x86_64 ldl fix
[qemu/ar7.git] / gdbstub.c
blob29c7a01087550cc058ce158ef1c46896399d8c46
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifdef CONFIG_USER_ONLY
21 #include <stdlib.h>
22 #include <stdio.h>
23 #include <stdarg.h>
24 #include <string.h>
25 #include <errno.h>
26 #include <unistd.h>
28 #include "qemu.h"
29 #else
30 #include "vl.h"
31 #endif
33 #include <sys/socket.h>
34 #include <netinet/in.h>
35 #include <netinet/tcp.h>
36 #include <signal.h>
38 //#define DEBUG_GDB
40 enum RSState {
41 RS_IDLE,
42 RS_GETLINE,
43 RS_CHKSUM1,
44 RS_CHKSUM2,
46 /* XXX: This is not thread safe. Do we care? */
47 static int gdbserver_fd = -1;
49 typedef struct GDBState {
50 CPUState *env; /* current CPU */
51 enum RSState state; /* parsing state */
52 int fd;
53 char line_buf[4096];
54 int line_buf_index;
55 int line_csum;
56 #ifdef CONFIG_USER_ONLY
57 int running_state;
58 #endif
59 } GDBState;
61 #ifdef CONFIG_USER_ONLY
62 /* XXX: remove this hack. */
63 static GDBState gdbserver_state;
64 #endif
66 static int get_char(GDBState *s)
68 uint8_t ch;
69 int ret;
71 for(;;) {
72 ret = read(s->fd, &ch, 1);
73 if (ret < 0) {
74 if (errno != EINTR && errno != EAGAIN)
75 return -1;
76 } else if (ret == 0) {
77 return -1;
78 } else {
79 break;
82 return ch;
85 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
87 int ret;
89 while (len > 0) {
90 ret = write(s->fd, buf, len);
91 if (ret < 0) {
92 if (errno != EINTR && errno != EAGAIN)
93 return;
94 } else {
95 buf += ret;
96 len -= ret;
101 static inline int fromhex(int v)
103 if (v >= '0' && v <= '9')
104 return v - '0';
105 else if (v >= 'A' && v <= 'F')
106 return v - 'A' + 10;
107 else if (v >= 'a' && v <= 'f')
108 return v - 'a' + 10;
109 else
110 return 0;
113 static inline int tohex(int v)
115 if (v < 10)
116 return v + '0';
117 else
118 return v - 10 + 'a';
121 static void memtohex(char *buf, const uint8_t *mem, int len)
123 int i, c;
124 char *q;
125 q = buf;
126 for(i = 0; i < len; i++) {
127 c = mem[i];
128 *q++ = tohex(c >> 4);
129 *q++ = tohex(c & 0xf);
131 *q = '\0';
134 static void hextomem(uint8_t *mem, const char *buf, int len)
136 int i;
138 for(i = 0; i < len; i++) {
139 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
140 buf += 2;
144 /* return -1 if error, 0 if OK */
145 static int put_packet(GDBState *s, char *buf)
147 char buf1[3];
148 int len, csum, ch, i;
150 #ifdef DEBUG_GDB
151 printf("reply='%s'\n", buf);
152 #endif
154 for(;;) {
155 buf1[0] = '$';
156 put_buffer(s, buf1, 1);
157 len = strlen(buf);
158 put_buffer(s, buf, len);
159 csum = 0;
160 for(i = 0; i < len; i++) {
161 csum += buf[i];
163 buf1[0] = '#';
164 buf1[1] = tohex((csum >> 4) & 0xf);
165 buf1[2] = tohex((csum) & 0xf);
167 put_buffer(s, buf1, 3);
169 ch = get_char(s);
170 if (ch < 0)
171 return -1;
172 if (ch == '+')
173 break;
175 return 0;
178 #if defined(TARGET_I386)
180 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
182 uint32_t *registers = (uint32_t *)mem_buf;
183 int i, fpus;
185 for(i = 0; i < 8; i++) {
186 registers[i] = env->regs[i];
188 registers[8] = env->eip;
189 registers[9] = env->eflags;
190 registers[10] = env->segs[R_CS].selector;
191 registers[11] = env->segs[R_SS].selector;
192 registers[12] = env->segs[R_DS].selector;
193 registers[13] = env->segs[R_ES].selector;
194 registers[14] = env->segs[R_FS].selector;
195 registers[15] = env->segs[R_GS].selector;
196 /* XXX: convert floats */
197 for(i = 0; i < 8; i++) {
198 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
200 registers[36] = env->fpuc;
201 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
202 registers[37] = fpus;
