Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob1c102c8c0dda9f1ede52a75322be1859e6c0ed73
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "mmu-hash64.h"
17 #include "cpu-models.h"
18 #include "trace.h"
19 #include "kvm_ppc.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr_ovec.h"
22 #include "hw/ppc/spapr_numa.h"
23 #include "mmu-book3s-v3.h"
24 #include "hw/mem/memory-device.h"
26 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
28 MachineState *machine = MACHINE(spapr);
29 DeviceMemoryState *dms = machine->device_memory;
31 if (addr < machine->ram_size) {
32 return true;
34 if ((addr >= dms->base)
35 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
36 return true;
39 return false;
42 /* Convert a return code from the KVM ioctl()s implementing resize HPT
43 * into a PAPR hypercall return code */
44 static target_ulong resize_hpt_convert_rc(int ret)
46 if (ret >= 100000) {
47 return H_LONG_BUSY_ORDER_100_SEC;
48 } else if (ret >= 10000) {
49 return H_LONG_BUSY_ORDER_10_SEC;
50 } else if (ret >= 1000) {
51 return H_LONG_BUSY_ORDER_1_SEC;
52 } else if (ret >= 100) {
53 return H_LONG_BUSY_ORDER_100_MSEC;
54 } else if (ret >= 10) {
55 return H_LONG_BUSY_ORDER_10_MSEC;
56 } else if (ret > 0) {
57 return H_LONG_BUSY_ORDER_1_MSEC;
60 switch (ret) {
61 case 0:
62 return H_SUCCESS;
63 case -EPERM:
64 return H_AUTHORITY;
65 case -EINVAL:
66 return H_PARAMETER;
67 case -ENXIO:
68 return H_CLOSED;
69 case -ENOSPC:
70 return H_PTEG_FULL;
71 case -EBUSY:
72 return H_BUSY;
73 case -ENOMEM:
74 return H_NO_MEM;
75 default:
76 return H_HARDWARE;
80 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
81 SpaprMachineState *spapr,
82 target_ulong opcode,
83 target_ulong *args)
85 target_ulong flags = args[0];
86 int shift = args[1];
87 uint64_t current_ram_size;
88 int rc;
90 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
91 return H_AUTHORITY;
94 if (!spapr->htab_shift) {
95 /* Radix guest, no HPT */
96 return H_NOT_AVAILABLE;
99 trace_spapr_h_resize_hpt_prepare(flags, shift);
101 if (flags != 0) {
102 return H_PARAMETER;
105 if (shift && ((shift < 18) || (shift > 46))) {
106 return H_PARAMETER;
109 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
111 /* We only allow the guest to allocate an HPT one order above what
112 * we'd normally give them (to stop a small guest claiming a huge
113 * chunk of resources in the HPT */
114 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
115 return H_RESOURCE;
118 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
119 if (rc != -ENOSYS) {
120 return resize_hpt_convert_rc(rc);
123 if (kvm_enabled()) {
124 return H_HARDWARE;
127 return softmmu_resize_hpt_prepare(cpu, spapr, shift);
130 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
132 int ret;
134 cpu_synchronize_state(cs);
136 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
137 if (ret < 0) {
138 error_report("failed to push sregs to KVM: %s", strerror(-ret));
139 exit(1);
143 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
145 CPUState *cs;
148 * This is a hack for the benefit of KVM PR - it abuses the SDR1
149 * slot in kvm_sregs to communicate the userspace address of the
150 * HPT
152 if (!kvm_enabled() || !spapr->htab) {
153 return;
156 CPU_FOREACH(cs) {
157 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
161 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
162 SpaprMachineState *spapr,
163 target_ulong opcode,
164 target_ulong *args)
166 target_ulong flags = args[0];
167 target_ulong shift = args[1];
168 int rc;
170 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
171 return H_AUTHORITY;
174 if (!spapr->htab_shift) {
175 /* Radix guest, no HPT */
176 return H_NOT_AVAILABLE;
179 trace_spapr_h_resize_hpt_commit(flags, shift);
181 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
182 if (rc != -ENOSYS) {
183 rc = resize_hpt_convert_rc(rc);
184 if (rc == H_SUCCESS) {
185 /* Need to set the new htab_shift in the machine state */
186 spapr->htab_shift = shift;
188 return rc;
191 if (kvm_enabled()) {
192 return H_HARDWARE;
195 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
200 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
201 target_ulong opcode, target_ulong *args)
203 cpu_synchronize_state(CPU(cpu));
204 cpu->env.spr[SPR_SPRG0] = args[0];
206 return H_SUCCESS;
209 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
210 target_ulong opcode, target_ulong *args)
212 if (!ppc_has_spr(cpu, SPR_DABR)) {
213 return H_HARDWARE; /* DABR register not available */
215 cpu_synchronize_state(CPU(cpu));
217 if (ppc_has_spr(cpu, SPR_DABRX)) {
218 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
219 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
220 return H_RESERVED_DABR;
223 cpu->env.spr[SPR_DABR] = args[0];
224 return H_SUCCESS;
227 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
228 target_ulong opcode, target_ulong *args)
230 target_ulong dabrx = args[1];
232 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
233 return H_HARDWARE;
236 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
237 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
238 return H_PARAMETER;
241 cpu_synchronize_state(CPU(cpu));
242 cpu->env.spr[SPR_DABRX] = dabrx;
243 cpu->env.spr[SPR_DABR] = args[0];
245 return H_SUCCESS;
248 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
249 target_ulong opcode, target_ulong *args)
251 target_ulong flags = args[0];
252 hwaddr dst = args[1];
253 hwaddr src = args[2];
254 hwaddr len = TARGET_PAGE_SIZE;
255 uint8_t *pdst, *psrc;
256 target_long ret = H_SUCCESS;
258 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
259 | H_COPY_PAGE | H_ZERO_PAGE)) {
260 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
261 flags);
262 return H_PARAMETER;
265 /* Map-in destination */
266 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
267 return H_PARAMETER;
269 pdst = cpu_physical_memory_map(dst, &len, true);
270 if (!pdst || len != TARGET_PAGE_SIZE) {
271 return H_PARAMETER;
274 if (flags & H_COPY_PAGE) {
275 /* Map-in source, copy to destination, and unmap source again */
