size == 1 || size == 2) {
8990 unallocated_encoding(s);
8991 return;
8993 if (size == 3) {
8994 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8995 unallocated_encoding(s);
8996 return;
8998 if (!fp_access_check(s)) {
8999 return;
9001 handle_pmull_64(s, is_q, rd, rn, rm);
9002 return;
9004 goto is_widening;
9005 case 9: /* SQDMLAL, SQDMLAL2 */
9006 case 11: /* SQDMLSL, SQDMLSL2 */
9007 case 13: /* SQDMULL, SQDMULL2 */
9008 if (is_u || size == 0) {
9009 unallocated_encoding(s);
9010 return;
9012 /* fall through */
9013 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9014 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9015 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9016 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9017 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9018 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9019 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9020 /* 64 x 64 -> 128 */
9021 if (size == 3) {
9022 unallocated_encoding(s);
9023 return;
9025 is_widening:
9026 if (!fp_access_check(s)) {
9027 return;
9030 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9031 break;
9032 default:
9033 /* opcode 15 not allocated */
9034 unallocated_encoding(s);
9035 break;
9039 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9040 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9042 int rd = extract32(insn, 0, 5);
9043 int rn = extract32(insn, 5, 5);
9044 int rm = extract32(insn, 16, 5);
9045 int size = extract32(insn, 22, 2);
9046 bool is_u = extract32(insn, 29, 1);
9047 bool is_q = extract32(insn, 30, 1);
9048 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
9049 int pass;
9051 if (!fp_access_check(s)) {
9052 return;
9055 tcg_op1 = tcg_temp_new_i64();
9056 tcg_op2 = tcg_temp_new_i64();
9057 tcg_res[0] = tcg_temp_new_i64();
9058 tcg_res[1] = tcg_temp_new_i64();
9060 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
9061 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9062 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9064 if (!is_u) {
9065 switch (size) {
9066 case 0: /* AND */
9067 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
9068 break;
9069 case 1: /* BIC */
9070 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9071 break;
9072 case 2: /* ORR */
9073 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
9074 break;
9075 case 3: /* ORN */
9076 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9077 break;
9079 } else {
9080 if (size != 0) {
9081 /* B* ops need res loaded to operate on */
9082 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9085 switch (size) {
9086 case 0: /* EOR */
9087 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
9088 break;
9089 case 1: /* BSL bitwise select */
9090 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
9091 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9092 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
9093 break;
9094 case 2: /* BIT, bitwise insert if true */
9095 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9096 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
9097 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9098 break;
9099 case 3: /* BIF, bitwise insert if false */
9100 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9101 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
9102 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9103 break;
9108 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9109 if (!is_q) {
9110 tcg_gen_movi_i64(tcg_res[1], 0);
9112 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9114 tcg_temp_free_i64(tcg_op1);
9115 tcg_temp_free_i64(tcg_op2);
9116 tcg_temp_free_i64(tcg_res[0]);
9117 tcg_temp_free_i64(tcg_res[1]);
9120 /* Helper functions for 32 bit comparisons */
9121 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9123 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9126 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9128 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9131 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9133 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9136 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9138 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9141 /* Pairwise op subgroup of C3.6.16.
9143 * This is called directly or via the handle_3same_float for float pairwise
9144 * operations where the opcode and size are calculated differently.
9146 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9147 int size, int rn, int rm, int rd)
9149 TCGv_ptr fpst;
9150 int pass;
9152 /* Floating point operations need fpst */
9153 if (opcode >= 0x58) {
9154 fpst = get_fpstatus_ptr();
9155 } else {
9156 TCGV_UNUSED_PTR(fpst);
9159 if (!fp_access_check(s)) {
9160 return;
9163 /* These operations work on the concatenated rm:rn, with each pair of
9164 * adjacent elements being operated on to produce an element in the result.
9166 if (size == 3) {
9167 TCGv_i64 tcg_res[2];
9169 for (pass = 0; pass < 2; pass++) {
9170 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9171 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9172 int passreg = (pass == 0) ? rn : rm;
9174 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9175 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9176 tcg_res[pass] = tcg_temp_new_i64();
9178 switch (opcode) {
9179 case 0x17: /* ADDP */
9180 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9181 break;
9182 case 0x58: /* FMAXNMP */
9183 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9184 break;
9185 case 0x5a: /* FADDP */
9186 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9187 break;
9188 case 0x5e: /* FMAXP */
9189 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9190 break;
9191 case 0x78: /* FMINNMP */
9192 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9193 break;
9194 case 0x7e: /* FMINP */
9195 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9196 break;
9197 default:
9198 g_assert_not_reached();
9201 tcg_temp_free_i64(tcg_op1);
9202 tcg_temp_free_i64(tcg_op2);
9205 for (pass = 0; pass < 2; pass++) {
9206 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9207 tcg_temp_free_i64(tcg_res[pass]);
9209 } else {
9210 int maxpass = is_q ? 4 : 2;
9211 TCGv_i32 tcg_res[4];
9213 for (pass = 0; pass < maxpass; pass++) {
9214 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9215 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9216 NeonGenTwoOpFn *genfn = NULL;
9217 int passreg = pass < (maxpass / 2) ? rn : rm;
9218 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9220 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9221 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9222 tcg_res[pass] = tcg_temp_new_i32();
9224 switch (opcode) {
9225 case 0x17: /* ADDP */
9227 static NeonGenTwoOpFn * const fns[3] = {
9228 gen_helper_neon_padd_u8,
9229 gen_helper_neon_padd_u16,
9230 tcg_gen_add_i32,
9232 genfn = fns[size];
9233 break;
9235 case 0x14: /* SMAXP, UMAXP */
9237 static NeonGenTwoOpFn * const fns[3][2] = {
9238 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9239 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9240 { gen_max_s32, gen_max_u32 },
9242 genfn = fns[size][u];
9243 break;
9245 case 0x15: /* SMINP, UMINP */
9247 static NeonGenTwoOpFn * const fns[3][2] = {
9248 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9249 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9250 { gen_min_s32, gen_min_u32 },
9252 genfn = fns[size][u];
9253 break;
9255 /* The FP operations are all on single floats (32 bit) */
9256 case 0x58: /* FMAXNMP */
9257 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9258 break;
9259 case 0x5a: /* FADDP */
9260 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9261 break;
9262 case 0x5e: /* FMAXP */
9263 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9264 break;
9265 case 0x78: /* FMINNMP */
9266 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9267 break;
9268 case 0x7e: /* FMINP */
9269 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9270 break;
9271 default:
9272 g_assert_not_reached();
9275 /* FP ops called directly, otherwise call now */
9276 if (genfn) {
9277 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9280 tcg_temp_free_i32(tcg_op1);
9281 tcg_temp_free_i32(tcg_op2);
9284 for (pass = 0; pass < maxpass; pass++) {
9285 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9286 tcg_temp_free_i32(tcg_res[pass]);
9288 if (!is_q) {
9289 clear_vec_high(s, rd);
9293 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9294 tcg_temp_free_ptr(fpst);
9298 /* Floating point op subgroup of C3.6.16. */
9299 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9301 /* For floating point ops, the U, size[1] and opcode bits
9302 * together indicate the operation. size[0] indicates single
9303 * or double.