203 registers[38] = 0; /* XXX: convert tags */
204 registers[39] = 0; /* fiseg */
205 registers[40] = 0; /* fioff */
206 registers[41] = 0; /* foseg */
207 registers[42] = 0; /* fooff */
208 registers[43] = 0; /* fop */
210 for(i = 0; i < 16; i++)
211 tswapls(&registers[i]);
212 for(i = 36; i < 44; i++)
213 tswapls(&registers[i]);
214 return 44 * 4;
217 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
219 uint32_t *registers = (uint32_t *)mem_buf;
220 int i;
222 for(i = 0; i < 8; i++) {
223 env->regs[i] = tswapl(registers[i]);
225 env->eip = tswapl(registers[8]);
226 env->eflags = tswapl(registers[9]);
227 #if defined(CONFIG_USER_ONLY)
228 #define LOAD_SEG(index, sreg)\
229 if (tswapl(registers[index]) != env->segs[sreg].selector)\
230 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
231 LOAD_SEG(10, R_CS);
232 LOAD_SEG(11, R_SS);
233 LOAD_SEG(12, R_DS);
234 LOAD_SEG(13, R_ES);
235 LOAD_SEG(14, R_FS);
236 LOAD_SEG(15, R_GS);
237 #endif
240 #elif defined (TARGET_PPC)
241 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
243 uint32_t *registers = (uint32_t *)mem_buf, tmp;
244 int i;
246 /* fill in gprs */
247 for(i = 0; i < 32; i++) {
248 registers[i] = tswapl(env->gpr[i]);
250 /* fill in fprs */
251 for (i = 0; i < 32; i++) {
252 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
253 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
255 /* nip, msr, ccr, lnk, ctr, xer, mq */
256 registers[96] = tswapl(env->nip);
257 registers[97] = tswapl(do_load_msr(env));
258 tmp = 0;
259 for (i = 0; i < 8; i++)
260 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
261 registers[98] = tswapl(tmp);
262 registers[99] = tswapl(env->lr);
263 registers[100] = tswapl(env->ctr);
264 registers[101] = tswapl(do_load_xer(env));
265 registers[102] = 0;
267 return 103 * 4;
270 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
272 uint32_t *registers = (uint32_t *)mem_buf;
273 int i;
275 /* fill in gprs */
276 for (i = 0; i < 32; i++) {
277 env->gpr[i] = tswapl(registers[i]);
279 /* fill in fprs */
280 for (i = 0; i < 32; i++) {
281 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
282 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
284 /* nip, msr, ccr, lnk, ctr, xer, mq */
285 env->nip = tswapl(registers[96]);
286 do_store_msr(env, tswapl(registers[97]));
287 registers[98] = tswapl(registers[98]);
288 for (i = 0; i < 8; i++)
289 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
290 env->lr = tswapl(registers[99]);
291 env->ctr = tswapl(registers[100]);
292 do_store_xer(env, tswapl(registers[101]));
294 #elif defined (TARGET_SPARC)
295 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
297 target_ulong *registers = (target_ulong *)mem_buf;
298 int i;
300 /* fill in g0..g7 */
301 for(i = 0; i < 8; i++) {
302 registers[i] = tswapl(env->gregs[i]);
304 /* fill in register window */
305 for(i = 0; i < 24; i++) {
306 registers[i + 8] = tswapl(env->regwptr[i]);
308 /* fill in fprs */
309 for (i = 0; i < 32; i++) {
310 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
312 #ifndef TARGET_SPARC64
313 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
314 registers[64] = tswapl(env->y);
316 target_ulong tmp;
318 tmp = GET_PSR(env);
319 registers[65] = tswapl(tmp);
321 registers[66] = tswapl(env->wim);
322 registers[67] = tswapl(env->tbr);
323 registers[68] = tswapl(env->pc);
324 registers[69] = tswapl(env->npc);
325 registers[70] = tswapl(env->fsr);
326 registers[71] = 0; /* csr */
327 registers[72] = 0;
328 return 73 * sizeof(target_ulong);
329 #else
330 for (i = 0; i < 32; i += 2) {
331 registers[i/2 + 64] = tswapl(*((uint64_t *)&env->fpr[i]));
