4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
72 #include "qemu/mmap-alloc.h"
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
85 static MemoryRegion
*system_memory
;
86 static MemoryRegion
*system_io
;
88 AddressSpace address_space_io
;
89 AddressSpace address_space_memory
;
91 MemoryRegion io_mem_rom
, io_mem_notdirty
;
92 static MemoryRegion io_mem_unassigned
;
95 #ifdef TARGET_PAGE_BITS_VARY
97 bool target_page_bits_decided
;
100 CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
102 /* current CPU in the current thread. It is only valid inside
104 __thread CPUState
*current_cpu
;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
110 uintptr_t qemu_host_page_size
;
111 intptr_t qemu_host_page_mask
;
113 bool set_preferred_target_page_bits(int bits
)
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits
>= TARGET_PAGE_BITS_MIN
);
122 if (target_page_bits
== 0 || target_page_bits
> bits
) {
123 if (target_page_bits_decided
) {
126 target_page_bits
= bits
;
132 #if !defined(CONFIG_USER_ONLY)
134 static void finalize_target_page_bits(void)
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits
== 0) {
138 target_page_bits
= TARGET_PAGE_BITS_MIN
;
140 target_page_bits_decided
= true;
144 typedef struct PhysPageEntry PhysPageEntry
;
146 struct PhysPageEntry
{
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
159 #define P_L2_SIZE (1 << P_L2_BITS)
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163 typedef PhysPageEntry Node
[P_L2_SIZE
];
165 typedef struct PhysPageMap
{
168 unsigned sections_nb
;
169 unsigned sections_nb_alloc
;
171 unsigned nodes_nb_alloc
;
173 MemoryRegionSection
*sections
;
176 struct AddressSpaceDispatch
{
177 MemoryRegionSection
*mru_section
;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
181 PhysPageEntry phys_map
;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t
{
190 uint16_t sub_section
[];
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_log_global_after_sync(MemoryListener
*listener
);
201 static void tcg_commit(MemoryListener
*listener
);
203 static MemoryRegion io_mem_watch
;
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
212 struct CPUAddressSpace
{
215 struct AddressSpaceDispatch
*memory_dispatch
;
216 MemoryListener tcg_as_listener
;
219 struct DirtyBitmapSnapshot
{
222 unsigned long dirty
[];
227 #if !defined(CONFIG_USER_ONLY)
229 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
231 static unsigned alloc_hint
= 16;
232 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
233 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
234 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
235 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
236 alloc_hint
= map
->nodes_nb_alloc
;
240 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
247 ret
= map
->nodes_nb
++;
249 assert(ret
!= PHYS_MAP_NODE_NIL
);
250 assert(ret
!= map
->nodes_nb_alloc
);
252 e
.skip
= leaf
? 0 : 1;
253 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
254 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
255 memcpy(&p
[i
], &e
, sizeof(e
));
260 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
261 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
265 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
267 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
268 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
270 p
= map
->nodes
[lp
->ptr
];
271 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
273 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
274 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
280 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
286 static void phys_page_set(AddressSpaceDispatch
*d
,
287 hwaddr index
, hwaddr nb
,
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
293 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
299 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
301 unsigned valid_ptr
= P_L2_SIZE
;
306 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
311 for (i
= 0; i
< P_L2_SIZE
; i
++) {
312 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
319 phys_page_compact(&p
[i
], nodes
);
323 /* We can only compress if there's only one child. */
328 assert(valid_ptr
< P_L2_SIZE
);
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
335 lp
->ptr
= p
[valid_ptr
].ptr
;
336 if (!p
[valid_ptr
].skip
) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
345 lp
->skip
+= p
[valid_ptr
].skip
;
349 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
351 if (d
->phys_map
.skip
) {
352 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
356 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
362 return int128_gethi(section
->size
) ||
363 range_covers_byte(section
->offset_within_address_space
,
364 int128_getlo(section
->size
), addr
);
367 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
369 PhysPageEntry lp
= d
->phys_map
, *p
;
370 Node
*nodes
= d
->map
.nodes
;
371 MemoryRegionSection
*sections
= d
->map
.sections
;
372 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
375 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
376 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
377 return §ions
[PHYS_SECTION_UNASSIGNED
];
380 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
383 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
384 return §ions
[lp
.ptr
];
386 return §ions
[PHYS_SECTION_UNASSIGNED
];
390 /* Called from RCU critical section */
391 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
393 bool resolve_subpage
)
395 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
398 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
399 !section_covers_addr(section
, addr
)) {
400 section
= phys_page_find(d
, addr
);
401 atomic_set(&d
->mru_section
, section
);
403 if (resolve_subpage
&& section
->mr
->subpage
) {
404 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
405 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
410 /* Called from RCU critical section */
411 static MemoryRegionSection
*
412 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
413 hwaddr
*plen
, bool resolve_subpage
)
415 MemoryRegionSection
*section
;
419 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
420 /* Compute offset within MemoryRegionSection */
421 addr
-= section
->offset_within_address_space
;
423 /* Compute offset within MemoryRegion */
424 *xlat
= addr
+ section
->offset_within_region
;
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
439 if (memory_region_is_ram(mr
)) {
440 diff
= int128_sub(section
->size
, int128_make64(addr
));
441 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
463 * @attrs: transaction attributes
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
468 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
471 hwaddr
*page_mask_out
,
474 AddressSpace
**target_as
,
477 MemoryRegionSection
*section
;
478 hwaddr page_mask
= (hwaddr
)-1;
482 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
486 if (imrc
->attrs_to_index
) {
487 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
490 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
491 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
493 if (!(iotlb
.perm
& (1 << is_write
))) {
497 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
498 | (addr
& iotlb
.addr_mask
));
499 page_mask
&= iotlb
.addr_mask
;
500 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
501 *target_as
= iotlb
.target_as
;
503 section
= address_space_translate_internal(
504 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
507 iommu_mr
= memory_region_get_iommu(section
->mr
);
508 } while (unlikely(iommu_mr
));
511 *page_mask_out
= page_mask
;
516 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
520 * flatview_do_translate - translate an address in FlatView
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
534 * @target_as: the address space targeted by the IOMMU
535 * @attrs: memory transaction attributes
537 * This function is called from RCU critical section
539 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
543 hwaddr
*page_mask_out
,
546 AddressSpace
**target_as
,
549 MemoryRegionSection
*section
;
550 IOMMUMemoryRegion
*iommu_mr
;
551 hwaddr plen
= (hwaddr
)(-1);
557 section
= address_space_translate_internal(
558 flatview_to_dispatch(fv
), addr
, xlat
,
561 iommu_mr
= memory_region_get_iommu(section
->mr
);
562 if (unlikely(iommu_mr
)) {
563 return address_space_translate_iommu(iommu_mr
, xlat
,
564 plen_out
, page_mask_out
,
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out
= ~TARGET_PAGE_MASK
;
576 /* Called from RCU critical section */
577 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
578 bool is_write
, MemTxAttrs attrs
)
580 MemoryRegionSection section
;
581 hwaddr xlat
, page_mask
;
584 * This can never be MMIO, and we don't really care about plen,
587 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
588 NULL
, &page_mask
, is_write
, false, &as
,
591 /* Illegal translation */
592 if (section
.mr
== &io_mem_unassigned
) {
596 /* Convert memory region offset into address space offset */
597 xlat
+= section
.offset_within_address_space
-
598 section
.offset_within_region
;
600 return (IOMMUTLBEntry
) {
602 .iova
= addr
& ~page_mask
,
603 .translated_addr
= xlat
& ~page_mask
,
604 .addr_mask
= page_mask
,
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
610 return (IOMMUTLBEntry
) {0};
613 /* Called from RCU critical section */
614 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
615 hwaddr
*plen
, bool is_write
,
619 MemoryRegionSection section
;
620 AddressSpace
*as
= NULL
;
622 /* This can be MMIO, so setup MMIO bit. */
623 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
624 is_write
, true, &as
, attrs
);
627 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
628 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
629 *plen
= MIN(page
, *plen
);
635 typedef struct TCGIOMMUNotifier
{
643 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
645 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
647 if (!notifier
->active
) {
650 tlb_flush(notifier
->cpu
);
651 notifier
->active
= false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
659 static void tcg_register_iommu_notifier(CPUState
*cpu
,
660 IOMMUMemoryRegion
*iommu_mr
,
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
667 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
668 TCGIOMMUNotifier
*notifier
;
671 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
672 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
673 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
677 if (i
== cpu
->iommu_notifiers
->len
) {
678 /* Not found, add a new entry at the end of the array */
679 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
680 notifier
= g_new0(TCGIOMMUNotifier
, 1);
681 g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
) = notifier
;
684 notifier
->iommu_idx
= iommu_idx
;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
692 iommu_notifier_init(¬ifier
->n
,
693 tcg_iommu_unmap_notify
,
694 IOMMU_NOTIFIER_UNMAP
,
698 memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
701 if (!notifier
->active
) {
702 notifier
->active
= true;
706 static void tcg_iommu_free_notifier_list(CPUState
*cpu
)
708 /* Destroy the CPU's notifier list */
710 TCGIOMMUNotifier
*notifier
;
712 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
713 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
714 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
717 g_array_free(cpu
->iommu_notifiers
, true);
720 /* Called from RCU critical section */
721 MemoryRegionSection
*
722 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
723 hwaddr
*xlat
, hwaddr
*plen
,
724 MemTxAttrs attrs
