4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #include "qemu/config-file.h"
34 #include "qemu/error-report.h"
35 #include "hw/i386/pc.h"
36 #include "hw/i386/apic.h"
37 #include "hw/i386/apic_internal.h"
38 #include "hw/i386/apic-msidef.h"
39 #include "hw/i386/intel_iommu.h"
40 #include "hw/i386/x86-iommu.h"
42 #include "exec/ioport.h"
43 #include "standard-headers/asm-x86/hyperv.h"
44 #include "hw/pci/pci.h"
45 #include "hw/pci/msi.h"
46 #include "migration/blocker.h"
47 #include "exec/memattrs.h"
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define MSR_KVM_WALL_CLOCK 0x11
61 #define MSR_KVM_SYSTEM_TIME 0x12
63 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65 #define MSR_BUF_SIZE 4096
67 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR
),
69 KVM_CAP_INFO(EXT_CPUID
),
70 KVM_CAP_INFO(MP_STATE
),
74 static bool has_msr_star
;
75 static bool has_msr_hsave_pa
;
76 static bool has_msr_tsc_aux
;
77 static bool has_msr_tsc_adjust
;
78 static bool has_msr_tsc_deadline
;
79 static bool has_msr_feature_control
;
80 static bool has_msr_misc_enable
;
81 static bool has_msr_smbase
;
82 static bool has_msr_bndcfgs
;
83 static int lm_capable_kernel
;
84 static bool has_msr_hv_hypercall
;
85 static bool has_msr_hv_crash
;
86 static bool has_msr_hv_reset
;
87 static bool has_msr_hv_vpindex
;
88 static bool has_msr_hv_runtime
;
89 static bool has_msr_hv_synic
;
90 static bool has_msr_hv_stimer
;
91 static bool has_msr_xss
;
93 static bool has_msr_architectural_pmu
;
94 static uint32_t num_architectural_pmu_counters
;
98 static int has_pit_state2
;
100 static bool has_msr_mcg_ext_ctl
;
102 static struct kvm_cpuid2
*cpuid_cache
;
104 int kvm_has_pit_state2(void)
106 return has_pit_state2
;
109 bool kvm_has_smm(void)
111 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
114 bool kvm_has_adjust_clock_stable(void)
116 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
118 return (ret
== KVM_CLOCK_TSC_STABLE
);
121 bool kvm_allows_irq0_override(void)
123 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
126 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
128 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
130 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
133 #define MEMORIZE(fn, _result) \
135 static bool _memorized; \
144 static bool has_x2apic_api
;
146 bool kvm_has_x2apic_api(void)
148 return has_x2apic_api
;
151 bool kvm_enable_x2apic(void)
154 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
155 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
159 static int kvm_get_tsc(CPUState
*cs
)
161 X86CPU
*cpu
= X86_CPU(cs
);
162 CPUX86State
*env
= &cpu
->env
;
164 struct kvm_msrs info
;
165 struct kvm_msr_entry entries
[1];
169 if (env
->tsc_valid
) {
173 msr_data
.info
.nmsrs
= 1;
174 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
175 env
->tsc_valid
= !runstate_is_running();
177 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
183 env
->tsc
= msr_data
.entries
[0].data
;
187 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
192 void kvm_synchronize_all_tsc(void)
198 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
203 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
205 struct kvm_cpuid2
*cpuid
;
208 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
209 cpuid
= g_malloc0(size
);
211 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
212 if (r
== 0 && cpuid
->nent
>= max
) {
220 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
228 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
231 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
233 struct kvm_cpuid2
*cpuid
;
236 if (cpuid_cache
!= NULL
) {
239 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
246 static const struct kvm_para_features
{
249 } para_features
[] = {
250 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
251 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
252 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
253 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
256 static int get_para_features(KVMState
*s
)
260 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
261 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
262 features
|= (1 << para_features
[i
].feature
);
269 static bool host_tsx_blacklisted(void)
271 int family
, model
, stepping
;\
272 char vendor
[CPUID_VENDOR_SZ
+ 1];
274 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
276 /* Check if we are running on a Haswell host known to have broken TSX */
277 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
279 ((model
== 63 && stepping
< 4) ||
280 model
== 60 || model
== 69 || model
== 70);
283 /* Returns the value for a specific register on the cpuid entry
285 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
305 /* Find matching entry for function/index on kvm_cpuid2 struct
307 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
312 for (i
= 0; i
< cpuid
->nent
; ++i
) {
313 if (cpuid
->entries
[i
].function
== function
&&
314 cpuid
->entries
[i
].index
== index
) {
315 return &cpuid
->entries
[i
];
322 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
323 uint32_t index
, int reg
)
325 struct kvm_cpuid2
*cpuid
;
327 uint32_t cpuid_1_edx
;
330 cpuid
= get_supported_cpuid(s
);
332 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
335 ret
= cpuid_entry_get_reg(entry
, reg
);
338 /* Fixups for the data returned by KVM, below */
340 if (function
== 1 && reg
== R_EDX
) {
341 /* KVM before 2.6.30 misreports the following features */
342 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
343 } else if (function
== 1 && reg
== R_ECX
) {
344 /* We can set the hypervisor flag, even if KVM does not return it on
345 * GET_SUPPORTED_CPUID
347 ret
|= CPUID_EXT_HYPERVISOR
;
348 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
349 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
350 * and the irqchip is in the kernel.
352 if (kvm_irqchip_in_kernel() &&
353 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
354 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
357 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
358 * without the in-kernel irqchip
360 if (!kvm_irqchip_in_kernel()) {
361 ret
&= ~CPUID_EXT_X2APIC
;
363 } else if (function
== 6 && reg
== R_EAX
) {
364 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
365 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
366 if (host_tsx_blacklisted()) {
367 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
369 } else if (function
== 0x80000001 && reg
== R_EDX
) {
370 /* On Intel, kvm returns cpuid according to the Intel spec,
371 * so add missing bits according to the AMD spec:
373 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
374 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
375 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
376 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
377 * be enabled without the in-kernel irqchip
379 if (!kvm_irqchip_in_kernel()) {
380 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
384 /* fallback for older kernels */
385 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
386 ret
= get_para_features(s
);
392 typedef struct HWPoisonPage
{
394 QLIST_ENTRY(HWPoisonPage
) list
;
397 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
398 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
400 static void kvm_unpoison_all(void *param
)
402 HWPoisonPage
*page
, *next_page
;
404 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
405 QLIST_REMOVE(page
, list
);
406 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
411 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
415 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
416 if (page
->ram_addr
== ram_addr
) {
420 page
= g_new(HWPoisonPage
, 1);
421 page
->ram_addr
= ram_addr
;
422 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
425 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
430 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
433 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
438 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
440 CPUState
*cs
= CPU(cpu
);
441 CPUX86State
*env
= &cpu
->env
;
442 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
443 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
444 uint64_t mcg_status
= MCG_STATUS_MCIP
;
447 if (code
== BUS_MCEERR_AR
) {
448 status
|= MCI_STATUS_AR
| 0x134;
449 mcg_status
|= MCG_STATUS_EIPV
;
452 mcg_status
|= MCG_STATUS_RIPV
;
455 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
456 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
457 * guest kernel back into env->mcg_ext_ctl.
459 cpu_synchronize_state(cs
);
460 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
461 mcg_status
|= MCG_STATUS_LMCE
;
465 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
466 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
469 static void hardware_memory_error(void)
471 fprintf(stderr
, "Hardware memory error!\n");
475 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
477 X86CPU
*cpu
= X86_CPU(c
);
478 CPUX86State
*env
= &cpu
->env
;
482 /* If we get an action required MCE, it has been injected by KVM
483 * while the VM was running. An action optional MCE instead should
484 * be coming from the main thread, which qemu_init_sigbus identifies
485 * as the "early kill" thread.
487 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
489 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
490 ram_addr
= qemu_ram_addr_from_host(addr
);
491 if (ram_addr
!= RAM_ADDR_INVALID
&&
492 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
493 kvm_hwpoison_page_add(ram_addr
);
494 kvm_mce_inject(cpu
, paddr
, code
);
498 fprintf(stderr
, "Hardware memory error for memory used by "
499 "QEMU itself instead of guest system!\n");
502 if (code
== BUS_MCEERR_AR
) {
503 hardware_memory_error();
506 /* Hope we are lucky for AO MCE */
509 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
511 CPUX86State
*env
= &cpu
->env
;
513 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
514 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
515 struct kvm_x86_mce mce
;
517 env
->exception_injected
= -1;
520 * There must be at least one bank in use if an MCE is pending.