276 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
277 ret = H_PARAMETER;
278 goto unmap_out;
280 psrc = cpu_physical_memory_map(src, &len, false);
281 if (!psrc || len != TARGET_PAGE_SIZE) {
282 ret = H_PARAMETER;
283 goto unmap_out;
285 memcpy(pdst, psrc, len);
286 cpu_physical_memory_unmap(psrc, len, 0, len);
287 } else if (flags & H_ZERO_PAGE) {
288 memset(pdst, 0, len); /* Just clear the destination page */
291 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
292 kvmppc_dcbst_range(cpu, pdst, len);
294 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
295 if (kvm_enabled()) {
296 kvmppc_icbi_range(cpu, pdst, len);
297 } else {
298 tb_flush(CPU(cpu));
302 unmap_out:
303 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
304 return ret;
307 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
308 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
309 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
310 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
311 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
312 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
314 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
316 CPUState *cs = CPU(cpu);
317 CPUPPCState *env = &cpu->env;
318 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
319 uint16_t size;
320 uint8_t tmp;
322 if (vpa == 0) {
323 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
324 return H_HARDWARE;
327 if (vpa % env->dcache_line_size) {
328 return H_PARAMETER;
330 /* FIXME: bounds check the address */
332 size = lduw_be_phys(cs->as, vpa + 0x4);
334 if (size < VPA_MIN_SIZE) {
335 return H_PARAMETER;
338 /* VPA is not allowed to cross a page boundary */
339 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
340 return H_PARAMETER;
343 spapr_cpu->vpa_addr = vpa;
345 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
346 tmp |= VPA_SHARED_PROC_VAL;
347 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
349 return H_SUCCESS;
352 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
354 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
356 if (spapr_cpu->slb_shadow_addr) {
357 return H_RESOURCE;
360 if (spapr_cpu->dtl_addr) {
361 return H_RESOURCE;
364 spapr_cpu->vpa_addr = 0;
365 return H_SUCCESS;
368 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
370 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
371 uint32_t size;
373 if (addr == 0) {
374 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
375 return H_HARDWARE;
378 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
379 if (size < 0x8) {
380 return H_PARAMETER;
383 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
384 return H_PARAMETER;
387 if (!spapr_cpu->vpa_addr) {
388 return H_RESOURCE;
391 spapr_cpu->slb_shadow_addr = addr;
392 spapr_cpu->slb_shadow_size = size;
394 return H_SUCCESS;
397 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
399 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
401 spapr_cpu->slb_shadow_addr = 0;
402 spapr_cpu->slb_shadow_size = 0;
403 return H_SUCCESS;
406 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
408 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
409 uint32_t size;
411 if (addr == 0) {
412 hcall_dprintf("Can't cope with DTL at logical 0\n");
413 return H_HARDWARE;
416 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
418 if (size < 48) {
419 return H_PARAMETER;
422 if (!spapr_cpu->vpa_addr) {
423 return H_RESOURCE;
426 spapr_cpu->dtl_addr = addr;
427 spapr_cpu->dtl_size = size;
429 return H_SUCCESS;
432 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
434 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
436 spapr_cpu->dtl_addr = 0;
437 spapr_cpu->dtl_size = 0;
439 return H_SUCCESS;
442 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
443 target_ulong opcode, target_ulong *args)
445 target_ulong flags = args[0];
446 target_ulong procno = args[1];
447 target_ulong vpa = args[2];
448 target_ulong ret = H_PARAMETER;
449 PowerPCCPU *tcpu;
451 tcpu = spapr_find_cpu(procno);
452 if (!tcpu) {
453 return H_PARAMETER;
456 switch (flags) {
457 case FLAGS_REGISTER_VPA:
458 ret = register_vpa(tcpu, vpa);
459 break;
461 case FLAGS_DEREGISTER_VPA:
462 ret = deregister_vpa(tcpu, vpa);
463 break;
465 case FLAGS_REGISTER_SLBSHADOW:
466 ret = register_slb_shadow(tcpu, vpa);
467 break;
469 case FLAGS_DEREGISTER_SLBSHADOW:
470 ret = deregister_slb_shadow(tcpu, vpa);
471 break;
473 case FLAGS_REGISTER_DTL:
474 ret = register_dtl(tcpu, vpa);
475 break;
477 case FLAGS_DEREGISTER_DTL:
478 ret = deregister_dtl(tcpu, vpa);
479 break;
482 return ret;
485 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
486 target_ulong opcode, target_ulong *args)
488 CPUPPCState *env = &cpu->env;
489 CPUState *cs = CPU(cpu);
490 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
492 env->msr |= (1ULL << MSR_EE);
493 hreg_compute_hflags(env);
494 ppc_maybe_interrupt(env);
496 if (spapr_cpu->prod) {
497 spapr_cpu->prod = false;
498 return H_SUCCESS;
501 if (!cpu_has_work(cs)) {
502 cs->halted = 1;
503 cs->exception_index = EXCP_HLT;
504 cs->exit_request = 1;
505 ppc_maybe_interrupt(env);
508 return H_SUCCESS;
512 * Confer to self, aka join. Cede could use the same pattern as well, if
513 * EXCP_HLT can be changed to ECXP_HALTED.
515 static target_ulong h_confer_self(PowerPCCPU *cpu)
517 CPUState *cs = CPU(cpu);
518 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
520 if (spapr_cpu->prod) {
521 spapr_cpu->prod = false;
522 return H_SUCCESS;
524 cs->halted = 1;
525 cs->exception_index = EXCP_HALTED;
526 cs->exit_request = 1;
527 ppc_maybe_interrupt(&cpu->env);
529 return H_SUCCESS;
532 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
533 target_ulong opcode, target_ulong *args)
535 CPUPPCState *env = &cpu->env;
536 CPUState *cs;
537 bool last_unjoined = true;
539 if (env->msr & (1ULL << MSR_EE)) {
540 return H_BAD_MODE;
544 * Must not join the last CPU running. Interestingly, no such restriction
545 * for H_CONFER-to-self, but that is probably not intended to be used
546 * when H_JOIN is available.
