hw/arm: Restore local modifications
[qemu/ar7.git] / exec.c
blob109de1b7058afc1a29d213014a15146d8053be4e
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
107 #endif
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits;
111 bool target_page_bits_decided;
112 #endif
114 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 __thread CPUState *current_cpu;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount;
123 uintptr_t qemu_host_page_size;
124 intptr_t qemu_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 MemoryRegionSection *mru_section;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map;
195 PhysPageMap map;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t {
200 MemoryRegion iomem;
201 FlatView *fv;
202 hwaddr base;
203 uint16_t sub_section[];
204 } subpage_t;
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener *listener);
215 static MemoryRegion io_mem_watch;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
231 struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
237 #endif
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
243 static unsigned alloc_hint = 16;
244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
248 alloc_hint = map->nodes_nb_alloc;
252 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
254 unsigned i;
255 uint32_t ret;
256 PhysPageEntry e;
257 PhysPageEntry *p;
259 ret = map->nodes_nb++;
260 p = map->nodes[ret];
261 assert(ret != PHYS_MAP_NODE_NIL);
262 assert(ret != map->nodes_nb_alloc);
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
266 for (i = 0; i < P_L2_SIZE; ++i) {
267 memcpy(&p[i], &e, sizeof(e));
269 return ret;
272 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
274 int level)
276 PhysPageEntry *p;
277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
280 lp->ptr = phys_map_node_alloc(map, level == 0);
282 p = map->nodes[lp->ptr];
283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
285 while (*nb && lp < &p[P_L2_SIZE]) {
286 if ((*index & (step - 1)) == 0 && *nb >= step) {
287 lp->skip = 0;
288 lp->ptr = leaf;
289 *index += step;
290 *nb -= step;
291 } else {
292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
294 ++lp;
298 static void phys_page_set(AddressSpaceDispatch *d,
299 hwaddr index, hwaddr nb,
300 uint16_t leaf)
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
331 phys_page_compact(&p[i], nodes);
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
340 assert(valid_ptr < P_L2_SIZE);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
361 void address_space_dispatch_compact(AddressSpaceDispatch *d)
363 if (d->phys_map.skip) {
364 phys_page_compact(&d->phys_map, d->map.nodes);
368 static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section->size) ||
375 range_covers_byte(section->offset_within_address_space,
376 int128_getlo(section->size), addr);
379 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
384 hwaddr index = addr >> TARGET_PAGE_BITS;
385 int i;
387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
389 return &sections[PHYS_SECTION_UNASSIGNED];
391 p = nodes[lp.ptr];
392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
395 if (section_covers_addr(&sections[lp.ptr], addr)) {
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
402 bool memory_region_is_unassigned(MemoryRegion *mr)
404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
405 && mr != &io_mem_watch;
408 /* Called from RCU critical section */
409 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
410 hwaddr addr,
411 bool resolve_subpage)
413 MemoryRegionSection *section = atomic_read(&d->mru_section);
414 subpage_t *subpage;
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
418 section = phys_page_find(d, addr);
419 atomic_set(&d->mru_section, section);
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 return section;
428 /* Called from RCU critical section */
429 static MemoryRegionSection *
430 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
431 hwaddr *plen, bool resolve_subpage)
433 MemoryRegionSection *section;
434 MemoryRegion *mr;
435 Int128 diff;
437 section = address_space_lookup_region(d, addr, resolve_subpage);
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
444 mr = section->mr;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr)) {
458 diff = int128_sub(section->size, int128_make64(addr));
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
461 return section;
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
473 * cannot be %NULL.
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
482 * This function is called from RCU critical section. It is the common
483 * part of flatview_do_translate and address_space_translate_cached.