521 * Find it and use its values for the event injection.
523 for (bank
= 0; bank
< bank_num
; bank
++) {
524 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
528 assert(bank
< bank_num
);
531 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
532 mce
.mcg_status
= env
->mcg_status
;
533 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
534 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
536 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
541 static void cpu_update_state(void *opaque
, int running
, RunState state
)
543 CPUX86State
*env
= opaque
;
546 env
->tsc_valid
= false;
550 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
552 X86CPU
*cpu
= X86_CPU(cs
);
556 #ifndef KVM_CPUID_SIGNATURE_NEXT
557 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
560 static bool hyperv_hypercall_available(X86CPU
*cpu
)
562 return cpu
->hyperv_vapic
||
563 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
566 static bool hyperv_enabled(X86CPU
*cpu
)
568 CPUState
*cs
= CPU(cpu
);
569 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
570 (hyperv_hypercall_available(cpu
) ||
572 cpu
->hyperv_relaxed_timing
||
575 cpu
->hyperv_vpindex
||
576 cpu
->hyperv_runtime
||
581 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
583 X86CPU
*cpu
= X86_CPU(cs
);
584 CPUX86State
*env
= &cpu
->env
;
591 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
592 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
595 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
596 * TSC frequency doesn't match the one we want.
598 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
599 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
601 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
602 error_report("warning: TSC frequency mismatch between "
603 "VM (%" PRId64
" kHz) and host (%d kHz), "
604 "and TSC scaling unavailable",
605 env
->tsc_khz
, cur_freq
);
613 static int hyperv_handle_properties(CPUState
*cs
)
615 X86CPU
*cpu
= X86_CPU(cs
);
616 CPUX86State
*env
= &cpu
->env
;
618 if (cpu
->hyperv_time
&&
619 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
620 cpu
->hyperv_time
= false;
623 if (cpu
->hyperv_relaxed_timing
) {
624 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
626 if (cpu
->hyperv_vapic
) {
627 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
628 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
630 if (cpu
->hyperv_time
) {
631 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
632 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
633 env
->features
[FEAT_HYPERV_EAX
] |= 0x200;
635 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
636 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
638 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
639 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
640 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_RESET_AVAILABLE
;
642 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
643 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_INDEX_AVAILABLE
;
645 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
646 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
648 if (cpu
->hyperv_synic
) {
651 if (!has_msr_hv_synic
||
652 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
653 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
657 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNIC_AVAILABLE
;
658 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
659 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
660 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
663 if (cpu
->hyperv_stimer
) {
664 if (!has_msr_hv_stimer
) {
665 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
668 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNTIMER_AVAILABLE
;
673 static Error
*invtsc_mig_blocker
;
675 #define KVM_MAX_CPUID_ENTRIES 100
677 int kvm_arch_init_vcpu(CPUState
*cs
)
680 struct kvm_cpuid2 cpuid
;
681 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
682 } QEMU_PACKED cpuid_data
;
683 X86CPU
*cpu
= X86_CPU(cs
);
684 CPUX86State
*env
= &cpu
->env
;
685 uint32_t limit
, i
, j
, cpuid_i
;
687 struct kvm_cpuid_entry2
*c
;
688 uint32_t signature
[3];
689 int kvm_base
= KVM_CPUID_SIGNATURE
;
691 Error
*local_err
= NULL
;
693 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
697 /* Paravirtualization CPUIDs */
698 if (hyperv_enabled(cpu
)) {
699 c
= &cpuid_data
.entries
[cpuid_i
++];
700 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
701 if (!cpu
->hyperv_vendor_id
) {
702 memcpy(signature
, "Microsoft Hv", 12);
704 size_t len
= strlen(cpu
->hyperv_vendor_id
);
707 error_report("hv-vendor-id truncated to 12 characters");
710 memset(signature
, 0, 12);
711 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
713 c
->eax
= HYPERV_CPUID_MIN
;
714 c
->ebx
= signature
[0];
715 c
->ecx
= signature
[1];
716 c
->edx
= signature
[2];
718 c
= &cpuid_data
.entries
[cpuid_i
++];
719 c
->function
= HYPERV_CPUID_INTERFACE
;
720 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
721 c
->eax
= signature
[0];
726 c
= &cpuid_data
.entries
[cpuid_i
++];
727 c
->function
= HYPERV_CPUID_VERSION
;
731 c
= &cpuid_data
.entries
[cpuid_i
++];
732 c
->function
= HYPERV_CPUID_FEATURES
;
733 r
= hyperv_handle_properties(cs
);
737 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
738 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
739 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
741 c
= &cpuid_data
.entries
[cpuid_i
++];
742 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
743 if (cpu
->hyperv_relaxed_timing
) {
744 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
746 if (cpu
->hyperv_vapic
) {
747 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
749 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
751 c
= &cpuid_data
.entries
[cpuid_i
++];
752 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
756 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
757 has_msr_hv_hypercall
= true;
760 if (cpu
->expose_kvm
) {
761 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
762 c
= &cpuid_data
.entries
[cpuid_i
++];
763 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
764 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
765 c
->ebx
= signature
[0];
766 c
->ecx
= signature
[1];
767 c
->edx
= signature
[2];
769 c
= &cpuid_data
.entries
[cpuid_i
++];
770 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
771 c
->eax
= env
->features
[FEAT_KVM
];
774 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
776 for (i
= 0; i
<= limit
; i
++) {
777 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
778 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
781 c
= &cpuid_data
.entries
[cpuid_i
++];
785 /* Keep reading function 2 till all the input is received */
789 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
790 KVM_CPUID_FLAG_STATE_READ_NEXT
;
791 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
792 times
= c
->eax
& 0xff;
794 for (j
= 1; j
< times
; ++j
) {
795 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
796 fprintf(stderr
, "cpuid_data is full, no space for "
797 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
800 c
= &cpuid_data
.entries
[cpuid_i
++];
802 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
803 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
811 if (i
== 0xd && j
== 64) {
815 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
817 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
819 if (i
== 4 && c
->eax
== 0) {
822 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
825 if (i
== 0xd && c
->eax
== 0) {
828 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
829 fprintf(stderr
, "cpuid_data is full, no space for "
830 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
833 c
= &cpuid_data
.entries
[cpuid_i
++];
839 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
847 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
848 if ((ver
& 0xff) > 0) {
849 has_msr_architectural_pmu
= true;
850 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
852 /* Shouldn't be more than 32, since that's the number of bits
853 * available in EBX to tell us _which_ counters are available.
856 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
857 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
862 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
864 for (i
= 0x80000000; i
<= limit
; i
++) {
865 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
866 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
869 c
= &cpuid_data
.entries
[cpuid_i
++];
873 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
876 /* Call Centaur's CPUID instructions they are supported. */
877 if (env
->cpuid_xlevel2
> 0) {
878 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
880 for (i
= 0xC0000000; i
<= limit
; i
++) {
881 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
882 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
885 c
= &cpuid_data
.entries
[cpuid_i
++];
889 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
893 cpuid_data
.cpuid
.nent
= cpuid_i
;
895 if (((env
->cpuid_version
>> 8)&0xF) >= 6
896 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
897 (CPUID_MCE
| CPUID_MCA
)
898 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
899 uint64_t mcg_cap
, unsupported_caps
;
903 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
905 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
909 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
910 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
911 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
915 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
916 if (unsupported_caps
) {
917 if (unsupported_caps
& MCG_LMCE_P
) {
918 error_report("kvm: LMCE not supported");
921 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
925 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
926 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
928 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
933 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
935 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
937 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
938 !!(c
->ecx
& CPUID_EXT_SMX
);
941 if (env
->mcg_cap
& MCG_LMCE_P
) {
942 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
945 if (!env
->user_tsc_khz
) {
946 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
947 invtsc_mig_blocker
== NULL
) {
949 error_setg(&invtsc_mig_blocker
,
950 "State blocked by non-migratable CPU device"
952 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
954 error_report_err(local_err
);
955 error_free(invtsc_mig_blocker
);
959 vmstate_x86_cpu
.unmigratable
= 1;
963 r
= kvm_arch_set_tsc_khz(cs
);
968 /* vcpu's TSC frequency is either specified by user, or following
969 * the value used by KVM if the former is not present. In the
970 * latter case, we query it from KVM and record in env->tsc_khz,
971 * so that vcpu's TSC frequency can be migrated later via this field.