548 CPU_FOREACH(cs) {
549 PowerPCCPU *c = POWERPC_CPU(cs);
550 CPUPPCState *e = &c->env;
551 if (c == cpu) {
552 continue;
555 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
556 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
557 last_unjoined = false;
558 break;
561 if (last_unjoined) {
562 return H_CONTINUE;
565 return h_confer_self(cpu);
568 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
569 target_ulong opcode, target_ulong *args)
571 target_long target = args[0];
572 uint32_t dispatch = args[1];
573 CPUState *cs = CPU(cpu);
574 SpaprCpuState *spapr_cpu;
577 * -1 means confer to all other CPUs without dispatch counter check,
578 * otherwise it's a targeted confer.
580 if (target != -1) {
581 PowerPCCPU *target_cpu = spapr_find_cpu(target);
582 uint32_t target_dispatch;
584 if (!target_cpu) {
585 return H_PARAMETER;
589 * target == self is a special case, we wait until prodded, without
590 * dispatch counter check.
592 if (cpu == target_cpu) {
593 return h_confer_self(cpu);
596 spapr_cpu = spapr_cpu_state(target_cpu);
597 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
598 return H_SUCCESS;
601 target_dispatch = ldl_be_phys(cs->as,
602 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
603 if (target_dispatch != dispatch) {
604 return H_SUCCESS;
608 * The targeted confer does not do anything special beyond yielding
609 * the current vCPU, but even this should be better than nothing.
610 * At least for single-threaded tcg, it gives the target a chance to
611 * run before we run again. Multi-threaded tcg does not really do
612 * anything with EXCP_YIELD yet.
616 cs->exception_index = EXCP_YIELD;
617 cs->exit_request = 1;
618 cpu_loop_exit(cs);
620 return H_SUCCESS;
623 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
624 target_ulong opcode, target_ulong *args)
626 target_long target = args[0];
627 PowerPCCPU *tcpu;
628 CPUState *cs;
629 SpaprCpuState *spapr_cpu;
631 tcpu = spapr_find_cpu(target);
632 cs = CPU(tcpu);
633 if (!cs) {
634 return H_PARAMETER;
637 spapr_cpu = spapr_cpu_state(tcpu);
638 spapr_cpu->prod = true;
639 cs->halted = 0;
640 ppc_maybe_interrupt(&cpu->env);
641 qemu_cpu_kick(cs);
643 return H_SUCCESS;
646 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
647 target_ulong opcode, target_ulong *args)
649 target_ulong rtas_r3 = args[0];
650 uint32_t token = rtas_ld(rtas_r3, 0);
651 uint32_t nargs = rtas_ld(rtas_r3, 1);
652 uint32_t nret = rtas_ld(rtas_r3, 2);
654 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
655 nret, rtas_r3 + 12 + 4*nargs);
658 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
659 target_ulong opcode, target_ulong *args)
661 CPUState *cs = CPU(cpu);
662 target_ulong size = args[0];
663 target_ulong addr = args[1];
665 switch (size) {
666 case 1:
667 args[0] = ldub_phys(cs->as, addr);
668 return H_SUCCESS;
669 case 2:
670 args[0] = lduw_phys(cs->as, addr);
671 return H_SUCCESS;
672 case 4:
673 args[0] = ldl_phys(cs->as, addr);
674 return H_SUCCESS;
675 case 8:
676 args[0] = ldq_phys(cs->as, addr);
677 return H_SUCCESS;
679 return H_PARAMETER;
682 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
683 target_ulong opcode, target_ulong *args)
685 CPUState *cs = CPU(cpu);
687 target_ulong size = args[0];
688 target_ulong addr = args[1];
689 target_ulong val = args[2];
691 switch (size) {
692 case 1:
693 stb_phys(cs->as, addr, val);
694 return H_SUCCESS;
695 case 2:
696 stw_phys(cs->as, addr, val);
697 return H_SUCCESS;
698 case 4:
699 stl_phys(cs->as, addr, val);
700 return H_SUCCESS;
701 case 8:
702 stq_phys(cs->as, addr, val);
703 return H_SUCCESS;
705 return H_PARAMETER;
708 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
709 target_ulong opcode, target_ulong *args)
711 CPUState *cs = CPU(cpu);
713 target_ulong dst = args[0]; /* Destination address */
714 target_ulong src = args[1]; /* Source address */
715 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
716 target_ulong count = args[3]; /* Element count */
717 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
718 uint64_t tmp;
719 unsigned int mask = (1 << esize) - 1;
720 int step = 1 << esize;
722 if (count > 0x80000000) {
723 return H_PARAMETER;
726 if ((dst & mask) || (src & mask) || (op > 1)) {
727 return H_PARAMETER;
730 if (dst >= src && dst < (src + (count << esize))) {
731 dst = dst + ((count - 1) << esize);
732 src = src + ((count - 1) << esize);
733 step = -step;
736 while (count--) {
737 switch (esize) {
738 case 0:
739 tmp = ldub_phys(cs->as, src);
740 break;
741 case 1:
742 tmp = lduw_phys(cs->as, src);
743 break;
744 case 2:
745 tmp = ldl_phys(cs->as, src);
746 break;
747 case 3:
748 tmp = ldq_phys(cs->as, src);
749 break;
750 default:
751 return H_PARAMETER;
753 if (op == 1) {
754 tmp = ~tmp;
756 switch (esize) {
757 case 0:
758 stb_phys(cs->as, dst, tmp);
759 break;
760 case 1:
761 stw_phys(cs->as, dst, tmp);
762 break;
763 case 2:
764 stl_phys(cs->as, dst, tmp);
765 break;
766 case 3:
767 stq_phys(cs->as, dst, tmp);
768 break;
770 dst = dst + step;
771 src = src + step;
774 return H_SUCCESS;
777 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
778 target_ulong opcode, target_ulong *args)
780 /* Nothing to do on emulation, KVM will trap this in the kernel */
781 return H_SUCCESS;
784 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
785 target_ulong opcode, target_ulong *args)
787 /* Nothing to do on emulation, KVM will trap this in the kernel */
788 return H_SUCCESS;
791 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
792 SpaprMachineState *spapr,
793 target_ulong mflags,
794 target_ulong value1,
795 target_ulong value2)
797 if (value1) {
798 return H_P3;
800 if (value2) {
801 return H_P4;
804 switch (mflags) {
805 case H_SET_MODE_ENDIAN_BIG:
806 spapr_set_all_lpcrs(0, LPCR_ILE);
807 spapr_pci_switch_vga(spapr, true);
808 return H_SUCCESS;
810 case H_SET_MODE_ENDIAN_LITTLE:
811 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
812 spapr_pci_switch_vga(spapr, false);
813 return H_SUCCESS;
816 return H_UNSUPPORTED_FLAG;
819 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
820 target_ulong mflags,
821 target_ulong value1,
822 target_ulong value2)
824 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
826 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
827 return H_P2;
829 if (value1) {
