Merge remote-tracking branch 'remotes/bonzini-gitlab/tags/for-upstream' into staging
[qemu/ar7.git] / accel / kvm / kvm-all.c
blobb6d9f92f1513fca0b954658c100be1e53471f425
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
50 #include "hw/boards.h"
52 /* This check must be after config-host.h is included */
53 #ifdef CONFIG_EVENTFD
54 #include <sys/eventfd.h>
55 #endif
57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
58 * need to use the real host PAGE_SIZE, as that's what KVM will use.
60 #ifdef PAGE_SIZE
61 #undef PAGE_SIZE
62 #endif
63 #define PAGE_SIZE qemu_real_host_page_size
65 //#define DEBUG_KVM
67 #ifdef DEBUG_KVM
68 #define DPRINTF(fmt, ...) \
69 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
70 #else
71 #define DPRINTF(fmt, ...) \
72 do { } while (0)
73 #endif
75 #define KVM_MSI_HASHTAB_SIZE 256
77 struct KVMParkedVcpu {
78 unsigned long vcpu_id;
79 int kvm_fd;
80 QLIST_ENTRY(KVMParkedVcpu) node;
83 struct KVMState
85 AccelState parent_obj;
87 int nr_slots;
88 int fd;
89 int vmfd;
90 int coalesced_mmio;
91 int coalesced_pio;
92 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
93 bool coalesced_flush_in_progress;
94 int vcpu_events;
95 int robust_singlestep;
96 int debugregs;
97 #ifdef KVM_CAP_SET_GUEST_DEBUG
98 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
99 #endif
100 int max_nested_state_len;
101 int many_ioeventfds;
102 int intx_set_mask;
103 int kvm_shadow_mem;
104 bool kernel_irqchip_allowed;
105 bool kernel_irqchip_required;
106 OnOffAuto kernel_irqchip_split;
107 bool sync_mmu;
108 uint64_t manual_dirty_log_protect;
109 /* The man page (and posix) say ioctl numbers are signed int, but
110 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
111 * unsigned, and treating them as signed here can break things */
112 unsigned irq_set_ioctl;
113 unsigned int sigmask_len;
114 GHashTable *gsimap;
115 #ifdef KVM_CAP_IRQ_ROUTING
116 struct kvm_irq_routing *irq_routes;
117 int nr_allocated_irq_routes;
118 unsigned long *used_gsi_bitmap;
119 unsigned int gsi_count;
120 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
121 #endif
122 KVMMemoryListener memory_listener;
123 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
125 /* For "info mtree -f" to tell if an MR is registered in KVM */
126 int nr_as;
127 struct KVMAs {
128 KVMMemoryListener *ml;
129 AddressSpace *as;
130 } *as;
133 KVMState *kvm_state;
134 bool kvm_kernel_irqchip;
135 bool kvm_split_irqchip;
136 bool kvm_async_interrupts_allowed;
137 bool kvm_halt_in_kernel_allowed;
138 bool kvm_eventfds_allowed;
139 bool kvm_irqfds_allowed;
140 bool kvm_resamplefds_allowed;
141 bool kvm_msi_via_irqfd_allowed;
142 bool kvm_gsi_routing_allowed;
143 bool kvm_gsi_direct_mapping;
144 bool kvm_allowed;
145 bool kvm_readonly_mem_allowed;
146 bool kvm_vm_attributes_allowed;
147 bool kvm_direct_msi_allowed;
148 bool kvm_ioeventfd_any_length_allowed;
149 bool kvm_msi_use_devid;
150 static bool kvm_immediate_exit;
151 static hwaddr kvm_max_slot_size = ~0;
153 static const KVMCapabilityInfo kvm_required_capabilites[] = {
154 KVM_CAP_INFO(USER_MEMORY),
155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
157 KVM_CAP_LAST_INFO
160 static NotifierList kvm_irqchip_change_notifiers =
161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
163 struct KVMResampleFd {
164 int gsi;
165 EventNotifier *resample_event;
166 QLIST_ENTRY(KVMResampleFd) node;
168 typedef struct KVMResampleFd KVMResampleFd;
171 * Only used with split irqchip where we need to do the resample fd
172 * kick for the kernel from userspace.
174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
180 static inline void kvm_resample_fd_remove(int gsi)
182 KVMResampleFd *rfd;
184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
185 if (rfd->gsi == gsi) {
186 QLIST_REMOVE(rfd, node);
187 g_free(rfd);
188 break;
193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
197 rfd->gsi = gsi;
198 rfd->resample_event = event;
200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
203 void kvm_resample_fd_notify(int gsi)
205 KVMResampleFd *rfd;
207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
208 if (rfd->gsi == gsi) {
209 event_notifier_set(rfd->resample_event);
210 trace_kvm_resample_fd_notify(gsi);
211 return;
216 int kvm_get_max_memslots(void)
218 KVMState *s = KVM_STATE(current_accel());
220 return s->nr_slots;
223 /* Called with KVMMemoryListener.slots_lock held */
224 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
226 KVMState *s = kvm_state;
227 int i;
229 for (i = 0; i < s->nr_slots; i++) {
230 if (kml->slots[i].memory_size == 0) {
231 return &kml->slots[i];
235 return NULL;
238 bool kvm_has_free_slot(MachineState *ms)
240 KVMState *s = KVM_STATE(ms->accelerator);
241 bool result;
242 KVMMemoryListener *kml = &s->memory_listener;
244 kvm_slots_lock(kml);
245 result = !!kvm_get_free_slot(kml);
246 kvm_slots_unlock(kml);
248 return result;
251 /* Called with KVMMemoryListener.slots_lock held */
252 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
254 KVMSlot *slot = kvm_get_free_slot(kml);
256 if (slot) {
257 return slot;
260 fprintf(stderr, "%s: no free slot available\n", __func__);
261 abort();
264 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
265 hwaddr start_addr,
266 hwaddr size)
268 KVMState *s = kvm_state;
269 int i;
271 for (i = 0; i < s->nr_slots; i++) {
272 KVMSlot *mem = &kml->slots[i];
274 if (start_addr == mem->start_addr && size == mem->memory_size) {
275 return mem;
279 return NULL;
283 * Calculate and align the start address and the size of the section.
284 * Return the size. If the size is 0, the aligned section is empty.
286 static hwaddr kvm_align_section(MemoryRegionSection *section,
287 hwaddr *start)
289 hwaddr size = int128_get64(section->size);
290 hwaddr delta, aligned;
292 /* kvm works in page size chunks, but the function may be called
293 with sub-page size and unaligned start address. Pad the start
294 address to next and truncate size to previous page boundary. */
295 aligned = ROUND_UP(section->offset_within_address_space,
296 qemu_real_host_page_size);
297 delta = aligned - section->offset_within_address_space;
298 *start = aligned;
299 if (delta > size) {
300 return 0;
303 return (size - delta) & qemu_real_host_page_mask;
306 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
307 hwaddr *phys_addr)
309 KVMMemoryListener *kml = &s->memory_listener;
310 int i, ret = 0;
312 kvm_slots_lock(kml);
313 for (i = 0; i < s->nr_slots; i++) {
314 KVMSlot *mem = &kml->slots[i];
316 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
317 *phys_addr = mem->start_addr + (ram - mem->ram);
318 ret = 1;
319 break;
322 kvm_slots_unlock(kml);
324 return ret;
327 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
329 KVMState *s = kvm_state;
330 struct kvm_userspace_memory_region mem;
331 int ret;
333 mem.slot = slot->slot | (kml->as_id << 16);
334 mem.guest_phys_addr = slot->start_addr;
335 mem.userspace_addr = (unsigned long)slot->ram;
336 mem.flags = slot->flags;
338 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
339 /* Set the slot size to 0 before setting the slot to the desired
340 * value. This is needed based on KVM commit 75d61fbc. */
341 mem.memory_size = 0;
342 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
343 if (ret < 0) {
344 goto err;
347 mem.memory_size = slot->memory_size;
348 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
349 slot->old_flags = mem.flags;
350 err:
351 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
352 mem.memory_size, mem.userspace_addr, ret);
353 if (ret < 0) {
354 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
355 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
356 __func__, mem.slot, slot->start_addr,
357 (uint64_t)mem.memory_size, strerror(errno));
359 return ret;
362 static int do_kvm_destroy_vcpu(CPUState *cpu)
364 KVMState *s = kvm_state;
365 long mmap_size;
366 struct KVMParkedVcpu *vcpu = NULL;
367 int ret = 0;
369 DPRINTF("kvm_destroy_vcpu\n");
371 ret = kvm_arch_destroy_vcpu(cpu);
372 if (ret < 0) {
373 goto err;
376 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
377 if (mmap_size < 0) {
378 ret = mmap_size;
379 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
380 goto err;
383 ret = munmap(cpu->kvm_run, mmap_size);
384 if (ret < 0) {
385 goto err;
388 vcpu = g_malloc0(sizeof(*vcpu));
389 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
390 vcpu->kvm_fd = cpu->kvm_fd;
391 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
392 err:
393 return ret;
396 void kvm_destroy_vcpu(CPUState *cpu)
398 if (do_kvm_destroy_vcpu(cpu) < 0) {
399 error_report("kvm_destroy_vcpu failed");
400 exit(EXIT_FAILURE);
404 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
406 struct KVMParkedVcpu *cpu;
408 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
409 if (cpu->vcpu_id == vcpu_id) {
410 int kvm_fd;
412 QLIST_REMOVE(cpu, node);
413 kvm_fd = cpu->kvm_fd;
414 g_free(cpu);
415 return kvm_fd;
419 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
422 int kvm_init_vcpu(CPUState *cpu, Error **errp)
424 KVMState *s = kvm_state;
425 long mmap_size;
426 int ret;
428 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
430 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
431 if (ret < 0) {
432 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
433 kvm_arch_vcpu_id(cpu));
434 goto err;
437 cpu->kvm_fd = ret;
438 cpu->kvm_state = s;
439 cpu->vcpu_dirty = true;