974 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
975 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
982 if (cpu
->vmware_cpuid_freq
983 /* Guests depend on 0x40000000 to detect this feature, so only expose
984 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
986 && kvm_base
== KVM_CPUID_SIGNATURE
987 /* TSC clock must be stable and known for this feature. */
988 && ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
989 || env
->user_tsc_khz
!= 0)
990 && env
->tsc_khz
!= 0) {
992 c
= &cpuid_data
.entries
[cpuid_i
++];
993 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
994 c
->eax
= env
->tsc_khz
;
995 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
996 * APIC_BUS_CYCLE_NS */
1000 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1001 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1004 cpuid_data
.cpuid
.nent
= cpuid_i
;
1006 cpuid_data
.cpuid
.padding
= 0;
1007 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1013 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1015 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1017 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1018 has_msr_tsc_aux
= false;
1024 migrate_del_blocker(invtsc_mig_blocker
);
1028 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1030 CPUX86State
*env
= &cpu
->env
;
1032 env
->exception_injected
= -1;
1033 env
->interrupt_injected
= -1;
1035 if (kvm_irqchip_in_kernel()) {
1036 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1037 KVM_MP_STATE_UNINITIALIZED
;
1039 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1043 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1045 CPUX86State
*env
= &cpu
->env
;
1047 /* APs get directly into wait-for-SIPI state. */
1048 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1049 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1053 static int kvm_get_supported_msrs(KVMState
*s
)
1055 static int kvm_supported_msrs
;
1059 if (kvm_supported_msrs
== 0) {
1060 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1062 kvm_supported_msrs
= -1;
1064 /* Obtain MSR list from KVM. These are the MSRs that we must
1067 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1068 if (ret
< 0 && ret
!= -E2BIG
) {
1071 /* Old kernel modules had a bug and could write beyond the provided
1072 memory. Allocate at least a safe amount of 1K. */
1073 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1075 sizeof(msr_list
.indices
[0])));
1077 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1078 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1082 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1083 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
1084 has_msr_star
= true;
1087 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
1088 has_msr_hsave_pa
= true;
1091 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1092 has_msr_tsc_aux
= true;
1095 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1096 has_msr_tsc_adjust
= true;
1099 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1100 has_msr_tsc_deadline
= true;
1103 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1104 has_msr_smbase
= true;
1107 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1108 has_msr_misc_enable
= true;
1111 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1112 has_msr_bndcfgs
= true;
1115 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1119 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1120 has_msr_hv_crash
= true;
1123 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1124 has_msr_hv_reset
= true;
1127 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1128 has_msr_hv_vpindex
= true;
1131 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1132 has_msr_hv_runtime
= true;
1135 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1136 has_msr_hv_synic
= true;
1139 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1140 has_msr_hv_stimer
= true;
1146 g_free(kvm_msr_list
);
1152 static Notifier smram_machine_done
;
1153 static KVMMemoryListener smram_listener
;
1154 static AddressSpace smram_address_space
;
1155 static MemoryRegion smram_as_root
;
1156 static MemoryRegion smram_as_mem
;
1158 static void register_smram_listener(Notifier
*n
, void *unused
)
1160 MemoryRegion
*smram
=
1161 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1163 /* Outer container... */
1164 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1165 memory_region_set_enabled(&smram_as_root
, true);
1167 /* ... with two regions inside: normal system memory with low
1170 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1171 get_system_memory(), 0, ~0ull);
1172 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1173 memory_region_set_enabled(&smram_as_mem
, true);
1176 /* ... SMRAM with higher priority */
1177 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1178 memory_region_set_enabled(smram
, true);
1181 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1182 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1183 &smram_address_space
, 1);
1186 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1188 uint64_t identity_base
= 0xfffbc000;
1189 uint64_t shadow_mem
;
1191 struct utsname utsname
;
1193 #ifdef KVM_CAP_XSAVE
1194 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1198 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1201 #ifdef KVM_CAP_PIT_STATE2
1202 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1205 ret
= kvm_get_supported_msrs(s
);
1211 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1214 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1215 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1216 * Since these must be part of guest physical memory, we need to allocate
1217 * them, both by setting their start addresses in the kernel and by
1218 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1220 * Older KVM versions may not support setting the identity map base. In
1221 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1224 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1225 /* Allows up to 16M BIOSes. */
1226 identity_base
= 0xfeffc000;
1228 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1234 /* Set TSS base one page after EPT identity map. */
1235 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1240 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1241 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1243 fprintf(stderr
, "e820_add_entry() table is full\n");
1246 qemu_register_reset(kvm_unpoison_all
, NULL
);
1248 shadow_mem
= machine_kvm_shadow_mem(ms
);
1249 if (shadow_mem
!= -1) {
1251 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1257 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1258 smram_machine_done
.notify
= register_smram_listener
;
1259 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1264 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1266 lhs
->selector
= rhs
->selector
;
1267 lhs
->base
= rhs
->base
;
1268 lhs
->limit
= rhs
->limit
;
1280 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1282 unsigned flags
= rhs
->flags
;
1283 lhs
->selector
= rhs
->selector
;
1284 lhs
->base
= rhs
->base
;
1285 lhs
->limit
= rhs
->limit
;
1286 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1287 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1288 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1289 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1290 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1291 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1292 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1293 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1294 lhs
->unusable
= !lhs
->present
;
1298 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1300 lhs
->selector
= rhs
->selector
;
1301 lhs
->base
= rhs
->base
;
1302 lhs
->limit
= rhs
->limit
;
1303 if (rhs
->unusable
) {
1306 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1307 (rhs
->present
* DESC_P_MASK
) |
1308 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1309 (rhs
->db
<< DESC_B_SHIFT
) |
1310 (rhs
->s
* DESC_S_MASK
) |
1311 (rhs
->l
<< DESC_L_SHIFT
) |
1312 (rhs
->g
* DESC_G_MASK
) |
1313 (rhs
->avl
* DESC_AVL_MASK
);
1317 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1320 *kvm_reg
= *qemu_reg
;
1322 *qemu_reg
= *kvm_reg
;
1326 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1328 CPUX86State
*env
= &cpu
->env
;
1329 struct kvm_regs regs
;
1333 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1339 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1340 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1341 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1342 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1343 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1344 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1345 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1346 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1347 #ifdef TARGET_X86_64
1348 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1349 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1350 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1351 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1352 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1353 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1354 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1355 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1358 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1359 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1362 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1368 static int kvm_put_fpu(X86CPU
*cpu
)
1370 CPUX86State
*env
= &cpu
->env
;
1374 memset(&fpu
, 0, sizeof fpu
);
1375 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1376 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1377 fpu
.fcw
= env
->fpuc
;
1378 fpu
.last_opcode
= env
->fpop
;
1379 fpu
.last_ip
= env
->fpip
;
1380 fpu
.last_dp
= env
->fpdp
;
1381 for (i
= 0; i
< 8; ++i
) {
1382 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1384 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1385 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1386 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1387 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1389 fpu
.mxcsr
= env
->mxcsr
;
1391 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1394 #define XSAVE_FCW_FSW 0
1395 #define XSAVE_FTW_FOP 1
1396 #define XSAVE_CWD_RIP 2
1397 #define XSAVE_CWD_RDP 4
1398 #define XSAVE_MXCSR 6
1399 #define XSAVE_ST_SPACE 8
1400 #define XSAVE_XMM_SPACE 40
1401 #define XSAVE_XSTATE_BV 128
1402 #define XSAVE_YMMH_SPACE 144
1403 #define XSAVE_BNDREGS 240
1404 #define XSAVE_BNDCSR 256
1405 #define XSAVE_OPMASK 272
1406 #define XSAVE_ZMM_Hi256 288
1407 #define XSAVE_Hi16_ZMM 416
1408 #define XSAVE_PKRU 672
1410 #define XSAVE_BYTE_OFFSET(word_offset) \
1411 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1413 #define ASSERT_OFFSET(word_offset, field) \
1414 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1415 offsetof(X86XSaveArea, field))
1417 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1418 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1419 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1420 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1421 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1422 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1423 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1424 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1425 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1426 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1427 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1428 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1429 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1430 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1431 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1433 static int kvm_put_xsave(X86CPU