830 return H_P3;
832 if (value2) {
833 return H_P4;
836 if (mflags == 1) {
837 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
838 return H_UNSUPPORTED_FLAG;
841 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
842 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
843 return H_UNSUPPORTED_FLAG;
846 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
848 return H_SUCCESS;
851 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
852 target_ulong opcode, target_ulong *args)
854 target_ulong resource = args[1];
855 target_ulong ret = H_P2;
857 switch (resource) {
858 case H_SET_MODE_RESOURCE_LE:
859 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
860 break;
861 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
862 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
863 args[2], args[3]);
864 break;
867 return ret;
870 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
871 target_ulong opcode, target_ulong *args)
873 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
874 opcode, " (H_CLEAN_SLB)");
875 return H_FUNCTION;
878 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
879 target_ulong opcode, target_ulong *args)
881 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
882 opcode, " (H_INVALIDATE_PID)");
883 return H_FUNCTION;
886 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
887 uint64_t patbe_old, uint64_t patbe_new)
890 * We have 4 Options:
891 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
892 * HASH->RADIX : Free HPT
893 * RADIX->HASH : Allocate HPT
894 * NOTHING->HASH : Allocate HPT
895 * Note: NOTHING implies the case where we said the guest could choose
896 * later and so assumed radix and now it's called H_REG_PROC_TBL
899 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
900 /* We assume RADIX, so this catches all the "Do Nothing" cases */
901 } else if (!(patbe_old & PATE1_GR)) {
902 /* HASH->RADIX : Free HPT */
903 spapr_free_hpt(spapr);
904 } else if (!(patbe_new & PATE1_GR)) {
905 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
906 spapr_setup_hpt(spapr);
908 return;
911 #define FLAGS_MASK 0x01FULL
912 #define FLAG_MODIFY 0x10
913 #define FLAG_REGISTER 0x08
914 #define FLAG_RADIX 0x04
915 #define FLAG_HASH_PROC_TBL 0x02
916 #define FLAG_GTSE 0x01
918 static target_ulong h_register_process_table(PowerPCCPU *cpu,
919 SpaprMachineState *spapr,
920 target_ulong opcode,
921 target_ulong *args)
923 target_ulong flags = args[0];
924 target_ulong proc_tbl = args[1];
925 target_ulong page_size = args[2];
926 target_ulong table_size = args[3];
927 target_ulong update_lpcr = 0;
928 target_ulong table_byte_size;
929 uint64_t cproc;
931 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
932 return H_PARAMETER;
934 if (flags & FLAG_MODIFY) {
935 if (flags & FLAG_REGISTER) {
936 /* Check process table alignment */
937 table_byte_size = 1ULL << (table_size + 12);
938 if (proc_tbl & (table_byte_size - 1)) {
939 qemu_log_mask(LOG_GUEST_ERROR,
940 "%s: process table not properly aligned: proc_tbl 0x"
941 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
942 __func__, proc_tbl, table_byte_size);
944 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
945 if (proc_tbl & 0xfff || proc_tbl >> 60) {
946 return H_P2;
947 } else if (page_size) {
948 return H_P3;
949 } else if (table_size > 24) {
950 return H_P4;
952 cproc = PATE1_GR | proc_tbl | table_size;
953 } else { /* Register new HPT process table */
954 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
955 /* TODO - Not Supported */
956 /* Technically caused by flag bits => H_PARAMETER */
957 return H_PARAMETER;
958 } else { /* Hash with SLB */
959 if (proc_tbl >> 38) {
960 return H_P2;
961 } else if (page_size & ~0x7) {
962 return H_P3;
963 } else if (table_size > 24) {
964 return H_P4;
967 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
970 } else { /* Deregister current process table */
972 * Set to benign value: (current GR) | 0. This allows
973 * deregistration in KVM to succeed even if the radix bit
974 * in flags doesn't match the radix bit in the old PATE.
976 cproc = spapr->patb_entry & PATE1_GR;
978 } else { /* Maintain current registration */
979 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
980 /* Technically caused by flag bits => H_PARAMETER */
981 return H_PARAMETER; /* Existing Process Table Mismatch */
983 cproc = spapr->patb_entry;
986 /* Check if we need to setup OR free the hpt */
987 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
989 spapr->patb_entry = cproc; /* Save new process table */
991 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
992 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
993 update_lpcr |= (LPCR_UPRT | LPCR_HR);
994 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
995 update_lpcr |= LPCR_UPRT;
996 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
997 update_lpcr |= LPCR_GTSE;
999 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1001 if (kvm_enabled()) {
1002 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1003 flags & FLAG_GTSE, cproc);
1005 return H_SUCCESS;
1008 #define H_SIGNAL_SYS_RESET_ALL -1
1009 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1011 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1012 SpaprMachineState *spapr,
1013 target_ulong opcode, target_ulong *args)
1015 target_long target = args[0];
1016 CPUState *cs;
1018 if (target < 0) {
1019 /* Broadcast */
1020 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1021 return H_PARAMETER;
1024 CPU_FOREACH(cs) {
1025 PowerPCCPU *c = POWERPC_CPU(cs);
1027 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1028 if (c == cpu) {
1029 continue;
1032 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1034 return H_SUCCESS;
1036 } else {
1037 /* Unicast */
1038 cs = CPU(spapr_find_cpu(target));
1039 if (cs) {
1040 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1041 return H_SUCCESS;
1043 return H_PARAMETER;
1047 /* Returns either a logical PVR or zero if none was found */
1048 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1049 target_ulong *addr, bool *raw_mode_supported)
1051 bool explicit_match = false; /* Matched the CPU's real PVR */
1052 uint32_t best_compat = 0;
1053 int i;
1056 * We scan the supplied table of PVRs looking for two things
1057 * 1. Is our real CPU PVR in the list?