9305 int fpopcode = extract32(insn, 11, 5)
9306 | (extract32(insn, 23, 1) << 5)
9307 | (extract32(insn, 29, 1) << 6);
9308 int is_q = extract32(insn, 30, 1);
9309 int size = extract32(insn, 22, 1);
9310 int rm = extract32(insn, 16, 5);
9311 int rn = extract32(insn, 5, 5);
9312 int rd = extract32(insn, 0, 5);
9314 int datasize = is_q ? 128 : 64;
9315 int esize = 32 << size;
9316 int elements = datasize / esize;
9318 if (size == 1 && !is_q) {
9319 unallocated_encoding(s);
9320 return;
9323 switch (fpopcode) {
9324 case 0x58: /* FMAXNMP */
9325 case 0x5a: /* FADDP */
9326 case 0x5e: /* FMAXP */
9327 case 0x78: /* FMINNMP */
9328 case 0x7e: /* FMINP */
9329 if (size && !is_q) {
9330 unallocated_encoding(s);
9331 return;
9333 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9334 rn, rm, rd);
9335 return;
9336 case 0x1b: /* FMULX */
9337 case 0x1f: /* FRECPS */
9338 case 0x3f: /* FRSQRTS */
9339 case 0x5d: /* FACGE */
9340 case 0x7d: /* FACGT */
9341 case 0x19: /* FMLA */
9342 case 0x39: /* FMLS */
9343 case 0x18: /* FMAXNM */
9344 case 0x1a: /* FADD */
9345 case 0x1c: /* FCMEQ */
9346 case 0x1e: /* FMAX */
9347 case 0x38: /* FMINNM */
9348 case 0x3a: /* FSUB */
9349 case 0x3e: /* FMIN */
9350 case 0x5b: /* FMUL */
9351 case 0x5c: /* FCMGE */
9352 case 0x5f: /* FDIV */
9353 case 0x7a: /* FABD */
9354 case 0x7c: /* FCMGT */
9355 if (!fp_access_check(s)) {
9356 return;
9359 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9360 return;
9361 default:
9362 unallocated_encoding(s);
9363 return;
9367 /* Integer op subgroup of C3.6.16. */
9368 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9370 int is_q = extract32(insn, 30, 1);
9371 int u = extract32(insn, 29, 1);
9372 int size = extract32(insn, 22, 2);
9373 int opcode = extract32(insn, 11, 5);
9374 int rm = extract32(insn, 16, 5);
9375 int rn = extract32(insn, 5, 5);
9376 int rd = extract32(insn, 0, 5);
9377 int pass;
9379 switch (opcode) {
9380 case 0x13: /* MUL, PMUL */
9381 if (u && size != 0) {
9382 unallocated_encoding(s);
9383 return;
9385 /* fall through */
9386 case 0x0: /* SHADD, UHADD */
9387 case 0x2: /* SRHADD, URHADD */
9388 case 0x4: /* SHSUB, UHSUB */
9389 case 0xc: /* SMAX, UMAX */
9390 case 0xd: /* SMIN, UMIN */
9391 case 0xe: /* SABD, UABD */
9392 case 0xf: /* SABA, UABA */
9393 case 0x12: /* MLA, MLS */
9394 if (size == 3) {
9395 unallocated_encoding(s);
9396 return;
9398 break;
9399 case 0x16: /* SQDMULH, SQRDMULH */
9400 if (size == 0 || size == 3) {
9401 unallocated_encoding(s);
9402 return;
9404 break;
9405 default:
9406 if (size == 3 && !is_q) {
9407 unallocated_encoding(s);
9408 return;
9410 break;
9413 if (!fp_access_check(s)) {
9414 return;
9417 if (size == 3) {
9418 assert(is_q);
9419 for (pass = 0; pass < 2; pass++) {
9420 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9421 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9422 TCGv_i64 tcg_res = tcg_temp_new_i64();
9424 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9425 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9427 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9429 write_vec_element(s, tcg_res, rd, pass, MO_64);
9431 tcg_temp_free_i64(tcg_res);
9432 tcg_temp_free_i64(tcg_op1);
9433 tcg_temp_free_i64(tcg_op2);
9435 } else {
9436 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9437 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9438 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9439 TCGv_i32 tcg_res = tcg_temp_new_i32();
9440 NeonGenTwoOpFn *genfn = NULL;
9441 NeonGenTwoOpEnvFn *genenvfn = NULL;
9443 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9444 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9446 switch (opcode) {
9447 case 0x0: /* SHADD, UHADD */
9449 static NeonGenTwoOpFn * const fns[3][2] = {
9450 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9451 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9452 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9454 genfn = fns[size][u];
9455 break;
9457 case 0x1: /* SQADD, UQADD */
9459 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9460 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9461 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9462 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9464 genenvfn = fns[size][u];
9465 break;
9467 case 0x2: /* SRHADD, URHADD */
9469 static NeonGenTwoOpFn * const fns[3][2] = {
9470 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9471 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9472 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9474 genfn = fns[size][u];
9475 break;
9477 case 0x4: /* SHSUB, UHSUB */
9479 static NeonGenTwoOpFn * const fns[3][2] = {
9480 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9481 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9482 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9484 genfn = fns[size][u];
9485 break;
9487 case 0x5: /* SQSUB, UQSUB */
9489 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9490 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9491 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9492 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9494 genenvfn = fns[size][u];
9495 break;
9497 case 0x6: /* CMGT, CMHI */
9499 static NeonGenTwoOpFn * const fns[3][2] = {
9500 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9501 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9502 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9504 genfn = fns[size][u];
9505 break;
9507 case 0x7: /* CMGE, CMHS */
9509 static NeonGenTwoOpFn * const fns[3][2] = {
9510 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9511 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9512 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9514 genfn = fns[size][u];
9515 break;
9517 case 0x8: /* SSHL, USHL */
9519 static NeonGenTwoOpFn * const fns[3][2] = {
9520 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9521 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9522 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9524 genfn = fns[size][u];
9525 break;
9527 case 0x9: /* SQSHL, UQSHL */
9529 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9530 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9531 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9532 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9534 genenvfn = fns[size][u];
9535 break;
9537 case 0xa: /* SRSHL, URSHL */
9539 static NeonGenTwoOpFn * const fns[3][2] = {
9540 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9541 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9542 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9544 genfn = fns[size][u];
9545 break;
9547 case 0xb: /* SQRSHL, UQRSHL */
9549 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9550 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9551 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9552 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9554 genenvfn = fns[size][u];
9555 break;
9557 case 0xc: /* SMAX, UMAX */
9559 static NeonGenTwoOpFn * const fns[3][2] = {
9560 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9561 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9562 { gen_max_s32, gen_max_u32 },
9564 genfn = fns[size][u];
9565 break;
9568 case 0xd: /* SMIN, UMIN */
9570 static NeonGenTwoOpFn * const fns[3][2] = {
9571 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9572 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9573 { gen_min_s32, gen_min_u32 },
9575 genfn = fns[size][u];
9576 break;
9578 case 0xe: /* SABD, UABD */
9579 case 0xf: /* SABA, UABA */
9581 static NeonGenTwoOpFn * const fns[3][2] = {
9582 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9583 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9584 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9586 genfn = fns[size][u];
9587 break;
9589 case 0x10: /* ADD, SUB */
9591 static NeonGenTwoOpFn * const fns[3][2] = {
9592 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9593 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9594 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9596 genfn = fns[size][u];
9597 break;
9599 case 0x11: /* CMTST, CMEQ */
9601 static NeonGenTwoOpFn * const fns[3][2] = {
9602 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9603 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9604 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9606 genfn = fns[size][u];
9607 break;
9609 case 0x13: /* MUL, PMUL */
9610 if (u) {
9611 /* PMUL */
9612 assert(size == 0);
9613 genfn = gen_helper_neon_mul_p8;
9614 break;
9616 /* fall through : MUL */
9617 case 0x12: /* MLA, MLS */
9619 static NeonGenTwoOpFn * const fns[3] = {
9620 gen_helper_neon_mul_u8,
9621 gen_helper_neon_mul_u16,
9622 tcg_gen_mul_i32,
9624 genfn = fns[size];
9625 break;
9627 case 0x16: /* SQDMULH, SQRDMULH */
9629 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9630 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9631 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9633 assert(size == 1 || size == 2);
9634 genenvfn = fns[size - 1][u];
9635 break;
9637 default:
9638 g_assert_not_reached();
9641 if (genenvfn) {
9642 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9643 } else {
9644 genfn(tcg_res, tcg_op1, tcg_op2);
9647 if (opcode == 0xf || opcode == 0x12) {
9648 /* SABA, UABA, MLA, MLS: accumulating ops */
9649 static NeonGenTwoOpFn * const fns[3][2] = {
9650 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9651 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9652 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9654 bool is_sub = (opcode == 0x12 && u); /* MLS */
9656 genfn = fns[size][is_sub];
9657 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9658 genfn(tcg_res, tcg_op1, tcg_res);
9661 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9663 tcg_temp_free_i32(tcg_res);
9664 tcg_temp_free_i32(tcg_op1);
9665 tcg_temp_free_i32(tcg_op2);
9669 if (!is_q) {
9670 clear_vec_high(s, rd);
9674 /* C3.6.16 AdvSIMD three same
9675 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9676 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9677 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9678 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9680 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9682 int opcode = extract32(insn, 11, 5);
9684 switch (opcode) {
9685 case 0x3: /* logic ops */
9686 disas_simd_3same_logic(s, insn);
9687 break;
9688 case 0x17: /* ADDP */
9689 case 0x14: /* SMAXP, UMAXP */
9690 case 0x15: /* SMINP, UMINP */
9692 /* Pairwise operations */
9693 int is_q = extract32(insn, 30, 1);
9694 int u = extract32(insn, 29, 1);
9695 int size = extract32(insn, 22, 2);
9696 int rm = extract32(insn, 16, 5);
9697 int rn = extract32(insn, 5, 5);
9698 int rd = extract32(insn, 0, 5);
9699 if (opcode == 0x17) {
9700 if (u || (size == 3 && !is_q)) {
9701 unallocated_encoding(s);
9702 return;
9704 } else {
9705 if (size == 3) {
9706 unallocated_encoding(s);
9707 return;
9710 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9711 break;
9713 case 0x18 ... 0x31:
9714 /* floating point ops, sz[1] and U are part of opcode */
9715 disas_simd_3same_float(s, insn);
9716 break;
9717 default:
9718 disas_simd_3same_int(s, insn);
9719 break;
9723 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9724 int size, int rn, int rd)
9726 /* Handle 2-reg-misc ops which are widening (so each size element
9727 * in the source becomes a 2*size element in the destination.