*cpu
)
1435 CPUX86State
*env
= &cpu
->env
;
1436 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1437 uint16_t cwd
, swd
, twd
;
1441 return kvm_put_fpu(cpu
);
1444 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1446 swd
= env
->fpus
& ~(7 << 11);
1447 swd
|= (env
->fpstt
& 7) << 11;
1449 for (i
= 0; i
< 8; ++i
) {
1450 twd
|= (!env
->fptags
[i
]) << i
;
1452 xsave
->legacy
.fcw
= cwd
;
1453 xsave
->legacy
.fsw
= swd
;
1454 xsave
->legacy
.ftw
= twd
;
1455 xsave
->legacy
.fpop
= env
->fpop
;
1456 xsave
->legacy
.fpip
= env
->fpip
;
1457 xsave
->legacy
.fpdp
= env
->fpdp
;
1458 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1459 sizeof env
->fpregs
);
1460 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1461 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1462 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1463 sizeof env
->bnd_regs
);
1464 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1465 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1466 sizeof env
->opmask_regs
);
1468 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1469 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1470 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1471 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1472 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1473 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1474 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1475 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1476 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1477 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1478 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1479 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1482 #ifdef TARGET_X86_64
1483 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1484 16 * sizeof env
->xmm_regs
[16]);
1485 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1487 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1490 static int kvm_put_xcrs(X86CPU
*cpu
)
1492 CPUX86State
*env
= &cpu
->env
;
1493 struct kvm_xcrs xcrs
= {};
1501 xcrs
.xcrs
[0].xcr
= 0;
1502 xcrs
.xcrs
[0].value
= env
->xcr0
;
1503 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1506 static int kvm_put_sregs(X86CPU
*cpu
)
1508 CPUX86State
*env
= &cpu
->env
;
1509 struct kvm_sregs sregs
;
1511 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1512 if (env
->interrupt_injected
>= 0) {
1513 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1514 (uint64_t)1 << (env
->interrupt_injected
% 64);
1517 if ((env
->eflags
& VM_MASK
)) {
1518 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1519 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1520 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1521 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1522 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1523 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1525 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1526 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1527 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1528 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1529 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1530 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1533 set_seg(&sregs
.tr
, &env
->tr
);
1534 set_seg(&sregs
.ldt
, &env
->ldt
);
1536 sregs
.idt
.limit
= env
->idt
.limit
;
1537 sregs
.idt
.base
= env
->idt
.base
;
1538 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1539 sregs
.gdt
.limit
= env
->gdt
.limit
;
1540 sregs
.gdt
.base
= env
->gdt
.base
;
1541 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1543 sregs
.cr0
= env
->cr
[0];
1544 sregs
.cr2
= env
->cr
[2];
1545 sregs
.cr3
= env
->cr
[3];
1546 sregs
.cr4
= env
->cr
[4];
1548 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1549 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1551 sregs
.efer
= env
->efer
;
1553 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1556 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1558 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1561 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1563 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1564 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1565 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1567 assert((void *)(entry
+ 1) <= limit
);
1569 entry
->index
= index
;
1570 entry
->reserved
= 0;
1571 entry
->data
= value
;
1575 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1577 kvm_msr_buf_reset(cpu
);
1578 kvm_msr_entry_add(cpu
, index
, value
);
1580 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1583 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1587 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1591 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1593 CPUX86State
*env
= &cpu
->env
;
1596 if (!has_msr_tsc_deadline
) {
1600 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1610 * Provide a separate write service for the feature control MSR in order to
1611 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1612 * before writing any other state because forcibly leaving nested mode
1613 * invalidates the VCPU state.
1615 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1619 if (!has_msr_feature_control
) {
1623 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1624 cpu
->env
.msr_ia32_feature_control
);
1633 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1635 CPUX86State
*env
= &cpu
->env
;
1639 kvm_msr_buf_reset(cpu
);
1641 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1642 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1643 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1644 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1646 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1648 if (has_msr_hsave_pa
) {
1649 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1651 if (has_msr_tsc_aux
) {
1652 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1654 if (has_msr_tsc_adjust
) {
1655 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1657 if (has_msr_misc_enable
) {
1658 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1659 env
->msr_ia32_misc_enable
);
1661 if (has_msr_smbase
) {
1662 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1664 if (has_msr_bndcfgs
) {
1665 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1668 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1670 #ifdef TARGET_X86_64
1671 if (lm_capable_kernel
) {
1672 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1673 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1674 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1675 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1679 * The following MSRs have side effects on the guest or are too heavy
1680 * for normal writeback. Limit them to reset or full state updates.
1682 if (level
>= KVM_PUT_RESET_STATE
) {
1683 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1684 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1685 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1686 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
1687 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1689 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
1690 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1692 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
1693 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1695 if (has_msr_architectural_pmu
) {
1696 /* Stop the counter. */
1697 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1698 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1700 /* Set the counter values. */
1701 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1702 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1703 env
->msr_fixed_counters
[i
]);
1705 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1706 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1707 env
->msr_gp_counters
[i
]);
1708 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1709 env
->msr_gp_evtsel
[i
]);
1711 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1712 env
->msr_global_status
);
1713 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1714 env
->msr_global_ovf_ctrl
);
1716 /* Now start the PMU. */
1717 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1718 env
->msr_fixed_ctr_ctrl
);
1719 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1720 env
->msr_global_ctrl
);
1722 if (has_msr_hv_hypercall
) {
1723 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1724 env
->msr_hv_guest_os_id
);
1725 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1726 env
->msr_hv_hypercall
);
1728 if (cpu
->hyperv_vapic
) {
1729 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1732 if (cpu
->hyperv_time
) {
1733 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1735 if (has_msr_hv_crash
) {
1738 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1739 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1740 env
->msr_hv_crash_params
[j
]);
1742 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1743 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1745 if (has_msr_hv_runtime
) {
1746 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1748 if (cpu
->hyperv_synic
) {
1751 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1752 env
->msr_hv_synic_control
);
1753 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1754 env
->msr_hv_synic_version
);
1755 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1756 env
->msr_hv_synic_evt_page
);
1757 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1758 env
->msr_hv_synic_msg_page
);
1760 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1761 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1762 env
->msr_hv_synic_sint
[j
]);
1765 if (has_msr_hv_stimer
) {
1768 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1769 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1770 env
->msr_hv_stimer_config
[j
]);
1773 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1774 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1775 env
->msr_hv_stimer_count
[j
]);
1778 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
1779 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1781 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1782 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1783 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1784 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1785 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1786 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1787 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1788 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1789 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1790 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1791 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1792 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1793 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1794 /* The CPU GPs if we write to a bit above the physical limit of
1795 * the host CPU (and KVM emulates that)
1797 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1800 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1801 env
->mtrr_var
[i
].base
);
1802 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1806 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1807 * kvm_put_msr_feature_control. */
1812 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1813 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1814 if (has_msr_mcg_ext_ctl
) {
1815 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1817 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1818 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1822 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1827 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