485 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as)
493 MemoryRegionSection *section;
494 hwaddr page_mask = (hwaddr)-1;
496 do {
497 hwaddr addr = *xlat;
498 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
499 IOMMUTLBEntry iotlb = imrc->translate(iommu_mr, addr, is_write ?
500 IOMMU_WO : IOMMU_RO);
502 if (!(iotlb.perm & (1 << is_write))) {
503 goto unassigned;
506 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
507 | (addr & iotlb.addr_mask));
508 page_mask &= iotlb.addr_mask;
509 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
510 *target_as = iotlb.target_as;
512 section = address_space_translate_internal(
513 address_space_to_dispatch(iotlb.target_as), addr, xlat,
514 plen_out, is_mmio);
516 iommu_mr = memory_region_get_iommu(section->mr);
517 } while (unlikely(iommu_mr));
519 if (page_mask_out) {
520 *page_mask_out = page_mask;
522 return *section;
524 unassigned:
525 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
529 * flatview_do_translate - translate an address in FlatView
531 * @fv: the flat view that we want to translate on
532 * @addr: the address to be translated in above address space
533 * @xlat: the translated address offset within memory region. It
534 * cannot be @NULL.
535 * @plen_out: valid read/write length of the translated address. It
536 * can be @NULL when we don't care about it.
537 * @page_mask_out: page mask for the translated address. This
538 * should only be meaningful for IOMMU translated
539 * addresses, since there may be huge pages that this bit
540 * would tell. It can be @NULL if we don't care about it.
541 * @is_write: whether the translation operation is for write
542 * @is_mmio: whether this can be MMIO, set true if it can
543 * @target_as: the address space targeted by the IOMMU
545 * This function is called from RCU critical section
547 static MemoryRegionSection flatview_do_translate(FlatView *fv,
548 hwaddr addr,
549 hwaddr *xlat,
550 hwaddr *plen_out,
551 hwaddr *page_mask_out,
552 bool is_write,
553 bool is_mmio,
554 AddressSpace **target_as)
556 MemoryRegionSection *section;
557 IOMMUMemoryRegion *iommu_mr;
558 hwaddr plen = (hwaddr)(-1);
560 if (!plen_out) {
561 plen_out = &plen;
564 section = address_space_translate_internal(
565 flatview_to_dispatch(fv), addr, xlat,
566 plen_out, is_mmio);
568 iommu_mr = memory_region_get_iommu(section->mr);
569 if (unlikely(iommu_mr)) {
570 return address_space_translate_iommu(iommu_mr, xlat,
571 plen_out, page_mask_out,
572 is_write, is_mmio,
573 target_as);
575 if (page_mask_out) {
576 /* Not behind an IOMMU, use default page size. */
577 *page_mask_out = ~TARGET_PAGE_MASK;
580 return *section;
583 /* Called from RCU critical section */
584 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
585 bool is_write)
587 MemoryRegionSection section;
588 hwaddr xlat, page_mask;
591 * This can never be MMIO, and we don't really care about plen,
592 * but page mask.
594 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
595 NULL, &page_mask, is_write, false, &as);
597 /* Illegal translation */
598 if (section.mr == &io_mem_unassigned) {
599 goto iotlb_fail;
602 /* Convert memory region offset into address space offset */
603 xlat += section.offset_within_address_space -
604 section.offset_within_region;
606 return (IOMMUTLBEntry) {
607 .target_as = as,
608 .iova = addr & ~page_mask,
609 .translated_addr = xlat & ~page_mask,
610 .addr_mask = page_mask,
611 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
612 .perm = IOMMU_RW,
615 iotlb_fail:
616 return (IOMMUTLBEntry) {0};
619 /* Called from RCU critical section */
620 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
621 hwaddr *plen, bool is_write)
623 MemoryRegion *mr;
624 MemoryRegionSection section;
625 AddressSpace *as = NULL;
627 /* This can be MMIO, so setup MMIO bit. */
628 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
629 is_write, true, &as);
630 mr = section.mr;
632 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
633 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
634 *plen = MIN(page, *plen);
637 return mr;
640 /* Called from RCU critical section */
641 MemoryRegionSection *
642 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
643 hwaddr *xlat, hwaddr *plen)
645 MemoryRegionSection *section;
646 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
648 section = address_space_translate_internal(d, addr, xlat, plen, false);
650 assert(!memory_region_is_iommu(section->mr));
651 return section;
653 #endif
655 #if !defined(CONFIG_USER_ONLY)
657 static int cpu_common_post_load(void *opaque, int version_id)
659 CPUState *cpu = opaque;
661 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
662 version_id is increased. */
663 cpu->interrupt_request &= ~0x01;
664 tlb_flush(cpu);
666 /* loadvm has just updated the content of RAM, bypassing the
667 * usual mechanisms that ensure we flush TBs for writes to
668 * memory we've translated code from. So we must flush all TBs,
669 * which will now be stale.