9728 * The only instruction like this is FCVTL.
9730 int pass;
9732 if (size == 3) {
9733 /* 32 -> 64 bit fp conversion */
9734 TCGv_i64 tcg_res[2];
9735 int srcelt = is_q ? 2 : 0;
9737 for (pass = 0; pass < 2; pass++) {
9738 TCGv_i32 tcg_op = tcg_temp_new_i32();
9739 tcg_res[pass] = tcg_temp_new_i64();
9741 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9742 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9743 tcg_temp_free_i32(tcg_op);
9745 for (pass = 0; pass < 2; pass++) {
9746 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9747 tcg_temp_free_i64(tcg_res[pass]);
9749 } else {
9750 /* 16 -> 32 bit fp conversion */
9751 int srcelt = is_q ? 4 : 0;
9752 TCGv_i32 tcg_res[4];
9754 for (pass = 0; pass < 4; pass++) {
9755 tcg_res[pass] = tcg_temp_new_i32();
9757 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9758 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9759 cpu_env);
9761 for (pass = 0; pass < 4; pass++) {
9762 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9763 tcg_temp_free_i32(tcg_res[pass]);
9768 static void handle_rev(DisasContext *s, int opcode, bool u,
9769 bool is_q, int size, int rn, int rd)
9771 int op = (opcode << 1) | u;
9772 int opsz = op + size;
9773 int grp_size = 3 - opsz;
9774 int dsize = is_q ? 128 : 64;
9775 int i;
9777 if (opsz >= 3) {
9778 unallocated_encoding(s);
9779 return;
9782 if (!fp_access_check(s)) {
9783 return;
9786 if (size == 0) {
9787 /* Special case bytes, use bswap op on each group of elements */
9788 int groups = dsize / (8 << grp_size);
9790 for (i = 0; i < groups; i++) {
9791 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9793 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9794 switch (grp_size) {
9795 case MO_16:
9796 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9797 break;
9798 case MO_32:
9799 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9800 break;
9801 case MO_64:
9802 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9803 break;
9804 default:
9805 g_assert_not_reached();
9807 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9808 tcg_temp_free_i64(tcg_tmp);
9810 if (!is_q) {
9811 clear_vec_high(s, rd);
9813 } else {
9814 int revmask = (1 << grp_size) - 1;
9815 int esize = 8 << size;
9816 int elements = dsize / esize;
9817 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9818 TCGv_i64 tcg_rd = tcg_const_i64(0);
9819 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9821 for (i = 0; i < elements; i++) {
9822 int e_rev = (i & 0xf) ^ revmask;
9823 int off = e_rev * esize;
9824 read_vec_element(s, tcg_rn, rn, i, size);
9825 if (off >= 64) {
9826 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9827 tcg_rn, off - 64, esize);
9828 } else {
9829 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9832 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9833 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9835 tcg_temp_free_i64(tcg_rd_hi);
9836 tcg_temp_free_i64(tcg_rd);
9837 tcg_temp_free_i64(tcg_rn);
9841 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9842 bool is_q, int size, int rn, int rd)
9844 /* Implement the pairwise operations from 2-misc:
9845 * SADDLP, UADDLP, SADALP, UADALP.
9846 * These all add pairs of elements in the input to produce a
9847 * double-width result element in the output (possibly accumulating).
9849 bool accum = (opcode == 0x6);
9850 int maxpass = is_q ? 2 : 1;
9851 int pass;
9852 TCGv_i64 tcg_res[2];
9854 if (size == 2) {
9855 /* 32 + 32 -> 64 op */
9856 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9858 for (pass = 0; pass < maxpass; pass++) {
9859 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9860 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9862 tcg_res[pass] = tcg_temp_new_i64();
9864 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9865 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9866 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9867 if (accum) {
9868 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9869 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9872 tcg_temp_free_i64(tcg_op1);
9873 tcg_temp_free_i64(tcg_op2);
9875 } else {
9876 for (pass = 0; pass < maxpass; pass++) {
9877 TCGv_i64 tcg_op = tcg_temp_new_i64();
9878 NeonGenOneOpFn *genfn;
9879 static NeonGenOneOpFn * const fns[2][2] = {
9880 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9881 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9884 genfn = fns[size][u];
9886 tcg_res[pass] = tcg_temp_new_i64();
9888 read_vec_element(s, tcg_op, rn, pass, MO_64);
9889 genfn(tcg_res[pass], tcg_op);
9891 if (accum) {
9892 read_vec_element(s, tcg_op, rd, pass, MO_64);
9893 if (size == 0) {
9894 gen_helper_neon_addl_u16(tcg_res[pass],
9895 tcg_res[pass], tcg_op);
9896 } else {
9897 gen_helper_neon_addl_u32(tcg_res[pass],
9898 tcg_res[pass], tcg_op);
9901 tcg_temp_free_i64(tcg_op);
9904 if (!is_q) {
9905 tcg_res[1] = tcg_const_i64(0);
9907 for (pass = 0; pass < 2; pass++) {
9908 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9909 tcg_temp_free_i64(tcg_res[pass]);
9913 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9915 /* Implement SHLL and SHLL2 */
9916 int pass;
9917 int part = is_q ? 2 : 0;
9918 TCGv_i64 tcg_res[2];
9920 for (pass = 0; pass < 2; pass++) {
9921 static NeonGenWidenFn * const widenfns[3] = {
9922 gen_helper_neon_widen_u8,
9923 gen_helper_neon_widen_u16,
9924 tcg_gen_extu_i32_i64,
9926 NeonGenWidenFn *widenfn = widenfns[size];
9927 TCGv_i32 tcg_op = tcg_temp_new_i32();
9929 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9930 tcg_res[pass] = tcg_temp_new_i64();
9931 widenfn(tcg_res[pass], tcg_op);
9932 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9934 tcg_temp_free_i32(tcg_op);
9937 for (pass = 0; pass < 2; pass++) {
9938 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9939 tcg_temp_free_i64(tcg_res[pass]);
9943 /* C3.6.17 AdvSIMD two reg misc
9944 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9945 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9946 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9947 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9949 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9951 int size = extract32(insn, 22, 2);
9952 int opcode = extract32(insn, 12, 5);
9953 bool u = extract32(insn, 29, 1);
9954 bool is_q = extract32(insn, 30, 1);
9955 int rn = extract32(insn, 5, 5);
9956 int rd = extract32(insn, 0, 5);
9957 bool need_fpstatus = false;
9958 bool need_rmode = false;
9959 int rmode = -1;
9960 TCGv_i32 tcg_rmode;
9961 TCGv_ptr tcg_fpstatus;
9963 switch (opcode) {
9964 case 0x0: /* REV64, REV32 */
9965 case 0x1: /* REV16 */
9966 handle_rev(s, opcode, u, is_q, size, rn, rd);
9967 return;
9968 case 0x5: /* CNT, NOT, RBIT */
9969 if (u && size == 0) {
9970 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9971 size = 3;
9972 break;
9973 } else if (u && size == 1) {
9974 /* RBIT */
9975 break;
9976 } else if (!u && size == 0) {
9977 /* CNT */
9978 break;
9980 unallocated_encoding(s);
9981 return;
9982 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9983 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9984 if (size == 3) {
9985 unallocated_encoding(s);
9986 return;
9988 if (!fp_access_check(s)) {
9989 return;
9992 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9993 return;
9994 case 0x4: /* CLS, CLZ */
9995 if (size == 3) {
9996 unallocated_encoding(s);
9997 return;
9999 break;
10000 case 0x2: /* SADDLP, UADDLP */
10001 case 0x6: /* SADALP, UADALP */
10002 if (size == 3) {
10003 unallocated_encoding(s);
10004 return;
10006 if (!fp_access_check(s)) {
10007 return;
10009 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
10010 return;
10011 case 0x13: /* SHLL, SHLL2 */
10012 if (u == 0 || size == 3) {
10013 unallocated_encoding(s);
10014 return;
10016 if (!fp_access_check(s)) {
10017 return;
10019 handle_shll(s, is_q, size, rn, rd);
10020 return;
10021 case 0xa: /* CMLT */
10022 if (u == 1) {
10023 unallocated_encoding(s);
10024 return;
10026 /* fall through */
10027 case 0x8: /* CMGT, CMGE */
10028 case 0x9: /* CMEQ, CMLE */
10029 case 0xb: /* ABS, NEG */
10030 if (size == 3 && !is_q) {
10031 unallocated_encoding(s);
10032 return;
10034 break;
10035 case 0x3: /* SUQADD, USQADD */
10036 if (size == 3 && !is_q) {
10037 unallocated_encoding(s);
10038 return;
10040 if (!fp_access_check(s)) {
10041 return;
10043 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
10044 return;
10045 case 0x7: /* SQABS, SQNEG */
10046 if (size == 3 && !is_q) {
10047 unallocated_encoding(s);
10048 return;
10050 break;
10051 case 0xc ... 0xf:
10052 case 0x16 ... 0x1d:
10053 case 0x1f:
10055 /* Floating point: U, size[1] and opcode indicate operation;
10056 * size[0] indicates single or double precision.
