memory: remove memory_region_destructor_rom_device
[qemu/ar7.git] / migration / ram.c
bloba6e1c63a08d86348472a90f29c5e9b6b4173eb5a
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
43 #include "trace.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
47 #ifdef DEBUG_MIGRATION_RAM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
55 static int dirty_rate_high_cnt;
57 static uint64_t bitmap_sync_count;
59 /***********************************************************/
60 /* ram save/restore */
62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63 #define RAM_SAVE_FLAG_COMPRESS 0x02
64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
65 #define RAM_SAVE_FLAG_PAGE 0x08
66 #define RAM_SAVE_FLAG_EOS 0x10
67 #define RAM_SAVE_FLAG_CONTINUE 0x20
68 #define RAM_SAVE_FLAG_XBZRLE 0x40
69 /* 0x80 is reserved in migration.h start with 0x100 next */
70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
72 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
74 static inline bool is_zero_range(uint8_t *p, uint64_t size)
76 return buffer_is_zero(p, size);
79 /* struct contains XBZRLE cache and a static page
80 used by the compression */
81 static struct {
82 /* buffer used for XBZRLE encoding */
83 uint8_t *encoded_buf;
84 /* buffer for storing page content */
85 uint8_t *current_buf;
86 /* Cache for XBZRLE, Protected by lock. */
87 PageCache *cache;
88 QemuMutex lock;
89 } XBZRLE;
91 /* buffer used for XBZRLE decoding */
92 static uint8_t *xbzrle_decoded_buf;
94 static void XBZRLE_cache_lock(void)
96 if (migrate_use_xbzrle())
97 qemu_mutex_lock(&XBZRLE.lock);
100 static void XBZRLE_cache_unlock(void)
102 if (migrate_use_xbzrle())
103 qemu_mutex_unlock(&XBZRLE.lock);
107 * called from qmp_migrate_set_cache_size in main thread, possibly while
108 * a migration is in progress.
109 * A running migration maybe using the cache and might finish during this
110 * call, hence changes to the cache are protected by XBZRLE.lock().
112 int64_t xbzrle_cache_resize(int64_t new_size)
114 PageCache *new_cache;
115 int64_t ret;
117 if (new_size < TARGET_PAGE_SIZE) {
118 return -1;
121 XBZRLE_cache_lock();
123 if (XBZRLE.cache != NULL) {
124 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
125 goto out_new_size;
127 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
128 TARGET_PAGE_SIZE);
129 if (!new_cache) {
130 error_report("Error creating cache");
131 ret = -1;
132 goto out;
135 cache_fini(XBZRLE.cache);
136 XBZRLE.cache = new_cache;
139 out_new_size:
140 ret = pow2floor(new_size);
141 out:
142 XBZRLE_cache_unlock();
143 return ret;
146 /* accounting for migration statistics */
147 typedef struct AccountingInfo {
148 uint64_t dup_pages;
149 uint64_t skipped_pages;
150 uint64_t norm_pages;
151 uint64_t iterations;
152 uint64_t xbzrle_bytes;
153 uint64_t xbzrle_pages;
154 uint64_t xbzrle_cache_miss;
155 double xbzrle_cache_miss_rate;
156 uint64_t xbzrle_overflows;
157 } AccountingInfo;
159 static AccountingInfo acct_info;
161 static void acct_clear(void)
163 memset(&acct_info, 0, sizeof(acct_info));
166 uint64_t dup_mig_bytes_transferred(void)
168 return acct_info.dup_pages * TARGET_PAGE_SIZE;
171 uint64_t dup_mig_pages_transferred(void)
173 return acct_info.dup_pages;
176 uint64_t skipped_mig_bytes_transferred(void)
178 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
181 uint64_t skipped_mig_pages_transferred(void)
183 return acct_info.skipped_pages;
186 uint64_t norm_mig_bytes_transferred(void)
188 return acct_info.norm_pages * TARGET_PAGE_SIZE;
191 uint64_t norm_mig_pages_transferred(void)
193 return acct_info.norm_pages;
196 uint64_t xbzrle_mig_bytes_transferred(void)
198 return acct_info.xbzrle_bytes;
201 uint64_t xbzrle_mig_pages_transferred(void)
203 return acct_info.xbzrle_pages;
206 uint64_t xbzrle_mig_pages_cache_miss(void)
208 return acct_info.xbzrle_cache_miss;
211 double xbzrle_mig_cache_miss_rate(void)
213 return acct_info.xbzrle_cache_miss_rate;
216 uint64_t xbzrle_mig_pages_overflow(void)
218 return acct_info.xbzrle_overflows;
221 /* This is the last block that we have visited serching for dirty pages
223 static RAMBlock *last_seen_block;
224 /* This is the last block from where we have sent data */
225 static RAMBlock *last_sent_block;
226 static ram_addr_t last_offset;
227 static QemuMutex migration_bitmap_mutex;
228 static uint64_t migration_dirty_pages;
229 static uint32_t last_version;
230 static bool ram_bulk_stage;
232 /* used by the search for pages to send */
233 struct PageSearchStatus {
234 /* Current block being searched */
235 RAMBlock *block;
236 /* Current offset to search from */
237 ram_addr_t offset;
238 /* Set once we wrap around */
239 bool complete_round;
241 typedef struct PageSearchStatus PageSearchStatus;
243 static struct BitmapRcu {
244 struct rcu_head rcu;
245 /* Main migration bitmap */
246 unsigned long *bmap;
247 /* bitmap of pages that haven't been sent even once
248 * only maintained and used in postcopy at the moment
249 * where it's used to send the dirtymap at the start
250 * of the postcopy phase
252 unsigned long *unsentmap;
253 } *migration_bitmap_rcu;
255 struct CompressParam {
256 bool done;
257 bool quit;
258 QEMUFile *file;
259 QemuMutex mutex;
260 QemuCond cond;
261 RAMBlock *block;
262 ram_addr_t offset;
264 typedef struct CompressParam CompressParam;
266 struct DecompressParam {
267 bool done;
268 bool quit;
269 QemuMutex mutex;
270 QemuCond cond;
271 void *des;
272 uint8_t *compbuf;
273 int len;
275 typedef struct DecompressParam DecompressParam;
277 static CompressParam *comp_param;
278 static QemuThread *compress_threads;
279 /* comp_done_cond is used to wake up the migration thread when
280 * one of the compression threads has finished the compression.
281 * comp_done_lock is used to co-work with comp_done_cond.
283 static QemuMutex comp_done_lock;
284 static QemuCond comp_done_cond;
285 /* The empty QEMUFileOps will be used by file in CompressParam */
286 static const QEMUFileOps empty_ops = { };
288 static bool compression_switch;
289 static DecompressParam *decomp_param;
290 static QemuThread *decompress_threads;
291 static QemuMutex decomp_done_lock;
292 static QemuCond decomp_done_cond;
294 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
295 ram_addr_t offset);
297 static void *do_data_compress(void *opaque)
299 CompressParam *param = opaque;
300 RAMBlock *block;
301 ram_addr_t offset;
303 qemu_mutex_lock(&param->mutex);
304 while (!param->quit) {
305 if (param->block) {
306 block = param->block;
307 offset = param->offset;
308 param->block = NULL;
309 qemu_mutex_unlock(&param->mutex);
311 do_compress_ram_page(param->file, block, offset);
313 qemu_mutex_lock(&comp_done_lock);
314 param->done = true;
315 qemu_cond_signal(&comp_done_cond);
316 qemu_mutex_unlock(&comp_done_lock);
318 qemu_mutex_lock(&param->mutex);
319 } else {
320 qemu_cond_wait(&param->cond, &param->mutex);
323 qemu_mutex_unlock(&param->mutex);
325 return NULL;
328 static inline void terminate_compression_threads(void)
330 int idx, thread_count;
332 thread_count = migrate_compress_threads();
333 for (idx = 0; idx < thread_count; idx++) {
334 qemu_mutex_lock(&comp_param[idx].mutex);
335 comp_param[idx].quit = true;
336 qemu_cond_signal(&comp_param[idx].cond);
337 qemu_mutex_unlock(&comp_param[idx].mutex);
341 void migrate_compress_threads_join(void)
343 int i, thread_count;
345 if (!migrate_use_compression()) {
346 return;
348 terminate_compression_threads();
349 thread_count = migrate_compress_threads();
350 for (i = 0; i < thread_count; i++) {
351 qemu_thread_join(compress_threads + i);
352 qemu_fclose(comp_param[i].file);
353 qemu_mutex_destroy(&comp_param[i].mutex);
354 qemu_cond_destroy(&comp_param[i].cond);
356 qemu_mutex_destroy(&comp_done_lock);
357 qemu_cond_destroy(&comp_done_cond);
358 g_free(compress_threads);
359 g_free(comp_param);
360 compress_threads = NULL;
361 comp_param = NULL;
364 void migrate_compress_threads_create(void)
366 int i, thread_count;
368 if (!migrate_use_compression()) {
369 return;
371 compression_switch = true;
372 thread_count = migrate_compress_threads();
373 compress_threads = g_new0(QemuThread, thread_count);
374 comp_param = g_new0(CompressParam, thread_count);
375 qemu_cond_init(&comp_done_cond);
376 qemu_mutex_init(&comp_done_lock);
377 for (i = 0; i < thread_count; i++) {
378 /* comp_param[i].file is just used as a dummy buffer to save data,
379 * set its ops to empty.