1828 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
1829 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
1830 (uint32_t)e
->index
, (uint64_t)e
->data
);
1833 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1838 static int kvm_get_fpu(X86CPU
*cpu
)
1840 CPUX86State
*env
= &cpu
->env
;
1844 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1849 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1850 env
->fpus
= fpu
.fsw
;
1851 env
->fpuc
= fpu
.fcw
;
1852 env
->fpop
= fpu
.last_opcode
;
1853 env
->fpip
= fpu
.last_ip
;
1854 env
->fpdp
= fpu
.last_dp
;
1855 for (i
= 0; i
< 8; ++i
) {
1856 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1858 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1859 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1860 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1861 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1863 env
->mxcsr
= fpu
.mxcsr
;
1868 static int kvm_get_xsave(X86CPU
*cpu
)
1870 CPUX86State
*env
= &cpu
->env
;
1871 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1873 uint16_t cwd
, swd
, twd
;
1876 return kvm_get_fpu(cpu
);
1879 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1884 cwd
= xsave
->legacy
.fcw
;
1885 swd
= xsave
->legacy
.fsw
;
1886 twd
= xsave
->legacy
.ftw
;
1887 env
->fpop
= xsave
->legacy
.fpop
;
1888 env
->fpstt
= (swd
>> 11) & 7;
1891 for (i
= 0; i
< 8; ++i
) {
1892 env
->fptags
[i
] = !((twd
>> i
) & 1);
1894 env
->fpip
= xsave
->legacy
.fpip
;
1895 env
->fpdp
= xsave
->legacy
.fpdp
;
1896 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1897 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1898 sizeof env
->fpregs
);
1899 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1900 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1901 sizeof env
->bnd_regs
);
1902 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1903 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1904 sizeof env
->opmask_regs
);
1906 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1907 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1908 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1909 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1910 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1911 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1912 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1913 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1914 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1915 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1916 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1917 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1920 #ifdef TARGET_X86_64
1921 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1922 16 * sizeof env
->xmm_regs
[16]);
1923 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1928 static int kvm_get_xcrs(X86CPU
*cpu
)
1930 CPUX86State
*env
= &cpu
->env
;
1932 struct kvm_xcrs xcrs
;
1938 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1943 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1944 /* Only support xcr0 now */
1945 if (xcrs
.xcrs
[i
].xcr
== 0) {
1946 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1953 static int kvm_get_sregs(X86CPU
*cpu
)
1955 CPUX86State
*env
= &cpu
->env
;
1956 struct kvm_sregs sregs
;
1960 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1965 /* There can only be one pending IRQ set in the bitmap at a time, so try
1966 to find it and save its number instead (-1 for none). */
1967 env
->interrupt_injected
= -1;
1968 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1969 if (sregs
.interrupt_bitmap
[i
]) {
1970 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1971 env
->interrupt_injected
= i
* 64 + bit
;
1976 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1977 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1978 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1979 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1980 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1981 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1983 get_seg(&env
->tr
, &sregs
.tr
);
1984 get_seg(&env
->ldt
, &sregs
.ldt
);
1986 env
->idt
.limit
= sregs
.idt
.limit
;
1987 env
->idt
.base
= sregs
.idt
.base
;
1988 env
->gdt
.limit
= sregs
.gdt
.limit
;
1989 env
->gdt
.base
= sregs
.gdt
.base
;
1991 env
->cr
[0] = sregs
.cr0
;
1992 env
->cr
[2] = sregs
.cr2
;
1993 env
->cr
[3] = sregs
.cr3
;
1994 env
->cr
[4] = sregs
.cr4
;
1996 env
->efer
= sregs
.efer
;
1998 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2000 #define HFLAG_COPY_MASK \
2001 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
2002 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
2003 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
2004 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
2006 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
2007 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
2008 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
2009 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
2010 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
2011 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
2013 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
2014 hflags
|= HF_OSFXSR_MASK
;
2017 if (env
->efer
& MSR_EFER_LMA
) {
2018 hflags
|= HF_LMA_MASK
;
2021 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
2022 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
2024 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
2025 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
2026 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
2027 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
2028 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
2029 !(hflags
& HF_CS32_MASK
)) {
2030 hflags
|= HF_ADDSEG_MASK
;
2032 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
2033 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
2036 env
->hflags
= hflags
;
2041 static int kvm_get_msrs(X86CPU
*cpu
)
2043 CPUX86State
*env
= &cpu
->env
;
2044 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
2046 uint64_t mtrr_top_bits
;
2048 kvm_msr_buf_reset(cpu
);
2050 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
2051 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
2052 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
2053 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
2055 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2057 if (has_msr_hsave_pa
) {
2058 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2060 if (has_msr_tsc_aux
) {
2061 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2063 if (has_msr_tsc_adjust
) {
2064 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2066 if (has_msr_tsc_deadline
) {
2067 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2069 if (has_msr_misc_enable
) {
2070 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2072 if (has_msr_smbase
) {
2073 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2075 if (has_msr_feature_control
) {
2076 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2078 if (has_msr_bndcfgs
) {
2079 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2082 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2086 if (!env
->tsc_valid
) {
2087 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2088 env
->tsc_valid
= !runstate_is_running();
2091 #ifdef TARGET_X86_64
2092 if (lm_capable_kernel
) {
2093 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2094 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2095 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2096 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2099 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2100 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2101 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2102 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2104 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2105 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2107 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2108 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2110 if (has_msr_architectural_pmu
) {
2111 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2112 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2113 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2114 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2115 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2116 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2118 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2119 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2120 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2125 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2126 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2127 if (has_msr_mcg_ext_ctl
) {
2128 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2130 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2131 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2135 if (has_msr_hv_hypercall
) {
2136 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2137 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2139 if (cpu
->hyperv_vapic
) {
2140 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2142 if (cpu
->hyperv_time
) {
2143 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2145 if (has_msr_hv_crash
) {
2148 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2149 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2152 if (has_msr_hv_runtime
) {
2153 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2155 if (cpu
->hyperv_synic
) {
2158 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2159 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2160 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2161 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2162 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2163 kvm_msr_entry_add(cpu
, msr
, 0);
2166 if (has_msr_hv_stimer
) {
2169 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2171 kvm_msr_entry_add(cpu
, msr
, 0);
2174 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2175 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2176 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2177 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2178 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2179 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2180 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2181 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2182 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2183 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2184 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2185 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2186 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2187 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2188 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2189 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2193 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2198 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2199 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2200 error_report("error: failed to get MSR 0x%" PRIx32
,
2201 (uint32_t)e
->index
);
2204 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2206 * MTRR masks: Each mask consists of 5 parts
2207 * a 10..0: must be zero
2209 * c n-1.12: actual mask bits
2210 * d 51..n: reserved must be zero
2211 * e 63.52: reserved must be zero
2213 * 'n' is the number of physical bits supported by the CPU and is
2214 * apparently always <= 52. We know our 'n' but don't know what
2215 * the destinations 'n' is; it might be smaller, in which case
2216 * it masks (c) on loading. It might be larger, in which case
2217 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2218 * we're migrating to.