10058 int is_double = extract32(size, 0, 1);
10059 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10060 size = is_double ? 3 : 2;
10061 switch (opcode) {
10062 case 0x2f: /* FABS */
10063 case 0x6f: /* FNEG */
10064 if (size == 3 && !is_q) {
10065 unallocated_encoding(s);
10066 return;
10068 break;
10069 case 0x1d: /* SCVTF */
10070 case 0x5d: /* UCVTF */
10072 bool is_signed = (opcode == 0x1d) ? true : false;
10073 int elements = is_double ? 2 : is_q ? 4 : 2;
10074 if (is_double && !is_q) {
10075 unallocated_encoding(s);
10076 return;
10078 if (!fp_access_check(s)) {
10079 return;
10081 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
10082 return;
10084 case 0x2c: /* FCMGT (zero) */
10085 case 0x2d: /* FCMEQ (zero) */
10086 case 0x2e: /* FCMLT (zero) */
10087 case 0x6c: /* FCMGE (zero) */
10088 case 0x6d: /* FCMLE (zero) */
10089 if (size == 3 && !is_q) {
10090 unallocated_encoding(s);
10091 return;
10093 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
10094 return;
10095 case 0x7f: /* FSQRT */
10096 if (size == 3 && !is_q) {
10097 unallocated_encoding(s);
10098 return;
10100 break;
10101 case 0x1a: /* FCVTNS */
10102 case 0x1b: /* FCVTMS */
10103 case 0x3a: /* FCVTPS */
10104 case 0x3b: /* FCVTZS */
10105 case 0x5a: /* FCVTNU */
10106 case 0x5b: /* FCVTMU */
10107 case 0x7a: /* FCVTPU */
10108 case 0x7b: /* FCVTZU */
10109 need_fpstatus = true;
10110 need_rmode = true;
10111 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10112 if (size == 3 && !is_q) {
10113 unallocated_encoding(s);
10114 return;
10116 break;
10117 case 0x5c: /* FCVTAU */
10118 case 0x1c: /* FCVTAS */
10119 need_fpstatus = true;
10120 need_rmode = true;
10121 rmode = FPROUNDING_TIEAWAY;
10122 if (size == 3 && !is_q) {
10123 unallocated_encoding(s);
10124 return;
10126 break;
10127 case 0x3c: /* URECPE */
10128 if (size == 3) {
10129 unallocated_encoding(s);
10130 return;
10132 /* fall through */
10133 case 0x3d: /* FRECPE */
10134 case 0x7d: /* FRSQRTE */
10135 if (size == 3 && !is_q) {
10136 unallocated_encoding(s);
10137 return;
10139 if (!fp_access_check(s)) {
10140 return;
10142 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
10143 return;
10144 case 0x56: /* FCVTXN, FCVTXN2 */
10145 if (size == 2) {
10146 unallocated_encoding(s);
10147 return;
10149 /* fall through */
10150 case 0x16: /* FCVTN, FCVTN2 */
10151 /* handle_2misc_narrow does a 2*size -> size operation, but these
10152 * instructions encode the source size rather than dest size.
10154 if (!fp_access_check(s)) {
10155 return;
10157 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
10158 return;
10159 case 0x17: /* FCVTL, FCVTL2 */
10160 if (!fp_access_check(s)) {
10161 return;
10163 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
10164 return;
10165 case 0x18: /* FRINTN */
10166 case 0x19: /* FRINTM */
10167 case 0x38: /* FRINTP */
10168 case 0x39: /* FRINTZ */
10169 need_rmode = true;
10170 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10171 /* fall through */
10172 case 0x59: /* FRINTX */
10173 case 0x79: /* FRINTI */
10174 need_fpstatus = true;
10175 if (size == 3 && !is_q) {
10176 unallocated_encoding(s);
10177 return;
10179 break;
10180 case 0x58: /* FRINTA */
10181 need_rmode = true;
10182 rmode = FPROUNDING_TIEAWAY;
10183 need_fpstatus = true;
10184 if (size == 3 && !is_q) {
10185 unallocated_encoding(s);
10186 return;
10188 break;
10189 case 0x7c: /* URSQRTE */
10190 if (size == 3) {
10191 unallocated_encoding(s);
10192 return;
10194 need_fpstatus = true;
10195 break;
10196 default:
10197 unallocated_encoding(s);
10198 return;
10200 break;
10202 default:
10203 unallocated_encoding(s);
10204 return;
10207 if (!fp_access_check(s)) {
10208 return;
10211 if (need_fpstatus) {
10212 tcg_fpstatus = get_fpstatus_ptr();
10213 } else {
10214 TCGV_UNUSED_PTR(tcg_fpstatus);
10216 if (need_rmode) {
10217 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10218 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10219 } else {
10220 TCGV_UNUSED_I32(tcg_rmode);
10223 if (size == 3) {
10224 /* All 64-bit element operations can be shared with scalar 2misc */
10225 int pass;
10227 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10228 TCGv_i64 tcg_op = tcg_temp_new_i64();
10229 TCGv_i64 tcg_res = tcg_temp_new_i64();
10231 read_vec_element(s, tcg_op, rn, pass, MO_64);
10233 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10234 tcg_rmode, tcg_fpstatus);
10236 write_vec_element(s, tcg_res, rd, pass, MO_64);
10238 tcg_temp_free_i64(tcg_res);
10239 tcg_temp_free_i64(tcg_op);
10241 } else {
10242 int pass;
10244 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10245 TCGv_i32 tcg_op = tcg_temp_new_i32();
10246 TCGv_i32 tcg_res = tcg_temp_new_i32();
10247 TCGCond cond;
10249 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10251 if (size == 2) {
10252 /* Special cases for 32 bit elements */
10253 switch (opcode) {
10254 case 0xa: /* CMLT */
10255 /* 32 bit integer comparison against zero, result is
10256 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10257 * and inverting.