381 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
382 comp_param[i].done = true;
383 comp_param[i].quit = false;
384 qemu_mutex_init(&comp_param[i].mutex);
385 qemu_cond_init(&comp_param[i].cond);
386 qemu_thread_create(compress_threads + i, "compress",
387 do_data_compress, comp_param + i,
388 QEMU_THREAD_JOINABLE);
393 * save_page_header: Write page header to wire
395 * If this is the 1st block, it also writes the block identification
397 * Returns: Number of bytes written
399 * @f: QEMUFile where to send the data
400 * @block: block that contains the page we want to send
401 * @offset: offset inside the block for the page
402 * in the lower bits, it contains flags
404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
406 size_t size, len;
408 qemu_put_be64(f, offset);
409 size = 8;
411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
412 len = strlen(block->idstr);
413 qemu_put_byte(f, len);
414 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
415 size += 1 + len;
417 return size;
420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
421 * If guest dirty memory rate is reduced below the rate at which we can
422 * transfer pages to the destination then we should be able to complete
423 * migration. Some workloads dirty memory way too fast and will not effectively
424 * converge, even with auto-converge.
426 static void mig_throttle_guest_down(void)
428 MigrationState *s = migrate_get_current();
429 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
430 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
432 /* We have not started throttling yet. Let's start it. */
433 if (!cpu_throttle_active()) {
434 cpu_throttle_set(pct_initial);
435 } else {
436 /* Throttling already on, just increase the rate */
437 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
441 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
442 * The important thing is that a stale (not-yet-0'd) page be replaced
443 * by the new data.
444 * As a bonus, if the page wasn't in the cache it gets added so that
445 * when a small write is made into the 0'd page it gets XBZRLE sent
447 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
449 if (ram_bulk_stage || !migrate_use_xbzrle()) {
450 return;
453 /* We don't care if this fails to allocate a new cache page
454 * as long as it updated an old one */
455 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
456 bitmap_sync_count);
459 #define ENCODING_FLAG_XBZRLE 0x1
462 * save_xbzrle_page: compress and send current page
464 * Returns: 1 means that we wrote the page
465 * 0 means that page is identical to the one already sent
466 * -1 means that xbzrle would be longer than normal
468 * @f: QEMUFile where to send the data
469 * @current_data:
470 * @current_addr:
471 * @block: block that contains the page we want to send
472 * @offset: offset inside the block for the page
473 * @last_stage: if we are at the completion stage
474 * @bytes_transferred: increase it with the number of transferred bytes
476 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
477 ram_addr_t current_addr, RAMBlock *block,
478 ram_addr_t offset, bool last_stage,
479 uint64_t *bytes_transferred)
481 int encoded_len = 0, bytes_xbzrle;
482 uint8_t *prev_cached_page;
484 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
485 acct_info.xbzrle_cache_miss++;
486 if (!last_stage) {
487 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
488 bitmap_sync_count) == -1) {
489 return -1;
490 } else {
491 /* update *current_data when the page has been
492 inserted into cache */
493 *current_data = get_cached_data(XBZRLE.cache, current_addr);
496 return -1;
499 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
501 /* save current buffer into memory */
502 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
504 /* XBZRLE encoding (if there is no overflow) */
505 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
506 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
507 TARGET_PAGE_SIZE);
508 if (encoded_len == 0) {
509 DPRINTF("Skipping unmodified page\n");
510 return 0;
511 } else if (encoded_len == -1) {
512 DPRINTF("Overflow\n");
513 acct_info.xbzrle_overflows++;
514 /* update data in the cache */
515 if (!last_stage) {
516 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
517 *current_data = prev_cached_page;
519 return -1;
522 /* we need to update the data in the cache, in order to get the same data */
523 if (!last_stage) {
524 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
527 /* Send XBZRLE based compressed page */
528 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
529 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
530 qemu_put_be16(f, encoded_len);
531 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
532 bytes_xbzrle += encoded_len + 1 + 2;
533 acct_info.xbzrle_pages++;
534 acct_info.xbzrle_bytes += bytes_xbzrle;
535 *bytes_transferred += bytes_xbzrle;
537 return 1;
540 /* Called with rcu_read_lock() to protect migration_bitmap
541 * rb: The RAMBlock to search for dirty pages in
542 * start: Start address (typically so we can continue from previous page)
543 * ram_addr_abs: Pointer into which to store the address of the dirty page
544 * within the global ram_addr space
546 * Returns: byte offset within memory region of the start of a dirty page
548 static inline
549 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
550 ram_addr_t start,
551 ram_addr_t *ram_addr_abs)
553 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
554 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
555 uint64_t rb_size = rb->used_length;
556 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
557 unsigned long *bitmap;
559 unsigned long next;
561 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
562 if (ram_bulk_stage && nr > base) {
563 next = nr + 1;
564 } else {
565 next = find_next_bit(bitmap, size, nr);
568 *ram_addr_abs = next << TARGET_PAGE_BITS;
569 return (next - base) << TARGET_PAGE_BITS;
572 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
574 bool ret;
575 int nr = addr >> TARGET_PAGE_BITS;
576 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
578 ret = test_and_clear_bit(nr, bitmap);
580 if (ret) {
581 migration_dirty_pages--;
583 return ret;
586 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
588 unsigned long *bitmap;
589 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
590 migration_dirty_pages +=
591 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
594 /* Fix me: there are too many global variables used in migration process. */
595 static int64_t start_time;
596 static int64_t bytes_xfer_prev;
597 static int64_t num_dirty_pages_period;
598 static uint64_t xbzrle_cache_miss_prev;
599 static uint64_t iterations_prev;
601 static void migration_bitmap_sync_init(void)
603 start_time = 0;
604 bytes_xfer_prev = 0;
605 num_dirty_pages_period = 0;
606 xbzrle_cache_miss_prev = 0;
607 iterations_prev = 0;
610 static void migration_bitmap_sync(void)
612 RAMBlock *block;
613 uint64_t num_dirty_pages_init = migration_dirty_pages;
614 MigrationState *s = migrate_get_current();
615 int64_t end_time;
616 int64_t bytes_xfer_now;
618 bitmap_sync_count++;
620 if (!bytes_xfer_prev) {
621 bytes_xfer_prev = ram_bytes_transferred();
624 if (!start_time) {
625 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
628 trace_migration_bitmap_sync_start();
629 address_space_sync_dirty_bitmap(&address_space_memory);
631 qemu_mutex_lock(&migration_bitmap_mutex);
632 rcu_read_lock();
633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
634 migration_bitmap_sync_range(block->offset, block->used_length);
636 rcu_read_unlock();
637 qemu_mutex_unlock(&migration_bitmap_mutex);
639 trace_migration_bitmap_sync_end(migration_dirty_pages
640 - num_dirty_pages_init);
641 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
642 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
644 /* more than 1 second = 1000 millisecons */
645 if (end_time > start_time + 1000) {
646 if (migrate_auto_converge()) {
647 /* The following detection logic can be refined later. For now:
648 Check to see if the dirtied bytes is 50% more than the approx.
649 amount of bytes that just got transferred since the last time we
650 were in this routine. If that happens twice, start or increase
651 throttling */
652 bytes_xfer_now = ram_bytes_transferred();
654 if (s->dirty_pages_rate &&
655 (num_dirty_pages_period * TARGET_PAGE_SIZE >
656 (bytes_xfer_now - bytes_xfer_prev)/2) &&
657 (dirty_rate_high_cnt++ >= 2)) {
658 trace_migration_throttle();
659 dirty_rate_high_cnt = 0;
660 mig_throttle_guest_down();
662 bytes_xfer_prev = bytes_xfer_now;
665 if (migrate_use_xbzrle()) {
666 if (iterations_prev != acct_info.iterations) {
667 acct_info.xbzrle_cache_miss_rate =
668 (double)(acct_info.xbzrle_cache_miss -
669 xbzrle_cache_miss_prev) /
670 (acct_info.iterations - iterations_prev);
672 iterations_prev = acct_info.iterations;
673 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
675 s->dirty_pages_rate = num_dirty_pages_period * 1000
676 / (end_time - start_time);
677 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
678 start_time = end_time;
679 num_dirty_pages_period = 0;
681 s->dirty_sync_count = bitmap_sync_count;
682 if (migrate_use_events()) {
683 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
688 * save_zero_page: Send the zero page to the stream
690 * Returns: Number of pages written.