333 registers[81] = tswapl(env->pc);
334 registers[82] = tswapl(env->npc);
335 registers[83] = tswapl(env->tstate[env->tl]);
336 registers[84] = tswapl(env->fsr);
337 registers[85] = tswapl(env->fprs);
338 registers[86] = tswapl(env->y);
339 return 87 * sizeof(target_ulong);
340 #endif
343 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
345 target_ulong *registers = (target_ulong *)mem_buf;
346 int i;
348 /* fill in g0..g7 */
349 for(i = 0; i < 7; i++) {
350 env->gregs[i] = tswapl(registers[i]);
352 /* fill in register window */
353 for(i = 0; i < 24; i++) {
354 env->regwptr[i] = tswapl(registers[i + 8]);
356 /* fill in fprs */
357 for (i = 0; i < 32; i++) {
358 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
360 #ifndef TARGET_SPARC64
361 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
362 env->y = tswapl(registers[64]);
363 PUT_PSR(env, tswapl(registers[65]));
364 env->wim = tswapl(registers[66]);
365 env->tbr = tswapl(registers[67]);
366 env->pc = tswapl(registers[68]);
367 env->npc = tswapl(registers[69]);
368 env->fsr = tswapl(registers[70]);
369 #else
370 for (i = 0; i < 32; i += 2) {
371 uint64_t tmp;
372 tmp = tswapl(registers[i/2 + 64]) << 32;
373 tmp |= tswapl(registers[i/2 + 64 + 1]);
374 *((uint64_t *)&env->fpr[i]) = tmp;
376 env->pc = tswapl(registers[81]);
377 env->npc = tswapl(registers[82]);
378 env->tstate[env->tl] = tswapl(registers[83]);
379 env->fsr = tswapl(registers[84]);
380 env->fprs = tswapl(registers[85]);
381 env->y = tswapl(registers[86]);
382 #endif
384 #elif defined (TARGET_ARM)
385 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
387 int i;
388 uint8_t *ptr;
390 ptr = mem_buf;
391 /* 16 core integer registers (4 bytes each). */
392 for (i = 0; i < 16; i++)
394 *(uint32_t *)ptr = tswapl(env->regs[i]);
395 ptr += 4;
397 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
398 Not yet implemented. */
399 memset (ptr, 0, 8 * 12 + 4);
400 ptr += 8 * 12 + 4;
401 /* CPSR (4 bytes). */
402 *(uint32_t *)ptr = tswapl (cpsr_read(env));
403 ptr += 4;
405 return ptr - mem_buf;
408 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
410 int i;
411 uint8_t *ptr;
413 ptr = mem_buf;
414 /* Core integer registers. */
415 for (i = 0; i < 16; i++)
417 env->regs[i] = tswapl(*(uint32_t *)ptr);
418 ptr += 4;
420 /* Ignore FPA regs and scr. */
421 ptr += 8 * 12 + 4;
422 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
424 #else
425 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
427 return 0;
430 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
434 #endif
436 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
438 const char *p;
439 int ch, reg_size, type;
440 char buf[4096];
441 uint8_t mem_buf[2000];
442 uint32_t *registers;
443 uint32_t addr, len;
445 #ifdef DEBUG_GDB
446 printf("command='%s'\n", line_buf);
447 #endif
448 p = line_buf;
449 ch = *p++;
450 switch(ch) {
451 case '?':
452 /* TODO: Make this return the correct value for user-mode. */
453 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
454 put_packet(s, buf);
455 break;
456 case 'c':
457 if (*p != '\0') {
458 addr = strtoul(p, (char **)&p, 16);
459 #if defined(TARGET_I386)
460 env->eip = addr;
461 #elif defined (TARGET_PPC)
462 env->nip = addr;
463 #elif defined (TARGET_SPARC)
464 env->pc = addr;
465 env->npc = addr + 4;
466 #elif defined (TARGET_ARM)
467 env->regs[15] = addr;
468 #endif
470 #ifdef CONFIG_USER_ONLY
471 s->running_state = 1;
472 #else
473 vm_start();
474 #endif
475 return RS_IDLE;
476 case 's':
477 if (*p != '\0') {
478 addr = strtoul(p, (char **)&p, 16);
479 #if defined(TARGET_I386)
480 env->eip = addr;