441 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
442 if (mmap_size < 0) {
443 ret = mmap_size;
444 error_setg_errno(errp, -mmap_size,
445 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
446 goto err;
449 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
450 cpu->kvm_fd, 0);
451 if (cpu->kvm_run == MAP_FAILED) {
452 ret = -errno;
453 error_setg_errno(errp, ret,
454 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
455 kvm_arch_vcpu_id(cpu));
456 goto err;
459 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
460 s->coalesced_mmio_ring =
461 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
464 ret = kvm_arch_init_vcpu(cpu);
465 if (ret < 0) {
466 error_setg_errno(errp, -ret,
467 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
468 kvm_arch_vcpu_id(cpu));
470 err:
471 return ret;
475 * dirty pages logging control
478 static int kvm_mem_flags(MemoryRegion *mr)
480 bool readonly = mr->readonly || memory_region_is_romd(mr);
481 int flags = 0;
483 if (memory_region_get_dirty_log_mask(mr) != 0) {
484 flags |= KVM_MEM_LOG_DIRTY_PAGES;
486 if (readonly && kvm_readonly_mem_allowed) {
487 flags |= KVM_MEM_READONLY;
489 return flags;
492 /* Called with KVMMemoryListener.slots_lock held */
493 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
494 MemoryRegion *mr)
496 mem->flags = kvm_mem_flags(mr);
498 /* If nothing changed effectively, no need to issue ioctl */
499 if (mem->flags == mem->old_flags) {
500 return 0;
503 return kvm_set_user_memory_region(kml, mem, false);
506 static int kvm_section_update_flags(KVMMemoryListener *kml,
507 MemoryRegionSection *section)
509 hwaddr start_addr, size, slot_size;
510 KVMSlot *mem;
511 int ret = 0;
513 size = kvm_align_section(section, &start_addr);
514 if (!size) {
515 return 0;
518 kvm_slots_lock(kml);
520 while (size && !ret) {
521 slot_size = MIN(kvm_max_slot_size, size);
522 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
523 if (!mem) {
524 /* We don't have a slot if we want to trap every access. */
525 goto out;
528 ret = kvm_slot_update_flags(kml, mem, section->mr);
529 start_addr += slot_size;
530 size -= slot_size;
533 out:
534 kvm_slots_unlock(kml);
535 return ret;
538 static void kvm_log_start(MemoryListener *listener,
539 MemoryRegionSection *section,
540 int old, int new)
542 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
543 int r;
545 if (old != 0) {
546 return;
549 r = kvm_section_update_flags(kml, section);
550 if (r < 0) {
551 abort();
555 static void kvm_log_stop(MemoryListener *listener,
556 MemoryRegionSection *section,
557 int old, int new)
559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
560 int r;
562 if (new != 0) {
563 return;
566 r = kvm_section_update_flags(kml, section);
567 if (r < 0) {
568 abort();
572 /* get kvm's dirty pages bitmap and update qemu's */
573 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
574 unsigned long *bitmap)
576 ram_addr_t start = section->offset_within_region +
577 memory_region_get_ram_addr(section->mr);
578 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
580 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
581 return 0;
584 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
586 /* Allocate the dirty bitmap for a slot */
587 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
590 * XXX bad kernel interface alert
591 * For dirty bitmap, kernel allocates array of size aligned to
592 * bits-per-long. But for case when the kernel is 64bits and
593 * the userspace is 32bits, userspace can't align to the same
594 * bits-per-long, since sizeof(long) is different between kernel
595 * and user space. This way, userspace will provide buffer which
596 * may be 4 bytes less than the kernel will use, resulting in
597 * userspace memory corruption (which is not detectable by valgrind
598 * too, in most cases).
599 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
600 * a hope that sizeof(long) won't become >8 any time soon.
602 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
603 * And mem->memory_size is aligned to it (otherwise this mem can't
604 * be registered to KVM).
606 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
607 /*HOST_LONG_BITS*/ 64) / 8;
608 mem->dirty_bmap = g_malloc0(bitmap_size);
612 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
614 * This function will first try to fetch dirty bitmap from the kernel,
615 * and then updates qemu's dirty bitmap.
617 * NOTE: caller must be with kml->slots_lock held.
619 * @kml: the KVM memory listener object
620 * @section: the memory section to sync the dirty bitmap with
622 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
623 MemoryRegionSection *section)
625 KVMState *s = kvm_state;
626 struct kvm_dirty_log d = {};
627 KVMSlot *mem;
628 hwaddr start_addr, size;
629 hwaddr slot_size, slot_offset = 0;
630 int ret = 0;
632 size = kvm_align_section(section, &start_addr);
633 while (size) {
634 MemoryRegionSection subsection = *section;
636 slot_size = MIN(kvm_max_slot_size, size);
637 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
638 if (!mem) {
639 /* We don't have a slot if we want to trap every access. */
640 goto out;
643 if (!mem->dirty_bmap) {
644 /* Allocate on the first log_sync, once and for all */
645 kvm_memslot_init_dirty_bitmap(mem);
648 d.dirty_bitmap = mem->dirty_bmap;
649 d.slot = mem->slot | (kml->as_id << 16);
650 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
651 if (ret == -ENOENT) {
652 /* kernel does not have dirty bitmap in this slot */
653 ret = 0;
654 } else if (ret < 0) {
655 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
656 goto out;
657 } else {
658 subsection.offset_within_region += slot_offset;
659 subsection.size = int128_make64(slot_size);
660 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
663 slot_offset += slot_size;
664 start_addr += slot_size;
665 size -= slot_size;
667 out:
668 return ret;
671 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
672 #define KVM_CLEAR_LOG_SHIFT 6
673 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
674 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
676 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
677 uint64_t size)
679 KVMState *s = kvm_state;
680 uint64_t end, bmap_start, start_delta, bmap_npages;
681 struct kvm_clear_dirty_log d;
682 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
683 int ret;
686 * We need to extend either the start or the size or both to
687 * satisfy the KVM interface requirement. Firstly, do the start
688 * page alignment on 64 host pages
690 bmap_start = start & KVM_CLEAR_LOG_MASK;
691 start_delta = start - bmap_start;
692 bmap_start /= psize;
695 * The kernel interface has restriction on the size too, that either:
697 * (1) the size is 64 host pages aligned (just like the start), or
698 * (2) the size fills up until the end of the KVM memslot.
700 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
701 << KVM_CLEAR_LOG_SHIFT;
702 end = mem->memory_size / psize;
703 if (bmap_npages > end - bmap_start) {
704 bmap_npages = end - bmap_start;
706 start_delta /= psize;
709 * Prepare the bitmap to clear dirty bits. Here we must guarantee
710 * that we won't clear any unknown dirty bits otherwise we might
711 * accidentally clear some set bits which are not yet synced from
712 * the kernel into QEMU's bitmap, then we'll lose track of the
713 * guest modifications upon those pages (which can directly lead
714 * to guest data loss or panic after migration).
716 * Layout of the KVMSlot.dirty_bmap:
718 * |<-------- bmap_npages -----------..>|
719 * [1]
720 * start_delta size
721 * |----------------|-------------|------------------|------------|
722 * ^ ^ ^ ^
723 * | | | |
724 * start bmap_start (start) end
725 * of memslot of memslot
727 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
730 assert(bmap_start % BITS_PER_LONG == 0);
731 /* We should never do log_clear before log_sync */
732 assert(mem->dirty_bmap);
733 if (start_delta || bmap_npages - size / psize) {
734 /* Slow path - we need to manipulate a temp bitmap */
735 bmap_clear = bitmap_new(bmap_npages);
736 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
737 bmap_start, start_delta + size / psize);
739 * We need to fill the holes at start because that was not
740 * specified by the caller and we extended the bitmap only for
741 * 64 pages alignment
743 bitmap_clear(bmap_clear, 0, start_delta);
744 d.dirty_bitmap = bmap_clear;
745 } else {
747 * Fast path - both start and size align well with BITS_PER_LONG
748 * (or the end of memory slot)
750 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
753 d.first_page = bmap_start;
754 /* It should never overflow. If it happens, say something */
755 assert(bmap_npages <= UINT32_MAX);
756 d.num_pages = bmap_npages;
757 d.slot = mem->slot | (as_id << 16);
759 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
760 if (ret < 0 && ret != -ENOENT) {
761 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
762 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
763 __func__, d.slot, (uint64_t)d.first_page,
764 (uint32_t)d.num_pages, ret);
765 } else {
766 ret = 0;
767 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
771 * After we have updated the remote dirty bitmap, we update the
772 * cached bitmap as well for the memslot, then if another user
773 * clears the same region we know we shouldn't clear it again on
774 * the remote otherwise it's data loss as well.