692 * @f: QEMUFile where to send the data
693 * @block: block that contains the page we want to send
694 * @offset: offset inside the block for the page
695 * @p: pointer to the page
696 * @bytes_transferred: increase it with the number of transferred bytes
698 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
699 uint8_t *p, uint64_t *bytes_transferred)
701 int pages = -1;
703 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
704 acct_info.dup_pages++;
705 *bytes_transferred += save_page_header(f, block,
706 offset | RAM_SAVE_FLAG_COMPRESS);
707 qemu_put_byte(f, 0);
708 *bytes_transferred += 1;
709 pages = 1;
712 return pages;
716 * ram_save_page: Send the given page to the stream
718 * Returns: Number of pages written.
719 * < 0 - error
720 * >=0 - Number of pages written - this might legally be 0
721 * if xbzrle noticed the page was the same.
723 * @f: QEMUFile where to send the data
724 * @block: block that contains the page we want to send
725 * @offset: offset inside the block for the page
726 * @last_stage: if we are at the completion stage
727 * @bytes_transferred: increase it with the number of transferred bytes
729 static int ram_save_page(QEMUFile *f, PageSearchStatus *pss,
730 bool last_stage, uint64_t *bytes_transferred)
732 int pages = -1;
733 uint64_t bytes_xmit;
734 ram_addr_t current_addr;
735 uint8_t *p;
736 int ret;
737 bool send_async = true;
738 RAMBlock *block = pss->block;
739 ram_addr_t offset = pss->offset;
741 p = block->host + offset;
743 /* In doubt sent page as normal */
744 bytes_xmit = 0;
745 ret = ram_control_save_page(f, block->offset,
746 offset, TARGET_PAGE_SIZE, &bytes_xmit);
747 if (bytes_xmit) {
748 *bytes_transferred += bytes_xmit;
749 pages = 1;
752 XBZRLE_cache_lock();
754 current_addr = block->offset + offset;
756 if (block == last_sent_block) {
757 offset |= RAM_SAVE_FLAG_CONTINUE;
759 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
760 if (ret != RAM_SAVE_CONTROL_DELAYED) {
761 if (bytes_xmit > 0) {
762 acct_info.norm_pages++;
763 } else if (bytes_xmit == 0) {
764 acct_info.dup_pages++;
767 } else {
768 pages = save_zero_page(f, block, offset, p, bytes_transferred);
769 if (pages > 0) {
770 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
771 * page would be stale
773 xbzrle_cache_zero_page(current_addr);
774 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
775 pages = save_xbzrle_page(f, &p, current_addr, block,
776 offset, last_stage, bytes_transferred);
777 if (!last_stage) {
778 /* Can't send this cached data async, since the cache page
779 * might get updated before it gets to the wire
781 send_async = false;
786 /* XBZRLE overflow or normal page */
787 if (pages == -1) {
788 *bytes_transferred += save_page_header(f, block,
789 offset | RAM_SAVE_FLAG_PAGE);
790 if (send_async) {
791 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
792 } else {
793 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
795 *bytes_transferred += TARGET_PAGE_SIZE;
796 pages = 1;
797 acct_info.norm_pages++;
800 XBZRLE_cache_unlock();
802 return pages;
805 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
806 ram_addr_t offset)
808 int bytes_sent, blen;
809 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
811 bytes_sent = save_page_header(f, block, offset |
812 RAM_SAVE_FLAG_COMPRESS_PAGE);
813 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
814 migrate_compress_level());
815 if (blen < 0) {
816 bytes_sent = 0;
817 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
818 error_report("compressed data failed!");
819 } else {
820 bytes_sent += blen;
823 return bytes_sent;
826 static uint64_t bytes_transferred;
828 static void flush_compressed_data(QEMUFile *f)
830 int idx, len, thread_count;
832 if (!migrate_use_compression()) {
833 return;
835 thread_count = migrate_compress_threads();
837 qemu_mutex_lock(&comp_done_lock);
838 for (idx = 0; idx < thread_count; idx++) {
839 while (!comp_param[idx].done) {
840 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
843 qemu_mutex_unlock(&comp_done_lock);
845 for (idx = 0; idx < thread_count; idx++) {
846 qemu_mutex_lock(&comp_param[idx].mutex);
847 if (!comp_param[idx].quit) {
848 len = qemu_put_qemu_file(f, comp_param[idx].file);
849 bytes_transferred += len;
851 qemu_mutex_unlock(&comp_param[idx].mutex);
855 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
856 ram_addr_t offset)
858 param->block = block;
859 param->offset = offset;
862 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
863 ram_addr_t offset,
864 uint64_t *bytes_transferred)
866 int idx, thread_count, bytes_xmit = -1, pages = -1;
868 thread_count = migrate_compress_threads();
869 qemu_mutex_lock(&comp_done_lock);
870 while (true) {
871 for (idx = 0; idx < thread_count; idx++) {
872 if (comp_param[idx].done) {
873 comp_param[idx].done = false;
874 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
875 qemu_mutex_lock(&comp_param[idx].mutex);
876 set_compress_params(&comp_param[idx], block, offset);
877 qemu_cond_signal(&comp_param[idx].cond);
878 qemu_mutex_unlock(&comp_param[idx].mutex);
879 pages = 1;
880 acct_info.norm_pages++;
881 *bytes_transferred += bytes_xmit;
882 break;
885 if (pages > 0) {
886 break;
887 } else {
888 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
891 qemu_mutex_unlock(&comp_done_lock);
893 return pages;
897 * ram_save_compressed_page: compress the given page and send it to the stream
899 * Returns: Number of pages written.
901 * @f: QEMUFile where to send the data
902 * @block: block that contains the page we want to send
903 * @offset: offset inside the block for the page
904 * @last_stage: if we are at the completion stage
905 * @bytes_transferred: increase it with the number of transferred bytes
907 static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss,
908 bool last_stage,
909 uint64_t *bytes_transferred)
911 int pages = -1;
912 uint64_t bytes_xmit = 0;
913 uint8_t *p;
914 int ret, blen;
915 RAMBlock *block = pss->block;
916 ram_addr_t offset = pss->offset;
918 p = block->host + offset;
920 ret = ram_control_save_page(f, block->offset,
921 offset, TARGET_PAGE_SIZE, &bytes_xmit);
922 if (bytes_xmit) {
923 *bytes_transferred += bytes_xmit;
924 pages = 1;
926 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
927 if (ret != RAM_SAVE_CONTROL_DELAYED) {
928 if (bytes_xmit > 0) {
929 acct_info.norm_pages++;
930 } else if (bytes_xmit == 0) {
931 acct_info.dup_pages++;
934 } else {
935 /* When starting the process of a new block, the first page of
936 * the block should be sent out before other pages in the same
937 * block, and all the pages in last block should have been sent
938 * out, keeping this order is important, because the 'cont' flag
939 * is used to avoid resending the block name.
941 if (block != last_sent_block) {
942 flush_compressed_data(f);
943 pages = save_zero_page(f, block, offset, p, bytes_transferred);
944 if (pages == -1) {
945 /* Make sure the first page is sent out before other pages */
946 bytes_xmit = save_page_header(f, block, offset |
947 RAM_SAVE_FLAG_COMPRESS_PAGE);
948 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
949 migrate_compress_level());
950 if (blen > 0) {
951 *bytes_transferred += bytes_xmit + blen;
952 acct_info.norm_pages++;
953 pages = 1;
954 } else {
955 qemu_file_set_error(f, blen);
956 error_report("compressed data failed!");
959 } else {
960 offset |= RAM_SAVE_FLAG_CONTINUE;
961 pages = save_zero_page(f, block, offset, p, bytes_transferred);
962 if (pages == -1) {
963 pages = compress_page_with_multi_thread(f, block, offset,
964 bytes_transferred);
969 return pages;
973 * Find the next dirty page and update any state associated with
974 * the search process.