481 #elif defined (TARGET_PPC)
482 env->nip = addr;
483 #elif defined (TARGET_SPARC)
484 env->pc = addr;
485 env->npc = addr + 4;
486 #elif defined (TARGET_ARM)
487 env->regs[15] = addr;
488 #endif
490 cpu_single_step(env, 1);
491 #ifdef CONFIG_USER_ONLY
492 s->running_state = 1;
493 #else
494 vm_start();
495 #endif
496 return RS_IDLE;
497 case 'g':
498 reg_size = cpu_gdb_read_registers(env, mem_buf);
499 memtohex(buf, mem_buf, reg_size);
500 put_packet(s, buf);
501 break;
502 case 'G':
503 registers = (void *)mem_buf;
504 len = strlen(p) / 2;
505 hextomem((uint8_t *)registers, p, len);
506 cpu_gdb_write_registers(env, mem_buf, len);
507 put_packet(s, "OK");
508 break;
509 case 'm':
510 addr = strtoul(p, (char **)&p, 16);
511 if (*p == ',')
512 p++;
513 len = strtoul(p, NULL, 16);
514 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0)
515 memset(mem_buf, 0, len);
516 memtohex(buf, mem_buf, len);
517 put_packet(s, buf);
518 break;
519 case 'M':
520 addr = strtoul(p, (char **)&p, 16);
521 if (*p == ',')
522 p++;
523 len = strtoul(p, (char **)&p, 16);
524 if (*p == ':')
525 p++;
526 hextomem(mem_buf, p, len);
527 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
528 put_packet(s, "E14");
529 else
530 put_packet(s, "OK");
531 break;
532 case 'Z':
533 type = strtoul(p, (char **)&p, 16);
534 if (*p == ',')
535 p++;
536 addr = strtoul(p, (char **)&p, 16);
537 if (*p == ',')
538 p++;
539 len = strtoul(p, (char **)&p, 16);
540 if (type == 0 || type == 1) {
541 if (cpu_breakpoint_insert(env, addr) < 0)
542 goto breakpoint_error;
543 put_packet(s, "OK");
544 } else {
545 breakpoint_error:
546 put_packet(s, "E22");
548 break;
549 case 'z':
550 type = strtoul(p, (char **)&p, 16);
551 if (*p == ',')
552 p++;
553 addr = strtoul(p, (char **)&p, 16);
554 if (*p == ',')
555 p++;
556 len = strtoul(p, (char **)&p, 16);
557 if (type == 0 || type == 1) {
558 cpu_breakpoint_remove(env, addr);
559 put_packet(s, "OK");
560 } else {
561 goto breakpoint_error;
563 break;
564 default:
565 // unknown_command:
566 /* put empty packet */
567 buf[0] = '\0';
568 put_packet(s, buf);
569 break;
571 return RS_IDLE;
574 extern void tb_flush(CPUState *env);
576 #ifndef CONFIG_USER_ONLY
577 static void gdb_vm_stopped(void *opaque, int reason)
579 GDBState *s = opaque;
580 char buf[256];
581 int ret;
583 /* disable single step if it was enable */
584 cpu_single_step(s->env, 0);
586 if (reason == EXCP_DEBUG) {
587 tb_flush(s->env);
588 ret = SIGTRAP;
590 else
591 ret = 0;
592 snprintf(buf, sizeof(buf), "S%02x", ret);
593 put_packet(s, buf);
595 #endif
597 static void gdb_read_byte(GDBState *s, int ch)
599 CPUState *env = s->env;
600 int i, csum;
601 char reply[1];
603 #ifndef CONFIG_USER_ONLY
604 if (vm_running) {
605 /* when the CPU is running, we cannot do anything except stop
606 it when receiving a char */
607 vm_stop(EXCP_INTERRUPT);
608 } else
609 #endif
611 switch(s->state) {
612 case RS_IDLE:
613 if (ch == '$') {
614 s->line_buf_index = 0;
615 s->state = RS_GETLINE;
617 break;
618 case RS_GETLINE:
619 if (ch == '#') {
620 s->state = RS_CHKSUM1;
621 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
622 s->state = RS_IDLE;
623 } else {
624 s->line_buf[s->line_buf_index++] = ch;
626 break;
627 case RS_CHKSUM1:
628 s->line_buf[s->line_buf_index] = '\0';
629 s->line_csum = fromhex(ch) << 4;
630 s->state = RS_CHKSUM2;
631 break;
632 case RS_CHKSUM2:
633 s->line_csum |= fromhex(ch);
634 csum = 0;
635 for(i = 0; i < s->line_buf_index; i++) {
636 csum += s->line_buf[i];
638 if (s->line_csum != (csum & 0xff)) {
639 reply[0] = '-';
640 put_buffer(s, reply, 1);
641 s->state = RS_IDLE;