, int *prot
)
726 MemoryRegionSection
*section
;
727 IOMMUMemoryRegion
*iommu_mr
;
728 IOMMUMemoryRegionClass
*imrc
;
731 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
734 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
736 iommu_mr
= memory_region_get_iommu(section
->mr
);
741 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
743 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
744 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
748 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
749 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
750 | (addr
& iotlb
.addr_mask
));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
755 if (!(iotlb
.perm
& IOMMU_RO
)) {
756 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
758 if (!(iotlb
.perm
& IOMMU_WO
)) {
759 *prot
&= ~PAGE_WRITE
;
766 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
769 assert(!memory_region_is_iommu(section
->mr
));
774 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
778 #if !defined(CONFIG_USER_ONLY)
780 static int cpu_common_post_load(void *opaque
, int version_id
)
782 CPUState
*cpu
= opaque
;
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu
->interrupt_request
&= ~0x01;
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
799 static int cpu_common_pre_load(void *opaque
)
801 CPUState
*cpu
= opaque
;
803 cpu
->exception_index
= -1;
808 static bool cpu_common_exception_index_needed(void *opaque
)
810 CPUState
*cpu
= opaque
;
812 return tcg_enabled() && cpu
->exception_index
!= -1;
815 static const VMStateDescription vmstate_cpu_common_exception_index
= {
816 .name
= "cpu_common/exception_index",
818 .minimum_version_id
= 1,
819 .needed
= cpu_common_exception_index_needed
,
820 .fields
= (VMStateField
[]) {
821 VMSTATE_INT32(exception_index
, CPUState
),
822 VMSTATE_END_OF_LIST()
826 static bool cpu_common_crash_occurred_needed(void *opaque
)
828 CPUState
*cpu
= opaque
;
830 return cpu
->crash_occurred
;
833 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
834 .name
= "cpu_common/crash_occurred",
836 .minimum_version_id
= 1,
837 .needed
= cpu_common_crash_occurred_needed
,
838 .fields
= (VMStateField
[]) {
839 VMSTATE_BOOL(crash_occurred
, CPUState
),
840 VMSTATE_END_OF_LIST()
844 const VMStateDescription vmstate_cpu_common
= {
845 .name
= "cpu_common",
847 .minimum_version_id
= 1,
848 .pre_load
= cpu_common_pre_load
,
849 .post_load
= cpu_common_post_load
,
850 .fields
= (VMStateField
[]) {
851 VMSTATE_UINT32(halted
, CPUState
),
852 VMSTATE_UINT32(interrupt_request
, CPUState
),
853 VMSTATE_END_OF_LIST()
855 .subsections
= (const VMStateDescription
*[]) {
856 &vmstate_cpu_common_exception_index
,
857 &vmstate_cpu_common_crash_occurred
,
864 CPUState
*qemu_get_cpu(int index
)
869 if (cpu
->cpu_index
== index
) {
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
879 const char *prefix
, MemoryRegion
*mr
)
881 CPUAddressSpace
*newas
;
882 AddressSpace
*as
= g_new0(AddressSpace
, 1);
886 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
887 address_space_init(as
, mr
, as_name
);
890 /* Target code should have set num_ases before calling us */
891 assert(asidx
< cpu
->num_ases
);
894 /* address space 0 gets the convenience alias */
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx
== 0 || !kvm_enabled());
901 if (!cpu
->cpu_ases
) {
902 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
905 newas
= &cpu
->cpu_ases
[asidx
];
909 newas
->tcg_as_listener
.log_global_after_sync
= tcg_log_global_after_sync
;
910 newas
->tcg_as_listener
.commit
= tcg_commit
;
911 memory_listener_register(&newas
->tcg_as_listener
, as
);
915 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu
->cpu_ases
[asidx
].as
;
922 void cpu_exec_unrealizefn(CPUState
*cpu
)
924 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
926 cpu_list_remove(cpu
);
928 if (cc
->vmsd
!= NULL
) {
929 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
931 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
932 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
934 #ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu
);
939 Property cpu_common_props
[] = {
940 #ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
947 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
950 DEFINE_PROP_END_OF_LIST(),
953 void cpu_exec_initfn(CPUState
*cpu
)
958 #ifndef CONFIG_USER_ONLY
959 cpu
->thread_id
= qemu_get_thread_id();
960 cpu
->memory
= system_memory
;
961 object_ref(OBJECT(cpu
->memory
));
965 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
967 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
968 static bool tcg_target_initialized
;
972 if (tcg_enabled() && !tcg_target_initialized
) {
973 tcg_target_initialized
= true;
974 cc
->tcg_initialize();
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
980 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
982 if (cc
->vmsd
!= NULL
) {
983 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
986 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
*));
990 const char *parse_cpu_option(const char *cpu_option
)
994 gchar
**model_pieces
;
995 const char *cpu_type
;
997 model_pieces
= g_strsplit(cpu_option
, ",", 2);
998 if (!model_pieces
[0]) {
999 error_report("-cpu option cannot be empty");
1003 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
1005 error_report("unable to find CPU model '%s'", model_pieces
[0]);
1006 g_strfreev(model_pieces
);
1010 cpu_type
= object_class_get_name(oc
);
1012 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
1013 g_strfreev(model_pieces
);
1017 #if defined(CONFIG_USER_ONLY)
1018 void tb_invalidate_phys_addr(target_ulong addr
)
1021 tb_invalidate_phys_page_range(addr
, addr
+ 1, 0);
1025 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1027 tb_invalidate_phys_addr(pc
);
1030 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
)
1032 ram_addr_t ram_addr
;
1036 if (!tcg_enabled()) {
1041 mr
= address_space_translate(as
, addr
, &addr
, &l
, false, attrs
);
1042 if (!(memory_region_is_ram(mr
)
1043 || memory_region_is_romd(mr
))) {
1047 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1048 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1052 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1055 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
1056 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
1060 phys
| (pc
& ~TARGET_PAGE_MASK
), attrs
);
1065 #if defined(CONFIG_USER_ONLY)
1066 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1071 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1077 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1081 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1082 int flags
, CPUWatchpoint
**watchpoint
)
1087 /* Add a watchpoint. */
1088 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1089 int flags
, CPUWatchpoint
**watchpoint
)
1093 /* forbid ranges which are empty or run off the end of the address space */
1094 if (len
== 0 || (addr
+ len
- 1) < addr
) {
1095 error_report("tried to set invalid watchpoint at %"
1096 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
1099 wp
= g_malloc(sizeof(*wp
));
1105 /* keep all GDB-injected watchpoints in front */
1106 if (flags
& BP_GDB
) {
1107 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
1109 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
1112 tlb_flush_page(cpu
, addr
);
1119 /* Remove a specific watchpoint. */
1120 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1125 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1126 if (addr
== wp
->vaddr
&& len
== wp
->len
1127 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1128 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1135 /* Remove a specific watchpoint by reference. */
1136 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1138 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
1140 tlb_flush_page(cpu
, watchpoint
->vaddr
);
1145 /* Remove all matching watchpoints. */
1146 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1148 CPUWatchpoint
*wp
, *next
;
1150 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1151 if (wp
->flags
& mask
) {
1152 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1157 /* Return true if this watchpoint address matches the specified
1158 * access (ie the address range covered by the watchpoint overlaps
1159 * partially or completely with the address range covered by the
1162 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1166 /* We know the lengths are non-zero, but a little caution is
1167 * required to avoid errors in the case where the range ends
1168 * exactly at the top of the address space and so addr + len
1169 * wraps round to zero.
1171 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1172 vaddr addrend
= addr
+ len
- 1;
1174 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1179 /* Add a breakpoint. */
1180 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1181 CPUBreakpoint
**breakpoint
)
1185 bp
= g_malloc(sizeof(*bp
));
1190 /* keep all GDB-injected breakpoints in front */
1191 if (flags
& BP_GDB
) {
1192 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1194 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1197 breakpoint_invalidate(cpu
, pc
);
1205 /* Remove a specific breakpoint. */
1206 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1210 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1211 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1212 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1219 /* Remove a specific breakpoint by reference. */
1220 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1222 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1224 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1229 /* Remove all matching breakpoints. */
1230 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1232 CPUBreakpoint
*bp
, *next
;
1234 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1235 if (bp
->flags
& mask
) {
1236 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1241 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1242 CPU loop after each instruction */
1243 void cpu_single_step(CPUState
*cpu
, int enabled
)
1245 if (cpu
->singlestep_enabled
!= enabled
) {
1246 cpu
->singlestep_enabled
= enabled
;
1247 if (kvm_enabled()) {
1248 kvm_update_guest_debug(cpu
, 0);
1250 /* must flush all the translated code to avoid inconsistencies */
1251 /* XXX: only flush what is necessary */
1257 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1264 fprintf(stderr
, "qemu: fatal: ");
1265 vfprintf(stderr
, fmt
, ap
);
1266 fprintf(stderr
, "\n");
1267 cpu_dump_state(cpu
, stderr
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1268 if (qemu_log_separate()) {
1270 qemu_log("qemu: fatal: ");
1271 qemu_log_vprintf(fmt
, ap2
);
1273 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1281 #if defined(CONFIG_USER_ONLY)
1283 struct sigaction act
;
1284 sigfillset(&act
.sa_mask
);
1285 act
.sa_handler
= SIG_DFL
;
1287 sigaction(SIGABRT
, &act
, NULL
);
1293 #if !defined(CONFIG_USER_ONLY)
1294 /* Called from RCU critical section */
1295 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1299 block
= atomic_rcu_read(&ram_list
.mru_block
);
1300 if (block
&& addr
- block
->offset
< block
->max_length
) {
1303 RAMBLOCK_FOREACH(block
) {
1304 if (addr
- block
->offset
< block
->max_length
) {
1309 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1313 /* It is safe to write mru_block outside the iothread lock. This
1318 * xxx removed from list
1322 * call_rcu(reclaim_ramblock, xxx);
1325 * atomic_rcu_set is not needed here. The block was already published
1326 * when it was placed into the list. Here we're just making an extra
1327 * copy of the pointer.