1058 * 2. What's the "best" listed logical PVR
1060 for (i = 0; i < 512; ++i) {
1061 uint32_t pvr, pvr_mask;
1063 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1064 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1065 *addr += 8;
1067 if (~pvr_mask & pvr) {
1068 break; /* Terminator record */
1071 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1072 explicit_match = true;
1073 } else {
1074 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1075 best_compat = pvr;
1080 *raw_mode_supported = explicit_match;
1082 /* Parsing finished */
1083 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1085 return best_compat;
1088 static
1089 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1090 SpaprMachineState *spapr,
1091 target_ulong vec,
1092 target_ulong fdt_bufsize)
1094 target_ulong ov_table; /* Working address in data buffer */
1095 uint32_t cas_pvr;
1096 SpaprOptionVector *ov1_guest, *ov5_guest;
1097 bool guest_radix;
1098 bool raw_mode_supported = false;
1099 bool guest_xive;
1100 CPUState *cs;
1101 void *fdt;
1102 uint32_t max_compat = spapr->max_compat_pvr;
1104 /* CAS is supposed to be called early when only the boot vCPU is active. */
1105 CPU_FOREACH(cs) {
1106 if (cs == CPU(cpu)) {
1107 continue;
1109 if (!cs->halted) {
1110 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1111 return H_MULTI_THREADS_ACTIVE;
1115 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1116 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1118 * We couldn't find a suitable compatibility mode, and either
1119 * the guest doesn't support "raw" mode for this CPU, or "raw"
1120 * mode is disabled because a maximum compat mode is set.
1122 error_report("Couldn't negotiate a suitable PVR during CAS");
1123 return H_HARDWARE;
1126 /* Update CPUs */
1127 if (cpu->compat_pvr != cas_pvr) {
1128 Error *local_err = NULL;
1130 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1131 /* We fail to set compat mode (likely because running with KVM PR),
1132 * but maybe we can fallback to raw mode if the guest supports it.
1134 if (!raw_mode_supported) {
1135 error_report_err(local_err);
1136 return H_HARDWARE;
1138 error_free(local_err);
1142 /* For the future use: here @ov_table points to the first option vector */
1143 ov_table = vec;
1145 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1146 if (!ov1_guest) {
1147 warn_report("guest didn't provide option vector 1");
1148 return H_PARAMETER;
1150 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1151 if (!ov5_guest) {
1152 spapr_ovec_cleanup(ov1_guest);
1153 warn_report("guest didn't provide option vector 5");
1154 return H_PARAMETER;
1156 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1157 error_report("guest requested hash and radix MMU, which is invalid.");
1158 exit(EXIT_FAILURE);
1160 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1161 error_report("guest requested an invalid interrupt mode");
1162 exit(EXIT_FAILURE);
1165 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1167 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1170 * HPT resizing is a bit of a special case, because when enabled
1171 * we assume an HPT guest will support it until it says it
1172 * doesn't, instead of assuming it won't support it until it says
1173 * it does. Strictly speaking that approach could break for
1174 * guests which don't make a CAS call, but those are so old we
1175 * don't care about them. Without that assumption we'd have to
1176 * make at least a temporary allocation of an HPT sized for max
1177 * memory, which could be impossibly difficult under KVM HV if
1178 * maxram is large.
1180 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1181 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1183 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1184 error_report(
1185 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1186 exit(1);
1189 if (spapr->htab_shift < maxshift) {
1190 /* Guest doesn't know about HPT resizing, so we
1191 * pre-emptively resize for the maximum permitted RAM. At
1192 * the point this is called, nothing should have been
1193 * entered into the existing HPT */
1194 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1195 push_sregs_to_kvm_pr(spapr);
1199 /* NOTE: there are actually a number of ov5 bits where input from the
1200 * guest is always zero, and the platform/QEMU enables them independently
1201 * of guest input. To model these properly we'd want some sort of mask,
1202 * but since they only currently apply to memory migration as defined
1203 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1204 * to worry about this for now.
1207 /* full range of negotiated ov5 capabilities */
1208 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1209 spapr_ovec_cleanup(ov5_guest);
1211 spapr_check_mmu_mode(guest_radix);
1213 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1214 spapr_ovec_cleanup(ov1_guest);
1217 * Check for NUMA affinity conditions now that we know which NUMA
1218 * affinity the guest will use.
1220 spapr_numa_associativity_check(spapr);
1223 * Ensure the guest asks for an interrupt mode we support;
1224 * otherwise terminate the boot.
1226 if (guest_xive) {
1227 if (!spapr->irq->xive) {
1228 error_report(
1229 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1230 exit(EXIT_FAILURE);
1232 } else {
1233 if (!spapr->irq->xics) {
1234 error_report(
1235 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1236 exit(EXIT_FAILURE);
1240 spapr_irq_update_active_intc(spapr);
1243 * Process all pending hot-plug/unplug requests now. An updated full
1244 * rendered FDT will be returned to the guest.
1246 spapr_drc_reset_all(spapr);
1247 spapr_clear_pending_hotplug_events(spapr);
1250 * If spapr_machine_reset() did not set up a HPT but one is necessary
1251 * (because the guest isn't going to use radix) then set it up here.