776 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
777 size / psize);
778 /* This handles the NULL case well */
779 g_free(bmap_clear);
780 return ret;
785 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
787 * NOTE: this will be a no-op if we haven't enabled manual dirty log
788 * protection in the host kernel because in that case this operation
789 * will be done within log_sync().
791 * @kml: the kvm memory listener
792 * @section: the memory range to clear dirty bitmap
794 static int kvm_physical_log_clear(KVMMemoryListener *kml,
795 MemoryRegionSection *section)
797 KVMState *s = kvm_state;
798 uint64_t start, size, offset, count;
799 KVMSlot *mem;
800 int ret = 0, i;
802 if (!s->manual_dirty_log_protect) {
803 /* No need to do explicit clear */
804 return ret;
807 start = section->offset_within_address_space;
808 size = int128_get64(section->size);
810 if (!size) {
811 /* Nothing more we can do... */
812 return ret;
815 kvm_slots_lock(kml);
817 for (i = 0; i < s->nr_slots; i++) {
818 mem = &kml->slots[i];
819 /* Discard slots that are empty or do not overlap the section */
820 if (!mem->memory_size ||
821 mem->start_addr > start + size - 1 ||
822 start > mem->start_addr + mem->memory_size - 1) {
823 continue;
826 if (start >= mem->start_addr) {
827 /* The slot starts before section or is aligned to it. */
828 offset = start - mem->start_addr;
829 count = MIN(mem->memory_size - offset, size);
830 } else {
831 /* The slot starts after section. */
832 offset = 0;
833 count = MIN(mem->memory_size, size - (mem->start_addr - start));
835 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
836 if (ret < 0) {
837 break;
841 kvm_slots_unlock(kml);
843 return ret;
846 static void kvm_coalesce_mmio_region(MemoryListener *listener,
847 MemoryRegionSection *secion,
848 hwaddr start, hwaddr size)
850 KVMState *s = kvm_state;
852 if (s->coalesced_mmio) {
853 struct kvm_coalesced_mmio_zone zone;
855 zone.addr = start;
856 zone.size = size;
857 zone.pad = 0;
859 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
863 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
864 MemoryRegionSection *secion,
865 hwaddr start, hwaddr size)
867 KVMState *s = kvm_state;
869 if (s->coalesced_mmio) {
870 struct kvm_coalesced_mmio_zone zone;
872 zone.addr = start;
873 zone.size = size;
874 zone.pad = 0;
876 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
880 static void kvm_coalesce_pio_add(MemoryListener *listener,
881 MemoryRegionSection *section,
882 hwaddr start, hwaddr size)
884 KVMState *s = kvm_state;
886 if (s->coalesced_pio) {
887 struct kvm_coalesced_mmio_zone zone;
889 zone.addr = start;
890 zone.size = size;
891 zone.pio = 1;
893 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
897 static void kvm_coalesce_pio_del(MemoryListener *listener,
898 MemoryRegionSection *section,
899 hwaddr start, hwaddr size)
901 KVMState *s = kvm_state;
903 if (s->coalesced_pio) {
904 struct kvm_coalesced_mmio_zone zone;
906 zone.addr = start;
907 zone.size = size;
908 zone.pio = 1;
910 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
914 static MemoryListener kvm_coalesced_pio_listener = {
915 .coalesced_io_add = kvm_coalesce_pio_add,
916 .coalesced_io_del = kvm_coalesce_pio_del,
919 int kvm_check_extension(KVMState *s, unsigned int extension)
921 int ret;
923 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
924 if (ret < 0) {
925 ret = 0;
928 return ret;
931 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
933 int ret;
935 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
936 if (ret < 0) {
937 /* VM wide version not implemented, use global one instead */
938 ret = kvm_check_extension(s, extension);
941 return ret;
944 typedef struct HWPoisonPage {
945 ram_addr_t ram_addr;
946 QLIST_ENTRY(HWPoisonPage) list;
947 } HWPoisonPage;
949 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
950 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
952 static void kvm_unpoison_all(void *param)
954 HWPoisonPage *page, *next_page;
956 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
957 QLIST_REMOVE(page, list);
958 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
959 g_free(page);
963 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
965 HWPoisonPage *page;
967 QLIST_FOREACH(page, &hwpoison_page_list, list) {
968 if (page->ram_addr == ram_addr) {
969 return;
972 page = g_new(HWPoisonPage, 1);
973 page->ram_addr = ram_addr;
974 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
977 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
979 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
980 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
981 * endianness, but the memory core hands them in target endianness.
982 * For example, PPC is always treated as big-endian even if running
983 * on KVM and on PPC64LE. Correct here.
985 switch (size) {
986 case 2:
987 val = bswap16(val);
988 break;
989 case 4:
990 val = bswap32(val);
991 break;
993 #endif
994 return val;
997 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
998 bool assign, uint32_t size, bool datamatch)
1000 int ret;
1001 struct kvm_ioeventfd iofd = {
1002 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1003 .addr = addr,
1004 .len = size,
1005 .flags = 0,
1006 .fd = fd,
1009 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1010 datamatch);
1011 if (!kvm_enabled()) {
1012 return -ENOSYS;
1015 if (datamatch) {
1016 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1018 if (!assign) {
1019 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1022 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1024 if (ret < 0) {
1025 return -errno;
1028 return 0;
1031 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1032 bool assign, uint32_t size, bool datamatch)
1034 struct kvm_ioeventfd kick = {
1035 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1036 .addr = addr,
1037 .flags = KVM_IOEVENTFD_FLAG_PIO,
1038 .len = size,
1039 .fd = fd,
1041 int r;
1042 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1043 if (!kvm_enabled()) {
1044 return -ENOSYS;
1046 if (datamatch) {
1047 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1049 if (!assign) {
1050 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1052 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1053 if (r < 0) {
1054 return r;
1056 return 0;
1060 static int kvm_check_many_ioeventfds(void)
1062 /* Userspace can use ioeventfd for io notification. This requires a host
1063 * that supports eventfd(2) and an I/O thread; since eventfd does not
1064 * support SIGIO it cannot interrupt the vcpu.
1066 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1067 * can avoid creating too many ioeventfds.
1069 #if defined(CONFIG_EVENTFD)
1070 int ioeventfds[7];
1071 int i, ret = 0;
1072 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1073 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1074 if (ioeventfds[i] < 0) {
1075 break;
1077 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1078 if (ret < 0) {
1079 close(ioeventfds[i]);
1080 break;
1084 /* Decide whether many devices are supported or not */
1085 ret = i == ARRAY_SIZE(ioeventfds);
1087 while (i-- > 0) {
1088 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1089 close(ioeventfds[i]);
1091 return ret;
1092 #else
1093 return 0;
1094 #endif
1097 static const KVMCapabilityInfo *
1098 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1100 while (list->name) {
1101 if (!kvm_check_extension(s, list->value)) {
1102 return list;
1104 list++;
1106 return NULL;
1109 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1111 g_assert(
1112 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1114 kvm_max_slot_size = max_slot_size;
1117 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1118 MemoryRegionSection *section, bool add)
1120 KVMSlot *mem;
1121 int err;
1122 MemoryRegion *mr = section->mr;
1123 bool writeable = !mr->readonly && !mr->rom_device;
1124 hwaddr start_addr, size, slot_size;
1125 void *ram;
1127 if (!memory_region_is_ram(mr)) {
1128 if (writeable || !kvm_readonly_mem_allowed) {
1129 return;
1130 } else if (!mr->romd_mode) {
1131 /* If the memory device is not in romd_mode, then we actually want
1132 * to remove the kvm memory slot so all accesses will trap. */
1133 add = false;
1137 size = kvm_align_section(section, &start_addr);
1138 if (!size) {
1139 return;
1142 /* use aligned delta to align the ram address */
1143 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1144 (start_addr - section->offset_within_address_space);
1146 kvm_slots_lock(kml);
1148 if (!add) {
1149 do {
1150 slot_size = MIN(kvm_max_slot_size, size);
1151 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1152 if (!mem) {
1153 goto out;
1155 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1156 kvm_physical_sync_dirty_bitmap(kml, section);
1159 /* unregister the slot */
1160 g_free(mem->dirty_bmap);
1161 mem->dirty_bmap = NULL;
1162 mem->memory_size = 0;
1163 mem->flags = 0;
1164 err = kvm_set_user_memory_region(kml, mem, false);
1165 if (err) {
1166 fprintf(stderr, "%s: error unregistering slot: %s\n",
1167 __func__, strerror(-err));
1168 abort();
1170 start_addr += slot_size;
1171 size -= slot_size;
1172 } while (size);
1173 goto out;
1176 /* register the new slot */
1177 do {
1178 slot_size = MIN(kvm_max_slot_size, size);
1179 mem = kvm_alloc_slot(kml);
1180 mem->memory_size = slot_size;
1181 mem->start_addr = start_addr;
1182 mem->ram = ram;
1183 mem->flags = kvm_mem_flags(mr);
1185 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1187 * Reallocate the bmap; it means it doesn't disappear in
1188 * middle of a migrate.