671 tb_flush(cpu);
673 return 0;
676 static int cpu_common_pre_load(void *opaque)
678 CPUState *cpu = opaque;
680 cpu->exception_index = -1;
682 return 0;
685 static bool cpu_common_exception_index_needed(void *opaque)
687 CPUState *cpu = opaque;
689 return tcg_enabled() && cpu->exception_index != -1;
692 static const VMStateDescription vmstate_cpu_common_exception_index = {
693 .name = "cpu_common/exception_index",
694 .version_id = 1,
695 .minimum_version_id = 1,
696 .needed = cpu_common_exception_index_needed,
697 .fields = (VMStateField[]) {
698 VMSTATE_INT32(exception_index, CPUState),
699 VMSTATE_END_OF_LIST()
703 static bool cpu_common_crash_occurred_needed(void *opaque)
705 CPUState *cpu = opaque;
707 return cpu->crash_occurred;
710 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
711 .name = "cpu_common/crash_occurred",
712 .version_id = 1,
713 .minimum_version_id = 1,
714 .needed = cpu_common_crash_occurred_needed,
715 .fields = (VMStateField[]) {
716 VMSTATE_BOOL(crash_occurred, CPUState),
717 VMSTATE_END_OF_LIST()
721 const VMStateDescription vmstate_cpu_common = {
722 .name = "cpu_common",
723 .version_id = 1,
724 .minimum_version_id = 1,
725 .pre_load = cpu_common_pre_load,
726 .post_load = cpu_common_post_load,
727 .fields = (VMStateField[]) {
728 VMSTATE_UINT32(halted, CPUState),
729 VMSTATE_UINT32(interrupt_request, CPUState),
730 VMSTATE_END_OF_LIST()
732 .subsections = (const VMStateDescription*[]) {
733 &vmstate_cpu_common_exception_index,
734 &vmstate_cpu_common_crash_occurred,
735 NULL
739 #endif
741 CPUState *qemu_get_cpu(int index)
743 CPUState *cpu;
745 CPU_FOREACH(cpu) {
746 if (cpu->cpu_index == index) {
747 return cpu;
751 return NULL;
754 #if !defined(CONFIG_USER_ONLY)
755 void cpu_address_space_init(CPUState *cpu, int asidx,
756 const char *prefix, MemoryRegion *mr)
758 CPUAddressSpace *newas;
759 AddressSpace *as = g_new0(AddressSpace, 1);
760 char *as_name;
762 assert(mr);
763 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
764 address_space_init(as, mr, as_name);
765 g_free(as_name);
767 /* Target code should have set num_ases before calling us */
768 assert(asidx < cpu->num_ases);
770 if (asidx == 0) {
771 /* address space 0 gets the convenience alias */
772 cpu->as = as;
775 /* KVM cannot currently support multiple address spaces. */
776 assert(asidx == 0 || !kvm_enabled());
778 if (!cpu->cpu_ases) {
779 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
782 newas = &cpu->cpu_ases[asidx];
783 newas->cpu = cpu;
784 newas->as = as;
785 if (tcg_enabled()) {
786 newas->tcg_as_listener.commit = tcg_commit;
787 memory_listener_register(&newas->tcg_as_listener, as);
791 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
793 /* Return the AddressSpace corresponding to the specified index */
794 return cpu->cpu_ases[asidx].as;
796 #endif
798 void cpu_exec_unrealizefn(CPUState *cpu)
800 CPUClass *cc = CPU_GET_CLASS(cpu);
802 cpu_list_remove(cpu);
804 if (cc->vmsd != NULL) {
805 vmstate_unregister(NULL, cc->vmsd, cpu);
807 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
808 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
812 Property cpu_common_props[] = {
813 #ifndef CONFIG_USER_ONLY
814 /* Create a memory property for softmmu CPU object,
815 * so users can wire up its memory. (This can't go in qom/cpu.c
816 * because that file is compiled only once for both user-mode
817 * and system builds.) The default if no link is set up is to use
818 * the system address space.