2221 if (cpu
->fill_mtrr_mask
) {
2222 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2223 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2224 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2229 for (i
= 0; i
< ret
; i
++) {
2230 uint32_t index
= msrs
[i
].index
;
2232 case MSR_IA32_SYSENTER_CS
:
2233 env
->sysenter_cs
= msrs
[i
].data
;
2235 case MSR_IA32_SYSENTER_ESP
:
2236 env
->sysenter_esp
= msrs
[i
].data
;
2238 case MSR_IA32_SYSENTER_EIP
:
2239 env
->sysenter_eip
= msrs
[i
].data
;
2242 env
->pat
= msrs
[i
].data
;
2245 env
->star
= msrs
[i
].data
;
2247 #ifdef TARGET_X86_64
2249 env
->cstar
= msrs
[i
].data
;
2251 case MSR_KERNELGSBASE
:
2252 env
->kernelgsbase
= msrs
[i
].data
;
2255 env
->fmask
= msrs
[i
].data
;
2258 env
->lstar
= msrs
[i
].data
;
2262 env
->tsc
= msrs
[i
].data
;
2265 env
->tsc_aux
= msrs
[i
].data
;
2267 case MSR_TSC_ADJUST
:
2268 env
->tsc_adjust
= msrs
[i
].data
;
2270 case MSR_IA32_TSCDEADLINE
:
2271 env
->tsc_deadline
= msrs
[i
].data
;
2273 case MSR_VM_HSAVE_PA
:
2274 env
->vm_hsave
= msrs
[i
].data
;
2276 case MSR_KVM_SYSTEM_TIME
:
2277 env
->system_time_msr
= msrs
[i
].data
;
2279 case MSR_KVM_WALL_CLOCK
:
2280 env
->wall_clock_msr
= msrs
[i
].data
;
2282 case MSR_MCG_STATUS
:
2283 env
->mcg_status
= msrs
[i
].data
;
2286 env
->mcg_ctl
= msrs
[i
].data
;
2288 case MSR_MCG_EXT_CTL
:
2289 env
->mcg_ext_ctl
= msrs
[i
].data
;
2291 case MSR_IA32_MISC_ENABLE
:
2292 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2294 case MSR_IA32_SMBASE
:
2295 env
->smbase
= msrs
[i
].data
;
2297 case MSR_IA32_FEATURE_CONTROL
:
2298 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2300 case MSR_IA32_BNDCFGS
:
2301 env
->msr_bndcfgs
= msrs
[i
].data
;
2304 env
->xss
= msrs
[i
].data
;
2307 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2308 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2309 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2312 case MSR_KVM_ASYNC_PF_EN
:
2313 env
->async_pf_en_msr
= msrs
[i
].data
;
2315 case MSR_KVM_PV_EOI_EN
:
2316 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2318 case MSR_KVM_STEAL_TIME
:
2319 env
->steal_time_msr
= msrs
[i
].data
;
2321 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2322 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2324 case MSR_CORE_PERF_GLOBAL_CTRL
:
2325 env
->msr_global_ctrl
= msrs
[i
].data
;
2327 case MSR_CORE_PERF_GLOBAL_STATUS
:
2328 env
->msr_global_status
= msrs
[i
].data
;
2330 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2331 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2333 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2334 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2336 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2337 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2339 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2340 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2342 case HV_X64_MSR_HYPERCALL
:
2343 env
->msr_hv_hypercall
= msrs
[i
].data
;
2345 case HV_X64_MSR_GUEST_OS_ID
:
2346 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2348 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2349 env
->msr_hv_vapic
= msrs
[i
].data
;
2351 case HV_X64_MSR_REFERENCE_TSC
:
2352 env
->msr_hv_tsc
= msrs
[i
].data
;
2354 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2355 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2357 case HV_X64_MSR_VP_RUNTIME
:
2358 env
->msr_hv_runtime
= msrs
[i
].data
;
2360 case HV_X64_MSR_SCONTROL
:
2361 env
->msr_hv_synic_control
= msrs
[i
].data
;
2363 case HV_X64_MSR_SVERSION
:
2364 env
->msr_hv_synic_version
= msrs
[i
].data
;
2366 case HV_X64_MSR_SIEFP
:
2367 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2369 case HV_X64_MSR_SIMP
:
2370 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2372 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2373 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2375 case HV_X64_MSR_STIMER0_CONFIG
:
2376 case HV_X64_MSR_STIMER1_CONFIG
:
2377 case HV_X64_MSR_STIMER2_CONFIG
:
2378 case HV_X64_MSR_STIMER3_CONFIG
:
2379 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2382 case HV_X64_MSR_STIMER0_COUNT
:
2383 case HV_X64_MSR_STIMER1_COUNT
:
2384 case HV_X64_MSR_STIMER2_COUNT
:
2385 case HV_X64_MSR_STIMER3_COUNT
:
2386 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2389 case MSR_MTRRdefType
:
2390 env
->mtrr_deftype
= msrs
[i
].data
;
2392 case MSR_MTRRfix64K_00000
:
2393 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2395 case MSR_MTRRfix16K_80000
:
2396 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2398 case MSR_MTRRfix16K_A0000
:
2399 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2401 case MSR_MTRRfix4K_C0000
:
2402 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2404 case MSR_MTRRfix4K_C8000
:
2405 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2407 case MSR_MTRRfix4K_D0000
:
2408 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2410 case MSR_MTRRfix4K_D8000
:
2411 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2413 case MSR_MTRRfix4K_E0000
:
2414 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2416 case MSR_MTRRfix4K_E8000
:
2417 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2419 case MSR_MTRRfix4K_F0000
:
2420 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2422 case MSR_MTRRfix4K_F8000
:
2423 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2425 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2427 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2430 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2439 static int kvm_put_mp_state(X86CPU
*cpu
)
2441 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2443 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2446 static int kvm_get_mp_state(X86CPU
*cpu
)
2448 CPUState
*cs
= CPU(cpu
);
2449 CPUX86State
*env
= &cpu
->env
;
2450 struct kvm_mp_state mp_state
;
2453 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2457 env
->mp_state
= mp_state
.mp_state
;
2458 if (kvm_irqchip_in_kernel()) {
2459 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2464 static int kvm_get_apic(X86CPU
*cpu
)
2466 DeviceState
*apic
= cpu
->apic_state
;
2467 struct kvm_lapic_state kapic
;
2470 if (apic
&& kvm_irqchip_in_kernel()) {
2471 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2476 kvm_get_apic_state(apic
, &kapic
);
2481 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2483 CPUState
*cs
= CPU(cpu
);
2484 CPUX86State
*env
= &cpu
->env
;
2485 struct kvm_vcpu_events events
= {};
2487 if (!kvm_has_vcpu_events()) {
2491 events
.exception
.injected
= (env
->exception_injected
>= 0);
2492 events
.exception
.nr
= env
->exception_injected
;
2493 events
.exception
.has_error_code
= env
->has_error_code
;
2494 events
.exception
.error_code
= env
->error_code
;
2495 events
.exception
.pad
= 0;
2497 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2498 events
.interrupt
.nr
= env
->interrupt_injected
;
2499 events
.interrupt
.soft
= env
->soft_interrupt
;
2501 events
.nmi
.injected
= env
->nmi_injected
;
2502 events
.nmi
.pending
= env
->nmi_pending
;
2503 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2506 events
.sipi_vector
= env
->sipi_vector
;
2509 if (has_msr_smbase
) {
2510 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2511 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2512 if (kvm_irqchip_in_kernel()) {
2513 /* As soon as these are moved to the kernel, remove them
2514 * from cs->interrupt_request.
2516 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2517 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2518 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2520 /* Keep these in cs->interrupt_request. */
2521 events
.smi
.pending
= 0;
2522 events
.smi
.latched_init
= 0;
2524 /* Stop SMI delivery on old machine types to avoid a reboot
2525 * on an inward migration of an old VM.
2527 if (!cpu
->kvm_no_smi_migration
) {
2528 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2532 if (level
>= KVM_PUT_RESET_STATE
) {
2534 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2537 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2540 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2542 CPUX86State
*env
= &cpu
->env
;
2543 struct kvm_vcpu_events events
;
2546 if (!kvm_has_vcpu_events()) {
2550 memset(&events
, 0, sizeof(events
));
2551 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2555 env
->exception_injected
=
2556 events
.exception
.injected
? events
.exception
.nr
: -1;
2557 env
->has_error_code
= events
.exception
.has_error_code
;
2558 env
->error_code
= events
.exception
.error_code
;
2560 env
->interrupt_injected
=
2561 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2562 env
->soft_interrupt
= events
.interrupt
.soft
;
2564 env
->nmi_injected
= events
.nmi
.injected
;
2565 env
->nmi_pending
= events
.nmi
.pending
;
2566 if (events
.nmi
.masked
) {
2567 env
->hflags2
|= HF2_NMI_MASK
;
2569 env
->hflags2
&= ~HF2_NMI_MASK
;
2572 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2573 if (events
.smi
.smm
) {
2574 env
->hflags
|= HF_SMM_MASK
;
2576 env
->hflags
&= ~HF_SMM_MASK
;
2578 if (events
.smi
.pending
) {
2579 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2581 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2583 if (events
.smi
.smm_inside_nmi
) {
2584 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2586 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2588 if (events
.smi
.latched_init
) {
2589 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2591 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2595 env
->sipi_vector
= events
.sipi_vector
;
2600 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2602 CPUState
*cs
= CPU(cpu
);
2603 CPUX86State
*env
= &cpu
->env
;
2605 unsigned long reinject_trap
= 0;
2607 if (!kvm_has_vcpu_events()) {
2608 if (env
->exception_injected
== 1) {
2609 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2610 } else if (env
->exception_injected
== 3) {
2611 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2613 env
->exception_injected
= -1;
2617 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2618 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2619 * by updating the debug state once again if single-stepping is on.
2620 * Another reason to call kvm_update_guest_debug here is a pending debug
2621 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2622 * reinject them via SET_GUEST_DEBUG.