10259 cond = TCG_COND_LT;
10260 do_cmop:
10261 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10262 tcg_gen_neg_i32(tcg_res, tcg_res);
10263 break;
10264 case 0x8: /* CMGT, CMGE */
10265 cond = u ? TCG_COND_GE : TCG_COND_GT;
10266 goto do_cmop;
10267 case 0x9: /* CMEQ, CMLE */
10268 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10269 goto do_cmop;
10270 case 0x4: /* CLS */
10271 if (u) {
10272 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
10273 } else {
10274 tcg_gen_clrsb_i32(tcg_res, tcg_op);
10276 break;
10277 case 0x7: /* SQABS, SQNEG */
10278 if (u) {
10279 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10280 } else {
10281 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10283 break;
10284 case 0xb: /* ABS, NEG */
10285 if (u) {
10286 tcg_gen_neg_i32(tcg_res, tcg_op);
10287 } else {
10288 TCGv_i32 tcg_zero = tcg_const_i32(0);
10289 tcg_gen_neg_i32(tcg_res, tcg_op);
10290 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10291 tcg_zero, tcg_op, tcg_res);
10292 tcg_temp_free_i32(tcg_zero);
10294 break;
10295 case 0x2f: /* FABS */
10296 gen_helper_vfp_abss(tcg_res, tcg_op);
10297 break;
10298 case 0x6f: /* FNEG */
10299 gen_helper_vfp_negs(tcg_res, tcg_op);
10300 break;
10301 case 0x7f: /* FSQRT */
10302 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10303 break;
10304 case 0x1a: /* FCVTNS */
10305 case 0x1b: /* FCVTMS */
10306 case 0x1c: /* FCVTAS */
10307 case 0x3a: /* FCVTPS */
10308 case 0x3b: /* FCVTZS */
10310 TCGv_i32 tcg_shift = tcg_const_i32(0);
10311 gen_helper_vfp_tosls(tcg_res, tcg_op,
10312 tcg_shift, tcg_fpstatus);
10313 tcg_temp_free_i32(tcg_shift);
10314 break;
10316 case 0x5a: /* FCVTNU */
10317 case 0x5b: /* FCVTMU */
10318 case 0x5c: /* FCVTAU */
10319 case 0x7a: /* FCVTPU */
10320 case 0x7b: /* FCVTZU */
10322 TCGv_i32 tcg_shift = tcg_const_i32(0);
10323 gen_helper_vfp_touls(tcg_res, tcg_op,
10324 tcg_shift, tcg_fpstatus);
10325 tcg_temp_free_i32(tcg_shift);
10326 break;
10328 case 0x18: /* FRINTN */
10329 case 0x19: /* FRINTM */
10330 case 0x38: /* FRINTP */
10331 case 0x39: /* FRINTZ */
10332 case 0x58: /* FRINTA */
10333 case 0x79: /* FRINTI */
10334 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10335 break;
10336 case 0x59: /* FRINTX */
10337 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10338 break;
10339 case 0x7c: /* URSQRTE */
10340 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10341 break;
10342 default:
10343 g_assert_not_reached();
10345 } else {
10346 /* Use helpers for 8 and 16 bit elements */
10347 switch (opcode) {
10348 case 0x5: /* CNT, RBIT */
10349 /* For these two insns size is part of the opcode specifier
10350 * (handled earlier); they always operate on byte elements.
10352 if (u) {
10353 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10354 } else {
10355 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10357 break;
10358 case 0x7: /* SQABS, SQNEG */
10360 NeonGenOneOpEnvFn *genfn;
10361 static NeonGenOneOpEnvFn * const fns[2][2] = {
10362 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10363 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10365 genfn = fns[size][u];
10366 genfn(tcg_res, cpu_env, tcg_op);
10367 break;
10369 case 0x8: /* CMGT, CMGE */
10370 case 0x9: /* CMEQ, CMLE */
10371 case 0xa: /* CMLT */
10373 static NeonGenTwoOpFn * const fns[3][2] = {
10374 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10375 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10376 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10378 NeonGenTwoOpFn *genfn;
10379 int comp;
10380 bool reverse;
10381 TCGv_i32 tcg_zero = tcg_const_i32(0);
10383 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10384 comp = (opcode - 0x8) * 2 + u;
10385 /* ...but LE, LT are implemented as reverse GE, GT */
10386 reverse = (comp > 2);
10387 if (reverse) {
10388 comp = 4 - comp;
10390 genfn = fns[comp][size];
10391 if (reverse) {
10392 genfn(tcg_res, tcg_zero, tcg_op);
10393 } else {
10394 genfn(tcg_res, tcg_op, tcg_zero);
10396 tcg_temp_free_i32(tcg_zero);
10397 break;
10399 case 0xb: /* ABS, NEG */
10400 if (u) {
10401 TCGv_i32 tcg_zero = tcg_const_i32(0);
10402 if (size) {
10403 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10404 } else {
10405 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10407 tcg_temp_free_i32(tcg_zero);
10408 } else {
10409 if (size) {
10410 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10411 } else {
10412 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10415 break;
10416 case 0x4: /* CLS, CLZ */
10417 if (u) {
10418 if (size == 0) {
10419 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10420 } else {
10421 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10423 } else {
10424 if (size == 0) {
10425 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10426 } else {
10427 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10430 break;
10431 default:
10432 g_assert_not_reached();
10436 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10438 tcg_temp_free_i32(tcg_res);
10439 tcg_temp_free_i32(tcg_op);
10442 if (!is_q) {
10443 clear_vec_high(s, rd);
10446 if (need_rmode) {
10447 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10448 tcg_temp_free_i32(tcg_rmode);
10450 if (need_fpstatus) {
10451 tcg_temp_free_ptr(tcg_fpstatus);
10455 /* C3.6.13 AdvSIMD scalar x indexed element
10456 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10457 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10458 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10459 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10460 * C3.6.18 AdvSIMD vector x indexed element
10461 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10462 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10463 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10464 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10466 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10468 /* This encoding has two kinds of instruction:
10469 * normal, where we perform elt x idxelt => elt for each
10470 * element in the vector
10471 * long, where we perform elt x idxelt and generate a result of
10472 * double the width of the input element
10473 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10475 bool is_scalar = extract32(insn, 28, 1);
10476 bool is_q = extract32(insn, 30, 1);
10477 bool u = extract32(insn, 29, 1);
10478 int size = extract32(insn, 22, 2);
10479 int l = extract32(insn, 21, 1);
10480 int m = extract32(insn, 20, 1);
10481 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10482 int rm = extract32(insn, 16, 4);
10483 int opcode = extract32(insn, 12, 4);
10484 int h = extract32(insn, 11, 1);
10485 int rn = extract32(insn, 5, 5);
10486 int rd = extract32(insn, 0, 5);
10487 bool is_long = false;
10488 bool is_fp = false;
10489 int index;
10490 TCGv_ptr fpst;
10492 switch (opcode) {
10493 case 0x0: /* MLA */
10494 case 0x4: /* MLS */
10495 if (!u || is_scalar) {
10496 unallocated_encoding(s);
10497 return;
10499 break;
10500 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10501 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10502 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10503 if (is_scalar) {
10504 unallocated_encoding(s);
10505 return;
10507 is_long = true;
10508 break;
10509 case 0x3: /* SQDMLAL, SQDMLAL2 */
10510 case 0x7: /* SQDMLSL, SQDMLSL2 */
10511 case 0xb: /* SQDMULL, SQDMULL2 */
10512 is_long = true;
10513 /* fall through */
10514 case 0xc: /* SQDMULH */
10515 case 0xd: /* SQRDMULH */
10516 if (u) {
10517 unallocated_encoding(s);
10518 return;
10520 break;
10521 case 0x8: /* MUL */
10522 if (u || is_scalar) {
10523 unallocated_encoding(s);
10524 return;
10526 break;
10527 case 0x1: /* FMLA */
10528 case 0x5: /* FMLS */
10529 if (u) {
10530 unallocated_encoding(s);
10531 return;
10533 /* fall through */
10534 case 0x9: /* FMUL, FMULX */
10535 if (!extract32(size, 1, 1)) {
10536 unallocated_encoding(s);
10537 return;
10539 is_fp = true;
10540 break;
10541 default:
10542 unallocated_encoding(s);
10543 return;
10546 if (is_fp) {
10547 /* low bit of size indicates single/double */
10548 size = extract32(size, 0, 1) ? 3 : 2;
10549 if (size == 2) {
10550 index = h << 1 | l;
10551 } else {
10552 if (l || !is_q) {
10553 unallocated_encoding(s);
10554 return;
10556 index = h;
10558 rm |= (m << 4);
10559 } else {
10560 switch (size) {
10561 case 1:
10562 index = h << 2 | l << 1 | m;
10563 break;
10564 case 2:
10565 index = h << 1 | l;
10566 rm |= (m << 4);
10567 break;
10568 default:
10569 unallocated_encoding(s);
10570 return;
10574 if (!fp_access_check(s)) {
10575 return;
10578 if (is_fp) {
10579 fpst = get_fpstatus_ptr();
10580 } else {
10581 TCGV_UNUSED_PTR(fpst);
10584 if (size == 3) {
10585 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10586 int pass;
10588 assert(is_fp && is_q && !is_long);
10590 read_vec_element(s, tcg_idx, rm, index, MO_64);
10592 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10593 TCGv_i64 tcg_op = tcg_temp_new_i64();
10594 TCGv_i64 tcg_res = tcg_temp_new_i64();
10596 read_vec_element(s, tcg_op, rn, pass, MO_64);
10598 switch (opcode) {
10599 case 0x5: /* FMLS */
10600 /* As usual for ARM, separate negation for fused multiply-add */
10601 gen_helper_vfp_negd(tcg_op, tcg_op);
10602 /* fall through */
10603 case 0x1: /* FMLA */
10604 read_vec_element(s, tcg_res, rd, pass, MO_64);
10605 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10606 break;
10607 case 0x9: /* FMUL, FMULX */
10608 if (u) {
10609 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10610 } else {
10611 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10613 break;
10614 default:
10615 g_assert_not_reached();
10618 write_vec_element(s, tcg_res, rd, pass, MO_64);
10619 tcg_temp_free_i64(tcg_op);
10620 tcg_temp_free_i64(tcg_res);
10623 if (is_scalar) {
10624 clear_vec_high(s, rd);
10627 tcg_temp_free_i64(tcg_idx);
10628 } else if (!is_long) {
10629 /* 32 bit floating point, or 16 or 32 bit integer.