976 * Returns: True if a page is found
978 * @f: Current migration stream.
979 * @pss: Data about the state of the current dirty page scan.
980 * @*again: Set to false if the search has scanned the whole of RAM
981 * *ram_addr_abs: Pointer into which to store the address of the dirty page
982 * within the global ram_addr space
984 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
985 bool *again, ram_addr_t *ram_addr_abs)
987 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
988 ram_addr_abs);
989 if (pss->complete_round && pss->block == last_seen_block &&
990 pss->offset >= last_offset) {
992 * We've been once around the RAM and haven't found anything.
993 * Give up.
995 *again = false;
996 return false;
998 if (pss->offset >= pss->block->used_length) {
999 /* Didn't find anything in this RAM Block */
1000 pss->offset = 0;
1001 pss->block = QLIST_NEXT_RCU(pss->block, next);
1002 if (!pss->block) {
1003 /* Hit the end of the list */
1004 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1005 /* Flag that we've looped */
1006 pss->complete_round = true;
1007 ram_bulk_stage = false;
1008 if (migrate_use_xbzrle()) {
1009 /* If xbzrle is on, stop using the data compression at this
1010 * point. In theory, xbzrle can do better than compression.
1012 flush_compressed_data(f);
1013 compression_switch = false;
1016 /* Didn't find anything this time, but try again on the new block */
1017 *again = true;
1018 return false;
1019 } else {
1020 /* Can go around again, but... */
1021 *again = true;
1022 /* We've found something so probably don't need to */
1023 return true;
1028 * Helper for 'get_queued_page' - gets a page off the queue
1029 * ms: MigrationState in
1030 * *offset: Used to return the offset within the RAMBlock
1031 * ram_addr_abs: global offset in the dirty/sent bitmaps
1033 * Returns: block (or NULL if none available)
1035 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1036 ram_addr_t *ram_addr_abs)
1038 RAMBlock *block = NULL;
1040 qemu_mutex_lock(&ms->src_page_req_mutex);
1041 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1042 struct MigrationSrcPageRequest *entry =
1043 QSIMPLEQ_FIRST(&ms->src_page_requests);
1044 block = entry->rb;
1045 *offset = entry->offset;
1046 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1047 TARGET_PAGE_MASK;
1049 if (entry->len > TARGET_PAGE_SIZE) {
1050 entry->len -= TARGET_PAGE_SIZE;
1051 entry->offset += TARGET_PAGE_SIZE;
1052 } else {
1053 memory_region_unref(block->mr);
1054 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1055 g_free(entry);
1058 qemu_mutex_unlock(&ms->src_page_req_mutex);
1060 return block;
1064 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1065 * that are already sent (!dirty)
1067 * ms: MigrationState in
1068 * pss: PageSearchStatus structure updated with found block/offset
1069 * ram_addr_abs: global offset in the dirty/sent bitmaps
1071 * Returns: true if a queued page is found
1073 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1074 ram_addr_t *ram_addr_abs)
1076 RAMBlock *block;
1077 ram_addr_t offset;
1078 bool dirty;
1080 do {
1081 block = unqueue_page(ms, &offset, ram_addr_abs);
1083 * We're sending this page, and since it's postcopy nothing else
1084 * will dirty it, and we must make sure it doesn't get sent again
1085 * even if this queue request was received after the background
1086 * search already sent it.
1088 if (block) {
1089 unsigned long *bitmap;
1090 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1091 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1092 if (!dirty) {
1093 trace_get_queued_page_not_dirty(
1094 block->idstr, (uint64_t)offset,
1095 (uint64_t)*ram_addr_abs,
1096 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1097 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1098 } else {
1099 trace_get_queued_page(block->idstr,
1100 (uint64_t)offset,
1101 (uint64_t)*ram_addr_abs);
1105 } while (block && !dirty);
1107 if (block) {
1109 * As soon as we start servicing pages out of order, then we have
1110 * to kill the bulk stage, since the bulk stage assumes
1111 * in (migration_bitmap_find_and_reset_dirty) that every page is
1112 * dirty, that's no longer true.
1114 ram_bulk_stage = false;
1117 * We want the background search to continue from the queued page
1118 * since the guest is likely to want other pages near to the page
1119 * it just requested.
1121 pss->block = block;
1122 pss->offset = offset;
1125 return !!block;
1129 * flush_page_queue: Flush any remaining pages in the ram request queue
1130 * it should be empty at the end anyway, but in error cases there may be
1131 * some left.
1133 * ms: MigrationState
1135 void flush_page_queue(MigrationState *ms)
1137 struct MigrationSrcPageRequest *mspr, *next_mspr;
1138 /* This queue generally should be empty - but in the case of a failed
1139 * migration might have some droppings in.
1141 rcu_read_lock();
1142 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1143 memory_region_unref(mspr->rb->mr);
1144 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1145 g_free(mspr);
1147 rcu_read_unlock();
1151 * Queue the pages for transmission, e.g. a request from postcopy destination
1152 * ms: MigrationStatus in which the queue is held
1153 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1154 * start: Offset from the start of the RAMBlock
1155 * len: Length (in bytes) to send
1156 * Return: 0 on success
1158 int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1159 ram_addr_t start, ram_addr_t len)
1161 RAMBlock *ramblock;
1163 ms->postcopy_requests++;
1164 rcu_read_lock();
1165 if (!rbname) {
1166 /* Reuse last RAMBlock */
1167 ramblock = ms->last_req_rb;
1169 if (!ramblock) {
1171 * Shouldn't happen, we can't reuse the last RAMBlock if
1172 * it's the 1st request.
1174 error_report("ram_save_queue_pages no previous block");
1175 goto err;
1177 } else {
1178 ramblock = qemu_ram_block_by_name(rbname);
1180 if (!ramblock) {
1181 /* We shouldn't be asked for a non-existent RAMBlock */
1182 error_report("ram_save_queue_pages no block '%s'", rbname);
1183 goto err;
1185 ms->last_req_rb = ramblock;
1187 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1188 if (start+len > ramblock->used_length) {
1189 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1190 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1191 __func__, start, len, ramblock->used_length);
1192 goto err;
1195 struct MigrationSrcPageRequest *new_entry =
1196 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1197 new_entry->rb = ramblock;
1198 new_entry->offset = start;
1199 new_entry->len = len;
1201 memory_region_ref(ramblock->mr);
1202 qemu_mutex_lock(&ms->src_page_req_mutex);
1203 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1204 qemu_mutex_unlock(&ms->src_page_req_mutex);
1205 rcu_read_unlock();
1207 return 0;
1209 err:
1210 rcu_read_unlock();
1211 return -1;
1215 * ram_save_target_page: Save one target page
1218 * @f: QEMUFile where to send the data
1219 * @block: pointer to block that contains the page we want to send
1220 * @offset: offset inside the block for the page;
1221 * @last_stage: if we are at the completion stage
1222 * @bytes_transferred: increase it with the number of transferred bytes
1223 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1225 * Returns: Number of pages written.
1227 static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
1228 PageSearchStatus *pss,
1229 bool last_stage,
1230 uint64_t *bytes_transferred,
1231 ram_addr_t dirty_ram_abs)
1233 int res = 0;
1235 /* Check the pages is dirty and if it is send it */
1236 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1237 unsigned long *unsentmap;
1238 if (compression_switch && migrate_use_compression()) {
1239 res = ram_save_compressed_page(f, pss,
1240 last_stage,
1241 bytes_transferred);
1242 } else {
1243 res = ram_save_page(f, pss, last_stage,
1244 bytes_transferred);
1247 if (res < 0) {
1248 return res;
1250 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1251 if (unsentmap) {
1252 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1254 /* Only update last_sent_block if a block was actually sent; xbzrle
1255 * might have decided the page was identical so didn't bother writing
1256 * to the stream.
1258 if (res > 0) {
1259 last_sent_block = pss->block;
1263 return res;
1267 * ram_save_host_page: Starting at *offset send pages up to the end
1268 * of the current host page. It's valid for the initial
1269 * offset to point into the middle of a host page
1270 * in which case the remainder of the hostpage is sent.
1271 * Only dirty target pages are sent.
1273 * Returns: Number of pages written.