1329 ram_list
.mru_block
= block
;
1333 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1340 assert(tcg_enabled());
1341 end
= TARGET_PAGE_ALIGN(start
+ length
);
1342 start
&= TARGET_PAGE_MASK
;
1345 block
= qemu_get_ram_block(start
);
1346 assert(block
== qemu_get_ram_block(end
- 1));
1347 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1349 tlb_reset_dirty(cpu
, start1
, length
);
1354 /* Note: start and end must be within the same ram block. */
1355 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1359 DirtyMemoryBlocks
*blocks
;
1360 unsigned long end
, page
;
1363 uint64_t mr_offset
, mr_size
;
1369 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1370 page
= start
>> TARGET_PAGE_BITS
;
1374 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1375 ramblock
= qemu_get_ram_block(start
);
1376 /* Range sanity check on the ramblock */
1377 assert(start
>= ramblock
->offset
&&
1378 start
+ length
<= ramblock
->offset
+ ramblock
->used_length
);
1380 while (page
< end
) {
1381 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1382 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1383 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1385 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1390 mr_offset
= (ram_addr_t
)(page
<< TARGET_PAGE_BITS
) - ramblock
->offset
;
1391 mr_size
= (end
- page
) << TARGET_PAGE_BITS
;
1392 memory_region_clear_dirty_bitmap(ramblock
->mr
, mr_offset
, mr_size
);
1396 if (dirty
&& tcg_enabled()) {
1397 tlb_reset_dirty_range_all(start
, length
);
1403 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1404 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
)
1406 DirtyMemoryBlocks
*blocks
;
1407 ram_addr_t start
= memory_region_get_ram_addr(mr
) + offset
;
1408 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1409 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1410 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1411 DirtyBitmapSnapshot
*snap
;
1412 unsigned long page
, end
, dest
;
1414 snap
= g_malloc0(sizeof(*snap
) +
1415 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1416 snap
->start
= first
;
1419 page
= first
>> TARGET_PAGE_BITS
;
1420 end
= last
>> TARGET_PAGE_BITS
;
1425 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1427 while (page
< end
) {
1428 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1429 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1430 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1432 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1433 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1434 offset
>>= BITS_PER_LEVEL
;
1436 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1437 blocks
->blocks
[idx
] + offset
,
1440 dest
+= num
>> BITS_PER_LEVEL
;
1445 if (tcg_enabled()) {
1446 tlb_reset_dirty_range_all(start
, length
);
1449 memory_region_clear_dirty_bitmap(mr
, offset
, length
);
1454 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1458 unsigned long page
, end
;
1460 assert(start
>= snap
->start
);
1461 assert(start
+ length
<= snap
->end
);
1463 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1464 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1466 while (page
< end
) {
1467 if (test_bit(page
, snap
->dirty
)) {
1475 /* Called from RCU critical section */
1476 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1477 MemoryRegionSection
*section
,
1479 hwaddr paddr
, hwaddr xlat
,
1481 target_ulong
*address
)
1486 if (memory_region_is_ram(section
->mr
)) {
1488 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1489 if (!section
->readonly
) {
1490 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1492 iotlb
|= PHYS_SECTION_ROM
;
1495 AddressSpaceDispatch
*d
;
1497 d
= flatview_to_dispatch(section
->fv
);
1498 iotlb
= section
- d
->map
.sections
;
1502 /* Make accesses to pages with watchpoints go via the
1503 watchpoint trap routines. */
1504 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1505 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1506 /* Avoid trapping reads of pages with a write breakpoint. */
1507 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1508 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1509 *address
|= TLB_MMIO
;
1517 #endif /* defined(CONFIG_USER_ONLY) */
1519 #if !defined(CONFIG_USER_ONLY)
1521 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1523 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1525 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1526 qemu_anon_ram_alloc
;
1529 * Set a custom physical guest memory alloator.
1530 * Accelerators with unusual needs may need this. Hopefully, we can
1531 * get rid of it eventually.
1533 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1535 phys_mem_alloc
= alloc
;
1538 static uint16_t phys_section_add(PhysPageMap
*map
,
1539 MemoryRegionSection
*section
)
1541 /* The physical section number is ORed with a page-aligned
1542 * pointer to produce the iotlb entries. Thus it should
1543 * never overflow into the page-aligned value.
1545 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1547 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1548 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1549 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1550 map
->sections_nb_alloc
);
1552 map
->sections
[map
->sections_nb
] = *section
;
1553 memory_region_ref(section
->mr
);
1554 return map
->sections_nb
++;
1557 static void phys_section_destroy(MemoryRegion
*mr
)
1559 bool have_sub_page
= mr
->subpage
;
1561 memory_region_unref(mr
);
1563 if (have_sub_page
) {
1564 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1565 object_unref(OBJECT(&subpage
->iomem
));
1570 static void phys_sections_free(PhysPageMap
*map
)
1572 while (map
->sections_nb
> 0) {
1573 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1574 phys_section_destroy(section
->mr
);
1576 g_free(map
->sections
);
1580 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1582 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1584 hwaddr base
= section
->offset_within_address_space
1586 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1587 MemoryRegionSection subsection
= {
1588 .offset_within_address_space
= base
,
1589 .size
= int128_make64(TARGET_PAGE_SIZE
),
1593 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1595 if (!(existing
->mr
->subpage
)) {
1596 subpage
= subpage_init(fv
, base
);
1598 subsection
.mr
= &subpage
->iomem
;
1599 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1600 phys_section_add(&d
->map
, &subsection
));
1602 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1604 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1605 end
= start
+ int128_get64(section
->size
) - 1;
1606 subpage_register(subpage
, start
, end
,
1607 phys_section_add(&d
->map
, section
));
1611 static void register_multipage(FlatView
*fv
,
1612 MemoryRegionSection
*section
)
1614 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1615 hwaddr start_addr
= section
->offset_within_address_space
;
1616 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1617 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1621 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1625 * The range in *section* may look like this:
1629 * where s stands for subpage and P for page.
1631 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1633 MemoryRegionSection remain
= *section
;
1634 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1636 /* register first subpage */
1637 if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1638 uint64_t left
= TARGET_PAGE_ALIGN(remain
.offset_within_address_space
)
1639 - remain
.offset_within_address_space
;
1641 MemoryRegionSection now
= remain
;
1642 now
.size
= int128_min(int128_make64(left
), now
.size
);
1643 register_subpage(fv
, &now
);
1644 if (int128_eq(remain
.size
, now
.size
)) {
1647 remain
.size
= int128_sub(remain
.size
, now
.size
);
1648 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1649 remain
.offset_within_region
+= int128_get64(now
.size
);
1652 /* register whole pages */
1653 if (int128_ge(remain
.size
, page_size
)) {
1654 MemoryRegionSection now
= remain
;
1655 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1656 register_multipage(fv
, &now
);
1657 if (int128_eq(remain
.size
, now
.size
)) {
1660 remain
.size
= int128_sub(remain
.size
, now
.size
);
1661 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1662 remain
.offset_within_region
+= int128_get64(now
.size
);
1665 /* register last subpage */
1666 register_subpage(fv
, &remain
);
1669 void qemu_flush_coalesced_mmio_buffer(void)
1672 kvm_flush_coalesced_mmio_buffer();
1675 void qemu_mutex_lock_ramlist(void)
1677 qemu_mutex_lock(&ram_list
.mutex
);
1680 void qemu_mutex_unlock_ramlist(void)
1682 qemu_mutex_unlock(&ram_list
.mutex
);
1685 void ram_block_dump(Monitor
*mon
)
1691 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1692 "Block Name", "PSize", "Offset", "Used", "Total");
1693 RAMBLOCK_FOREACH(block
) {
1694 psize
= size_to_str(block
->page_size
);
1695 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1696 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1697 (uint64_t)block
->offset
,
1698 (uint64_t)block
->used_length
,
1699 (uint64_t)block
->max_length
);
1707 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1708 * may or may not name the same files / on the same filesystem now as
1709 * when we actually open and map them. Iterate over the file
1710 * descriptors instead, and use qemu_fd_getpagesize().
1712 static int find_min_backend_pagesize(Object
*obj
, void *opaque
)
1714 long *hpsize_min
= opaque
;
1716 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1717 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1718 long hpsize
= host_memory_backend_pagesize(backend
);
1720 if (host_memory_backend_is_mapped(backend
) && (hpsize
< *hpsize_min
)) {
1721 *hpsize_min
= hpsize
;
1728 static int find_max_backend_pagesize(Object
*obj
, void *opaque
)
1730 long *hpsize_max
= opaque
;
1732 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1733 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1734 long hpsize
= host_memory_backend_pagesize(backend
);
1736 if (host_memory_backend_is_mapped(backend
) && (hpsize
> *hpsize_max
)) {
1737 *hpsize_max
= hpsize
;
1745 * TODO: We assume right now that all mapped host memory backends are
1746 * used as RAM, however some might be used for different purposes.
1748 long qemu_minrampagesize(void)
1750 long hpsize
= LONG_MAX
;
1751 long mainrampagesize
;
1752 Object
*memdev_root
;
1754 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1756 /* it's possible we have memory-backend objects with
1757 * hugepage-backed RAM. these may get mapped into system
1758 * address space via -numa parameters or memory hotplug
1759 * hooks. we want to take these into account, but we
1760 * also want to make sure these supported hugepage
1761 * sizes are applicable across the entire range of memory
1762 * we may boot from, so we take the min across all
1763 * backends, and assume normal pages in cases where a
1764 * backend isn't backed by hugepages.