820 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
821 MemoryRegion *),
822 #endif
823 DEFINE_PROP_END_OF_LIST(),
826 void cpu_exec_initfn(CPUState *cpu)
828 #ifdef TARGET_WORDS_BIGENDIAN
829 cpu->bigendian = true;
830 #else
831 cpu->bigendian = false;
832 #endif
833 cpu->as = NULL;
834 cpu->num_ases = 0;
836 #ifndef CONFIG_USER_ONLY
837 cpu->thread_id = qemu_get_thread_id();
838 cpu->memory = system_memory;
839 object_ref(OBJECT(cpu->memory));
840 #endif
843 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
845 CPUClass *cc = CPU_GET_CLASS(cpu);
846 static bool tcg_target_initialized;
848 cpu_list_add(cpu);
850 if (tcg_enabled() && !tcg_target_initialized) {
851 tcg_target_initialized = true;
852 cc->tcg_initialize();
855 #ifndef CONFIG_USER_ONLY
856 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
857 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
859 if (cc->vmsd != NULL) {
860 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
862 #endif
865 const char *parse_cpu_model(const char *cpu_model)
867 ObjectClass *oc;
868 CPUClass *cc;
869 gchar **model_pieces;
870 const char *cpu_type;
872 model_pieces = g_strsplit(cpu_model, ",", 2);
874 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
875 if (oc == NULL) {
876 error_report("unable to find CPU model '%s'", model_pieces[0]);
877 g_strfreev(model_pieces);
878 exit(EXIT_FAILURE);
881 cpu_type = object_class_get_name(oc);
882 cc = CPU_CLASS(oc);
883 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
884 g_strfreev(model_pieces);
885 return cpu_type;
888 #if defined(CONFIG_USER_ONLY)
889 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
891 mmap_lock();
892 tb_lock();
893 tb_invalidate_phys_page_range(pc, pc + 1, 0);
894 tb_unlock();
895 mmap_unlock();
897 #else
898 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
900 MemTxAttrs attrs;
901 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
902 int asidx = cpu_asidx_from_attrs(cpu, attrs);
903 if (phys != -1) {
904 /* Locks grabbed by tb_invalidate_phys_addr */
905 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
906 phys | (pc & ~TARGET_PAGE_MASK));
909 #endif
911 #if defined(CONFIG_USER_ONLY)
912 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
917 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
918 int flags)
920 return -ENOSYS;
923 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
927 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
928 int flags, CPUWatchpoint **watchpoint)
930 return -ENOSYS;
932 #else
933 /* Add a watchpoint. */
934 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
935 int flags, CPUWatchpoint **watchpoint)
937 CPUWatchpoint *wp;
939 /* forbid ranges which are empty or run off the end of the address space */
940 if (len == 0 || (addr + len - 1) < addr) {
941 error_report("tried to set invalid watchpoint at %"
942 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
943 return -EINVAL;
945 wp = g_malloc(sizeof(*wp));
947 wp->vaddr = addr;
948 wp->len = len;
949 wp->flags = flags;
951 /* keep all GDB-injected watchpoints in front */
952 if (flags & BP_GDB) {
953 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
954 } else {
955 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
958 tlb_flush_page(cpu, addr);
960 if (watchpoint)
961 *watchpoint = wp;
962 return 0;
965 /* Remove a specific watchpoint. */
966 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
967 int flags)
969 CPUWatchpoint *wp;
971 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
972 if (addr == wp->vaddr && len == wp->len
973 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
974 cpu_watchpoint_remove_by_ref(cpu, wp);
975 return 0;
978 return -ENOENT;
981 /* Remove a specific watchpoint by reference. */
982 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
984 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
986 tlb_flush_page(cpu, watchpoint->vaddr);
988 g_free(watchpoint);
991 /* Remove all matching watchpoints. */
992 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
994 CPUWatchpoint *wp, *next;
996 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
997 if (wp->flags & mask) {
998 cpu_watchpoint_remove_by_ref(cpu, wp);
1003 /* Return true if this watchpoint address matches the specified
1004 * access (ie the address range covered by the watchpoint overlaps
1005 * partially or completely with the address range covered by the
1006 * access).