1275 * @f: QEMUFile where to send the data
1276 * @block: pointer to block that contains the page we want to send
1277 * @offset: offset inside the block for the page; updated to last target page
1278 * sent
1279 * @last_stage: if we are at the completion stage
1280 * @bytes_transferred: increase it with the number of transferred bytes
1281 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1283 static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1284 PageSearchStatus *pss,
1285 bool last_stage,
1286 uint64_t *bytes_transferred,
1287 ram_addr_t dirty_ram_abs)
1289 int tmppages, pages = 0;
1290 do {
1291 tmppages = ram_save_target_page(ms, f, pss, last_stage,
1292 bytes_transferred, dirty_ram_abs);
1293 if (tmppages < 0) {
1294 return tmppages;
1297 pages += tmppages;
1298 pss->offset += TARGET_PAGE_SIZE;
1299 dirty_ram_abs += TARGET_PAGE_SIZE;
1300 } while (pss->offset & (qemu_host_page_size - 1));
1302 /* The offset we leave with is the last one we looked at */
1303 pss->offset -= TARGET_PAGE_SIZE;
1304 return pages;
1308 * ram_find_and_save_block: Finds a dirty page and sends it to f
1310 * Called within an RCU critical section.
1312 * Returns: The number of pages written
1313 * 0 means no dirty pages
1315 * @f: QEMUFile where to send the data
1316 * @last_stage: if we are at the completion stage
1317 * @bytes_transferred: increase it with the number of transferred bytes
1319 * On systems where host-page-size > target-page-size it will send all the
1320 * pages in a host page that are dirty.
1323 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1324 uint64_t *bytes_transferred)
1326 PageSearchStatus pss;
1327 MigrationState *ms = migrate_get_current();
1328 int pages = 0;
1329 bool again, found;
1330 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1331 ram_addr_t space */
1333 pss.block = last_seen_block;
1334 pss.offset = last_offset;
1335 pss.complete_round = false;
1337 if (!pss.block) {
1338 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1341 do {
1342 again = true;
1343 found = get_queued_page(ms, &pss, &dirty_ram_abs);
1345 if (!found) {
1346 /* priority queue empty, so just search for something dirty */
1347 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1350 if (found) {
1351 pages = ram_save_host_page(ms, f, &pss,
1352 last_stage, bytes_transferred,
1353 dirty_ram_abs);
1355 } while (!pages && again);
1357 last_seen_block = pss.block;
1358 last_offset = pss.offset;
1360 return pages;
1363 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1365 uint64_t pages = size / TARGET_PAGE_SIZE;
1366 if (zero) {
1367 acct_info.dup_pages += pages;
1368 } else {
1369 acct_info.norm_pages += pages;
1370 bytes_transferred += size;
1371 qemu_update_position(f, size);
1375 static ram_addr_t ram_save_remaining(void)
1377 return migration_dirty_pages;
1380 uint64_t ram_bytes_remaining(void)
1382 return ram_save_remaining() * TARGET_PAGE_SIZE;
1385 uint64_t ram_bytes_transferred(void)
1387 return bytes_transferred;
1390 uint64_t ram_bytes_total(void)
1392 RAMBlock *block;
1393 uint64_t total = 0;
1395 rcu_read_lock();
1396 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1397 total += block->used_length;
1398 rcu_read_unlock();
1399 return total;
1402 void free_xbzrle_decoded_buf(void)
1404 g_free(xbzrle_decoded_buf);
1405 xbzrle_decoded_buf = NULL;
1408 static void migration_bitmap_free(struct BitmapRcu *bmap)
1410 g_free(bmap->bmap);
1411 g_free(bmap->unsentmap);
1412 g_free(bmap);
1415 static void ram_migration_cleanup(void *opaque)
1417 /* caller have hold iothread lock or is in a bh, so there is
1418 * no writing race against this migration_bitmap
1420 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1421 atomic_rcu_set(&migration_bitmap_rcu, NULL);
1422 if (bitmap) {
1423 memory_global_dirty_log_stop();
1424 call_rcu(bitmap, migration_bitmap_free, rcu);
1427 XBZRLE_cache_lock();
1428 if (XBZRLE.cache) {
1429 cache_fini(XBZRLE.cache);
1430 g_free(XBZRLE.encoded_buf);
1431 g_free(XBZRLE.current_buf);
1432 XBZRLE.cache = NULL;
1433 XBZRLE.encoded_buf = NULL;
1434 XBZRLE.current_buf = NULL;
1436 XBZRLE_cache_unlock();
1439 static void reset_ram_globals(void)
1441 last_seen_block = NULL;
1442 last_sent_block = NULL;
1443 last_offset = 0;
1444 last_version = ram_list.version;
1445 ram_bulk_stage = true;
1448 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1450 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1452 /* called in qemu main thread, so there is
1453 * no writing race against this migration_bitmap
1455 if (migration_bitmap_rcu) {
1456 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1457 bitmap = g_new(struct BitmapRcu, 1);
1458 bitmap->bmap = bitmap_new(new);
1460 /* prevent migration_bitmap content from being set bit
1461 * by migration_bitmap_sync_range() at the same time.
1462 * it is safe to migration if migration_bitmap is cleared bit
1463 * at the same time.
1465 qemu_mutex_lock(&migration_bitmap_mutex);
1466 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1467 bitmap_set(bitmap->bmap, old, new - old);
1469 /* We don't have a way to safely extend the sentmap
1470 * with RCU; so mark it as missing, entry to postcopy
1471 * will fail.
1473 bitmap->unsentmap = NULL;
1475 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
1476 qemu_mutex_unlock(&migration_bitmap_mutex);
1477 migration_dirty_pages += new - old;
1478 call_rcu(old_bitmap, migration_bitmap_free, rcu);
1483 * 'expected' is the value you expect the bitmap mostly to be full
1484 * of; it won't bother printing lines that are all this value.
1485 * If 'todump' is null the migration bitmap is dumped.
1487 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1489 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1491 int64_t cur;
1492 int64_t linelen = 128;
1493 char linebuf[129];
1495 if (!todump) {
1496 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1499 for (cur = 0; cur < ram_pages; cur += linelen) {
1500 int64_t curb;
1501 bool found = false;
1503 * Last line; catch the case where the line length
1504 * is longer than remaining ram
1506 if (cur + linelen > ram_pages) {
1507 linelen = ram_pages - cur;
1509 for (curb = 0; curb < linelen; curb++) {
1510 bool thisbit = test_bit(cur + curb, todump);
1511 linebuf[curb] = thisbit ? '1' : '.';
1512 found = found || (thisbit != expected);
1514 if (found) {
1515 linebuf[curb] = '\0';
1516 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1521 /* **** functions for postcopy ***** */
1524 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1525 * Note: At this point the 'unsentmap' is the processed bitmap combined
1526 * with the dirtymap; so a '1' means it's either dirty or unsent.
1527 * start,length: Indexes into the bitmap for the first bit
1528 * representing the named block and length in target-pages
1530 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1531 PostcopyDiscardState *pds,
1532 unsigned long start,
1533 unsigned long length)
1535 unsigned long end = start + length; /* one after the end */
1536 unsigned long current;
1537 unsigned long *unsentmap;
1539 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1540 for (current = start; current < end; ) {
1541 unsigned long one = find_next_bit(unsentmap, end, current);
1543 if (one <= end) {
1544 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1545 unsigned long discard_length;
1547 if (zero >= end) {
1548 discard_length = end - one;
1549 } else {
1550 discard_length = zero - one;
1552 if (discard_length) {
1553 postcopy_discard_send_range(ms, pds, one, discard_length);
1555 current = one + discard_length;
1556 } else {
1557 current = one;
1561 return 0;
1565 * Utility for the outgoing postcopy code.
1566 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1567 * passing it bitmap indexes and name.
1568 * Returns: 0 on success
1569 * (qemu_ram_foreach_block ends up passing unscaled lengths
1570 * which would mean postcopy code would have to deal with target page)
1572 static int postcopy_each_ram_send_discard(MigrationState *ms)
1574 struct RAMBlock *block;
1575 int ret;
1577 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1578 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1579 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1580 first,
1581 block->idstr);
1584 * Postcopy sends chunks of bitmap over the wire, but it
1585 * just needs indexes at this point, avoids it having
1586 * target page specific code.
1588 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1589 block->used_length >> TARGET_PAGE_BITS);
1590 postcopy_discard_send_finish(ms, pds);
1591 if (ret) {
1592 return ret;
1596 return 0;
1600 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1601 * the two bitmaps, that are similar, but one is inverted.