10630 * For the 16 bit scalar case we use the usual Neon helpers and
10631 * rely on the fact that 0 op 0 == 0 with no side effects.
10633 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10634 int pass, maxpasses;
10636 if (is_scalar) {
10637 maxpasses = 1;
10638 } else {
10639 maxpasses = is_q ? 4 : 2;
10642 read_vec_element_i32(s, tcg_idx, rm, index, size);
10644 if (size == 1 && !is_scalar) {
10645 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10646 * the index into both halves of the 32 bit tcg_idx and then use
10647 * the usual Neon helpers.
10649 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10652 for (pass = 0; pass < maxpasses; pass++) {
10653 TCGv_i32 tcg_op = tcg_temp_new_i32();
10654 TCGv_i32 tcg_res = tcg_temp_new_i32();
10656 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10658 switch (opcode) {
10659 case 0x0: /* MLA */
10660 case 0x4: /* MLS */
10661 case 0x8: /* MUL */
10663 static NeonGenTwoOpFn * const fns[2][2] = {
10664 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10665 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10667 NeonGenTwoOpFn *genfn;
10668 bool is_sub = opcode == 0x4;
10670 if (size == 1) {
10671 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10672 } else {
10673 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10675 if (opcode == 0x8) {
10676 break;
10678 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10679 genfn = fns[size - 1][is_sub];
10680 genfn(tcg_res, tcg_op, tcg_res);
10681 break;
10683 case 0x5: /* FMLS */
10684 /* As usual for ARM, separate negation for fused multiply-add */
10685 gen_helper_vfp_negs(tcg_op, tcg_op);
10686 /* fall through */
10687 case 0x1: /* FMLA */
10688 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10689 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10690 break;
10691 case 0x9: /* FMUL, FMULX */
10692 if (u) {
10693 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10694 } else {
10695 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10697 break;
10698 case 0xc: /* SQDMULH */
10699 if (size == 1) {
10700 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10701 tcg_op, tcg_idx);
10702 } else {
10703 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10704 tcg_op, tcg_idx);
10706 break;
10707 case 0xd: /* SQRDMULH */
10708 if (size == 1) {
10709 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10710 tcg_op, tcg_idx);
10711 } else {
10712 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10713 tcg_op, tcg_idx);
10715 break;
10716 default:
10717 g_assert_not_reached();
10720 if (is_scalar) {
10721 write_fp_sreg(s, rd, tcg_res);
10722 } else {
10723 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10726 tcg_temp_free_i32(tcg_op);
10727 tcg_temp_free_i32(tcg_res);
10730 tcg_temp_free_i32(tcg_idx);
10732 if (!is_q) {
10733 clear_vec_high(s, rd);
10735 } else {
10736 /* long ops: 16x16->32 or 32x32->64 */
10737 TCGv_i64 tcg_res[2];
10738 int pass;
10739 bool satop = extract32(opcode, 0, 1);
10740 TCGMemOp memop = MO_32;
10742 if (satop || !u) {
10743 memop |= MO_SIGN;
10746 if (size == 2) {
10747 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10749 read_vec_element(s, tcg_idx, rm, index, memop);
10751 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10752 TCGv_i64 tcg_op = tcg_temp_new_i64();
10753 TCGv_i64 tcg_passres;
10754 int passelt;
10756 if (is_scalar) {
10757 passelt = 0;
10758 } else {
10759 passelt = pass + (is_q * 2);
10762 read_vec_element(s, tcg_op, rn, passelt, memop);
10764 tcg_res[pass] = tcg_temp_new_i64();
10766 if (opcode == 0xa || opcode == 0xb) {
10767 /* Non-accumulating ops */
10768 tcg_passres = tcg_res[pass];
10769 } else {
10770 tcg_passres = tcg_temp_new_i64();
10773 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10774 tcg_temp_free_i64(tcg_op);
10776 if (satop) {
10777 /* saturating, doubling */
10778 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10779 tcg_passres, tcg_passres);
10782 if (opcode == 0xa || opcode == 0xb) {
10783 continue;
10786 /* Accumulating op: handle accumulate step */
10787 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10789 switch (opcode) {
10790 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10791 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10792 break;
10793 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10794 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10795 break;
10796 case 0x7: /* SQDMLSL, SQDMLSL2 */
10797 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10798 /* fall through */
10799 case 0x3: /* SQDMLAL, SQDMLAL2 */
10800 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10801 tcg_res[pass],
10802 tcg_passres);
10803 break;
10804 default:
10805 g_assert_not_reached();
10807 tcg_temp_free_i64(tcg_passres);
10809 tcg_temp_free_i64(tcg_idx);
10811 if (is_scalar) {
10812 clear_vec_high(s, rd);
10814 } else {
10815 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10817 assert(size == 1);
10818 read_vec_element_i32(s, tcg_idx, rm, index, size);
10820 if (!is_scalar) {
10821 /* The simplest way to handle the 16x16 indexed ops is to
10822 * duplicate the index into both halves of the 32 bit tcg_idx
10823 * and then use the usual Neon helpers.
10825 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10828 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10829 TCGv_i32 tcg_op = tcg_temp_new_i32();
10830 TCGv_i64 tcg_passres;
10832 if (is_scalar) {
10833 read_vec_element_i32(s, tcg_op, rn, pass, size);
10834 } else {
10835 read_vec_element_i32(s, tcg_op, rn,
10836 pass + (is_q * 2), MO_32);
10839 tcg_res[pass] = tcg_temp_new_i64();
10841 if (opcode == 0xa || opcode == 0xb) {
10842 /* Non-accumulating ops */
10843 tcg_passres = tcg_res[pass];
10844 } else {
10845 tcg_passres = tcg_temp_new_i64();
10848 if (memop & MO_SIGN) {
10849 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10850 } else {
10851 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10853 if (satop) {
10854 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10855 tcg_passres, tcg_passres);
10857 tcg_temp_free_i32(tcg_op);
10859 if (opcode == 0xa || opcode == 0xb) {
10860 continue;
10863 /* Accumulating op: handle accumulate step */
10864 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10866 switch (opcode) {
10867 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10868 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10869 tcg_passres);
10870 break;
10871 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10872 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10873 tcg_passres);
10874 break;
10875 case 0x7: /* SQDMLSL, SQDMLSL2 */
10876 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10877 /* fall through */
10878 case 0x3: /* SQDMLAL, SQDMLAL2 */
10879 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10880 tcg_res[pass],
10881 tcg_passres);
10882 break;
10883 default:
10884 g_assert_not_reached();
10886 tcg_temp_free_i64(tcg_passres);
10888 tcg_temp_free_i32(tcg_idx);
10890 if (is_scalar) {
10891 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10895 if (is_scalar) {
10896 tcg_res[1] = tcg_const_i64(0);
10899 for (pass = 0; pass < 2; pass++) {
10900 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10901 tcg_temp_free_i64(tcg_res[pass]);
10905 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10906 tcg_temp_free_ptr(fpst);
10910 /* C3.6.19 Crypto AES
10911 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10912 * +-----------------+------+-----------+--------+-----+------+------+
10913 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10914 * +-----------------+------+-----------+--------+-----+------+------+
10916 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10918 int size = extract32(insn, 22, 2);
10919 int opcode = extract32(insn, 12, 5);
10920 int rn = extract32(insn, 5, 5);
10921 int rd = extract32(insn, 0, 5);
10922 int decrypt;
10923 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10924 CryptoThreeOpEnvFn *genfn;
10926 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10927 || size != 0) {
10928 unallocated_encoding(s);
10929 return;
10932 switch (opcode) {
10933 case 0x4: /* AESE */
10934 decrypt = 0;
10935 genfn = gen_helper_crypto_aese;
10936 break;
10937 case 0x6: /* AESMC */
10938 decrypt = 0;
10939 genfn = gen_helper_crypto_aesmc;
10940 break;
10941 case 0x5: /* AESD */
10942 decrypt = 1;
10943 genfn = gen_helper_crypto_aese;
10944 break;
10945 case 0x7: /* AESIMC */
10946 decrypt = 1;
10947 genfn = gen_helper_crypto_aesmc;
10948 break;
10949 default:
10950 unallocated_encoding(s);
10951 return;
10954 if (!fp_access_check(s)) {
10955 return;
10958 /* Note that we convert the Vx register indexes into the
10959 * index within the vfp.regs[] array, so we can share the
10960 * helper with the AArch32 instructions.