2624 if (reinject_trap
||
2625 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2626 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2631 static int kvm_put_debugregs(X86CPU
*cpu
)
2633 CPUX86State
*env
= &cpu
->env
;
2634 struct kvm_debugregs dbgregs
;
2637 if (!kvm_has_debugregs()) {
2641 for (i
= 0; i
< 4; i
++) {
2642 dbgregs
.db
[i
] = env
->dr
[i
];
2644 dbgregs
.dr6
= env
->dr
[6];
2645 dbgregs
.dr7
= env
->dr
[7];
2648 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2651 static int kvm_get_debugregs(X86CPU
*cpu
)
2653 CPUX86State
*env
= &cpu
->env
;
2654 struct kvm_debugregs dbgregs
;
2657 if (!kvm_has_debugregs()) {
2661 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2665 for (i
= 0; i
< 4; i
++) {
2666 env
->dr
[i
] = dbgregs
.db
[i
];
2668 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2669 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2674 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2676 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2679 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2681 if (level
>= KVM_PUT_RESET_STATE
) {
2682 ret
= kvm_put_msr_feature_control(x86_cpu
);
2688 if (level
== KVM_PUT_FULL_STATE
) {
2689 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2690 * because TSC frequency mismatch shouldn't abort migration,
2691 * unless the user explicitly asked for a more strict TSC
2692 * setting (e.g. using an explicit "tsc-freq" option).
2694 kvm_arch_set_tsc_khz(cpu
);
2697 ret
= kvm_getput_regs(x86_cpu
, 1);
2701 ret
= kvm_put_xsave(x86_cpu
);
2705 ret
= kvm_put_xcrs(x86_cpu
);
2709 ret
= kvm_put_sregs(x86_cpu
);
2713 /* must be before kvm_put_msrs */
2714 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2718 ret
= kvm_put_msrs(x86_cpu
, level
);
2722 if (level
>= KVM_PUT_RESET_STATE
) {
2723 ret
= kvm_put_mp_state(x86_cpu
);
2729 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2734 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2738 ret
= kvm_put_debugregs(x86_cpu
);
2743 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2750 int kvm_arch_get_registers(CPUState
*cs
)
2752 X86CPU
*cpu
= X86_CPU(cs
);
2755 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2757 ret
= kvm_getput_regs(cpu
, 0);
2761 ret
= kvm_get_xsave(cpu
);
2765 ret
= kvm_get_xcrs(cpu
);
2769 ret
= kvm_get_sregs(cpu
);
2773 ret
= kvm_get_msrs(cpu
);
2777 ret
= kvm_get_mp_state(cpu
);
2781 ret
= kvm_get_apic(cpu
);
2785 ret
= kvm_get_vcpu_events(cpu
);
2789 ret
= kvm_get_debugregs(cpu
);
2795 cpu_sync_bndcs_hflags(&cpu
->env
);
2799 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2801 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2802 CPUX86State
*env
= &x86_cpu
->env
;
2806 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2807 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2808 qemu_mutex_lock_iothread();
2809 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2810 qemu_mutex_unlock_iothread();
2811 DPRINTF("injected NMI\n");
2812 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2814 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2818 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2819 qemu_mutex_lock_iothread();
2820 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2821 qemu_mutex_unlock_iothread();
2822 DPRINTF("injected SMI\n");
2823 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2825 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2831 if (!kvm_pic_in_kernel()) {
2832 qemu_mutex_lock_iothread();
2835 /* Force the VCPU out of its inner loop to process any INIT requests
2836 * or (for userspace APIC, but it is cheap to combine the checks here)
2837 * pending TPR access reports.
2839 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2840 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2841 !(env
->hflags
& HF_SMM_MASK
)) {
2842 cpu
->exit_request
= 1;
2844 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2845 cpu
->exit_request
= 1;
2849 if (!kvm_pic_in_kernel()) {
2850 /* Try to inject an interrupt if the guest can accept it */
2851 if (run
->ready_for_interrupt_injection
&&
2852 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2853 (env
->eflags
& IF_MASK
)) {
2856 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2857 irq
= cpu_get_pic_interrupt(env
);
2859 struct kvm_interrupt intr
;
2862 DPRINTF("injected interrupt %d\n", irq
);
2863 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2866 "KVM: injection failed, interrupt lost (%s)\n",
2872 /* If we have an interrupt but the guest is not ready to receive an
2873 * interrupt, request an interrupt window exit. This will
2874 * cause a return to userspace as soon as the guest is ready to
2875 * receive interrupts. */
2876 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2877 run
->request_interrupt_window
= 1;
2879 run
->request_interrupt_window
= 0;
2882 DPRINTF("setting tpr\n");
2883 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2885 qemu_mutex_unlock_iothread();
2889 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2891 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2892 CPUX86State
*env
= &x86_cpu
->env
;
2894 if (run
->flags
& KVM_RUN_X86_SMM
) {
2895 env
->hflags
|= HF_SMM_MASK
;
2897 env
->hflags
&= ~HF_SMM_MASK
;
2900 env
->eflags
|= IF_MASK
;
2902 env
->eflags
&= ~IF_MASK
;
2905 /* We need to protect the apic state against concurrent accesses from
2906 * different threads in case the userspace irqchip is used. */
2907 if (!kvm_irqchip_in_kernel()) {
2908 qemu_mutex_lock_iothread();
2910 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2911 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2912 if (!kvm_irqchip_in_kernel()) {
2913 qemu_mutex_unlock_iothread();
2915 return cpu_get_mem_attrs(env
);
2918 int kvm_arch_process_async_events(CPUState
*cs
)
2920 X86CPU
*cpu
= X86_CPU(cs
);
2921 CPUX86State
*env
= &cpu
->env
;
2923 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2924 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2925 assert(env
->mcg_cap
);
2927 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2929 kvm_cpu_synchronize_state(cs
);
2931 if (env
->exception_injected
== EXCP08_DBLE
) {
2932 /* this means triple fault */
2933 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2934 cs
->exit_request
= 1;
2937 env
->exception_injected
= EXCP12_MCHK
;
2938 env
->has_error_code
= 0;
2941 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2942 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2946 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2947 !(env
->hflags
& HF_SMM_MASK
)) {
2948 kvm_cpu_synchronize_state(cs
);
2952 if (kvm_irqchip_in_kernel()) {
2956 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2957 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2958 apic_poll_irq(cpu
->apic_state
);
2960 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2961 (env
->eflags
& IF_MASK
)) ||
2962 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2965 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2966 kvm_cpu_synchronize_state(cs
);
2969 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2970 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2971 kvm_cpu_synchronize_state(cs
);
2972 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2973 env
->tpr_access_type
);
2979 static int kvm_handle_halt(X86CPU
*cpu
)
2981 CPUState
*cs
= CPU(cpu
);
2982 CPUX86State
*env
= &cpu
->env
;
2984 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2985 (env
->eflags
& IF_MASK
)) &&
2986 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2994 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2996 CPUState
*cs
= CPU(cpu
);
2997 struct kvm_run
*run
= cs
->kvm_run
;
2999 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
3000 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
3005 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3007 static const uint8_t int3
= 0xcc;
3009 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
3010 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
3016 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3020 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
3021 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
3033 static int nb_hw_breakpoint
;
3035 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
3039 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3040 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
3041 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
3048 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
3049 target_ulong len
, int type
)
3052 case GDB_BREAKPOINT_HW
:
3055 case GDB_WATCHPOINT_WRITE
:
3056 case GDB_WATCHPOINT_ACCESS
:
3063 if (addr
& (len
- 1)) {
3075 if (nb_hw_breakpoint
== 4) {
3078 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3081 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3082 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3083 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3089 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3090 target_ulong len
, int type
)
3094 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3099 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3104 void kvm_arch_remove_all_hw_breakpoints(void)
3106 nb_hw_breakpoint
= 0;
3109 static CPUWatchpoint hw_watchpoint
;
3111 static int kvm_handle_debug(X86CPU
*cpu
,
3112 struct kvm_debug_exit_arch
*arch_info
)
3114 CPUState
*cs
= CPU(cpu
);
3115 CPUX86State
*env
= &cpu
->env
;
3119 if (arch_info
->exception
== 1) {
3120 if (arch_info
->dr6
& (1 << 14)) {
3121 if (cs
->singlestep_enabled
) {
3125 for (n
= 0; n
< 4; n
++) {
3126 if (arch_info
->dr6
& (1 << n
)) {
3127 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3133 cs
->watchpoint_hit
= &hw_watchpoint
;
3134 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3135 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3139 cs
->watchpoint_hit
= &hw_watchpoint
;
3140 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3141 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3147 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3151 cpu_synchronize_state(cs
);
3152 assert(env
->exception_injected
== -1);
3155 env
->exception_injected
= arch_info
->exception
;
3156 env
->has_error_code
= 0;
3162 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3164 const uint8_t type_code
[] = {
3165 [GDB_BREAKPOINT_HW
] = 0x0,
3166 [GDB_WATCHPOINT_WRITE
] = 0x1,
3167 [GDB_WATCHPOINT_ACCESS
] = 0x3
3169 const uint8_t len_code
[] = {
3170 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3174 if (kvm_sw_breakpoints_active(cpu
)) {
3175 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3177 if (nb_hw_breakpoint
> 0) {
3178 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3179 dbg
->arch
.debugreg
[7] = 0x0600;
3180 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3181 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3182 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3183 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3184 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3189 static bool host_supports_vmx(void)
3191 uint32_t ecx
, unused
;
3193 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3194 return ecx
& CPUID_EXT_VMX
;
3197 #define VMX_INVALID_GUEST_STATE 0x80000021
3199 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3201 X86CPU
*cpu
= X86_CPU(cs
);
3205 switch (run
->exit_reason
) {
3207 DPRINTF("handle_hlt\n");
3208 qemu_mutex_lock_iothread();
3209 ret
= kvm_handle_halt(cpu
);
3210 qemu_mutex_unlock_iothread();
3212 case KVM_EXIT_SET_TPR
:
3215 case KVM_EXIT_TPR_ACCESS
:
3216 qemu_mutex_lock_iothread();
3217 ret
= kvm_handle_tpr_access(cpu
);
3218 qemu_mutex_unlock_iothread();
3220 case KVM_EXIT_FAIL_ENTRY
:
3221 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3222 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3224 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3226 "\nIf you're running a guest on an Intel machine without "
3227 "unrestricted mode\n"
3228 "support, the failure can be most likely due to the guest "
3229 "entering an invalid\n"
3230 "state for Intel VT. For example, the guest maybe running "
3231 "in big real mode\n"
3232 "which is not supported on less recent Intel processors."