1603 * We search for runs of target-pages that don't start or end on a
1604 * host page boundary;
1605 * unsent_pass=true: Cleans up partially unsent host pages by searching
1606 * the unsentmap
1607 * unsent_pass=false: Cleans up partially dirty host pages by searching
1608 * the main migration bitmap
1611 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1612 RAMBlock *block,
1613 PostcopyDiscardState *pds)
1615 unsigned long *bitmap;
1616 unsigned long *unsentmap;
1617 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1618 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1619 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1620 unsigned long last = first + (len - 1);
1621 unsigned long run_start;
1623 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1624 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1626 if (unsent_pass) {
1627 /* Find a sent page */
1628 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1629 } else {
1630 /* Find a dirty page */
1631 run_start = find_next_bit(bitmap, last + 1, first);
1634 while (run_start <= last) {
1635 bool do_fixup = false;
1636 unsigned long fixup_start_addr;
1637 unsigned long host_offset;
1640 * If the start of this run of pages is in the middle of a host
1641 * page, then we need to fixup this host page.
1643 host_offset = run_start % host_ratio;
1644 if (host_offset) {
1645 do_fixup = true;
1646 run_start -= host_offset;
1647 fixup_start_addr = run_start;
1648 /* For the next pass */
1649 run_start = run_start + host_ratio;
1650 } else {
1651 /* Find the end of this run */
1652 unsigned long run_end;
1653 if (unsent_pass) {
1654 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1655 } else {
1656 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1659 * If the end isn't at the start of a host page, then the
1660 * run doesn't finish at the end of a host page
1661 * and we need to discard.
1663 host_offset = run_end % host_ratio;
1664 if (host_offset) {
1665 do_fixup = true;
1666 fixup_start_addr = run_end - host_offset;
1668 * This host page has gone, the next loop iteration starts
1669 * from after the fixup
1671 run_start = fixup_start_addr + host_ratio;
1672 } else {
1674 * No discards on this iteration, next loop starts from
1675 * next sent/dirty page
1677 run_start = run_end + 1;
1681 if (do_fixup) {
1682 unsigned long page;
1684 /* Tell the destination to discard this page */
1685 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1686 /* For the unsent_pass we:
1687 * discard partially sent pages
1688 * For the !unsent_pass (dirty) we:
1689 * discard partially dirty pages that were sent
1690 * (any partially sent pages were already discarded
1691 * by the previous unsent_pass)
1693 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1694 host_ratio);
1697 /* Clean up the bitmap */
1698 for (page = fixup_start_addr;
1699 page < fixup_start_addr + host_ratio; page++) {
1700 /* All pages in this host page are now not sent */
1701 set_bit(page, unsentmap);
1704 * Remark them as dirty, updating the count for any pages
1705 * that weren't previously dirty.
1707 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1711 if (unsent_pass) {
1712 /* Find the next sent page for the next iteration */
1713 run_start = find_next_zero_bit(unsentmap, last + 1,
1714 run_start);
1715 } else {
1716 /* Find the next dirty page for the next iteration */
1717 run_start = find_next_bit(bitmap, last + 1, run_start);
1723 * Utility for the outgoing postcopy code.
1725 * Discard any partially sent host-page size chunks, mark any partially
1726 * dirty host-page size chunks as all dirty.
1728 * Returns: 0 on success
1730 static int postcopy_chunk_hostpages(MigrationState *ms)
1732 struct RAMBlock *block;
1734 if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1735 /* Easy case - TPS==HPS - nothing to be done */
1736 return 0;
1739 /* Easiest way to make sure we don't resume in the middle of a host-page */
1740 last_seen_block = NULL;
1741 last_sent_block = NULL;
1742 last_offset = 0;
1744 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1745 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1747 PostcopyDiscardState *pds =
1748 postcopy_discard_send_init(ms, first, block->idstr);
1750 /* First pass: Discard all partially sent host pages */
1751 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1753 * Second pass: Ensure that all partially dirty host pages are made
1754 * fully dirty.
1756 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1758 postcopy_discard_send_finish(ms, pds);
1759 } /* ram_list loop */
1761 return 0;
1765 * Transmit the set of pages to be discarded after precopy to the target
1766 * these are pages that:
1767 * a) Have been previously transmitted but are now dirty again
1768 * b) Pages that have never been transmitted, this ensures that
1769 * any pages on the destination that have been mapped by background
1770 * tasks get discarded (transparent huge pages is the specific concern)
1771 * Hopefully this is pretty sparse
1773 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1775 int ret;
1776 unsigned long *bitmap, *unsentmap;
1778 rcu_read_lock();
1780 /* This should be our last sync, the src is now paused */
1781 migration_bitmap_sync();
1783 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1784 if (!unsentmap) {
1785 /* We don't have a safe way to resize the sentmap, so
1786 * if the bitmap was resized it will be NULL at this
1787 * point.
1789 error_report("migration ram resized during precopy phase");
1790 rcu_read_unlock();
1791 return -EINVAL;
1794 /* Deal with TPS != HPS */
1795 ret = postcopy_chunk_hostpages(ms);
1796 if (ret) {
1797 rcu_read_unlock();
1798 return ret;
1802 * Update the unsentmap to be unsentmap = unsentmap | dirty
1804 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1805 bitmap_or(unsentmap, unsentmap, bitmap,
1806 last_ram_offset() >> TARGET_PAGE_BITS);
1809 trace_ram_postcopy_send_discard_bitmap();
1810 #ifdef DEBUG_POSTCOPY
1811 ram_debug_dump_bitmap(unsentmap, true);
1812 #endif
1814 ret = postcopy_each_ram_send_discard(ms);
1815 rcu_read_unlock();
1817 return ret;
1821 * At the start of the postcopy phase of migration, any now-dirty
1822 * precopied pages are discarded.
1824 * start, length describe a byte address range within the RAMBlock
1826 * Returns 0 on success.
1828 int ram_discard_range(MigrationIncomingState *mis,
1829 const char *block_name,
1830 uint64_t start, size_t length)
1832 int ret = -1;
1834 rcu_read_lock();
1835 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1837 if (!rb) {
1838 error_report("ram_discard_range: Failed to find block '%s'",
1839 block_name);
1840 goto err;
1843 uint8_t *host_startaddr = rb->host + start;
1845 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1846 error_report("ram_discard_range: Unaligned start address: %p",
1847 host_startaddr);
1848 goto err;
1851 if ((start + length) <= rb->used_length) {
1852 uint8_t *host_endaddr = host_startaddr + length;
1853 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1854 error_report("ram_discard_range: Unaligned end address: %p",
1855 host_endaddr);
1856 goto err;
1858 ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1859 } else {
1860 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
1861 "/%zx/" RAM_ADDR_FMT")",
1862 block_name, start, length, rb->used_length);
1865 err:
1866 rcu_read_unlock();
1868 return ret;
1872 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1873 * long-running RCU critical section. When rcu-reclaims in the code
1874 * start to become numerous it will be necessary to reduce the
1875 * granularity of these critical sections.
1878 static int ram_save_setup(QEMUFile *f, void *opaque)
1880 RAMBlock *block;
1881 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1883 dirty_rate_high_cnt = 0;
1884 bitmap_sync_count = 0;
1885 migration_bitmap_sync_init();
1886 qemu_mutex_init(&migration_bitmap_mutex);
1888 if (migrate_use_xbzrle()) {
1889 XBZRLE_cache_lock();
1890 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1891 TARGET_PAGE_SIZE,
1892 TARGET_PAGE_SIZE);
1893 if (!XBZRLE.cache) {
1894 XBZRLE_cache_unlock();
1895 error_report("Error creating cache");
1896 return -1;
1898 XBZRLE_cache_unlock();
1900 /* We prefer not to abort if there is no memory */
1901 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1902 if (!XBZRLE.encoded_buf) {
1903 error_report("Error allocating encoded_buf");
1904 return -1;
1907 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1908 if (!XBZRLE.current_buf) {
1909 error_report("Error allocating current_buf");
1910 g_free(XBZRLE.encoded_buf);
1911 XBZRLE.encoded_buf = NULL;
1912 return -1;
1915 acct_clear();
1918 /* For memory_global_dirty_log_start below. */
1919 qemu_mutex_lock_iothread();
1921 qemu_mutex_lock_ramlist();
1922 rcu_read_lock();
1923 bytes_transferred = 0;
1924 reset_ram_globals();
1926 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1927 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
1928 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1929 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1931 if (migrate_postcopy_ram()) {
1932 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1933 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1937 * Count the total number of pages used by ram blocks not including any
1938 * gaps due to alignment or unplugs.