1766 memdev_root
= object_resolve_path("/objects", NULL
);
1768 object_child_foreach(memdev_root
, find_min_backend_pagesize
, &hpsize
);
1770 if (hpsize
== LONG_MAX
) {
1771 /* No additional memory regions found ==> Report main RAM page size */
1772 return mainrampagesize
;
1775 /* If NUMA is disabled or the NUMA nodes are not backed with a
1776 * memory-backend, then there is at least one node using "normal" RAM,
1777 * so if its page size is smaller we have got to report that size instead.
1779 if (hpsize
> mainrampagesize
&&
1780 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1783 error_report("Huge page support disabled (n/a for main memory).");
1786 return mainrampagesize
;
1792 long qemu_maxrampagesize(void)
1794 long pagesize
= qemu_mempath_getpagesize(mem_path
);
1795 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1798 object_child_foreach(memdev_root
, find_max_backend_pagesize
,
1804 long qemu_minrampagesize(void)
1806 return getpagesize();
1808 long qemu_maxrampagesize(void)
1810 return getpagesize();
1815 static int64_t get_file_size(int fd
)
1817 int64_t size
= lseek(fd
, 0, SEEK_END
);
1824 static int file_ram_open(const char *path
,
1825 const char *region_name
,
1830 char *sanitized_name
;
1836 fd
= open(path
, O_RDWR
);
1838 /* @path names an existing file, use it */
1841 if (errno
== ENOENT
) {
1842 /* @path names a file that doesn't exist, create it */
1843 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1848 } else if (errno
== EISDIR
) {
1849 /* @path names a directory, create a file there */
1850 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1851 sanitized_name
= g_strdup(region_name
);
1852 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1858 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1860 g_free(sanitized_name
);
1862 fd
= mkstemp(filename
);
1870 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1871 error_setg_errno(errp
, errno
,
1872 "can't open backing store %s for guest RAM",
1877 * Try again on EINTR and EEXIST. The latter happens when
1878 * something else creates the file between our two open().
1885 static void *file_ram_alloc(RAMBlock
*block
,
1891 MachineState
*ms
= MACHINE(qdev_get_machine());
1894 block
->page_size
= qemu_fd_getpagesize(fd
);
1895 if (block
->mr
->align
% block
->page_size
) {
1896 error_setg(errp
, "alignment 0x%" PRIx64
1897 " must be multiples of page size 0x%zx",
1898 block
->mr
->align
, block
->page_size
);
1900 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1901 error_setg(errp
, "alignment 0x%" PRIx64
1902 " must be a power of two", block
->mr
->align
);
1905 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1906 #if defined(__s390x__)
1907 if (kvm_enabled()) {
1908 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1912 if (memory
< block
->page_size
) {
1913 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1914 "or larger than page size 0x%zx",
1915 memory
, block
->page_size
);
1919 memory
= ROUND_UP(memory
, block
->page_size
);
1922 * ftruncate is not supported by hugetlbfs in older
1923 * hosts, so don't bother bailing out on errors.
1924 * If anything goes wrong with it under other filesystems,
1927 * Do not truncate the non-empty backend file to avoid corrupting
1928 * the existing data in the file. Disabling shrinking is not
1929 * enough. For example, the current vNVDIMM implementation stores
1930 * the guest NVDIMM labels at the end of the backend file. If the
1931 * backend file is later extended, QEMU will not be able to find
1932 * those labels. Therefore, extending the non-empty backend file
1933 * is disabled as well.
1935 if (truncate
&& ftruncate(fd
, memory
)) {
1936 perror("ftruncate");
1939 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1940 block
->flags
& RAM_SHARED
, block
->flags
& RAM_PMEM
);
1941 if (area
== MAP_FAILED
) {
1942 error_setg_errno(errp
, errno
,
1943 "unable to map backing store for guest RAM");
1948 os_mem_prealloc(fd
, area
, memory
, ms
->smp
.cpus
, errp
);
1949 if (errp
&& *errp
) {
1950 qemu_ram_munmap(fd
, area
, memory
);
1960 /* Allocate space within the ram_addr_t space that governs the
1962 * Called with the ramlist lock held.
1964 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1966 RAMBlock
*block
, *next_block
;
1967 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1969 assert(size
!= 0); /* it would hand out same offset multiple times */
1971 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1975 RAMBLOCK_FOREACH(block
) {
1976 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1978 /* Align blocks to start on a 'long' in the bitmap
1979 * which makes the bitmap sync'ing take the fast path.
1981 candidate
= block
->offset
+ block
->max_length
;
1982 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1984 /* Search for the closest following block
1987 RAMBLOCK_FOREACH(next_block
) {
1988 if (next_block
->offset
>= candidate
) {
1989 next
= MIN(next
, next_block
->offset
);
1993 /* If it fits remember our place and remember the size
1994 * of gap, but keep going so that we might find a smaller
1995 * gap to fill so avoiding fragmentation.
1997 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1999 mingap
= next
- candidate
;
2002 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
2005 if (offset
== RAM_ADDR_MAX
) {
2006 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2011 trace_find_ram_offset(size
, offset
);
2016 static unsigned long last_ram_page(void)
2019 ram_addr_t last
= 0;
2022 RAMBLOCK_FOREACH(block
) {
2023 last
= MAX(last
, block
->offset
+ block
->max_length
);
2026 return last
>> TARGET_PAGE_BITS
;
2029 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
2033 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2034 if (!machine_dump_guest_core(current_machine
)) {
2035 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
2037 perror("qemu_madvise");
2038 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
2039 "but dump_guest_core=off specified\n");
2044 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
2049 void *qemu_ram_get_host_addr(RAMBlock
*rb
)
2054 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
)
2059 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
)
2061 return rb
->used_length
;
2064 bool qemu_ram_is_shared(RAMBlock
*rb
)
2066 return rb
->flags
& RAM_SHARED
;
2069 /* Note: Only set at the start of postcopy */
2070 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
2072 return rb
->flags
& RAM_UF_ZEROPAGE
;
2075 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
2077 rb
->flags
|= RAM_UF_ZEROPAGE
;
2080 bool qemu_ram_is_migratable(RAMBlock
*rb
)
2082 return rb
->flags
& RAM_MIGRATABLE
;
2085 void qemu_ram_set_migratable(RAMBlock
*rb
)
2087 rb
->flags
|= RAM_MIGRATABLE
;
2090 void qemu_ram_unset_migratable(RAMBlock
*rb
)
2092 rb
->flags
&= ~RAM_MIGRATABLE
;
2095 /* Called with iothread lock held. */
2096 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
2101 assert(!new_block
->idstr
[0]);
2104 char *id
= qdev_get_dev_path(dev
);
2106 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2110 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2113 RAMBLOCK_FOREACH(block
) {
2114 if (block
!= new_block
&&
2115 !strcmp(block
->idstr
, new_block
->idstr
)) {
2116 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2124 /* Called with iothread lock held. */
2125 void qemu_ram_unset_idstr(RAMBlock
*block
)
2127 /* FIXME: arch_init.c assumes that this is not called throughout
2128 * migration. Ignore the problem since hot-unplug during migration
2129 * does not work anyway.
2132 memset(block
->idstr
, 0, sizeof(block
->idstr
));
2136 size_t qemu_ram_pagesize(RAMBlock
*rb
)
2138 return rb
->page_size
;
2141 /* Returns the largest size of page in use */
2142 size_t qemu_ram_pagesize_largest(void)
2147 RAMBLOCK_FOREACH(block
) {
2148 largest
= MAX(largest
, qemu_ram_pagesize(block
));
2154 static int memory_try_enable_merging(void *addr
, size_t len
)
2156 if (!machine_mem_merge(current_machine
)) {
2157 /* disabled by the user */
2161 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2164 /* Only legal before guest might have detected the memory size: e.g. on
2165 * incoming migration, or right after reset.
2167 * As memory core doesn't know how is memory accessed, it is up to
2168 * resize callback to update device state and/or add assertions to detect
2169 * misuse, if necessary.
2171 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
2175 newsize
= HOST_PAGE_ALIGN(newsize
);
2177 if (block
->used_length
== newsize
) {
2181 if (!(block
->flags
& RAM_RESIZEABLE
)) {
2182 error_setg_errno(errp
, EINVAL
,
2183 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2184 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
2185 newsize
, block
->used_length
);
2189 if (block
->max_length
< newsize
) {
2190 error_setg_errno(errp
, EINVAL
,
2191 "Length too large: %s: 0x" RAM_ADDR_FMT
2192 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
2193 newsize
, block
->max_length
);
2197 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
2198 block
->used_length
= newsize
;
2199 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
2201 memory_region_set_size(block
->mr
, newsize
);
2202 if (block
->resized
) {
2203 block
->resized(block
->idstr
, newsize
, block
->host
);
2208 /* Called with ram_list.mutex held */
2209 static void dirty_memory_extend(ram_addr_t old_ram_size
,
2210 ram_addr_t new_ram_size
)
2212 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
2213 DIRTY_MEMORY_BLOCK_SIZE
);
2214 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
2215 DIRTY_MEMORY_BLOCK_SIZE
);
2218 /* Only need to extend if block count increased */
2219 if (new_num_blocks
<= old_num_blocks
) {
2223 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
2224 DirtyMemoryBlocks
*old_blocks
;
2225 DirtyMemoryBlocks
*new_blocks
;
2228 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
2229 new_blocks
= g_malloc(sizeof(*new_blocks
) +
2230 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
2232 if (old_num_blocks
) {
2233 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
2234 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2237 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2238 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2241 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2244 g_free_rcu(old_blocks
, rcu
);
2249 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2252 RAMBlock
*last_block
= NULL
;
2253 ram_addr_t old_ram_size
, new_ram_size
;
2256 old_ram_size
= last_ram_page();
2258 qemu_mutex_lock_ramlist();
2259 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2261 if (!new_block
->host
) {
2262 if (xen_enabled()) {
2263 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2264 new_block
->mr
, &err
);
2266 error_propagate(errp
, err
);
2267 qemu_mutex_unlock_ramlist();
2271 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2272 &new_block
->mr
->align
, shared
);
2273 if (!new_block
->host
) {
2274 error_setg_errno(errp
, errno
,
2275 "cannot set up guest memory '%s'",
2276 memory_region_name(new_block
->mr
));
2277 qemu_mutex_unlock_ramlist();
2280 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2284 new_ram_size
= MAX(old_ram_size
,
2285 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2286 if (new_ram_size
> old_ram_size
) {
2287 dirty_memory_extend(old_ram_size
, new_ram_size
);
2289 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2290 * QLIST (which has an RCU-friendly variant) does not have insertion at
2291 * tail, so save the last element in last_block.