1253 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1254 /* legacy hash or new hash: */
1255 spapr_setup_hpt(spapr);
1258 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1259 g_free(spapr->fdt_blob);
1260 spapr->fdt_size = fdt_totalsize(fdt);
1261 spapr->fdt_initial_size = spapr->fdt_size;
1262 spapr->fdt_blob = fdt;
1265 * Set the machine->fdt pointer again since we just freed
1266 * it above (by freeing spapr->fdt_blob). We set this
1267 * pointer to enable support for the 'dumpdtb' QMP/HMP
1268 * command.
1270 MACHINE(spapr)->fdt = fdt;
1272 return H_SUCCESS;
1275 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1276 SpaprMachineState *spapr,
1277 target_ulong opcode,
1278 target_ulong *args)
1280 target_ulong vec = ppc64_phys_to_real(args[0]);
1281 target_ulong fdt_buf = args[1];
1282 target_ulong fdt_bufsize = args[2];
1283 target_ulong ret;
1284 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1286 if (fdt_bufsize < sizeof(hdr)) {
1287 error_report("SLOF provided insufficient CAS buffer "
1288 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1289 exit(EXIT_FAILURE);
1292 fdt_bufsize -= sizeof(hdr);
1294 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1295 if (ret == H_SUCCESS) {
1296 _FDT((fdt_pack(spapr->fdt_blob)));
1297 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1298 spapr->fdt_initial_size = spapr->fdt_size;
1300 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1301 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1302 spapr->fdt_size);
1303 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1306 return ret;
1309 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1310 CPUState *cs,
1311 target_ulong ovec_addr)
1313 SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1315 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1316 ovec_addr, FDT_MAX_SIZE);
1319 * This adds stdout and generates phandles for boottime and CAS FDTs.
1320 * It is alright to update the FDT here as do_client_architecture_support()
1321 * does not pack it.
1323 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1325 return ret;
1328 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1329 SpaprMachineState *spapr,
1330 target_ulong opcode,
1331 target_ulong *args)
1333 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1334 ~H_CPU_CHAR_THR_RECONF_TRIG;
1335 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1336 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1337 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1338 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1339 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1340 SPAPR_CAP_CCF_ASSIST);
1342 switch (safe_cache) {
1343 case SPAPR_CAP_WORKAROUND:
1344 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1345 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1346 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1347 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1348 break;
1349 case SPAPR_CAP_FIXED:
1350 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1351 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1352 break;
1353 default: /* broken */
1354 assert(safe_cache == SPAPR_CAP_BROKEN);
1355 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1356 break;
1359 switch (safe_bounds_check) {
1360 case SPAPR_CAP_WORKAROUND:
1361 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1362 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1363 break;
1364 case SPAPR_CAP_FIXED:
1365 break;
1366 default: /* broken */
1367 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1368 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1369 break;
1372 switch (safe_indirect_branch) {
1373 case SPAPR_CAP_FIXED_NA:
1374 break;
1375 case SPAPR_CAP_FIXED_CCD:
1376 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1377 break;
1378 case SPAPR_CAP_FIXED_IBS:
1379 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1380 break;
1381 case SPAPR_CAP_WORKAROUND:
1382 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1383 if (count_cache_flush_assist) {
1384 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1386 break;
1387 default: /* broken */
1388 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1389 break;
1392 args[0] = characteristics;
1393 args[1] = behaviour;
1394 return H_SUCCESS;
1397 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1398 target_ulong opcode, target_ulong *args)
1400 target_ulong dt = ppc64_phys_to_real(args[0]);
1401 struct fdt_header hdr = { 0 };
1402 unsigned cb;
1403 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1404 void *fdt;
1406 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1407 cb = fdt32_to_cpu(hdr.totalsize);
1409 if (!smc->update_dt_enabled) {
1410 return H_SUCCESS;
1413 /* Check that the fdt did not grow out of proportion */
1414 if (cb > spapr->fdt_initial_size * 2) {
1415 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1416 fdt32_to_cpu(hdr.magic));
1417 return H_PARAMETER;
1420 fdt = g_malloc0(cb);
1421 cpu_physical_memory_read(dt, fdt, cb);
1423 /* Check the fdt consistency */
1424 if (fdt_check_full(fdt, cb)) {
1425 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1426 fdt32_to_cpu(hdr.magic));
1427 return H_PARAMETER;
1430 g_free(spapr->fdt_blob);
1431 spapr->fdt_size = cb;
1432 spapr->fdt_blob = fdt;
1433 trace_spapr_update_dt(cb);
1435 return H_SUCCESS;
1438 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1439 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1440 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1442 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1444 spapr_hcall_fn *slot;
1446 if (opcode <= MAX_HCALL_OPCODE) {
1447 assert((opcode & 0x3) == 0);
1449 slot = &papr_hypercall_table[opcode / 4];
1450 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1451 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1452 assert((opcode & 0x3) == 0);
1454 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1455 } else {
1456 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1458 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1461 assert(!(*slot));
1462 *slot = fn;
1465 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1466 target_ulong *args)
1468 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1470 if ((opcode <= MAX_HCALL_OPCODE)
1471 && ((opcode & 0x3) == 0)) {
1472 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1474 if (fn) {
1475 return fn(cpu, spapr, opcode, args);
1477 } else if ((opcode >= SVM_HCALL_BASE) &&
1478 (opcode <= SVM_HCALL_MAX)) {
1479 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1481 if (fn) {
1482 return fn(cpu, spapr, opcode, args);
1484 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1485 (opcode <= KVMPPC_HCALL_MAX)) {
1486 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1488 if (fn) {
1489 return fn(cpu, spapr, opcode, args);
1493 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1494 opcode);
1495 return H_FUNCTION;
1498 #ifdef CONFIG_TCG
1499 #define PRTS_MASK 0x1f
1501 static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1502 SpaprMachineState *spapr,
1503 target_ulong opcode,
1504 target_ulong *args)
1506 target_ulong ptcr = args[0];
1508 if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1509 return H_FUNCTION;
1512 if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1513 return H_PARAMETER;
1516 spapr->nested_ptcr = ptcr; /* Save new partition table */
1518 return H_SUCCESS;
1521 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1522 SpaprMachineState *spapr,
1523 target_ulong opcode,
1524 target_ulong *args)
1527 * The spapr virtual hypervisor nested HV implementation retains no L2
1528 * translation state except for TLB. And the TLB is always invalidated
1529 * across L1<->L2 transitions, so nothing is required here.