1940 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1942 memory_global_dirty_log_start();
1943 migration_bitmap_sync();
1944 qemu_mutex_unlock_ramlist();
1945 qemu_mutex_unlock_iothread();
1947 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1949 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1950 qemu_put_byte(f, strlen(block->idstr));
1951 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1952 qemu_put_be64(f, block->used_length);
1955 rcu_read_unlock();
1957 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1958 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1960 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1962 return 0;
1965 static int ram_save_iterate(QEMUFile *f, void *opaque)
1967 int ret;
1968 int i;
1969 int64_t t0;
1970 int pages_sent = 0;
1972 rcu_read_lock();
1973 if (ram_list.version != last_version) {
1974 reset_ram_globals();
1977 /* Read version before ram_list.blocks */
1978 smp_rmb();
1980 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1982 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1983 i = 0;
1984 while ((ret = qemu_file_rate_limit(f)) == 0) {
1985 int pages;
1987 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1988 /* no more pages to sent */
1989 if (pages == 0) {
1990 break;
1992 pages_sent += pages;
1993 acct_info.iterations++;
1995 /* we want to check in the 1st loop, just in case it was the 1st time
1996 and we had to sync the dirty bitmap.
1997 qemu_get_clock_ns() is a bit expensive, so we only check each some
1998 iterations
2000 if ((i & 63) == 0) {
2001 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2002 if (t1 > MAX_WAIT) {
2003 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
2004 t1, i);
2005 break;
2008 i++;
2010 flush_compressed_data(f);
2011 rcu_read_unlock();
2014 * Must occur before EOS (or any QEMUFile operation)
2015 * because of RDMA protocol.
2017 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2019 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2020 bytes_transferred += 8;
2022 ret = qemu_file_get_error(f);
2023 if (ret < 0) {
2024 return ret;
2027 return pages_sent;
2030 /* Called with iothread lock */
2031 static int ram_save_complete(QEMUFile *f, void *opaque)
2033 rcu_read_lock();
2035 if (!migration_in_postcopy(migrate_get_current())) {
2036 migration_bitmap_sync();
2039 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2041 /* try transferring iterative blocks of memory */
2043 /* flush all remaining blocks regardless of rate limiting */
2044 while (true) {
2045 int pages;
2047 pages = ram_find_and_save_block(f, true, &bytes_transferred);
2048 /* no more blocks to sent */
2049 if (pages == 0) {
2050 break;
2054 flush_compressed_data(f);
2055 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2057 rcu_read_unlock();
2059 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2061 return 0;
2064 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2065 uint64_t *non_postcopiable_pending,
2066 uint64_t *postcopiable_pending)
2068 uint64_t remaining_size;
2070 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2072 if (!migration_in_postcopy(migrate_get_current()) &&
2073 remaining_size < max_size) {
2074 qemu_mutex_lock_iothread();
2075 rcu_read_lock();
2076 migration_bitmap_sync();
2077 rcu_read_unlock();
2078 qemu_mutex_unlock_iothread();
2079 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2082 /* We can do postcopy, and all the data is postcopiable */
2083 *postcopiable_pending += remaining_size;
2086 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2088 unsigned int xh_len;
2089 int xh_flags;
2090 uint8_t *loaded_data;
2092 if (!xbzrle_decoded_buf) {
2093 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2095 loaded_data = xbzrle_decoded_buf;
2097 /* extract RLE header */
2098 xh_flags = qemu_get_byte(f);
2099 xh_len = qemu_get_be16(f);
2101 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2102 error_report("Failed to load XBZRLE page - wrong compression!");
2103 return -1;
2106 if (xh_len > TARGET_PAGE_SIZE) {
2107 error_report("Failed to load XBZRLE page - len overflow!");
2108 return -1;
2110 /* load data and decode */
2111 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2113 /* decode RLE */
2114 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2115 TARGET_PAGE_SIZE) == -1) {
2116 error_report("Failed to load XBZRLE page - decode error!");
2117 return -1;
2120 return 0;
2123 /* Must be called from within a rcu critical section.
2124 * Returns a pointer from within the RCU-protected ram_list.
2127 * Read a RAMBlock ID from the stream f.
2129 * f: Stream to read from
2130 * flags: Page flags (mostly to see if it's a continuation of previous block)
2132 static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2133 int flags)
2135 static RAMBlock *block = NULL;
2136 char id[256];
2137 uint8_t len;
2139 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2140 if (!block) {
2141 error_report("Ack, bad migration stream!");
2142 return NULL;
2144 return block;
2147 len = qemu_get_byte(f);
2148 qemu_get_buffer(f, (uint8_t *)id, len);
2149 id[len] = 0;
2151 block = qemu_ram_block_by_name(id);
2152 if (!block) {
2153 error_report("Can't find block %s", id);
2154 return NULL;
2157 return block;
2160 static inline void *host_from_ram_block_offset(RAMBlock *block,
2161 ram_addr_t offset)
2163 if (!offset_in_ramblock(block, offset)) {
2164 return NULL;
2167 return block->host + offset;
2171 * If a page (or a whole RDMA chunk) has been
2172 * determined to be zero, then zap it.
2174 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2176 if (ch != 0 || !is_zero_range(host, size)) {
2177 memset(host, ch, size);
2181 static void *do_data_decompress(void *opaque)
2183 DecompressParam *param = opaque;
2184 unsigned long pagesize;
2185 uint8_t *des;
2186 int len;
2188 qemu_mutex_lock(&param->mutex);
2189 while (!param->quit) {
2190 if (param->des) {
2191 des = param->des;
2192 len = param->len;
2193 param->des = 0;
2194 qemu_mutex_unlock(&param->mutex);
2196 pagesize = TARGET_PAGE_SIZE;
2197 /* uncompress() will return failed in some case, especially
2198 * when the page is dirted when doing the compression, it's
2199 * not a problem because the dirty page will be retransferred
2200 * and uncompress() won't break the data in other pages.
2202 uncompress((Bytef *)des, &pagesize,
2203 (const Bytef *)param->compbuf, len);
2205 qemu_mutex_lock(&decomp_done_lock);
2206 param->done = true;
2207 qemu_cond_signal(&decomp_done_cond);
2208 qemu_mutex_unlock(&decomp_done_lock);
2210 qemu_mutex_lock(&param->mutex);
2211 } else {
2212 qemu_cond_wait(&param->cond, &param->mutex);
2215 qemu_mutex_unlock(&param->mutex);
2217 return NULL;
2220 static void wait_for_decompress_done(void)
2222 int idx, thread_count;
2224 if (!migrate_use_compression()) {
2225 return;
2228 thread_count = migrate_decompress_threads();
2229 qemu_mutex_lock(&decomp_done_lock);
2230 for (idx = 0; idx < thread_count; idx++) {
2231 while (!decomp_param[idx].done) {
2232 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2235 qemu_mutex_unlock(&decomp_done_lock);
2238 void migrate_decompress_threads_create(void)
2240 int i, thread_count;
2242 thread_count = migrate_decompress_threads();
2243 decompress_threads = g_new0(QemuThread, thread_count);
2244 decomp_param = g_new0(DecompressParam, thread_count);
2245 qemu_mutex_init(&decomp_done_lock);
2246 qemu_cond_init(&decomp_done_cond);
2247 for (i = 0; i < thread_count; i++) {
2248 qemu_mutex_init(&decomp_param[i].mutex);
2249 qemu_cond_init(&decomp_param[i].cond);
2250 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2251 decomp_param[i].done = true;
2252 decomp_param[i].quit = false;
2253 qemu_thread_create(decompress_threads + i, "decompress",
2254 do_data_decompress, decomp_param + i,
2255 QEMU_THREAD_JOINABLE);
2259 void migrate_decompress_threads_join(void)
2261 int i, thread_count;
2263 thread_count = migrate_decompress_threads();
2264 for (i = 0; i < thread_count; i++) {
2265 qemu_mutex_lock(&decomp_param[i].mutex);
2266 decomp_param[i].quit = true;
2267 qemu_cond_signal(&decomp_param[i].cond);
2268 qemu_mutex_unlock(&decomp_param[i].mutex);
2270 for (i = 0; i < thread_count; i++) {
2271 qemu_thread_join(decompress_threads + i);
2272 qemu_mutex_destroy(&decomp_param[i].mutex);
2273 qemu_cond_destroy(&decomp_param[i].cond);
2274 g_free(decomp_param[i].compbuf);
2276 g_free(decompress_threads);
2277 g_free(decomp_param);
2278 decompress_threads = NULL;
2279 decomp_param = NULL;
2282 static void decompress_data_with_multi_threads(QEMUFile *f,
2283 void *host, int len)
2285 int idx, thread_count;
2287 thread_count = migrate_decompress_threads();
2288 qemu_mutex_lock(&decomp_done_lock);
2289 while (true) {
2290 for (idx = 0; idx < thread_count; idx++) {
2291 if (decomp_param[idx].done) {
2292 decomp_param[idx].done = false;
2293 qemu_mutex_lock(&decomp_param[idx].mutex);
2294 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2295 decomp_param[idx].des = host;
2296 decomp_param[idx].len = len;
2297 qemu_cond_signal(&decomp_param[idx].cond);
2298 qemu_mutex_unlock(&decomp_param[idx].mutex);
2299 break;
2302 if (idx < thread_count) {
2303 break;
2304 } else {
2305 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2308 qemu_mutex_unlock(&decomp_done_lock);
2312 * Allocate data structures etc needed by incoming migration with postcopy-ram
2313 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2315 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2317 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2319 return postcopy_ram_incoming_init(mis, ram_pages);
2323 * Called in postcopy mode by ram_load().