2293 RAMBLOCK_FOREACH(block
) {
2295 if (block
->max_length
< new_block
->max_length
) {
2300 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2301 } else if (last_block
) {
2302 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2303 } else { /* list is empty */
2304 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2306 ram_list
.mru_block
= NULL
;
2308 /* Write list before version */
2311 qemu_mutex_unlock_ramlist();
2313 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2314 new_block
->used_length
,
2317 if (new_block
->host
) {
2318 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2319 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2320 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2321 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2322 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2327 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2328 uint32_t ram_flags
, int fd
,
2331 RAMBlock
*new_block
;
2332 Error
*local_err
= NULL
;
2335 /* Just support these ram flags by now. */
2336 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
)) == 0);
2338 if (xen_enabled()) {
2339 error_setg(errp
, "-mem-path not supported with Xen");
2343 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2345 "host lacks kvm mmu notifiers, -mem-path unsupported");
2349 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2351 * file_ram_alloc() needs to allocate just like
2352 * phys_mem_alloc, but we haven't bothered to provide
2356 "-mem-path not supported with this accelerator");
2360 size
= HOST_PAGE_ALIGN(size
);
2361 file_size
= get_file_size(fd
);
2362 if (file_size
> 0 && file_size
< size
) {
2363 error_setg(errp
, "backing store %s size 0x%" PRIx64
2364 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2365 mem_path
, file_size
, size
);
2369 new_block
= g_malloc0(sizeof(*new_block
));
2371 new_block
->used_length
= size
;
2372 new_block
->max_length
= size
;
2373 new_block
->flags
= ram_flags
;
2374 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2375 if (!new_block
->host
) {
2380 ram_block_add(new_block
, &local_err
, ram_flags
& RAM_SHARED
);
2383 error_propagate(errp
, local_err
);
2391 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2392 uint32_t ram_flags
, const char *mem_path
,
2399 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2404 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, errp
);
2418 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2419 void (*resized
)(const char*,
2422 void *host
, bool resizeable
, bool share
,
2423 MemoryRegion
*mr
, Error
**errp
)
2425 RAMBlock
*new_block
;
2426 Error
*local_err
= NULL
;
2428 size
= HOST_PAGE_ALIGN(size
);
2429 max_size
= HOST_PAGE_ALIGN(max_size
);
2430 new_block
= g_malloc0(sizeof(*new_block
));
2432 new_block
->resized
= resized
;
2433 new_block
->used_length
= size
;
2434 new_block
->max_length
= max_size
;
2435 assert(max_size
>= size
);
2437 new_block
->page_size
= getpagesize();
2438 new_block
->host
= host
;
2440 new_block
->flags
|= RAM_PREALLOC
;
2443 new_block
->flags
|= RAM_RESIZEABLE
;
2445 ram_block_add(new_block
, &local_err
, share
);
2448 error_propagate(errp
, local_err
);
2454 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2455 MemoryRegion
*mr
, Error
**errp
)
2457 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2461 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2462 MemoryRegion
*mr
, Error
**errp
)
2464 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2468 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2469 void (*resized
)(const char*,
2472 MemoryRegion
*mr
, Error
**errp
)
2474 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2478 static void reclaim_ramblock(RAMBlock
*block
)
2480 if (block
->flags
& RAM_PREALLOC
) {
2482 } else if (xen_enabled()) {
2483 xen_invalidate_map_cache_entry(block
->host
);
2485 } else if (block
->fd
>= 0) {
2486 qemu_ram_munmap(block
->fd
, block
->host
, block
->max_length
);
2490 qemu_anon_ram_free(block
->host
, block
->max_length
);
2495 void qemu_ram_free(RAMBlock
*block
)
2502 ram_block_notify_remove(block
->host
, block
->max_length
);
2505 qemu_mutex_lock_ramlist();
2506 QLIST_REMOVE_RCU(block
, next
);
2507 ram_list
.mru_block
= NULL
;
2508 /* Write list before version */
2511 call_rcu(block
, reclaim_ramblock
, rcu
);
2512 qemu_mutex_unlock_ramlist();
2516 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2523 RAMBLOCK_FOREACH(block
) {
2524 offset
= addr
- block
->offset
;
2525 if (offset
< block
->max_length
) {
2526 vaddr
= ramblock_ptr(block
, offset
);
2527 if (block
->flags
& RAM_PREALLOC
) {
2529 } else if (xen_enabled()) {
2533 if (block
->fd
>= 0) {
2534 flags
|= (block
->flags
& RAM_SHARED
?
2535 MAP_SHARED
: MAP_PRIVATE
);
2536 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2537 flags
, block
->fd
, offset
);
2540 * Remap needs to match alloc. Accelerators that
2541 * set phys_mem_alloc never remap. If they did,
2542 * we'd need a remap hook here.
2544 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2546 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2547 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2550 if (area
!= vaddr
) {
2551 error_report("Could not remap addr: "
2552 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2556 memory_try_enable_merging(vaddr
, length
);
2557 qemu_ram_setup_dump(vaddr
, length
);
2562 #endif /* !_WIN32 */
2564 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2565 * This should not be used for general purpose DMA. Use address_space_map
2566 * or address_space_rw instead. For local memory (e.g. video ram) that the
2567 * device owns, use memory_region_get_ram_ptr.
2569 * Called within RCU critical section.
2571 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2573 RAMBlock
*block
= ram_block
;
2575 if (block
== NULL
) {
2576 block
= qemu_get_ram_block(addr
);
2577 addr
-= block
->offset
;
2580 if (xen_enabled() && block
->host
== NULL
) {
2581 /* We need to check if the requested address is in the RAM
2582 * because we don't want to map the entire memory in QEMU.
2583 * In that case just map until the end of the page.
2585 if (block
->offset
== 0) {
2586 return xen_map_cache(addr
, 0, 0, false);
2589 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2591 return ramblock_ptr(block
, addr
);
2594 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2595 * but takes a size argument.
2597 * Called within RCU critical section.
2599 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2600 hwaddr
*size
, bool lock
)
2602 RAMBlock
*block
= ram_block
;
2607 if (block
== NULL
) {
2608 block
= qemu_get_ram_block(addr
);
2609 addr
-= block
->offset
;
2611 *size
= MIN(*size
, block
->max_length
- addr
);
2613 if (xen_enabled() && block
->host
== NULL
) {
2614 /* We need to check if the requested address is in the RAM
2615 * because we don't want to map the entire memory in QEMU.
2616 * In that case just map the requested area.
2618 if (block
->offset
== 0) {
2619 return xen_map_cache(addr
, *size
, lock
, lock
);
2622 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2625 return ramblock_ptr(block
, addr
);
2628 /* Return the offset of a hostpointer within a ramblock */
2629 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2631 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2632 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2633 assert(res
< rb
->max_length
);
2639 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2642 * ptr: Host pointer to look up
2643 * round_offset: If true round the result offset down to a page boundary
2644 * *ram_addr: set to result ram_addr
2645 * *offset: set to result offset within the RAMBlock
2647 * Returns: RAMBlock (or NULL if not found)
2649 * By the time this function returns, the returned pointer is not protected
2650 * by RCU anymore. If the caller is not within an RCU critical section and
2651 * does not hold the iothread lock, it must have other means of protecting the
2652 * pointer, such as a reference to the region that includes the incoming
2655 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2659 uint8_t *host
= ptr
;
2661 if (xen_enabled()) {
2662 ram_addr_t ram_addr
;
2664 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2665 block
= qemu_get_ram_block(ram_addr
);
2667 *offset
= ram_addr
- block
->offset
;
2674 block
= atomic_rcu_read(&ram_list
.mru_block
);
2675 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2679 RAMBLOCK_FOREACH(block
) {
2680 /* This case append when the block is not mapped. */
2681 if (block
->host
== NULL
) {
2684 if (host
- block
->host
< block
->max_length
) {
2693 *offset
= (host
- block
->host
);
2695 *offset
&= TARGET_PAGE_MASK
;
2702 * Finds the named RAMBlock
2704 * name: The name of RAMBlock to find
2706 * Returns: RAMBlock (or NULL if not found)
2708 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2712 RAMBLOCK_FOREACH(block
) {
2713 if (!strcmp(name
, block
->idstr
)) {
2721 /* Some of the softmmu routines need to translate from a host pointer
2722 (typically a TLB entry) back to a ram offset. */
2723 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2728 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2730 return RAM_ADDR_INVALID
;
2733 return block
->offset
+ offset
;
2736 /* Called within RCU critical section. */
2737 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2740 ram_addr_t ram_addr
,
2744 ndi
->ram_addr
= ram_addr
;
2745 ndi
->mem_vaddr
= mem_vaddr
;
2749 assert(tcg_enabled());
2750 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2751 ndi
->pages
= page_collection_lock(ram_addr
, ram_addr
+ size
);
2752 tb_invalidate_phys_page_fast(ndi
->pages
, ram_addr
, size
);
2756 /* Called within RCU critical section. */
2757 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2760 assert(tcg_enabled());
2761 page_collection_unlock(ndi
->pages
);
2765 /* Set both VGA and migration bits for simplicity and to remove
2766 * the notdirty callback faster.