642 } else {
643 reply[0] = '+';
644 put_buffer(s, reply, 1);
645 s->state = gdb_handle_packet(s, env, s->line_buf);
647 break;
652 #ifdef CONFIG_USER_ONLY
654 gdb_handlesig (CPUState *env, int sig)
656 GDBState *s;
657 char buf[256];
658 int n;
660 if (gdbserver_fd < 0)
661 return sig;
663 s = &gdbserver_state;
665 /* disable single step if it was enabled */
666 cpu_single_step(env, 0);
667 tb_flush(env);
669 if (sig != 0)
671 snprintf(buf, sizeof(buf), "S%02x", sig);
672 put_packet(s, buf);
675 sig = 0;
676 s->state = RS_IDLE;
677 s->running_state = 0;
678 while (s->running_state == 0) {
679 n = read (s->fd, buf, 256);
680 if (n > 0)
682 int i;
684 for (i = 0; i < n; i++)
685 gdb_read_byte (s, buf[i]);
687 else if (n == 0 || errno != EAGAIN)
689 /* XXX: Connection closed. Should probably wait for annother
690 connection before continuing. */
691 return sig;
694 return sig;
697 /* Tell the remote gdb that the process has exited. */
698 void gdb_exit(CPUState *env, int code)
700 GDBState *s;
701 char buf[4];
703 if (gdbserver_fd < 0)
704 return;
706 s = &gdbserver_state;
708 snprintf(buf, sizeof(buf), "W%02x", code);
709 put_packet(s, buf);
712 #else
713 static void gdb_read(void *opaque)
715 GDBState *s = opaque;
716 int i, size;
717 uint8_t buf[4096];
719 size = read(s->fd, buf, sizeof(buf));
720 if (size < 0)
721 return;
722 if (size == 0) {
723 /* end of connection */
724 qemu_del_vm_stop_handler(gdb_vm_stopped, s);
725 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
726 qemu_free(s);
727 vm_start();
728 } else {
729 for(i = 0; i < size; i++)
730 gdb_read_byte(s, buf[i]);
734 #endif
736 static void gdb_accept(void *opaque)
738 GDBState *s;
739 struct sockaddr_in sockaddr;
740 socklen_t len;
741 int val, fd;
743 for(;;) {
744 len = sizeof(sockaddr);
745 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
746 if (fd < 0 && errno != EINTR) {
747 perror("accept");
748 return;
749 } else if (fd >= 0) {
750 break;
754 /* set short latency */
755 val = 1;
756 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
758 #ifdef CONFIG_USER_ONLY
759 s = &gdbserver_state;
760 memset (s, 0, sizeof (GDBState));
761 #else
762 s = qemu_mallocz(sizeof(GDBState));
763 if (!s) {
764 close(fd);
765 return;
767 #endif
768 s->env = first_cpu; /* XXX: allow to change CPU */
769 s->fd = fd;
771 fcntl(fd, F_SETFL, O_NONBLOCK);
773 #ifndef CONFIG_USER_ONLY
774 /* stop the VM */
775 vm_stop(EXCP_INTERRUPT);
777 /* start handling I/O */
778 qemu_set_fd_handler(s->fd, gdb_read, NULL, s);
779 /* when the VM is stopped, the following callback is called */
780 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
781 #endif
784 static int gdbserver_open(int port)
786 struct sockaddr_in sockaddr;
787 int fd, val, ret;
789 fd = socket(PF_INET, SOCK_STREAM, 0);
790 if (fd < 0) {
791 perror("socket");
792 return -1;
795 /* allow fast reuse */
796 val = 1;
797 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
799 sockaddr.sin_family = AF_INET;
800 sockaddr.sin_port = htons(port);
801 sockaddr.sin_addr.s_addr = 0;
802 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
803 if (ret < 0) {
804 perror("bind");
805 return -1;
807 ret = listen(fd, 0);
808 if (ret < 0) {
809 perror("listen");
810 return -1;
812 #ifndef CONFIG_USER_ONLY
813 fcntl(fd, F_SETFL, O_NONBLOCK);
814 #endif
815 return fd;
818 int gdbserver_start(int port)
820 gdbserver_fd = gdbserver_open(port);
821 if (gdbserver_fd < 0)
822 return -1;
823 /* accept connections */
824 #ifdef CONFIG_USER_ONLY
825 gdb_accept (NULL);
826 #else
827 qemu_set_fd_handler(gdbserver_fd, gdb_accept, NULL, NULL);
828 #endif
829 return 0;