2324 * rcu_read_lock is taken prior to this being called.
2326 static int ram_load_postcopy(QEMUFile *f)
2328 int flags = 0, ret = 0;
2329 bool place_needed = false;
2330 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2331 MigrationIncomingState *mis = migration_incoming_get_current();
2332 /* Temporary page that is later 'placed' */
2333 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2334 void *last_host = NULL;
2335 bool all_zero = false;
2337 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2338 ram_addr_t addr;
2339 void *host = NULL;
2340 void *page_buffer = NULL;
2341 void *place_source = NULL;
2342 uint8_t ch;
2344 addr = qemu_get_be64(f);
2345 flags = addr & ~TARGET_PAGE_MASK;
2346 addr &= TARGET_PAGE_MASK;
2348 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2349 place_needed = false;
2350 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2351 RAMBlock *block = ram_block_from_stream(f, flags);
2353 host = host_from_ram_block_offset(block, addr);
2354 if (!host) {
2355 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2356 ret = -EINVAL;
2357 break;
2360 * Postcopy requires that we place whole host pages atomically.
2361 * To make it atomic, the data is read into a temporary page
2362 * that's moved into place later.
2363 * The migration protocol uses, possibly smaller, target-pages
2364 * however the source ensures it always sends all the components
2365 * of a host page in order.
2367 page_buffer = postcopy_host_page +
2368 ((uintptr_t)host & ~qemu_host_page_mask);
2369 /* If all TP are zero then we can optimise the place */
2370 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2371 all_zero = true;
2372 } else {
2373 /* not the 1st TP within the HP */
2374 if (host != (last_host + TARGET_PAGE_SIZE)) {
2375 error_report("Non-sequential target page %p/%p",
2376 host, last_host);
2377 ret = -EINVAL;
2378 break;
2384 * If it's the last part of a host page then we place the host
2385 * page
2387 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2388 ~qemu_host_page_mask) == 0;
2389 place_source = postcopy_host_page;
2391 last_host = host;
2393 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2394 case RAM_SAVE_FLAG_COMPRESS:
2395 ch = qemu_get_byte(f);
2396 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2397 if (ch) {
2398 all_zero = false;
2400 break;
2402 case RAM_SAVE_FLAG_PAGE:
2403 all_zero = false;
2404 if (!place_needed || !matching_page_sizes) {
2405 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2406 } else {
2407 /* Avoids the qemu_file copy during postcopy, which is
2408 * going to do a copy later; can only do it when we
2409 * do this read in one go (matching page sizes)
2411 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2412 TARGET_PAGE_SIZE);
2414 break;
2415 case RAM_SAVE_FLAG_EOS:
2416 /* normal exit */
2417 break;
2418 default:
2419 error_report("Unknown combination of migration flags: %#x"
2420 " (postcopy mode)", flags);
2421 ret = -EINVAL;
2424 if (place_needed) {
2425 /* This gets called at the last target page in the host page */
2426 if (all_zero) {
2427 ret = postcopy_place_page_zero(mis,
2428 host + TARGET_PAGE_SIZE -
2429 qemu_host_page_size);
2430 } else {
2431 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2432 qemu_host_page_size,
2433 place_source);
2436 if (!ret) {
2437 ret = qemu_file_get_error(f);
2441 return ret;
2444 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2446 int flags = 0, ret = 0;
2447 static uint64_t seq_iter;
2448 int len = 0;
2450 * If system is running in postcopy mode, page inserts to host memory must
2451 * be atomic
2453 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2455 seq_iter++;
2457 if (version_id != 4) {
2458 ret = -EINVAL;
2461 /* This RCU critical section can be very long running.
2462 * When RCU reclaims in the code start to become numerous,
2463 * it will be necessary to reduce the granularity of this
2464 * critical section.
2466 rcu_read_lock();
2468 if (postcopy_running) {
2469 ret = ram_load_postcopy(f);
2472 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2473 ram_addr_t addr, total_ram_bytes;
2474 void *host = NULL;
2475 uint8_t ch;
2477 addr = qemu_get_be64(f);
2478 flags = addr & ~TARGET_PAGE_MASK;
2479 addr &= TARGET_PAGE_MASK;
2481 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2482 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2483 RAMBlock *block = ram_block_from_stream(f, flags);
2485 host = host_from_ram_block_offset(block, addr);
2486 if (!host) {
2487 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2488 ret = -EINVAL;
2489 break;
2493 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2494 case RAM_SAVE_FLAG_MEM_SIZE:
2495 /* Synchronize RAM block list */
2496 total_ram_bytes = addr;
2497 while (!ret && total_ram_bytes) {
2498 RAMBlock *block;
2499 char id[256];
2500 ram_addr_t length;
2502 len = qemu_get_byte(f);
2503 qemu_get_buffer(f, (uint8_t *)id, len);
2504 id[len] = 0;
2505 length = qemu_get_be64(f);
2507 block = qemu_ram_block_by_name(id);
2508 if (block) {
2509 if (length != block->used_length) {
2510 Error *local_err = NULL;
2512 ret = qemu_ram_resize(block, length,
2513 &local_err);
2514 if (local_err) {
2515 error_report_err(local_err);
2518 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2519 block->idstr);
2520 } else {
2521 error_report("Unknown ramblock \"%s\", cannot "
2522 "accept migration", id);
2523 ret = -EINVAL;
2526 total_ram_bytes -= length;
2528 break;
2530 case RAM_SAVE_FLAG_COMPRESS:
2531 ch = qemu_get_byte(f);
2532 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2533 break;
2535 case RAM_SAVE_FLAG_PAGE:
2536 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2537 break;
2539 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2540 len = qemu_get_be32(f);
2541 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2542 error_report("Invalid compressed data length: %d", len);
2543 ret = -EINVAL;
2544 break;
2546 decompress_data_with_multi_threads(f, host, len);
2547 break;
2549 case RAM_SAVE_FLAG_XBZRLE:
2550 if (load_xbzrle(f, addr, host) < 0) {
2551 error_report("Failed to decompress XBZRLE page at "
2552 RAM_ADDR_FMT, addr);
2553 ret = -EINVAL;
2554 break;
2556 break;
2557 case RAM_SAVE_FLAG_EOS:
2558 /* normal exit */
2559 break;
2560 default:
2561 if (flags & RAM_SAVE_FLAG_HOOK) {
2562 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2563 } else {
2564 error_report("Unknown combination of migration flags: %#x",
2565 flags);
2566 ret = -EINVAL;
2569 if (!ret) {
2570 ret = qemu_file_get_error(f);
2574 wait_for_decompress_done();
2575 rcu_read_unlock();
2576 DPRINTF("Completed load of VM with exit code %d seq iteration "
2577 "%" PRIu64 "\n", ret, seq_iter);
2578 return ret;
2581 static SaveVMHandlers savevm_ram_handlers = {
2582 .save_live_setup = ram_save_setup,
2583 .save_live_iterate = ram_save_iterate,
2584 .save_live_complete_postcopy = ram_save_complete,
2585 .save_live_complete_precopy = ram_save_complete,
2586 .save_live_pending = ram_save_pending,
2587 .load_state = ram_load,
2588 .cleanup = ram_migration_cleanup,
2591 void ram_mig_init(void)
2593 qemu_mutex_init(&XBZRLE.lock);
2594 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);