2768 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2769 DIRTY_CLIENTS_NOCODE
);
2770 /* we remove the notdirty callback only if the code has been
2772 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2773 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2777 /* Called within RCU critical section. */
2778 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2779 uint64_t val
, unsigned size
)
2783 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2786 stn_p(qemu_map_ram_ptr(NULL
, ram_addr
), size
, val
);
2787 memory_notdirty_write_complete(&ndi
);
2790 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2791 unsigned size
, bool is_write
,
2797 static const MemoryRegionOps notdirty_mem_ops
= {
2798 .write
= notdirty_mem_write
,
2799 .valid
.accepts
= notdirty_mem_accepts
,
2800 .endianness
= DEVICE_NATIVE_ENDIAN
,
2802 .min_access_size
= 1,
2803 .max_access_size
= 8,
2807 .min_access_size
= 1,
2808 .max_access_size
= 8,
2813 /* Generate a debug exception if a watchpoint has been hit. */
2814 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2816 CPUState
*cpu
= current_cpu
;
2817 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2821 assert(tcg_enabled());
2822 if (cpu
->watchpoint_hit
) {
2823 /* We re-entered the check after replacing the TB. Now raise
2824 * the debug interrupt so that is will trigger after the
2825 * current instruction. */
2826 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2829 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2830 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2831 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2832 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2833 && (wp
->flags
& flags
)) {
2834 if (flags
== BP_MEM_READ
) {
2835 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2837 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2839 wp
->hitaddr
= vaddr
;
2840 wp
->hitattrs
= attrs
;
2841 if (!cpu
->watchpoint_hit
) {
2842 if (wp
->flags
& BP_CPU
&&
2843 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2844 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2847 cpu
->watchpoint_hit
= wp
;
2850 tb_check_watchpoint(cpu
);
2851 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2852 cpu
->exception_index
= EXCP_DEBUG
;
2856 /* Force execution of one insn next time. */
2857 cpu
->cflags_next_tb
= 1 | curr_cflags();
2859 cpu_loop_exit_noexc(cpu
);
2863 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2868 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2869 so these check for a hit then pass through to the normal out-of-line
2871 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2872 unsigned size
, MemTxAttrs attrs
)
2876 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2877 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2879 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2882 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2885 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2888 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2891 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2899 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2900 uint64_t val
, unsigned size
,
2904 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2905 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2907 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2910 address_space_stb(as
, addr
, val
, attrs
, &res
);
2913 address_space_stw(as
, addr
, val
, attrs
, &res
);
2916 address_space_stl(as
, addr
, val
, attrs
, &res
);
2919 address_space_stq(as
, addr
, val
, attrs
, &res
);
2926 static const MemoryRegionOps watch_mem_ops
= {
2927 .read_with_attrs
= watch_mem_read
,
2928 .write_with_attrs
= watch_mem_write
,
2929 .endianness
= DEVICE_NATIVE_ENDIAN
,
2931 .min_access_size
= 1,
2932 .max_access_size
= 8,
2936 .min_access_size
= 1,
2937 .max_access_size
= 8,
2942 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2943 MemTxAttrs attrs
, uint8_t *buf
, hwaddr len
);
2944 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2945 const uint8_t *buf
, hwaddr len
);
2946 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
2947 bool is_write
, MemTxAttrs attrs
);
2949 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2950 unsigned len
, MemTxAttrs attrs
)
2952 subpage_t
*subpage
= opaque
;
2956 #if defined(DEBUG_SUBPAGE)
2957 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2958 subpage
, len
, addr
);
2960 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2964 *data
= ldn_p(buf
, len
);
2968 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2969 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2971 subpage_t
*subpage
= opaque
;
2974 #if defined(DEBUG_SUBPAGE)
2975 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2976 " value %"PRIx64
"\n",
2977 __func__
, subpage
, len
, addr
, value
);
2979 stn_p(buf
, len
, value
);
2980 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2983 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2984 unsigned len
, bool is_write
,
2987 subpage_t
*subpage
= opaque
;
2988 #if defined(DEBUG_SUBPAGE)
2989 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2990 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2993 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2994 len
, is_write
, attrs
);
2997 static const MemoryRegionOps subpage_ops
= {
2998 .read_with_attrs
= subpage_read
,
2999 .write_with_attrs
= subpage_write
,
3000 .impl
.min_access_size
= 1,
3001 .impl
.max_access_size
= 8,
3002 .valid
.min_access_size
= 1,
3003 .valid
.max_access_size
= 8,
3004 .valid
.accepts
= subpage_accepts
,
3005 .endianness
= DEVICE_NATIVE_ENDIAN
,
3008 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3013 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3015 idx
= SUBPAGE_IDX(start
);
3016 eidx
= SUBPAGE_IDX(end
);
3017 #if defined(DEBUG_SUBPAGE)
3018 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3019 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
3021 for (; idx
<= eidx
; idx
++) {
3022 mmio
->sub_section
[idx
] = section
;
3028 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
3032 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
3035 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
3036 NULL
, TARGET_PAGE_SIZE
);
3037 mmio
->iomem
.subpage
= true;
3038 #if defined(DEBUG_SUBPAGE)
3039 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
3040 mmio
, base
, TARGET_PAGE_SIZE
);
3042 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
3047 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
3050 MemoryRegionSection section
= {
3053 .offset_within_address_space
= 0,
3054 .offset_within_region
= 0,
3055 .size
= int128_2_64(),
3058 return phys_section_add(map
, §ion
);
3061 static void readonly_mem_write(void *opaque
, hwaddr addr
,
3062 uint64_t val
, unsigned size
)
3064 /* Ignore any write to ROM. */
3067 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
3068 unsigned size
, bool is_write
,
3074 /* This will only be used for writes, because reads are special cased
3075 * to directly access the underlying host ram.
3077 static const MemoryRegionOps readonly_mem_ops
= {
3078 .write
= readonly_mem_write
,
3079 .valid
.accepts
= readonly_mem_accepts
,
3080 .endianness
= DEVICE_NATIVE_ENDIAN
,
3082 .min_access_size
= 1,
3083 .max_access_size
= 8,
3087 .min_access_size
= 1,
3088 .max_access_size
= 8,
3093 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
3094 hwaddr index
, MemTxAttrs attrs
)
3096 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3097 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
3098 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
3099 MemoryRegionSection
*sections
= d
->map
.sections
;
3101 return §ions
[index
& ~TARGET_PAGE_MASK
];
3104 static void io_mem_init(void)
3106 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
3107 NULL
, NULL
, UINT64_MAX
);
3108 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
3111 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3112 * which can be called without the iothread mutex.
3114 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
3116 memory_region_clear_global_locking(&io_mem_notdirty
);
3118 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
3122 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
3124 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
3127 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
3128 assert(n
== PHYS_SECTION_UNASSIGNED
);
3129 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
3130 assert(n
== PHYS_SECTION_NOTDIRTY
);
3131 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
3132 assert(n
== PHYS_SECTION_ROM
);
3133 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
3134 assert(n
== PHYS_SECTION_WATCH
);
3136 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
3141 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
3143 phys_sections_free(&d
->map
);
3147 static void do_nothing(CPUState
*cpu
, run_on_cpu_data d
)
3151 static void tcg_log_global_after_sync(MemoryListener
*listener
)
3153 CPUAddressSpace
*cpuas
;
3155 /* Wait for the CPU to end the current TB. This avoids the following
3159 * ---------------------- -------------------------
3160 * TLB check -> slow path
3161 * notdirty_mem_write
3165 * TLB check -> fast path
3169 * by pushing the migration thread's memory read after the vCPU thread has
3170 * written the memory.
3172 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
3173 run_on_cpu(cpuas
->cpu
, do_nothing
, RUN_ON_CPU_NULL
);
3176 static void tcg_commit(MemoryListener
*listener
)
3178 CPUAddressSpace
*cpuas
;
3179 AddressSpaceDispatch
*d
;
3181 assert(tcg_enabled());
3182 /* since each CPU stores ram addresses in its TLB cache, we must
3183 reset the modified entries */
3184 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
3185 cpu_reloading_memory_map();
3186 /* The CPU and TLB are protected by the iothread lock.
3187 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3188 * may have split the RCU critical section.
3190 d
= address_space_to_dispatch(cpuas
->as
);
3191 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
3192 tlb_flush(cpuas
->cpu
);
3195 static void memory_map_init(void)
3197 system_memory
= g_malloc(sizeof(*system_memory
));
3199 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
3200 address_space_init(&address_space_memory
, system_memory
, "memory");
3202 system_io
= g_malloc(sizeof(*system_io
));
3203 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
3205 address_space_init(&address_space_io
, system_io
, "I/O");
3208 MemoryRegion
*get_system_memory(void)
3210 return system_memory
;
3213 MemoryRegion
*get_system_io(void)
3218 #endif /* !defined(CONFIG_USER_ONLY) */
3220 /* physical memory access (slow version, mainly for debug) */
3221 #if defined(CONFIG_USER_ONLY)
3222 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3223 uint8_t *buf
, target_ulong len
, int is_write
)
3226 target_ulong l
, page
;
3230 page
= addr
& TARGET_PAGE_MASK
;
3231 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3234 flags
= page_get_flags(page
);
3235 if (!(flags
& PAGE_VALID
))
3238 if (!(flags
& PAGE_WRITE
))
3240 /* XXX: this code should not depend on lock_user */
3241 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3244 unlock_user(p
, addr
, l
);
3246 if (!(flags
& PAGE_READ
))
3248 /* XXX: this code should not depend on lock_user */
3249 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3252 unlock_user(p
, addr
, 0);
3263 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3266 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3267 addr
+= memory_region_get_ram_addr(mr
);
3269 /* No early return if dirty_log_mask is or becomes 0, because
3270 * cpu_physical_memory_set_dirty_range will still call
3271 * xen_modified_memory.