3237 case KVM_EXIT_EXCEPTION
:
3238 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3239 run
->ex
.exception
, run
->ex
.error_code
);
3242 case KVM_EXIT_DEBUG
:
3243 DPRINTF("kvm_exit_debug\n");
3244 qemu_mutex_lock_iothread();
3245 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3246 qemu_mutex_unlock_iothread();
3248 case KVM_EXIT_HYPERV
:
3249 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3251 case KVM_EXIT_IOAPIC_EOI
:
3252 ioapic_eoi_broadcast(run
->eoi
.vector
);
3256 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3264 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3266 X86CPU
*cpu
= X86_CPU(cs
);
3267 CPUX86State
*env
= &cpu
->env
;
3269 kvm_cpu_synchronize_state(cs
);
3270 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3271 ((env
->segs
[R_CS
].selector
& 3) != 3);
3274 void kvm_arch_init_irq_routing(KVMState
*s
)
3276 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3277 /* If kernel can't do irq routing, interrupt source
3278 * override 0->2 cannot be set up as required by HPET.
3279 * So we have to disable it.
3283 /* We know at this point that we're using the in-kernel
3284 * irqchip, so we can use irqfds, and on x86 we know
3285 * we can use msi via irqfd and GSI routing.
3287 kvm_msi_via_irqfd_allowed
= true;
3288 kvm_gsi_routing_allowed
= true;
3290 if (kvm_irqchip_is_split()) {
3293 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3294 MSI routes for signaling interrupts to the local apics. */
3295 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3296 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3297 error_report("Could not enable split IRQ mode.");
3304 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3307 if (machine_kernel_irqchip_split(ms
)) {
3308 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3310 error_report("Could not enable split irqchip mode: %s",
3314 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3315 kvm_split_irqchip
= true;
3323 /* Classic KVM device assignment interface. Will remain x86 only. */
3324 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3325 uint32_t flags
, uint32_t *dev_id
)
3327 struct kvm_assigned_pci_dev dev_data
= {
3328 .segnr
= dev_addr
->domain
,
3329 .busnr
= dev_addr
->bus
,
3330 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3335 dev_data
.assigned_dev_id
=
3336 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3338 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3343 *dev_id
= dev_data
.assigned_dev_id
;
3348 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3350 struct kvm_assigned_pci_dev dev_data
= {
3351 .assigned_dev_id
= dev_id
,
3354 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3357 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3358 uint32_t irq_type
, uint32_t guest_irq
)
3360 struct kvm_assigned_irq assigned_irq
= {
3361 .assigned_dev_id
= dev_id
,
3362 .guest_irq
= guest_irq
,
3366 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3367 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3369 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3373 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3376 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3377 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3379 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3382 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3384 struct kvm_assigned_pci_dev dev_data
= {
3385 .assigned_dev_id
= dev_id
,
3386 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3389 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3392 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3395 struct kvm_assigned_irq assigned_irq
= {
3396 .assigned_dev_id
= dev_id
,
3400 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3403 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3405 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3406 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3409 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3411 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3412 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3415 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3417 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3418 KVM_DEV_IRQ_HOST_MSI
);
3421 bool kvm_device_msix_supported(KVMState
*s
)
3423 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3424 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3425 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3428 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3429 uint32_t nr_vectors
)
3431 struct kvm_assigned_msix_nr msix_nr
= {
3432 .assigned_dev_id
= dev_id
,
3433 .entry_nr
= nr_vectors
,
3436 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3439 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3442 struct kvm_assigned_msix_entry msix_entry
= {
3443 .assigned_dev_id
= dev_id
,
3448 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3451 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3453 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3454 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3457 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3459 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3460 KVM_DEV_IRQ_HOST_MSIX
);
3463 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3464 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3466 X86IOMMUState
*iommu
= x86_iommu_get_default();
3470 MSIMessage src
, dst
;
3471 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3473 src
.address
= route
->u
.msi
.address_hi
;
3474 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3475 src
.address
|= route
->u
.msi
.address_lo
;
3476 src
.data
= route
->u
.msi
.data
;
3478 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3479 pci_requester_id(dev
) : \
3480 X86_IOMMU_SID_INVALID
);
3482 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3486 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3487 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3488 route
->u
.msi
.data
= dst
.data
;
3494 typedef struct MSIRouteEntry MSIRouteEntry
;
3496 struct MSIRouteEntry
{
3497 PCIDevice
*dev
; /* Device pointer */
3498 int vector
; /* MSI/MSIX vector index */
3499 int virq
; /* Virtual IRQ index */
3500 QLIST_ENTRY(MSIRouteEntry
) list
;
3503 /* List of used GSI routes */
3504 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3505 QLIST_HEAD_INITIALIZER(msi_route_list
);
3507 static void kvm_update_msi_routes_all(void *private, bool global
,
3508 uint32_t index
, uint32_t mask
)
3511 MSIRouteEntry
*entry
;
3513 /* TODO: explicit route update */
3514 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3516 msg
= pci_get_msi_message(entry
->dev
, entry
->vector
);
3517 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
,
3520 kvm_irqchip_commit_routes(kvm_state
);
3521 trace_kvm_x86_update_msi_routes(cnt
);
3524 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3525 int vector
, PCIDevice
*dev
)
3527 static bool notify_list_inited
= false;
3528 MSIRouteEntry
*entry
;
3531 /* These are (possibly) IOAPIC routes only used for split
3532 * kernel irqchip mode, while what we are housekeeping are
3533 * PCI devices only. */
3537 entry
= g_new0(MSIRouteEntry
, 1);
3539 entry
->vector
= vector
;
3540 entry
->virq
= route
->gsi
;
3541 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3543 trace_kvm_x86_add_msi_route(route
->gsi
);
3545 if (!notify_list_inited
) {
3546 /* For the first time we do add route, add ourselves into
3547 * IOMMU's IEC notify list if needed. */
3548 X86IOMMUState
*iommu
= x86_iommu_get_default();
3550 x86_iommu_iec_register_notifier(iommu
,
3551 kvm_update_msi_routes_all
,
3554 notify_list_inited
= true;
3559 int kvm_arch_release_virq_post(int virq
)
3561 MSIRouteEntry
*entry
, *next
;
3562 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3563 if (entry
->virq
== virq
) {
3564 trace_kvm_x86_remove_msi_route(virq
);
3565 QLIST_REMOVE(entry
, list
);
3572 int kvm_arch_msi_data_to_gsi(uint32_t data
)