1190 kvm_memslot_init_dirty_bitmap(mem);
1192 err = kvm_set_user_memory_region(kml, mem, true);
1193 if (err) {
1194 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1195 strerror(-err));
1196 abort();
1198 start_addr += slot_size;
1199 ram += slot_size;
1200 size -= slot_size;
1201 } while (size);
1203 out:
1204 kvm_slots_unlock(kml);
1207 static void kvm_region_add(MemoryListener *listener,
1208 MemoryRegionSection *section)
1210 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1212 memory_region_ref(section->mr);
1213 kvm_set_phys_mem(kml, section, true);
1216 static void kvm_region_del(MemoryListener *listener,
1217 MemoryRegionSection *section)
1219 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1221 kvm_set_phys_mem(kml, section, false);
1222 memory_region_unref(section->mr);
1225 static void kvm_log_sync(MemoryListener *listener,
1226 MemoryRegionSection *section)
1228 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1229 int r;
1231 kvm_slots_lock(kml);
1232 r = kvm_physical_sync_dirty_bitmap(kml, section);
1233 kvm_slots_unlock(kml);
1234 if (r < 0) {
1235 abort();
1239 static void kvm_log_clear(MemoryListener *listener,
1240 MemoryRegionSection *section)
1242 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1243 int r;
1245 r = kvm_physical_log_clear(kml, section);
1246 if (r < 0) {
1247 error_report_once("%s: kvm log clear failed: mr=%s "
1248 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1249 section->mr->name, section->offset_within_region,
1250 int128_get64(section->size));
1251 abort();
1255 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1256 MemoryRegionSection *section,
1257 bool match_data, uint64_t data,
1258 EventNotifier *e)
1260 int fd = event_notifier_get_fd(e);
1261 int r;
1263 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1264 data, true, int128_get64(section->size),
1265 match_data);
1266 if (r < 0) {
1267 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1268 __func__, strerror(-r), -r);
1269 abort();
1273 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1274 MemoryRegionSection *section,
1275 bool match_data, uint64_t data,
1276 EventNotifier *e)
1278 int fd = event_notifier_get_fd(e);
1279 int r;
1281 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1282 data, false, int128_get64(section->size),
1283 match_data);
1284 if (r < 0) {
1285 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1286 __func__, strerror(-r), -r);
1287 abort();
1291 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1292 MemoryRegionSection *section,
1293 bool match_data, uint64_t data,
1294 EventNotifier *e)
1296 int fd = event_notifier_get_fd(e);
1297 int r;
1299 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1300 data, true, int128_get64(section->size),
1301 match_data);
1302 if (r < 0) {
1303 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1304 __func__, strerror(-r), -r);
1305 abort();
1309 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1310 MemoryRegionSection *section,
1311 bool match_data, uint64_t data,
1312 EventNotifier *e)
1315 int fd = event_notifier_get_fd(e);
1316 int r;
1318 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1319 data, false, int128_get64(section->size),
1320 match_data);
1321 if (r < 0) {
1322 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1323 __func__, strerror(-r), -r);
1324 abort();
1328 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1329 AddressSpace *as, int as_id)
1331 int i;
1333 qemu_mutex_init(&kml->slots_lock);
1334 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1335 kml->as_id = as_id;
1337 for (i = 0; i < s->nr_slots; i++) {
1338 kml->slots[i].slot = i;
1341 kml->listener.region_add = kvm_region_add;
1342 kml->listener.region_del = kvm_region_del;
1343 kml->listener.log_start = kvm_log_start;
1344 kml->listener.log_stop = kvm_log_stop;
1345 kml->listener.log_sync = kvm_log_sync;
1346 kml->listener.log_clear = kvm_log_clear;
1347 kml->listener.priority = 10;
1349 memory_listener_register(&kml->listener, as);
1351 for (i = 0; i < s->nr_as; ++i) {
1352 if (!s->as[i].as) {
1353 s->as[i].as = as;
1354 s->as[i].ml = kml;
1355 break;
1360 static MemoryListener kvm_io_listener = {
1361 .eventfd_add = kvm_io_ioeventfd_add,
1362 .eventfd_del = kvm_io_ioeventfd_del,
1363 .priority = 10,
1366 int kvm_set_irq(KVMState *s, int irq, int level)
1368 struct kvm_irq_level event;
1369 int ret;
1371 assert(kvm_async_interrupts_enabled());
1373 event.level = level;
1374 event.irq = irq;
1375 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1376 if (ret < 0) {
1377 perror("kvm_set_irq");
1378 abort();
1381 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1384 #ifdef KVM_CAP_IRQ_ROUTING
1385 typedef struct KVMMSIRoute {
1386 struct kvm_irq_routing_entry kroute;
1387 QTAILQ_ENTRY(KVMMSIRoute) entry;
1388 } KVMMSIRoute;
1390 static void set_gsi(KVMState *s, unsigned int gsi)
1392 set_bit(gsi, s->used_gsi_bitmap);
1395 static void clear_gsi(KVMState *s, unsigned int gsi)
1397 clear_bit(gsi, s->used_gsi_bitmap);
1400 void kvm_init_irq_routing(KVMState *s)
1402 int gsi_count, i;
1404 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1405 if (gsi_count > 0) {
1406 /* Round up so we can search ints using ffs */
1407 s->used_gsi_bitmap = bitmap_new(gsi_count);
1408 s->gsi_count = gsi_count;
1411 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1412 s->nr_allocated_irq_routes = 0;
1414 if (!kvm_direct_msi_allowed) {
1415 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1416 QTAILQ_INIT(&s->msi_hashtab[i]);
1420 kvm_arch_init_irq_routing(s);
1423 void kvm_irqchip_commit_routes(KVMState *s)
1425 int ret;
1427 if (kvm_gsi_direct_mapping()) {
1428 return;
1431 if (!kvm_gsi_routing_enabled()) {
1432 return;
1435 s->irq_routes->flags = 0;
1436 trace_kvm_irqchip_commit_routes();
1437 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1438 assert(ret == 0);
1441 static void kvm_add_routing_entry(KVMState *s,
1442 struct kvm_irq_routing_entry *entry)
1444 struct kvm_irq_routing_entry *new;
1445 int n, size;
1447 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1448 n = s->nr_allocated_irq_routes * 2;
1449 if (n < 64) {
1450 n = 64;
1452 size = sizeof(struct kvm_irq_routing);
1453 size += n * sizeof(*new);
1454 s->irq_routes = g_realloc(s->irq_routes, size);
1455 s->nr_allocated_irq_routes = n;
1457 n = s->irq_routes->nr++;
1458 new = &s->irq_routes->entries[n];
1460 *new = *entry;
1462 set_gsi(s, entry->gsi);
1465 static int kvm_update_routing_entry(KVMState *s,
1466 struct kvm_irq_routing_entry *new_entry)
1468 struct kvm_irq_routing_entry *entry;
1469 int n;
1471 for (n = 0; n < s->irq_routes->nr; n++) {
1472 entry = &s->irq_routes->entries[n];
1473 if (entry->gsi != new_entry->gsi) {
1474 continue;
1477 if(!memcmp(entry, new_entry, sizeof *entry)) {
1478 return 0;
1481 *entry = *new_entry;
1483 return 0;
1486 return -ESRCH;
1489 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1491 struct kvm_irq_routing_entry e = {};
1493 assert(pin < s->gsi_count);
1495 e.gsi = irq;
1496 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1497 e.flags = 0;
1498 e.u.irqchip.irqchip = irqchip;
1499 e.u.irqchip.pin = pin;
1500 kvm_add_routing_entry(s, &e);
1503 void kvm_irqchip_release_virq(KVMState *s, int virq)
1505 struct kvm_irq_routing_entry *e;
1506 int i;
1508 if (kvm_gsi_direct_mapping()) {
1509 return;
1512 for (i = 0; i < s->irq_routes->nr; i++) {
1513 e = &s->irq_routes->entries[i];
1514 if (e->gsi == virq) {
1515 s->irq_routes->nr--;
1516 *e = s->irq_routes->entries[s->irq_routes->nr];
1519 clear_gsi(s, virq);
1520 kvm_arch_release_virq_post(virq);
1521 trace_kvm_irqchip_release_virq(virq);
1524 void kvm_irqchip_add_change_notifier(Notifier *n)
1526 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1529 void kvm_irqchip_remove_change_notifier(Notifier *n)
1531 notifier_remove(n);
1534 void kvm_irqchip_change_notify(void)
1536 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1539 static unsigned int kvm_hash_msi(uint32_t data)
1541 /* This is optimized for IA32 MSI layout. However, no other arch shall
1542 * repeat the mistake of not providing a direct MSI injection API. */
1543 return data & 0xff;
1546 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1548 KVMMSIRoute *route, *next;
1549 unsigned int hash;
1551 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1552 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1553 kvm_irqchip_release_virq(s, route->kroute.gsi);
1554 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1555 g_free(route);
1560 static int kvm_irqchip_get_virq(KVMState *s)
1562 int next_virq;
1565 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1566 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1567 * number can succeed even though a new route entry cannot be added.