3273 if (dirty_log_mask
) {
3275 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3277 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3278 assert(tcg_enabled());
3279 tb_invalidate_phys_range(addr
, addr
+ length
);
3280 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3282 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3285 void memory_region_flush_rom_device(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
3288 * In principle this function would work on other memory region types too,
3289 * but the ROM device use case is the only one where this operation is
3290 * necessary. Other memory regions should use the
3291 * address_space_read/write() APIs.
3293 assert(memory_region_is_romd(mr
));
3295 invalidate_and_set_dirty(mr
, addr
, size
);
3298 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3300 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3302 /* Regions are assumed to support 1-4 byte accesses unless
3303 otherwise specified. */
3304 if (access_size_max
== 0) {
3305 access_size_max
= 4;
3308 /* Bound the maximum access by the alignment of the address. */
3309 if (!mr
->ops
->impl
.unaligned
) {
3310 unsigned align_size_max
= addr
& -addr
;
3311 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3312 access_size_max
= align_size_max
;
3316 /* Don't attempt accesses larger than the maximum. */
3317 if (l
> access_size_max
) {
3318 l
= access_size_max
;
3325 static bool prepare_mmio_access(MemoryRegion
*mr
)
3327 bool unlocked
= !qemu_mutex_iothread_locked();
3328 bool release_lock
= false;
3330 if (unlocked
&& mr
->global_locking
) {
3331 qemu_mutex_lock_iothread();
3333 release_lock
= true;
3335 if (mr
->flush_coalesced_mmio
) {
3337 qemu_mutex_lock_iothread();
3339 qemu_flush_coalesced_mmio_buffer();
3341 qemu_mutex_unlock_iothread();
3345 return release_lock
;
3348 /* Called within RCU critical section. */
3349 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3352 hwaddr len
, hwaddr addr1
,
3353 hwaddr l
, MemoryRegion
*mr
)
3357 MemTxResult result
= MEMTX_OK
;
3358 bool release_lock
= false;
3361 if (!memory_access_is_direct(mr
, true)) {
3362 release_lock
|= prepare_mmio_access(mr
);
3363 l
= memory_access_size(mr
, l
, addr1
);
3364 /* XXX: could force current_cpu to NULL to avoid
3366 val
= ldn_p(buf
, l
);
3367 result
|= memory_region_dispatch_write(mr
, addr1
, val
, l
, attrs
);
3370 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3371 memcpy(ptr
, buf
, l
);
3372 invalidate_and_set_dirty(mr
, addr1
, l
);
3376 qemu_mutex_unlock_iothread();
3377 release_lock
= false;
3389 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3395 /* Called from RCU critical section. */
3396 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3397 const uint8_t *buf
, hwaddr len
)
3402 MemTxResult result
= MEMTX_OK
;
3405 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3406 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3412 /* Called within RCU critical section. */
3413 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3414 MemTxAttrs attrs
, uint8_t *buf
,
3415 hwaddr len
, hwaddr addr1
, hwaddr l
,
3420 MemTxResult result
= MEMTX_OK
;
3421 bool release_lock
= false;
3424 if (!memory_access_is_direct(mr
, false)) {
3426 release_lock
|= prepare_mmio_access(mr
);
3427 l
= memory_access_size(mr
, l
, addr1
);
3428 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, l
, attrs
);
3432 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3433 memcpy(buf
, ptr
, l
);
3437 qemu_mutex_unlock_iothread();
3438 release_lock
= false;
3450 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3456 /* Called from RCU critical section. */
3457 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3458 MemTxAttrs attrs
, uint8_t *buf
, hwaddr len
)
3465 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3466 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3470 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3471 MemTxAttrs attrs
, uint8_t *buf
, hwaddr len
)
3473 MemTxResult result
= MEMTX_OK
;
3478 fv
= address_space_to_flatview(as
);
3479 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3486 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3488 const uint8_t *buf
, hwaddr len
)
3490 MemTxResult result
= MEMTX_OK
;
3495 fv
= address_space_to_flatview(as
);
3496 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3503 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3504 uint8_t *buf
, hwaddr len
, bool is_write
)
3507 return address_space_write(as
, addr
, attrs
, buf
, len
);
3509 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3513 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3514 hwaddr len
, int is_write
)
3516 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3517 buf
, len
, is_write
);
3520 enum write_rom_type
{
3525 static inline MemTxResult
address_space_write_rom_internal(AddressSpace
*as
,
3530 enum write_rom_type type
)
3540 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true, attrs
);
3542 if (!(memory_region_is_ram(mr
) ||
3543 memory_region_is_romd(mr
))) {
3544 l
= memory_access_size(mr
, l
, addr1
);
3547 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3550 memcpy(ptr
, buf
, l
);
3551 invalidate_and_set_dirty(mr
, addr1
, l
);
3554 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3566 /* used for ROM loading : can write in RAM and ROM */
3567 MemTxResult
address_space_write_rom(AddressSpace
*as
, hwaddr addr
,
3569 const uint8_t *buf
, hwaddr len
)
3571 return address_space_write_rom_internal(as
, addr
, attrs
,
3572 buf
, len
, WRITE_DATA
);
3575 void cpu_flush_icache_range(hwaddr start
, hwaddr len
)
3578 * This function should do the same thing as an icache flush that was
3579 * triggered from within the guest. For TCG we are always cache coherent,
3580 * so there is no need to flush anything. For KVM / Xen we need to flush
3581 * the host's instruction cache at least.
3583 if (tcg_enabled()) {
3587 address_space_write_rom_internal(&address_space_memory
,
3588 start
, MEMTXATTRS_UNSPECIFIED
,
3589 NULL
, len
, FLUSH_CACHE
);
3600 static BounceBuffer bounce
;
3602 typedef struct MapClient
{
3604 QLIST_ENTRY(MapClient
) link
;
3607 QemuMutex map_client_list_lock
;
3608 static QLIST_HEAD(, MapClient
) map_client_list
3609 = QLIST_HEAD_INITIALIZER(map_client_list
);
3611 static void cpu_unregister_map_client_do(MapClient
*client
)
3613 QLIST_REMOVE(client
, link
);
3617 static void cpu_notify_map_clients_locked(void)
3621 while (!QLIST_EMPTY(&map_client_list
)) {
3622 client
= QLIST_FIRST(&map_client_list
);
3623 qemu_bh_schedule(client
->bh
);
3624 cpu_unregister_map_client_do(client
);
3628 void cpu_register_map_client(QEMUBH
*bh
)
3630 MapClient
*client
= g_malloc(sizeof(*client
));
3632 qemu_mutex_lock(&map_client_list_lock
);
3634 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3635 if (!atomic_read(&bounce
.in_use
)) {
3636 cpu_notify_map_clients_locked();
3638 qemu_mutex_unlock(&map_client_list_lock
);
3641 void cpu_exec_init_all(void)
3643 qemu_mutex_init(&ram_list
.mutex
);
3644 /* The data structures we set up here depend on knowing the page size,
3645 * so no more changes can be made after this point.
3646 * In an ideal world, nothing we did before we had finished the
3647 * machine setup would care about the target page size, and we could
3648 * do this much later, rather than requiring board models to state
3649 * up front what their requirements are.
3651 finalize_target_page_bits();
3654 qemu_mutex_init(&map_client_list_lock
);
3657 void cpu_unregister_map_client(QEMUBH
*bh
)
3661 qemu_mutex_lock(&map_client_list_lock
);
3662 QLIST_FOREACH(client
, &map_client_list
, link
) {
3663 if (client
->bh
== bh
) {
3664 cpu_unregister_map_client_do(client
);
3668 qemu_mutex_unlock(&map_client_list_lock
);
3671 static void cpu_notify_map_clients(void)
3673 qemu_mutex_lock(&map_client_list_lock
);
3674 cpu_notify_map_clients_locked();
3675 qemu_mutex_unlock(&map_client_list_lock
);
3678 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
3679 bool is_write
, MemTxAttrs attrs
)
3686 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3687 if (!memory_access_is_direct(mr
, is_write
)) {
3688 l
= memory_access_size(mr
, l
, addr
);
3689 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3700 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3701 hwaddr len
, bool is_write
,
3708 fv
= address_space_to_flatview(as
);
3709 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3715 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3717 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3718 bool is_write
, MemTxAttrs attrs
)
3722 MemoryRegion
*this_mr
;
3728 if (target_len
== 0) {
3733 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3734 &len
, is_write
, attrs
);
3735 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3741 /* Map a physical memory region into a host virtual address.
3742 * May map a subset of the requested range, given by and returned in *plen.
3743 * May return NULL if resources needed to perform the mapping are exhausted.
3744 * Use only for reads OR writes - not for read-modify-write operations.
3745 * Use cpu_register_map_client() to know when retrying the map operation is
3746 * likely to succeed.
3748 void *address_space_map(AddressSpace
*as
,
3766 fv
= address_space_to_flatview(as
);
3767 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3769 if (!memory_access_is_direct(mr
, is_write
)) {
3770 if (atomic_xchg(&bounce
.in_use
, true)) {
3774 /* Avoid unbounded allocations */
3775 l
= MIN(l
, TARGET_PAGE_SIZE
);
3776 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3780 memory_region_ref(mr
);
3783 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3789 return bounce
.buffer
;
3793 memory_region_ref(mr
);
3794 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3795 l
, is_write
, attrs
);
3796 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3802 /* Unmaps a memory region previously mapped by address_space_map().
3803 * Will also mark the memory as dirty if is_write == 1. access_len gives
3804 * the amount of memory that was actually read or written by the caller.