1532 return H_SUCCESS;
1535 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1536 SpaprMachineState *spapr,
1537 target_ulong opcode,
1538 target_ulong *args)
1541 * This HCALL is not required, L1 KVM will take a slow path and walk the
1542 * page tables manually to do the data copy.
1544 return H_FUNCTION;
1548 * When this handler returns, the environment is switched to the L2 guest
1549 * and TCG begins running that. spapr_exit_nested() performs the switch from
1550 * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1552 static target_ulong h_enter_nested(PowerPCCPU *cpu,
1553 SpaprMachineState *spapr,
1554 target_ulong opcode,
1555 target_ulong *args)
1557 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1558 CPUState *cs = CPU(cpu);
1559 CPUPPCState *env = &cpu->env;
1560 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1561 target_ulong hv_ptr = args[0];
1562 target_ulong regs_ptr = args[1];
1563 target_ulong hdec, now = cpu_ppc_load_tbl(env);
1564 target_ulong lpcr, lpcr_mask;
1565 struct kvmppc_hv_guest_state *hvstate;
1566 struct kvmppc_hv_guest_state hv_state;
1567 struct kvmppc_pt_regs *regs;
1568 hwaddr len;
1570 if (spapr->nested_ptcr == 0) {
1571 return H_NOT_AVAILABLE;
1574 len = sizeof(*hvstate);
1575 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1576 MEMTXATTRS_UNSPECIFIED);
1577 if (len != sizeof(*hvstate)) {
1578 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1579 return H_PARAMETER;
1582 memcpy(&hv_state, hvstate, len);
1584 address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1587 * We accept versions 1 and 2. Version 2 fields are unused because TCG
1588 * does not implement DAWR*.
1590 if (hv_state.version > HV_GUEST_STATE_VERSION) {
1591 return H_PARAMETER;
1594 spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1595 if (!spapr_cpu->nested_host_state) {
1596 return H_NO_MEM;
1599 memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1601 len = sizeof(*regs);
1602 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1603 MEMTXATTRS_UNSPECIFIED);
1604 if (!regs || len != sizeof(*regs)) {
1605 address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1606 g_free(spapr_cpu->nested_host_state);
1607 return H_P2;
1610 len = sizeof(env->gpr);
1611 assert(len == sizeof(regs->gpr));
1612 memcpy(env->gpr, regs->gpr, len);
1614 env->lr = regs->link;
1615 env->ctr = regs->ctr;
1616 cpu_write_xer(env, regs->xer);
1617 ppc_set_cr(env, regs->ccr);
1619 env->msr = regs->msr;
1620 env->nip = regs->nip;
1622 address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1624 env->cfar = hv_state.cfar;
1626 assert(env->spr[SPR_LPIDR] == 0);
1627 env->spr[SPR_LPIDR] = hv_state.lpid;
1629 lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1630 lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1631 lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1632 lpcr &= ~LPCR_LPES0;
1633 env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1635 env->spr[SPR_PCR] = hv_state.pcr;
1636 /* hv_state.amor is not used */
1637 env->spr[SPR_DPDES] = hv_state.dpdes;
1638 env->spr[SPR_HFSCR] = hv_state.hfscr;
1639 hdec = hv_state.hdec_expiry - now;
1640 spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1641 /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1642 env->spr[SPR_SRR0] = hv_state.srr0;
1643 env->spr[SPR_SRR1] = hv_state.srr1;
1644 env->spr[SPR_SPRG0] = hv_state.sprg[0];
1645 env->spr[SPR_SPRG1] = hv_state.sprg[1];
1646 env->spr[SPR_SPRG2] = hv_state.sprg[2];
1647 env->spr[SPR_SPRG3] = hv_state.sprg[3];
1648 env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1649 env->spr[SPR_PPR] = hv_state.ppr;
1651 cpu_ppc_hdecr_init(env);
1652 cpu_ppc_store_hdecr(env, hdec);
1655 * The hv_state.vcpu_token is not needed. It is used by the KVM
1656 * implementation to remember which L2 vCPU last ran on which physical
1657 * CPU so as to invalidate process scope translations if it is moved
1658 * between physical CPUs. For now TLBs are always flushed on L1<->L2
1659 * transitions so this is not a problem.
1661 * Could validate that the same vcpu_token does not attempt to run on
1662 * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1663 * and it's not obviously worth a new data structure to do it.
1666 env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1667 spapr_cpu->in_nested = true;
1669 hreg_compute_hflags(env);
1670 ppc_maybe_interrupt(env);
1671 tlb_flush(cs);
1672 env->reserve_addr = -1; /* Reset the reservation */
1675 * The spapr hcall helper sets env->gpr[3] to the return value, but at
1676 * this point the L1 is not returning from the hcall but rather we
1677 * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1678 * to leave it unchanged.