1568 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1570 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1571 kvm_flush_dynamic_msi_routes(s);
1574 /* Return the lowest unused GSI in the bitmap */
1575 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1576 if (next_virq >= s->gsi_count) {
1577 return -ENOSPC;
1578 } else {
1579 return next_virq;
1583 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1585 unsigned int hash = kvm_hash_msi(msg.data);
1586 KVMMSIRoute *route;
1588 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1589 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1590 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1591 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1592 return route;
1595 return NULL;
1598 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1600 struct kvm_msi msi;
1601 KVMMSIRoute *route;
1603 if (kvm_direct_msi_allowed) {
1604 msi.address_lo = (uint32_t)msg.address;
1605 msi.address_hi = msg.address >> 32;
1606 msi.data = le32_to_cpu(msg.data);
1607 msi.flags = 0;
1608 memset(msi.pad, 0, sizeof(msi.pad));
1610 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1613 route = kvm_lookup_msi_route(s, msg);
1614 if (!route) {
1615 int virq;
1617 virq = kvm_irqchip_get_virq(s);
1618 if (virq < 0) {
1619 return virq;
1622 route = g_malloc0(sizeof(KVMMSIRoute));
1623 route->kroute.gsi = virq;
1624 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1625 route->kroute.flags = 0;
1626 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1627 route->kroute.u.msi.address_hi = msg.address >> 32;
1628 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1630 kvm_add_routing_entry(s, &route->kroute);
1631 kvm_irqchip_commit_routes(s);
1633 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1634 entry);
1637 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1639 return kvm_set_irq(s, route->kroute.gsi, 1);
1642 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1644 struct kvm_irq_routing_entry kroute = {};
1645 int virq;
1646 MSIMessage msg = {0, 0};
1648 if (pci_available && dev) {
1649 msg = pci_get_msi_message(dev, vector);
1652 if (kvm_gsi_direct_mapping()) {
1653 return kvm_arch_msi_data_to_gsi(msg.data);
1656 if (!kvm_gsi_routing_enabled()) {
1657 return -ENOSYS;
1660 virq = kvm_irqchip_get_virq(s);
1661 if (virq < 0) {
1662 return virq;
1665 kroute.gsi = virq;
1666 kroute.type = KVM_IRQ_ROUTING_MSI;
1667 kroute.flags = 0;
1668 kroute.u.msi.address_lo = (uint32_t)msg.address;
1669 kroute.u.msi.address_hi = msg.address >> 32;
1670 kroute.u.msi.data = le32_to_cpu(msg.data);
1671 if (pci_available && kvm_msi_devid_required()) {
1672 kroute.flags = KVM_MSI_VALID_DEVID;
1673 kroute.u.msi.devid = pci_requester_id(dev);
1675 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1676 kvm_irqchip_release_virq(s, virq);
1677 return -EINVAL;
1680 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1681 vector, virq);
1683 kvm_add_routing_entry(s, &kroute);
1684 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1685 kvm_irqchip_commit_routes(s);
1687 return virq;
1690 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1691 PCIDevice *dev)
1693 struct kvm_irq_routing_entry kroute = {};
1695 if (kvm_gsi_direct_mapping()) {
1696 return 0;
1699 if (!kvm_irqchip_in_kernel()) {
1700 return -ENOSYS;
1703 kroute.gsi = virq;
1704 kroute.type = KVM_IRQ_ROUTING_MSI;
1705 kroute.flags = 0;
1706 kroute.u.msi.address_lo = (uint32_t)msg.address;
1707 kroute.u.msi.address_hi = msg.address >> 32;
1708 kroute.u.msi.data = le32_to_cpu(msg.data);
1709 if (pci_available && kvm_msi_devid_required()) {
1710 kroute.flags = KVM_MSI_VALID_DEVID;
1711 kroute.u.msi.devid = pci_requester_id(dev);
1713 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1714 return -EINVAL;
1717 trace_kvm_irqchip_update_msi_route(virq);
1719 return kvm_update_routing_entry(s, &kroute);
1722 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1723 EventNotifier *resample, int virq,
1724 bool assign)
1726 int fd = event_notifier_get_fd(event);
1727 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1729 struct kvm_irqfd irqfd = {
1730 .fd = fd,
1731 .gsi = virq,
1732 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1735 if (rfd != -1) {
1736 assert(assign);
1737 if (kvm_irqchip_is_split()) {
1739 * When the slow irqchip (e.g. IOAPIC) is in the
1740 * userspace, KVM kernel resamplefd will not work because
1741 * the EOI of the interrupt will be delivered to userspace
1742 * instead, so the KVM kernel resamplefd kick will be
1743 * skipped. The userspace here mimics what the kernel
1744 * provides with resamplefd, remember the resamplefd and
1745 * kick it when we receive EOI of this IRQ.
1747 * This is hackery because IOAPIC is mostly bypassed
1748 * (except EOI broadcasts) when irqfd is used. However
1749 * this can bring much performance back for split irqchip
1750 * with INTx IRQs (for VFIO, this gives 93% perf of the
1751 * full fast path, which is 46% perf boost comparing to
1752 * the INTx slow path).
1754 kvm_resample_fd_insert(virq, resample);
1755 } else {
1756 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1757 irqfd.resamplefd = rfd;
1759 } else if (!assign) {
1760 if (kvm_irqchip_is_split()) {
1761 kvm_resample_fd_remove(virq);
1765 if (!kvm_irqfds_enabled()) {
1766 return -ENOSYS;
1769 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1772 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1774 struct kvm_irq_routing_entry kroute = {};
1775 int virq;
1777 if (!kvm_gsi_routing_enabled()) {
1778 return -ENOSYS;
1781 virq = kvm_irqchip_get_virq(s);
1782 if (virq < 0) {
1783 return virq;
1786 kroute.gsi = virq;
1787 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1788 kroute.flags = 0;
1789 kroute.u.adapter.summary_addr = adapter->summary_addr;
1790 kroute.u.adapter.ind_addr = adapter->ind_addr;
1791 kroute.u.adapter.summary_offset = adapter->summary_offset;
1792 kroute.u.adapter.ind_offset = adapter->ind_offset;
1793 kroute.u.adapter.adapter_id = adapter->adapter_id;
1795 kvm_add_routing_entry(s, &kroute);
1797 return virq;
1800 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1802 struct kvm_irq_routing_entry kroute = {};
1803 int virq;
1805 if (!kvm_gsi_routing_enabled()) {
1806 return -ENOSYS;
1808 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1809 return -ENOSYS;
1811 virq = kvm_irqchip_get_virq(s);
1812 if (virq < 0) {
1813 return virq;
1816 kroute.gsi = virq;
1817 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1818 kroute.flags = 0;
1819 kroute.u.hv_sint.vcpu = vcpu;
1820 kroute.u.hv_sint.sint = sint;
1822 kvm_add_routing_entry(s, &kroute);
1823 kvm_irqchip_commit_routes(s);
1825 return virq;
1828 #else /* !KVM_CAP_IRQ_ROUTING */
1830 void kvm_init_irq_routing(KVMState *s)
1834 void kvm_irqchip_release_virq(KVMState *s, int virq)
1838 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1840 abort();
1843 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1845 return -ENOSYS;
1848 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1850 return -ENOSYS;
1853 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1855 return -ENOSYS;
1858 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1859 EventNotifier *resample, int virq,
1860 bool assign)
1862 abort();
1865 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1867 return -ENOSYS;
1869 #endif /* !KVM_CAP_IRQ_ROUTING */
1871 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1872 EventNotifier *rn, int virq)
1874 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1877 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1878 int virq)
1880 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1883 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1884 EventNotifier *rn, qemu_irq irq)
1886 gpointer key, gsi;
1887 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1889 if (!found) {
1890 return -ENXIO;
1892 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1895 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1896 qemu_irq irq)
1898 gpointer key, gsi;
1899 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1901 if (!found) {
1902 return -ENXIO;
1904 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1907 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1909 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1912 static void kvm_irqchip_create(KVMState *s)
1914 int ret;
1916 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1917 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1919 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1920 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1921 if (ret < 0) {
1922 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1923 exit(1);
1925 } else {
1926 return;
1929 /* First probe and see if there's a arch-specific hook to create the
1930 * in-kernel irqchip for us */
1931 ret = kvm_arch_irqchip_create(s);
1932 if (ret == 0) {
1933 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1934 perror("Split IRQ chip mode not supported.");
1935 exit(1);
1936 } else {
1937 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1940 if (ret < 0) {
1941 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1942 exit(1);
1945 kvm_kernel_irqchip = true;
1946 /* If we have an in-kernel IRQ chip then we must have asynchronous
1947 * interrupt delivery (though the reverse is not necessarily true)
1949 kvm_async_interrupts_allowed = true;
1950 kvm_halt_in_kernel_allowed = true;
1952 kvm_init_irq_routing(s);
1954 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1957 /* Find number of supported CPUs using the recommended
1958 * procedure from the kernel API documentation to cope with
1959 * older kernels that may be missing capabilities.
1961 static int kvm_recommended_vcpus(KVMState *s)
1963 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1964 return (ret) ? ret : 4;
1967 static int kvm_max_vcpus(KVMState *s)
1969 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1970 return (ret) ? ret : kvm_recommended_vcpus(s);
1973 static int kvm_max_vcpu_id(KVMState *s)
1975 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1976 return (ret) ? ret : kvm_max_vcpus(s);
1979 bool kvm_vcpu_id_is_valid(int vcpu_id)
1981 KVMState *s = KVM_STATE(current_accel());
1982 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1985 static int kvm_init(MachineState *ms)
1987 MachineClass *mc = MACHINE_GET_CLASS(ms);
1988 static const char upgrade_note[] =
1989 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1990 "(see http://sourceforge.net/projects/kvm).\n";
1991 struct {
1992 const char *name;
1993 int num;
1994 } num_cpus[] = {
1995 { "SMP", ms->smp.cpus },
1996 { "hotpluggable", ms->smp.max_cpus },
1997 { NULL, }
1998 }, *nc = num_cpus;
1999 int soft_vcpus_limit, hard_vcpus_limit;
2000 KVMState *s;
2001 const KVMCapabilityInfo *missing_cap;
2002 int ret;
2003 int type = 0;
2004 uint64_t dirty_log_manual_caps;
2006 s = KVM_STATE(ms->accelerator);
2009 * On systems where the kernel can support different base page
2010 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2011 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2012 * page size for the system though.