10962 tcg_rd_regno = tcg_const_i32(rd << 1);
10963 tcg_rn_regno = tcg_const_i32(rn << 1);
10964 tcg_decrypt = tcg_const_i32(decrypt);
10966 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10968 tcg_temp_free_i32(tcg_rd_regno);
10969 tcg_temp_free_i32(tcg_rn_regno);
10970 tcg_temp_free_i32(tcg_decrypt);
10973 /* C3.6.20 Crypto three-reg SHA
10974 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10975 * +-----------------+------+---+------+---+--------+-----+------+------+
10976 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10977 * +-----------------+------+---+------+---+--------+-----+------+------+
10979 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10981 int size = extract32(insn, 22, 2);
10982 int opcode = extract32(insn, 12, 3);
10983 int rm = extract32(insn, 16, 5);
10984 int rn = extract32(insn, 5, 5);
10985 int rd = extract32(insn, 0, 5);
10986 CryptoThreeOpEnvFn *genfn;
10987 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10988 int feature = ARM_FEATURE_V8_SHA256;
10990 if (size != 0) {
10991 unallocated_encoding(s);
10992 return;
10995 switch (opcode) {
10996 case 0: /* SHA1C */
10997 case 1: /* SHA1P */
10998 case 2: /* SHA1M */
10999 case 3: /* SHA1SU0 */
11000 genfn = NULL;
11001 feature = ARM_FEATURE_V8_SHA1;
11002 break;
11003 case 4: /* SHA256H */
11004 genfn = gen_helper_crypto_sha256h;
11005 break;
11006 case 5: /* SHA256H2 */
11007 genfn = gen_helper_crypto_sha256h2;
11008 break;
11009 case 6: /* SHA256SU1 */
11010 genfn = gen_helper_crypto_sha256su1;
11011 break;
11012 default:
11013 unallocated_encoding(s);
11014 return;
11017 if (!arm_dc_feature(s, feature)) {
11018 unallocated_encoding(s);
11019 return;
11022 if (!fp_access_check(s)) {
11023 return;
11026 tcg_rd_regno = tcg_const_i32(rd << 1);
11027 tcg_rn_regno = tcg_const_i32(rn << 1);
11028 tcg_rm_regno = tcg_const_i32(rm << 1);
11030 if (genfn) {
11031 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
11032 } else {
11033 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
11035 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
11036 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
11037 tcg_temp_free_i32(tcg_opcode);
11040 tcg_temp_free_i32(tcg_rd_regno);
11041 tcg_temp_free_i32(tcg_rn_regno);
11042 tcg_temp_free_i32(tcg_rm_regno);
11045 /* C3.6.21 Crypto two-reg SHA
11046 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
11047 * +-----------------+------+-----------+--------+-----+------+------+
11048 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
11049 * +-----------------+------+-----------+--------+-----+------+------+
11051 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
11053 int size = extract32(insn, 22, 2);
11054 int opcode = extract32(insn, 12, 5);
11055 int rn = extract32(insn, 5, 5);
11056 int rd = extract32(insn, 0, 5);
11057 CryptoTwoOpEnvFn *genfn;
11058 int feature;
11059 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
11061 if (size != 0) {
11062 unallocated_encoding(s);
11063 return;
11066 switch (opcode) {
11067 case 0: /* SHA1H */
11068 feature = ARM_FEATURE_V8_SHA1;
11069 genfn = gen_helper_crypto_sha1h;
11070 break;
11071 case 1: /* SHA1SU1 */
11072 feature = ARM_FEATURE_V8_SHA1;
11073 genfn = gen_helper_crypto_sha1su1;
11074 break;
11075 case 2: /* SHA256SU0 */
11076 feature = ARM_FEATURE_V8_SHA256;
11077 genfn = gen_helper_crypto_sha256su0;
11078 break;
11079 default:
11080 unallocated_encoding(s);
11081 return;
11084 if (!arm_dc_feature(s, feature)) {
11085 unallocated_encoding(s);
11086 return;
11089 if (!fp_access_check(s)) {
11090 return;
11093 tcg_rd_regno = tcg_const_i32(rd << 1);
11094 tcg_rn_regno = tcg_const_i32(rn << 1);
11096 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
11098 tcg_temp_free_i32(tcg_rd_regno);
11099 tcg_temp_free_i32(tcg_rn_regno);
11102 /* C3.6 Data processing - SIMD, inc Crypto
11104 * As the decode gets a little complex we are using a table based
11105 * approach for this part of the decode.
11107 static const AArch64DecodeTable data_proc_simd[] = {
11108 /* pattern , mask , fn */
11109 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
11110 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
11111 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11112 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11113 { 0x0e000400, 0x9fe08400, disas_simd_copy },
11114 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
11115 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11116 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11117 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11118 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11119 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11120 { 0x2e000000, 0xbf208400, disas_simd_ext },
11121 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
11122 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
11123 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11124 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
11125 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
11126 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
11127 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11128 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
11129 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
11130 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
11131 { 0x00000000, 0x00000000, NULL }
11134 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11136 /* Note that this is called with all non-FP cases from
11137 * table C3-6 so it must UNDEF for entries not specifically
11138 * allocated to instructions in that table.
11140 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11141 if (fn) {
11142 fn(s, insn);
11143 } else {
11144 unallocated_encoding(s);
11148 /* C3.6 Data processing - SIMD and floating point */
11149 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11151 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11152 disas_data_proc_fp(s, insn);
11153 } else {
11154 /* SIMD, including crypto */
11155 disas_data_proc_simd(s, insn);
11159 /* C3.1 A64 instruction index by encoding */
11160 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
11162 uint32_t insn;
11164 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
11165 s->insn = insn;
11166 s->pc += 4;
11168 s->fp_access_checked = false;
11170 switch (extract32(insn, 25, 4)) {
11171 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
11172 unallocated_encoding(s);
11173 break;
11174 case 0x8: case 0x9: /* Data processing - immediate */
11175 disas_data_proc_imm(s, insn);
11176 break;
11177 case 0xa: case 0xb: /* Branch, exception generation and system insns */
11178 disas_b_exc_sys(s, insn);
11179 break;
11180 case 0x4:
11181 case 0x6:
11182 case 0xc:
11183 case 0xe: /* Loads and stores */
11184 disas_ldst(s, insn);
11185 break;
11186 case 0x5:
11187 case 0xd: /* Data processing - register */
11188 disas_data_proc_reg(s, insn);
11189 break;
11190 case 0x7:
11191 case 0xf: /* Data processing - SIMD and floating point */
11192 disas_data_proc_simd_fp(s, insn);
11193 break;
11194 default:
11195 assert(FALSE); /* all 15 cases should be handled above */
11196 break;
11199 /* if we allocated any temporaries, free them here */
11200 free_tmp_a64(s);
11203 static int aarch64_tr_init_disas_context(DisasContextBase *dcbase,
11204 CPUState *cpu, int max_insns)
11206 DisasContext *dc = container_of(dcbase, DisasContext, base);
11207 CPUARMState *env = cpu->env_ptr;
11208 ARMCPU *arm_cpu = arm_env_get_cpu(env);
11210 dc->pc = dc->base.pc_first;
11211 dc->condjmp = 0;
11213 dc->aarch64 = 1;
11214 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11215 * there is no secure EL1, so we route exceptions to EL3.