1680 return env->gpr[3];
1683 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1685 CPUState *cs = CPU(cpu);
1686 CPUPPCState *env = &cpu->env;
1687 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1688 target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1689 target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1690 target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1691 struct kvmppc_hv_guest_state *hvstate;
1692 struct kvmppc_pt_regs *regs;
1693 hwaddr len;
1695 assert(spapr_cpu->in_nested);
1697 cpu_ppc_hdecr_exit(env);
1699 len = sizeof(*hvstate);
1700 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1701 MEMTXATTRS_UNSPECIFIED);
1702 if (len != sizeof(*hvstate)) {
1703 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1704 r3_return = H_PARAMETER;
1705 goto out_restore_l1;
1708 hvstate->cfar = env->cfar;
1709 hvstate->lpcr = env->spr[SPR_LPCR];
1710 hvstate->pcr = env->spr[SPR_PCR];
1711 hvstate->dpdes = env->spr[SPR_DPDES];
1712 hvstate->hfscr = env->spr[SPR_HFSCR];
1714 if (excp == POWERPC_EXCP_HDSI) {
1715 hvstate->hdar = env->spr[SPR_HDAR];
1716 hvstate->hdsisr = env->spr[SPR_HDSISR];
1717 hvstate->asdr = env->spr[SPR_ASDR];
1718 } else if (excp == POWERPC_EXCP_HISI) {
1719 hvstate->asdr = env->spr[SPR_ASDR];
1722 /* HEIR should be implemented for HV mode and saved here. */
1723 hvstate->srr0 = env->spr[SPR_SRR0];
1724 hvstate->srr1 = env->spr[SPR_SRR1];
1725 hvstate->sprg[0] = env->spr[SPR_SPRG0];
1726 hvstate->sprg[1] = env->spr[SPR_SPRG1];
1727 hvstate->sprg[2] = env->spr[SPR_SPRG2];
1728 hvstate->sprg[3] = env->spr[SPR_SPRG3];
1729 hvstate->pidr = env->spr[SPR_BOOKS_PID];
1730 hvstate->ppr = env->spr[SPR_PPR];
1732 /* Is it okay to specify write length larger than actual data written? */
1733 address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1735 len = sizeof(*regs);
1736 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1737 MEMTXATTRS_UNSPECIFIED);
1738 if (!regs || len != sizeof(*regs)) {
1739 address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1740 r3_return = H_P2;
1741 goto out_restore_l1;
1744 len = sizeof(env->gpr);
1745 assert(len == sizeof(regs->gpr));
1746 memcpy(regs->gpr, env->gpr, len);
1748 regs->link = env->lr;
1749 regs->ctr = env->ctr;
1750 regs->xer = cpu_read_xer(env);
1751 regs->ccr = ppc_get_cr(env);
1753 if (excp == POWERPC_EXCP_MCHECK ||
1754 excp == POWERPC_EXCP_RESET ||
1755 excp == POWERPC_EXCP_SYSCALL) {
1756 regs->nip = env->spr[SPR_SRR0];
1757 regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1758 } else {
1759 regs->nip = env->spr[SPR_HSRR0];
1760 regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1763 /* Is it okay to specify write length larger than actual data written? */
1764 address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1766 out_restore_l1:
1767 memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1768 env->lr = spapr_cpu->nested_host_state->lr;
1769 env->ctr = spapr_cpu->nested_host_state->ctr;
1770 memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1771 env->cfar = spapr_cpu->nested_host_state->cfar;
1772 env->xer = spapr_cpu->nested_host_state->xer;
1773 env->so = spapr_cpu->nested_host_state->so;
1774 env->ov = spapr_cpu->nested_host_state->ov;
1775 env->ov32 = spapr_cpu->nested_host_state->ov32;
1776 env->ca32 = spapr_cpu->nested_host_state->ca32;
1777 env->msr = spapr_cpu->nested_host_state->msr;
1778 env->nip = spapr_cpu->nested_host_state->nip;
1780 assert(env->spr[SPR_LPIDR] != 0);
1781 env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1782 env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1783 env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1784 env->spr[SPR_DPDES] = 0;
1785 env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1786 env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1787 env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1788 env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1789 env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1790 env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1791 env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1792 env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1793 env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1796 * Return the interrupt vector address from H_ENTER_NESTED to the L1
1797 * (or error code).
1799 env->gpr[3] = r3_return;
1801 env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1802 spapr_cpu->in_nested = false;
1804 hreg_compute_hflags(env);
1805 ppc_maybe_interrupt(env);
1806 tlb_flush(cs);
1807 env->reserve_addr = -1; /* Reset the reservation */
1809 g_free(spapr_cpu->nested_host_state);
1810 spapr_cpu->nested_host_state = NULL;
1813 static void hypercall_register_nested(void)
1815 spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1816 spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1817 spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1818 spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1821 static void hypercall_register_softmmu(void)
1823 /* DO NOTHING */
1825 #else
1826 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1828 g_assert_not_reached();
1831 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1832 target_ulong opcode, target_ulong *args)
1834 g_assert_not_reached();
1837 static void hypercall_register_nested(void)
1839 /* DO NOTHING */
1842 static void hypercall_register_softmmu(void)
1844 /* hcall-pft */
1845 spapr_register_hypercall(H_ENTER, h_softmmu);
1846 spapr_register_hypercall(H_REMOVE, h_softmmu);
1847 spapr_register_hypercall(H_PROTECT, h_softmmu);
1848 spapr_register_hypercall(H_READ, h_softmmu);
1850 /* hcall-bulk */
1851 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1853 #endif
1855 static void hypercall_register_types(void)
1857 hypercall_register_softmmu();
1859 /* hcall-hpt-resize */
1860 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1861 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1863 /* hcall-splpar */
1864 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1865 spapr_register_hypercall(H_CEDE, h_cede);
1866 spapr_register_hypercall(H_CONFER, h_confer);
1867 spapr_register_hypercall(H_PROD, h_prod);
1869 /* hcall-join */
1870 spapr_register_hypercall(H_JOIN, h_join);
1872 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1874 /* processor register resource access h-calls */
1875 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1876 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1877 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1878 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1879 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1881 /* In Memory Table MMU h-calls */
1882 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1883 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1884 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1886 /* hcall-get-cpu-characteristics */
1887 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1888 h_get_cpu_characteristics);
1890 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1891 * here between the "CI" and the "CACHE" variants, they will use whatever
1892 * mapping attributes qemu is using. When using KVM, the kernel will
1893 * enforce the attributes more strongly
1895 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1896 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1897 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1898 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1899 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1900 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1901 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1903 /* qemu/KVM-PPC specific hcalls */
1904 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1906 /* ibm,client-architecture-support support */
1907 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1909 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1911 hypercall_register_nested();
1914 type_init(hypercall_register_types)