2014 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2016 s->sigmask_len = 8;
2018 #ifdef KVM_CAP_SET_GUEST_DEBUG
2019 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2020 #endif
2021 QLIST_INIT(&s->kvm_parked_vcpus);
2022 s->vmfd = -1;
2023 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2024 if (s->fd == -1) {
2025 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2026 ret = -errno;
2027 goto err;
2030 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2031 if (ret < KVM_API_VERSION) {
2032 if (ret >= 0) {
2033 ret = -EINVAL;
2035 fprintf(stderr, "kvm version too old\n");
2036 goto err;
2039 if (ret > KVM_API_VERSION) {
2040 ret = -EINVAL;
2041 fprintf(stderr, "kvm version not supported\n");
2042 goto err;
2045 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2046 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2048 /* If unspecified, use the default value */
2049 if (!s->nr_slots) {
2050 s->nr_slots = 32;
2053 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2054 if (s->nr_as <= 1) {
2055 s->nr_as = 1;
2057 s->as = g_new0(struct KVMAs, s->nr_as);
2059 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2060 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2061 "kvm-type",
2062 &error_abort);
2063 type = mc->kvm_type(ms, kvm_type);
2064 } else if (mc->kvm_type) {
2065 type = mc->kvm_type(ms, NULL);
2068 do {
2069 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2070 } while (ret == -EINTR);
2072 if (ret < 0) {
2073 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2074 strerror(-ret));
2076 #ifdef TARGET_S390X
2077 if (ret == -EINVAL) {
2078 fprintf(stderr,
2079 "Host kernel setup problem detected. Please verify:\n");
2080 fprintf(stderr, "- for kernels supporting the switch_amode or"
2081 " user_mode parameters, whether\n");
2082 fprintf(stderr,
2083 " user space is running in primary address space\n");
2084 fprintf(stderr,
2085 "- for kernels supporting the vm.allocate_pgste sysctl, "
2086 "whether it is enabled\n");
2088 #endif
2089 goto err;
2092 s->vmfd = ret;
2094 /* check the vcpu limits */
2095 soft_vcpus_limit = kvm_recommended_vcpus(s);
2096 hard_vcpus_limit = kvm_max_vcpus(s);
2098 while (nc->name) {
2099 if (nc->num > soft_vcpus_limit) {
2100 warn_report("Number of %s cpus requested (%d) exceeds "
2101 "the recommended cpus supported by KVM (%d)",
2102 nc->name, nc->num, soft_vcpus_limit);
2104 if (nc->num > hard_vcpus_limit) {
2105 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2106 "the maximum cpus supported by KVM (%d)\n",
2107 nc->name, nc->num, hard_vcpus_limit);
2108 exit(1);
2111 nc++;
2114 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2115 if (!missing_cap) {
2116 missing_cap =
2117 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2119 if (missing_cap) {
2120 ret = -EINVAL;
2121 fprintf(stderr, "kvm does not support %s\n%s",
2122 missing_cap->name, upgrade_note);
2123 goto err;
2126 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2127 s->coalesced_pio = s->coalesced_mmio &&
2128 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2130 dirty_log_manual_caps =
2131 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2132 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2133 KVM_DIRTY_LOG_INITIALLY_SET);
2134 s->manual_dirty_log_protect = dirty_log_manual_caps;
2135 if (dirty_log_manual_caps) {
2136 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2137 dirty_log_manual_caps);
2138 if (ret) {
2139 warn_report("Trying to enable capability %"PRIu64" of "
2140 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2141 "Falling back to the legacy mode. ",
2142 dirty_log_manual_caps);
2143 s->manual_dirty_log_protect = 0;
2147 #ifdef KVM_CAP_VCPU_EVENTS
2148 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2149 #endif
2151 s->robust_singlestep =
2152 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2154 #ifdef KVM_CAP_DEBUGREGS
2155 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2156 #endif
2158 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2160 #ifdef KVM_CAP_IRQ_ROUTING
2161 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2162 #endif
2164 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2166 s->irq_set_ioctl = KVM_IRQ_LINE;
2167 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2168 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2171 kvm_readonly_mem_allowed =
2172 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2174 kvm_eventfds_allowed =
2175 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2177 kvm_irqfds_allowed =
2178 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2180 kvm_resamplefds_allowed =
2181 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2183 kvm_vm_attributes_allowed =
2184 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2186 kvm_ioeventfd_any_length_allowed =
2187 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2189 kvm_state = s;
2191 ret = kvm_arch_init(ms, s);
2192 if (ret < 0) {
2193 goto err;
2196 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2197 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2200 qemu_register_reset(kvm_unpoison_all, NULL);
2202 if (s->kernel_irqchip_allowed) {
2203 kvm_irqchip_create(s);
2206 if (kvm_eventfds_allowed) {
2207 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2208 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2210 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2211 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2213 kvm_memory_listener_register(s, &s->memory_listener,
2214 &address_space_memory, 0);
2215 if (kvm_eventfds_allowed) {
2216 memory_listener_register(&kvm_io_listener,
2217 &address_space_io);
2219 memory_listener_register(&kvm_coalesced_pio_listener,
2220 &address_space_io);
2222 s->many_ioeventfds = kvm_check_many_ioeventfds();
2224 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2225 if (!s->sync_mmu) {
2226 ret = ram_block_discard_disable(true);
2227 assert(!ret);
2229 return 0;
2231 err:
2232 assert(ret < 0);
2233 if (s->vmfd >= 0) {
2234 close(s->vmfd);
2236 if (s->fd != -1) {
2237 close(s->fd);
2239 g_free(s->memory_listener.slots);
2241 return ret;
2244 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2246 s->sigmask_len = sigmask_len;
2249 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2250 int size, uint32_t count)
2252 int i;
2253 uint8_t *ptr = data;
2255 for (i = 0; i < count; i++) {
2256 address_space_rw(&address_space_io, port, attrs,
2257 ptr, size,
2258 direction == KVM_EXIT_IO_OUT);
2259 ptr += size;
2263 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2265 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2266 run->internal.suberror);
2268 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2269 int i;
2271 for (i = 0; i < run->internal.ndata; ++i) {
2272 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2273 i, (uint64_t)run->internal.data[i]);
2276 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2277 fprintf(stderr, "emulation failure\n");
2278 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2279 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2280 return EXCP_INTERRUPT;
2283 /* FIXME: Should trigger a qmp message to let management know
2284 * something went wrong.
2286 return -1;
2289 void kvm_flush_coalesced_mmio_buffer(void)
2291 KVMState *s = kvm_state;
2293 if (s->coalesced_flush_in_progress) {
2294 return;
2297 s->coalesced_flush_in_progress = true;
2299 if (s->coalesced_mmio_ring) {
2300 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2301 while (ring->first != ring->last) {
2302 struct kvm_coalesced_mmio *ent;
2304 ent = &ring->coalesced_mmio[ring->first];
2306 if (ent->pio == 1) {
2307 address_space_write(&address_space_io, ent->phys_addr,
2308 MEMTXATTRS_UNSPECIFIED, ent->data,
2309 ent->len);
2310 } else {
2311 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2313 smp_wmb();
2314 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2318 s->coalesced_flush_in_progress = false;
2321 bool kvm_cpu_check_are_resettable(void)
2323 return kvm_arch_cpu_check_are_resettable();
2326 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2328 if (!cpu->vcpu_dirty) {
2329 kvm_arch_get_registers(cpu);
2330 cpu->vcpu_dirty = true;
2334 void kvm_cpu_synchronize_state(CPUState *cpu)
2336 if (!cpu->vcpu_dirty) {
2337 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2341 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2343 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2344 cpu->vcpu_dirty = false;
2347 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2349 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2352 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2354 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2355 cpu->vcpu_dirty = false;
2358 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2360 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2363 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2365 cpu->vcpu_dirty = true;
2368 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2370 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2373 #ifdef KVM_HAVE_MCE_INJECTION
2374 static __thread void *pending_sigbus_addr;
2375 static __thread int pending_sigbus_code;
2376 static __thread bool have_sigbus_pending;
2377 #endif
2379 static void kvm_cpu_kick(CPUState *cpu)
2381 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2384 static void kvm_cpu_kick_self(void)
2386 if (kvm_immediate_exit) {
2387 kvm_cpu_kick(current_cpu);
2388 } else {
2389 qemu_cpu_kick_self();
2393 static void kvm_eat_signals(CPUState *cpu)
2395 struct timespec ts = { 0, 0 };
2396 siginfo_t siginfo;
2397 sigset_t waitset;
2398 sigset_t chkset;
2399 int r;
2401 if (kvm_immediate_exit) {
2402 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2403 /* Write kvm_run->immediate_exit before the cpu->exit_request
2404 * write in kvm_cpu_exec.