11217 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11218 !arm_el_is_aa64(env, 3);
11219 dc->thumb = 0;
11220 dc->sctlr_b = 0;
11221 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
11222 dc->condexec_mask = 0;
11223 dc->condexec_cond = 0;
11224 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
11225 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
11226 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
11227 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11228 #if !defined(CONFIG_USER_ONLY)
11229 dc->user = (dc->current_el == 0);
11230 #endif
11231 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
11232 dc->vec_len = 0;
11233 dc->vec_stride = 0;
11234 dc->cp_regs = arm_cpu->cp_regs;
11235 dc->features = env->features;
11237 /* Single step state. The code-generation logic here is:
11238 * SS_ACTIVE == 0:
11239 * generate code with no special handling for single-stepping (except
11240 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11241 * this happens anyway because those changes are all system register or
11242 * PSTATE writes).
11243 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11244 * emit code for one insn
11245 * emit code to clear PSTATE.SS
11246 * emit code to generate software step exception for completed step
11247 * end TB (as usual for having generated an exception)
11248 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11249 * emit code to generate a software step exception
11250 * end the TB
11252 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
11253 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
11254 dc->is_ldex = false;
11255 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11257 dc->next_page_start =
11258 (dc->base.pc_first & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11260 init_tmp_a64_array(dc);
11262 return max_insns;
11265 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
11267 DisasContext *dc = container_of(dcbase, DisasContext, base);
11269 dc->insn_start_idx = tcg_op_buf_count();
11270 tcg_gen_insn_start(dc->pc, 0, 0);
11273 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
11274 const CPUBreakpoint *bp)
11276 DisasContext *dc = container_of(dcbase, DisasContext, base);
11278 if (bp->flags & BP_CPU) {
11279 gen_a64_set_pc_im(dc->pc);
11280 gen_helper_check_breakpoints(cpu_env);
11281 /* End the TB early; it likely won't be executed */
11282 dc->base.is_jmp = DISAS_TOO_MANY;
11283 } else {
11284 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11285 /* The address covered by the breakpoint must be
11286 included in [tb->pc, tb->pc + tb->size) in order
11287 to for it to be properly cleared -- thus we
11288 increment the PC here so that the logic setting
11289 tb->size below does the right thing. */
11290 dc->pc += 4;
11291 dc->base.is_jmp = DISAS_NORETURN;
11294 return true;
11297 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
11299 DisasContext *dc = container_of(dcbase, DisasContext, base);
11300 CPUARMState *env = cpu->env_ptr;
11302 if (dc->ss_active && !dc->pstate_ss) {
11303 /* Singlestep state is Active-pending.
11304 * If we're in this state at the start of a TB then either
11305 * a) we just took an exception to an EL which is being debugged
11306 * and this is the first insn in the exception handler
11307 * b) debug exceptions were masked and we just unmasked them
11308 * without changing EL (eg by clearing PSTATE.D)
11309 * In either case we're going to take a swstep exception in the
11310 * "did not step an insn" case, and so the syndrome ISV and EX
11311 * bits should be zero.
11313 assert(dc->base.num_insns == 1);
11314 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11315 default_exception_el(dc));
11316 dc->base.is_jmp = DISAS_NORETURN;
11317 } else {
11318 disas_a64_insn(env, dc);
11321 if (dc->base.is_jmp == DISAS_NEXT) {
11322 if (dc->ss_active || dc->pc >= dc->next_page_start) {
11323 dc->base.is_jmp = DISAS_TOO_MANY;
11327 dc->base.pc_next = dc->pc;
11330 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
11332 DisasContext *dc = container_of(dcbase, DisasContext, base);
11334 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
11335 /* Note that this means single stepping WFI doesn't halt the CPU.
11336 * For conditional branch insns this is harmless unreachable code as
11337 * gen_goto_tb() has already handled emitting the debug exception
11338 * (and thus a tb-jump is not possible when singlestepping).
11340 switch (dc->base.is_jmp) {
11341 default:
11342 gen_a64_set_pc_im(dc->pc);
11343 /* fall through */
11344 case DISAS_JUMP:
11345 if (dc->base.singlestep_enabled) {
11346 gen_exception_internal(EXCP_DEBUG);
11347 } else {
11348 gen_step_complete_exception(dc);
11350 break;
11351 case DISAS_NORETURN:
11352 break;
11354 } else {
11355 switch (dc->base.is_jmp) {
11356 case DISAS_NEXT:
11357 case DISAS_TOO_MANY:
11358 gen_goto_tb(dc, 1, dc->pc);
11359 break;
11360 default:
11361 case DISAS_UPDATE:
11362 gen_a64_set_pc_im(dc->pc);
11363 /* fall through */
11364 case DISAS_JUMP:
11365 tcg_gen_lookup_and_goto_ptr(cpu_pc);
11366 break;
11367 case DISAS_EXIT:
11368 tcg_gen_exit_tb(0);
11369 break;
11370 case DISAS_NORETURN:
11371 case DISAS_SWI:
11372 break;
11373 case DISAS_WFE:
11374 gen_a64_set_pc_im(dc->pc);
11375 gen_helper_wfe(cpu_env);
11376 break;
11377 case DISAS_YIELD:
11378 gen_a64_set_pc_im(dc->pc);
11379 gen_helper_yield(cpu_env);
11380 break;
11381 case DISAS_WFI:
11382 /* This is a special case because we don't want to just halt the CPU
11383 * if trying to debug across a WFI.
11385 gen_a64_set_pc_im(dc->pc);
11386 gen_helper_wfi(cpu_env);
11387 /* The helper doesn't necessarily throw an exception, but we
11388 * must go back to the main loop to check for interrupts anyway.
11390 tcg_gen_exit_tb(0);
11391 break;
11396 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
11397 CPUState *cpu)
11399 DisasContext *dc = container_of(dcbase, DisasContext, base);
11401 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
11402 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size,
11403 4 | (bswap_code(dc->sctlr_b) ? 2 : 0));
11406 void gen_intermediate_code_a64(DisasContextBase *dcbase, CPUState *cs,
11407 TranslationBlock *tb)
11409 DisasContext *dc = container_of(dcbase, DisasContext, base);
11410 int max_insns;
11412 dc->base.tb = tb;
11413 dc->base.pc_first = dc->base.tb->pc;
11414 dc->base.pc_next = dc->base.pc_first;
11415 dc->base.is_jmp = DISAS_NEXT;
11416 dc->base.num_insns = 0;
11417 dc->base.singlestep_enabled = cs->singlestep_enabled;
11419 max_insns = dc->base.tb->cflags & CF_COUNT_MASK;
11420 if (max_insns == 0) {
11421 max_insns = CF_COUNT_MASK;
11423 if (max_insns > TCG_MAX_INSNS) {
11424 max_insns = TCG_MAX_INSNS;
11426 max_insns = aarch64_tr_init_disas_context(&dc->base, cs, max_insns);
11428 gen_tb_start(tb);
11430 tcg_clear_temp_count();
11432 do {
11433 dc->base.num_insns++;
11434 aarch64_tr_insn_start(&dc->base, cs);
11436 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11437 CPUBreakpoint *bp;
11438 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11439 if (bp->pc == dc->base.pc_next) {
11440 if (aarch64_tr_breakpoint_check(&dc->base, cs, bp)) {
11441 break;
11445 if (dc->base.is_jmp > DISAS_TOO_MANY) {
11446 break;
11450 if (dc->base.num_insns == max_insns && (dc->base.tb->cflags & CF_LAST_IO)) {
11451 gen_io_start();
11454 aarch64_tr_translate_insn(&dc->base, cs);
11456 if (tcg_check_temp_count()) {
11457 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11458 dc->pc);
11461 if (!dc->base.is_jmp && (tcg_op_buf_full() || cs->singlestep_enabled ||
11462 singlestep || dc->base.num_insns >= max_insns)) {
11463 dc->base.is_jmp = DISAS_TOO_MANY;
11466 /* Translation stops when a conditional branch is encountered.
11467 * Otherwise the subsequent code could get translated several times.
11468 * Also stop translation when a page boundary is reached. This
11469 * ensures prefetch aborts occur at the right place.
11471 } while (!dc->base.is_jmp);
11473 if (dc->base.tb->cflags & CF_LAST_IO) {
11474 gen_io_end();
11477 aarch64_tr_tb_stop(&dc->base, cs);
11479 gen_tb_end(tb, dc->base.num_insns);
11481 dc->base.tb->size = dc->pc - dc->base.pc_first;
11482 dc->base.tb->icount = dc->base.num_insns;
11484 #ifdef DEBUG_DISAS
11485 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) &&
11486 qemu_log_in_addr_range(dc->base.pc_first)) {
11487 qemu_log_lock();
11488 qemu_log("----------------\n");
11489 aarch64_tr_disas_log(&dc->base, cs);
11490 qemu_log("\n");
11491 qemu_log_unlock();
11493 #endif