3806 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3807 int is_write
, hwaddr access_len
)
3809 if (buffer
!= bounce
.buffer
) {
3813 mr
= memory_region_from_host(buffer
, &addr1
);
3816 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3818 if (xen_enabled()) {
3819 xen_invalidate_map_cache_entry(buffer
);
3821 memory_region_unref(mr
);
3825 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3826 bounce
.buffer
, access_len
);
3828 qemu_vfree(bounce
.buffer
);
3829 bounce
.buffer
= NULL
;
3830 memory_region_unref(bounce
.mr
);
3831 atomic_mb_set(&bounce
.in_use
, false);
3832 cpu_notify_map_clients();
3835 void *cpu_physical_memory_map(hwaddr addr
,
3839 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3840 MEMTXATTRS_UNSPECIFIED
);
3843 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3844 int is_write
, hwaddr access_len
)
3846 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3849 #define ARG1_DECL AddressSpace *as
3852 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3853 #define RCU_READ_LOCK(...) rcu_read_lock()
3854 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3855 #include "memory_ldst.inc.c"
3857 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3863 AddressSpaceDispatch
*d
;
3870 cache
->fv
= address_space_get_flatview(as
);
3871 d
= flatview_to_dispatch(cache
->fv
);
3872 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3875 memory_region_ref(mr
);
3876 if (memory_access_is_direct(mr
, is_write
)) {
3877 /* We don't care about the memory attributes here as we're only
3878 * doing this if we found actual RAM, which behaves the same
3879 * regardless of attributes; so UNSPECIFIED is fine.
3881 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3882 cache
->xlat
, l
, is_write
,
3883 MEMTXATTRS_UNSPECIFIED
);
3884 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3890 cache
->is_write
= is_write
;
3894 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3898 assert(cache
->is_write
);
3899 if (likely(cache
->ptr
)) {
3900 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3904 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3906 if (!cache
->mrs
.mr
) {
3910 if (xen_enabled()) {
3911 xen_invalidate_map_cache_entry(cache
->ptr
);
3913 memory_region_unref(cache
->mrs
.mr
);
3914 flatview_unref(cache
->fv
);
3915 cache
->mrs
.mr
= NULL
;
3919 /* Called from RCU critical section. This function has the same
3920 * semantics as address_space_translate, but it only works on a
3921 * predefined range of a MemoryRegion that was mapped with
3922 * address_space_cache_init.
3924 static inline MemoryRegion
*address_space_translate_cached(
3925 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3926 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3928 MemoryRegionSection section
;
3930 IOMMUMemoryRegion
*iommu_mr
;
3931 AddressSpace
*target_as
;
3933 assert(!cache
->ptr
);
3934 *xlat
= addr
+ cache
->xlat
;
3937 iommu_mr
= memory_region_get_iommu(mr
);
3943 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3944 NULL
, is_write
, true,
3949 /* Called from RCU critical section. address_space_read_cached uses this
3950 * out of line function when the target is an MMIO or IOMMU region.
3953 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3954 void *buf
, hwaddr len
)
3960 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3961 MEMTXATTRS_UNSPECIFIED
);
3962 flatview_read_continue(cache
->fv
,
3963 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3967 /* Called from RCU critical section. address_space_write_cached uses this
3968 * out of line function when the target is an MMIO or IOMMU region.
3971 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3972 const void *buf
, hwaddr len
)
3978 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3979 MEMTXATTRS_UNSPECIFIED
);
3980 flatview_write_continue(cache
->fv
,
3981 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3985 #define ARG1_DECL MemoryRegionCache *cache
3987 #define SUFFIX _cached_slow
3988 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3989 #define RCU_READ_LOCK() ((void)0)
3990 #define RCU_READ_UNLOCK() ((void)0)
3991 #include "memory_ldst.inc.c"
3993 /* virtual memory access for debug (includes writing to ROM) */
3994 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3995 uint8_t *buf
, target_ulong len
, int is_write
)
3998 target_ulong l
, page
;
4000 cpu_synchronize_state(cpu
);
4005 page
= addr
& TARGET_PAGE_MASK
;
4006 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
4007 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
4008 /* if no physical page mapped, return an error */
4009 if (phys_addr
== -1)
4011 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4014 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4016 address_space_write_rom(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
4019 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
4030 * Allows code that needs to deal with migration bitmaps etc to still be built
4031 * target independent.
4033 size_t qemu_target_page_size(void)
4035 return TARGET_PAGE_SIZE
;
4038 int qemu_target_page_bits(void)
4040 return TARGET_PAGE_BITS
;
4043 int qemu_target_page_bits_min(void)
4045 return TARGET_PAGE_BITS_MIN
;
4049 bool target_words_bigendian(void)
4051 #if defined(TARGET_WORDS_BIGENDIAN)
4058 #ifndef CONFIG_USER_ONLY
4059 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
4066 mr
= address_space_translate(&address_space_memory
,
4067 phys_addr
, &phys_addr
, &l
, false,
4068 MEMTXATTRS_UNSPECIFIED
);
4070 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
4075 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
4081 RAMBLOCK_FOREACH(block
) {
4082 ret
= func(block
, opaque
);
4092 * Unmap pages of memory from start to start+length such that
4093 * they a) read as 0, b) Trigger whatever fault mechanism
4094 * the OS provides for postcopy.
4095 * The pages must be unmapped by the end of the function.
4096 * Returns: 0 on success, none-0 on failure
4099 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
4103 uint8_t *host_startaddr
= rb
->host
+ start
;
4105 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
4106 error_report("ram_block_discard_range: Unaligned start address: %p",
4111 if ((start
+ length
) <= rb
->used_length
) {
4112 bool need_madvise
, need_fallocate
;
4113 uint8_t *host_endaddr
= host_startaddr
+ length
;
4114 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
4115 error_report("ram_block_discard_range: Unaligned end address: %p",
4120 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
4122 /* The logic here is messy;
4123 * madvise DONTNEED fails for hugepages
4124 * fallocate works on hugepages and shmem
4126 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
4127 need_fallocate
= rb
->fd
!= -1;
4128 if (need_fallocate
) {
4129 /* For a file, this causes the area of the file to be zero'd
4130 * if read, and for hugetlbfs also causes it to be unmapped
4131 * so a userfault will trigger.
4133 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4134 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
4138 error_report("ram_block_discard_range: Failed to fallocate "
4139 "%s:%" PRIx64
" +%zx (%d)",
4140 rb
->idstr
, start
, length
, ret
);
4145 error_report("ram_block_discard_range: fallocate not available/file"
4146 "%s:%" PRIx64
" +%zx (%d)",
4147 rb
->idstr
, start
, length
, ret
);
4152 /* For normal RAM this causes it to be unmapped,
4153 * for shared memory it causes the local mapping to disappear
4154 * and to fall back on the file contents (which we just
4155 * fallocate'd away).
4157 #if defined(CONFIG_MADVISE)
4158 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
4161 error_report("ram_block_discard_range: Failed to discard range "
4162 "%s:%" PRIx64
" +%zx (%d)",
4163 rb
->idstr
, start
, length
, ret
);
4168 error_report("ram_block_discard_range: MADVISE not available"
4169 "%s:%" PRIx64
" +%zx (%d)",
4170 rb
->idstr
, start
, length
, ret
);
4174 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
4175 need_madvise
, need_fallocate
, ret
);
4177 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4178 "/%zx/" RAM_ADDR_FMT
")",
4179 rb
->idstr
, start
, length
, rb
->used_length
);
4186 bool ramblock_is_pmem(RAMBlock
*rb
)
4188 return rb
->flags
& RAM_PMEM
;
4193 void page_size_init(void)
4195 /* NOTE: we can always suppose that qemu_host_page_size >=
4197 if (qemu_host_page_size
== 0) {
4198 qemu_host_page_size
= qemu_real_host_page_size
;
4200 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
4201 qemu_host_page_size
= TARGET_PAGE_SIZE
;
4203 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
4206 #if !defined(CONFIG_USER_ONLY)
4208 static void mtree_print_phys_entries(int start
, int end
, int skip
, int ptr
)
4210 if (start
== end
- 1) {
4211 qemu_printf("\t%3d ", start
);
4213 qemu_printf("\t%3d..%-3d ", start
, end
- 1);
4215 qemu_printf(" skip=%d ", skip
);
4216 if (ptr
== PHYS_MAP_NODE_NIL
) {
4217 qemu_printf(" ptr=NIL");
4219 qemu_printf(" ptr=#%d", ptr
);
4221 qemu_printf(" ptr=[%d]", ptr
);
4226 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4227 int128_sub((size), int128_one())) : 0)
4229 void mtree_print_dispatch(AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4233 qemu_printf(" Dispatch\n");
4234 qemu_printf(" Physical sections\n");
4236 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4237 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4238 const char *names
[] = { " [unassigned]", " [not dirty]",
4239 " [ROM]", " [watch]" };
4241 qemu_printf(" #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
4244 s
->offset_within_address_space
,
4245 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4246 s
->mr
->name
? s
->mr
->name
: "(noname)",
4247 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4248 s
->mr
== root
? " [ROOT]" : "",
4249 s
== d
->mru_section
? " [MRU]" : "",
4250 s
->mr
->is_iommu
? " [iommu]" : "");
4253 qemu_printf(" alias=%s", s
->mr
->alias
->name
?
4254 s
->mr
->alias
->name
: "noname");
4259 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4260 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4261 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4264 Node
*n
= d
->map
.nodes
+ i
;
4266 qemu_printf(" [%d]\n", i
);
4268 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4269 PhysPageEntry
*pe
= *n
+ j
;
4271 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4275 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
4281 if (jprev
!= ARRAY_SIZE(*n
)) {
4282 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);