2406 smp_wmb();
2407 return;
2410 sigemptyset(&waitset);
2411 sigaddset(&waitset, SIG_IPI);
2413 do {
2414 r = sigtimedwait(&waitset, &siginfo, &ts);
2415 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2416 perror("sigtimedwait");
2417 exit(1);
2420 r = sigpending(&chkset);
2421 if (r == -1) {
2422 perror("sigpending");
2423 exit(1);
2425 } while (sigismember(&chkset, SIG_IPI));
2428 int kvm_cpu_exec(CPUState *cpu)
2430 struct kvm_run *run = cpu->kvm_run;
2431 int ret, run_ret;
2433 DPRINTF("kvm_cpu_exec()\n");
2435 if (kvm_arch_process_async_events(cpu)) {
2436 qatomic_set(&cpu->exit_request, 0);
2437 return EXCP_HLT;
2440 qemu_mutex_unlock_iothread();
2441 cpu_exec_start(cpu);
2443 do {
2444 MemTxAttrs attrs;
2446 if (cpu->vcpu_dirty) {
2447 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2448 cpu->vcpu_dirty = false;
2451 kvm_arch_pre_run(cpu, run);
2452 if (qatomic_read(&cpu->exit_request)) {
2453 DPRINTF("interrupt exit requested\n");
2455 * KVM requires us to reenter the kernel after IO exits to complete
2456 * instruction emulation. This self-signal will ensure that we
2457 * leave ASAP again.
2459 kvm_cpu_kick_self();
2462 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2463 * Matching barrier in kvm_eat_signals.
2465 smp_rmb();
2467 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2469 attrs = kvm_arch_post_run(cpu, run);
2471 #ifdef KVM_HAVE_MCE_INJECTION
2472 if (unlikely(have_sigbus_pending)) {
2473 qemu_mutex_lock_iothread();
2474 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2475 pending_sigbus_addr);
2476 have_sigbus_pending = false;
2477 qemu_mutex_unlock_iothread();
2479 #endif
2481 if (run_ret < 0) {
2482 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2483 DPRINTF("io window exit\n");
2484 kvm_eat_signals(cpu);
2485 ret = EXCP_INTERRUPT;
2486 break;
2488 fprintf(stderr, "error: kvm run failed %s\n",
2489 strerror(-run_ret));
2490 #ifdef TARGET_PPC
2491 if (run_ret == -EBUSY) {
2492 fprintf(stderr,
2493 "This is probably because your SMT is enabled.\n"
2494 "VCPU can only run on primary threads with all "
2495 "secondary threads offline.\n");
2497 #endif
2498 ret = -1;
2499 break;
2502 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2503 switch (run->exit_reason) {
2504 case KVM_EXIT_IO:
2505 DPRINTF("handle_io\n");
2506 /* Called outside BQL */
2507 kvm_handle_io(run->io.port, attrs,
2508 (uint8_t *)run + run->io.data_offset,
2509 run->io.direction,
2510 run->io.size,
2511 run->io.count);
2512 ret = 0;
2513 break;
2514 case KVM_EXIT_MMIO:
2515 DPRINTF("handle_mmio\n");
2516 /* Called outside BQL */
2517 address_space_rw(&address_space_memory,
2518 run->mmio.phys_addr, attrs,
2519 run->mmio.data,
2520 run->mmio.len,
2521 run->mmio.is_write);
2522 ret = 0;
2523 break;
2524 case KVM_EXIT_IRQ_WINDOW_OPEN:
2525 DPRINTF("irq_window_open\n");
2526 ret = EXCP_INTERRUPT;
2527 break;
2528 case KVM_EXIT_SHUTDOWN:
2529 DPRINTF("shutdown\n");
2530 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2531 ret = EXCP_INTERRUPT;
2532 break;
2533 case KVM_EXIT_UNKNOWN:
2534 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2535 (uint64_t)run->hw.hardware_exit_reason);
2536 ret = -1;
2537 break;
2538 case KVM_EXIT_INTERNAL_ERROR:
2539 ret = kvm_handle_internal_error(cpu, run);
2540 break;
2541 case KVM_EXIT_SYSTEM_EVENT:
2542 switch (run->system_event.type) {
2543 case KVM_SYSTEM_EVENT_SHUTDOWN:
2544 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2545 ret = EXCP_INTERRUPT;
2546 break;
2547 case KVM_SYSTEM_EVENT_RESET:
2548 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2549 ret = EXCP_INTERRUPT;
2550 break;
2551 case KVM_SYSTEM_EVENT_CRASH:
2552 kvm_cpu_synchronize_state(cpu);
2553 qemu_mutex_lock_iothread();
2554 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2555 qemu_mutex_unlock_iothread();
2556 ret = 0;
2557 break;
2558 default:
2559 DPRINTF("kvm_arch_handle_exit\n");
2560 ret = kvm_arch_handle_exit(cpu, run);
2561 break;
2563 break;
2564 default:
2565 DPRINTF("kvm_arch_handle_exit\n");
2566 ret = kvm_arch_handle_exit(cpu, run);
2567 break;
2569 } while (ret == 0);
2571 cpu_exec_end(cpu);
2572 qemu_mutex_lock_iothread();
2574 if (ret < 0) {
2575 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2576 vm_stop(RUN_STATE_INTERNAL_ERROR);
2579 qatomic_set(&cpu->exit_request, 0);
2580 return ret;
2583 int kvm_ioctl(KVMState *s, int type, ...)
2585 int ret;
2586 void *arg;
2587 va_list ap;
2589 va_start(ap, type);
2590 arg = va_arg(ap, void *);
2591 va_end(ap);
2593 trace_kvm_ioctl(type, arg);
2594 ret = ioctl(s->fd, type, arg);
2595 if (ret == -1) {
2596 ret = -errno;
2598 return ret;
2601 int kvm_vm_ioctl(KVMState *s, int type, ...)
2603 int ret;
2604 void *arg;
2605 va_list ap;
2607 va_start(ap, type);
2608 arg = va_arg(ap, void *);
2609 va_end(ap);
2611 trace_kvm_vm_ioctl(type, arg);
2612 ret = ioctl(s->vmfd, type, arg);
2613 if (ret == -1) {
2614 ret = -errno;
2616 return ret;
2619 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2621 int ret;
2622 void *arg;
2623 va_list ap;
2625 va_start(ap, type);
2626 arg = va_arg(ap, void *);
2627 va_end(ap);
2629 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2630 ret = ioctl(cpu->kvm_fd, type, arg);
2631 if (ret == -1) {
2632 ret = -errno;
2634 return ret;
2637 int kvm_device_ioctl(int fd, int type, ...)
2639 int ret;
2640 void *arg;
2641 va_list ap;
2643 va_start(ap, type);
2644 arg = va_arg(ap, void *);
2645 va_end(ap);
2647 trace_kvm_device_ioctl(fd, type, arg);
2648 ret = ioctl(fd, type, arg);
2649 if (ret == -1) {
2650 ret = -errno;
2652 return ret;
2655 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2657 int ret;
2658 struct kvm_device_attr attribute = {
2659 .group = group,
2660 .attr = attr,
2663 if (!kvm_vm_attributes_allowed) {
2664 return 0;
2667 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2668 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2669 return ret ? 0 : 1;
2672 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2674 struct kvm_device_attr attribute = {
2675 .group = group,
2676 .attr = attr,
2677 .flags = 0,
2680 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2683 int kvm_device_access(int fd, int group, uint64_t attr,
2684 void *val, bool write, Error **errp)
2686 struct kvm_device_attr kvmattr;
2687 int err;
2689 kvmattr.flags = 0;
2690 kvmattr.group = group;
2691 kvmattr.attr = attr;
2692 kvmattr.addr = (uintptr_t)val;
2694 err = kvm_device_ioctl(fd,
2695 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2696 &kvmattr);
2697 if (err < 0) {
2698 error_setg_errno(errp, -err,
2699 "KVM_%s_DEVICE_ATTR failed: Group %d "
2700 "attr 0x%016" PRIx64,
2701 write ? "SET" : "GET", group, attr);
2703 return err;
2706 bool kvm_has_sync_mmu(void)
2708 return kvm_state->sync_mmu;
2711 int kvm_has_vcpu_events(void)
2713 return kvm_state->vcpu_events;
2716 int kvm_has_robust_singlestep(void)
2718 return kvm_state->robust_singlestep;
2721 int kvm_has_debugregs(void)
2723 return kvm_state->debugregs;
2726 int kvm_max_nested_state_length(void)
2728 return kvm_state->max_nested_state_len;
2731 int kvm_has_many_ioeventfds(void)
2733 if (!kvm_enabled()) {
2734 return 0;
2736 return kvm_state->many_ioeventfds;
2739 int kvm_has_gsi_routing(void)
2741 #ifdef KVM_CAP_IRQ_ROUTING
2742 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2743 #else
2744 return false;
2745 #endif
2748 int kvm_has_intx_set_mask(void)
2750 return kvm_state->intx_set_mask;
2753 bool kvm_arm_supports_user_irq(void)
2755 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2758 #ifdef KVM_CAP_SET_GUEST_DEBUG
2759 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2760 target_ulong pc)
2762 struct kvm_sw_breakpoint *bp;
2764 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2765 if (bp->pc == pc) {
2766 return bp;
2769 return NULL;
2772 int kvm_sw_breakpoints_active(CPUState *cpu)
2774 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2777 struct kvm_set_guest_debug_data {
2778 struct kvm_guest_debug dbg;
2779 int err;
2782 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2784 struct kvm_set_guest_debug_data *dbg_data =
2785 (struct kvm_set_guest_debug_data *) data.host_ptr;
2787 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2788 &dbg_data->dbg);
2791 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2793 struct kvm_set_guest_debug_data data;
2795 data.dbg.control = reinject_trap;
2797 if (cpu->singlestep_enabled) {
2798 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2800 kvm_arch_update_guest_debug(cpu, &data.dbg);
2802 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2803 RUN_ON_CPU_HOST_PTR(&data));
2804 return data.err;
2807 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2808 target_ulong len, int type)
2810 struct kvm_sw_breakpoint *bp;
2811 int err;
2813 if (type == GDB_BREAKPOINT_SW) {
2814 bp = kvm_find_sw_breakpoint(cpu, addr);
2815 if (bp) {
2816 bp->use_count++;
2817 return 0;
2820 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2821 bp->pc = addr;
2822 bp->use_count = 1;
2823 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2824 if (err) {
2825 g_free(bp);
2826 return err;
2829 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2830 } else {
2831 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2832 if (err) {
2833 return err;
2837 CPU_FOREACH(cpu) {
2838 err = kvm_update_guest_debug(cpu, 0);
2839 if (err) {
2840 return err;
2843 return 0;
2846 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2847 target_ulong len, int type)
2849 struct kvm_sw_breakpoint *bp;
2850 int err;
2852 if (type == GDB_BREAKPOINT_SW) {
2853 bp = kvm_find_sw_breakpoint(cpu, addr);
2854 if (!bp) {
2855 return -ENOENT;
2858 if (bp->use_count > 1) {
2859 bp->use_count--;
2860 return 0;
2863 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2864 if (err) {
2865 return err;
2868 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2869 g_free(bp);
2870 } else {
2871 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2872 if (err) {
2873 return err;
2877 CPU_FOREACH(cpu) {
2878 err = kvm_update_guest_debug(cpu, 0);
2879 if (err) {
2880 return err;
2883 return 0;
2886 void kvm_remove_all_breakpoints(CPUState *cpu)
2888 struct kvm_sw_breakpoint *bp, *next;
2889 KVMState *s = cpu->kvm_state;
2890 CPUState *tmpcpu;
2892 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2893 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2894 /* Try harder to find a CPU that currently sees the breakpoint. */
2895 CPU_FOREACH(tmpcpu) {
2896 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2897 break;
2901 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2902 g_free(bp);
2904 kvm_arch_remove_all_hw_breakpoints();
2906 CPU_FOREACH(cpu) {
2907 kvm_update_guest_debug(cpu, 0);
2911 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2913 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2915 return -EINVAL;
2918 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2919 target_ulong len, int type)
2921 return -EINVAL;
2924 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2925 target_ulong len, int type)
2927 return -EINVAL;
2930 void kvm_remove_all_breakpoints(CPUState *cpu)
2933 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2935 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2937 KVMState *s = kvm_state;
2938 struct kvm_signal_mask *sigmask;
2939 int r;
2941 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2943 sigmask->len = s->sigmask_len;
2944 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2945 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2946 g_free(sigmask);
2948 return r;
2951 static void kvm_ipi_signal(int sig)
2953 if (current_cpu) {
2954 assert(kvm_immediate_exit);
2955 kvm_cpu_kick(current_cpu);
2959 void kvm_init_cpu_signals(CPUState *cpu)
2961 int r;
2962 sigset_t set;
2963 struct sigaction sigact;
2965 memset(&sigact, 0, sizeof(sigact));
2966 sigact.sa_handler = kvm_ipi_signal;
2967 sigaction(SIG_IPI, &sigact, NULL);
2969 pthread_sigmask(SIG_BLOCK, NULL, &set);
2970 #if defined KVM_HAVE_MCE_INJECTION
2971 sigdelset(&set, SIGBUS);
2972 pthread_sigmask(SIG_SETMASK, &set, NULL);
2973 #endif
2974 sigdelset(&set, SIG_IPI);
2975 if (kvm_immediate_exit) {
2976 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2977 } else {
2978 r = kvm_set_signal_mask(cpu, &set);
2980 if (r) {
2981 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2982 exit(1);
2986 /* Called asynchronously in VCPU thread. */
2987 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2989 #ifdef KVM_HAVE_MCE_INJECTION
2990 if (have_sigbus_pending) {
2991 return 1;
2993 have_sigbus_pending = true;
2994 pending_sigbus_addr = addr;
2995 pending_sigbus_code = code;
2996 qatomic_set(&cpu->exit_request, 1);
2997 return 0;
2998 #else
2999 return 1;
3000 #endif
3003 /* Called synchronously (via signalfd) in main thread. */
3004 int kvm_on_sigbus(int code, void *addr)
3006 #ifdef KVM_HAVE_MCE_INJECTION
3007 /* Action required MCE kills the process if SIGBUS is blocked. Because
3008 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3009 * we can only get action optional here.
3011 assert(code != BUS_MCEERR_AR);
3012 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3013 return 0;
3014 #else
3015 return 1;
3016 #endif
3019 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3021 int ret;
3022 struct kvm_create_device create_dev;
3024 create_dev.type = type;
3025 create_dev.fd = -1;
3026 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3028 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3029 return -ENOTSUP;
3032 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3033 if (ret) {
3034 return ret;
3037 return test ? 0 : create_dev.fd;
3040 bool kvm_device_supported(int vmfd, uint64_t type)
3042 struct kvm_create_device create_dev = {
3043 .type = type,
3044 .fd = -1,
3045 .flags = KVM_CREATE_DEVICE_TEST,
3048 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3049 return false;
3052 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3055 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3057 struct kvm_one_reg reg;
3058 int r;
3060 reg.id = id;
3061 reg.addr = (uintptr_t) source;
3062 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3063 if (r) {
3064 trace_kvm_failed_reg_set(id, strerror(-r));
3066 return r;
3069 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3071 struct kvm_one_reg reg;
3072 int r;
3074 reg.id = id;
3075 reg.addr = (uintptr_t) target;
3076 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3077 if (r) {
3078 trace_kvm_failed_reg_get(id, strerror(-r));
3080 return r;
3083 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3084 hwaddr start_addr, hwaddr size)
3086 KVMState *kvm = KVM_STATE(ms->accelerator);
3087 int i;
3089 for (i = 0; i < kvm->nr_as; ++i) {
3090 if (kvm->as[i].as == as && kvm->as[i].ml) {
3091 size = MIN(kvm_max_slot_size, size);
3092 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3093 start_addr, size);
3097 return false;
3100 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3101 const char *name, void *opaque,
3102 Error **errp)
3104 KVMState *s = KVM_STATE(obj);
3105 int64_t value = s->kvm_shadow_mem;
3107 visit_type_int(v, name, &value, errp);
3110 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3111 const char *name, void *opaque,
3112 Error **errp)
3114 KVMState *s = KVM_STATE(obj);
3115 int64_t value;
3117 if (!visit_type_int(v, name, &value, errp)) {
3118 return;
3121 s->kvm_shadow_mem = value;
3124 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3125 const char *name, void *opaque,
3126 Error **errp)
3128 KVMState *s = KVM_STATE(obj);
3129 OnOffSplit mode;
3131 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3132 return;
3134 switch (mode) {
3135 case ON_OFF_SPLIT_ON:
3136 s->kernel_irqchip_allowed = true;
3137 s->kernel_irqchip_required = true;
3138 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3139 break;
3140 case ON_OFF_SPLIT_OFF:
3141 s->kernel_irqchip_allowed = false;
3142 s->kernel_irqchip_required = false;
3143 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3144 break;
3145 case ON_OFF_SPLIT_SPLIT:
3146 s->kernel_irqchip_allowed = true;
3147 s->kernel_irqchip_required = true;
3148 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3149 break;
3150 default:
3151 /* The value was checked in visit_type_OnOffSplit() above. If
3152 * we get here, then something is wrong in QEMU.
3154 abort();
3158 bool kvm_kernel_irqchip_allowed(void)
3160 return kvm_state->kernel_irqchip_allowed;
3163 bool kvm_kernel_irqchip_required(void)
3165 return kvm_state->kernel_irqchip_required;
3168 bool kvm_kernel_irqchip_split(void)
3170 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3173 static void kvm_accel_instance_init(Object *obj)
3175 KVMState *s = KVM_STATE(obj);
3177 s->kvm_shadow_mem = -1;
3178 s->kernel_irqchip_allowed = true;
3179 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3182 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3184 AccelClass *ac = ACCEL_CLASS(oc);
3185 ac->name = "KVM";
3186 ac->init_machine = kvm_init;
3187 ac->has_memory = kvm_accel_has_memory;
3188 ac->allowed = &kvm_allowed;
3190 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3191 NULL, kvm_set_kernel_irqchip,
3192 NULL, NULL);
3193 object_class_property_set_description(oc, "kernel-irqchip",
3194 "Configure KVM in-kernel irqchip");
3196 object_class_property_add(oc, "kvm-shadow-mem", "int",
3197 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3198 NULL, NULL);
3199 object_class_property_set_description(oc, "kvm-shadow-mem",
3200 "KVM shadow MMU size");
3203 static const TypeInfo kvm_accel_type = {
3204 .name = TYPE_KVM_ACCEL,
3205 .parent = TYPE_ACCEL,
3206 .instance_init = kvm_accel_instance_init,
3207 .class_init = kvm_accel_class_init,
3208 .instance_size = sizeof(KVMState),
3211 static void kvm_type_init(void)
3213 type_register_static(&kvm_accel_type);
3216 type_init(kvm_type_init);