1008 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1009 vaddr addr,
1010 vaddr len)
1012 /* We know the lengths are non-zero, but a little caution is
1013 * required to avoid errors in the case where the range ends
1014 * exactly at the top of the address space and so addr + len
1015 * wraps round to zero.
1017 vaddr wpend = wp->vaddr + wp->len - 1;
1018 vaddr addrend = addr + len - 1;
1020 return !(addr > wpend || wp->vaddr > addrend);
1023 #endif
1025 /* Add a breakpoint. */
1026 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1027 CPUBreakpoint **breakpoint)
1029 CPUBreakpoint *bp;
1031 bp = g_malloc(sizeof(*bp));
1033 bp->pc = pc;
1034 bp->flags = flags;
1036 /* keep all GDB-injected breakpoints in front */
1037 if (flags & BP_GDB) {
1038 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1039 } else {
1040 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1043 breakpoint_invalidate(cpu, pc);
1045 if (breakpoint) {
1046 *breakpoint = bp;
1048 return 0;
1051 /* Remove a specific breakpoint. */
1052 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1054 CPUBreakpoint *bp;
1056 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1057 if (bp->pc == pc && bp->flags == flags) {
1058 cpu_breakpoint_remove_by_ref(cpu, bp);
1059 return 0;
1062 return -ENOENT;
1065 /* Remove a specific breakpoint by reference. */
1066 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1068 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1070 breakpoint_invalidate(cpu, breakpoint->pc);
1072 g_free(breakpoint);
1075 /* Remove all matching breakpoints. */
1076 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1078 CPUBreakpoint *bp, *next;
1080 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1081 if (bp->flags & mask) {
1082 cpu_breakpoint_remove_by_ref(cpu, bp);
1087 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1088 CPU loop after each instruction */
1089 void cpu_single_step(CPUState *cpu, int enabled)
1091 if (cpu->singlestep_enabled != enabled) {
1092 cpu->singlestep_enabled = enabled;
1093 if (kvm_enabled()) {
1094 kvm_update_guest_debug(cpu, 0);
1095 } else {
1096 /* must flush all the translated code to avoid inconsistencies */
1097 /* XXX: only flush what is necessary */
1098 tb_flush(cpu);
1103 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1105 va_list ap;
1106 va_list ap2;
1108 va_start(ap, fmt);
1109 va_copy(ap2, ap);
1110 fprintf(stderr, "qemu: fatal: ");
1111 vfprintf(stderr, fmt, ap);
1112 fprintf(stderr, "\n");
1113 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1114 if (qemu_log_separate()) {
1115 qemu_log_lock();
1116 qemu_log("qemu: fatal: ");
1117 qemu_log_vprintf(fmt, ap2);
1118 qemu_log("\n");
1119 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1120 qemu_log_flush();
1121 qemu_log_unlock();
1122 qemu_log_close();
1124 va_end(ap2);
1125 va_end(ap);
1126 replay_finish();
1127 #if defined(CONFIG_USER_ONLY)
1129 struct sigaction act;
1130 sigfillset(&act.sa_mask);
1131 act.sa_handler = SIG_DFL;
1132 sigaction(SIGABRT, &act, NULL);
1134 #endif
1135 abort();
1138 #if !defined(CONFIG_USER_ONLY)
1139 /* Called from RCU critical section */
1140 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1142 RAMBlock *block;
1144 block = atomic_rcu_read(&ram_list.mru_block);
1145 if (block && addr - block->offset < block->max_length) {
1146 return block;
1148 RAMBLOCK_FOREACH(block) {
1149 if (addr - block->offset < block->max_length) {
1150 goto found;
1154 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1155 abort();
1157 found:
1158 /* It is safe to write mru_block outside the iothread lock. This
1159 * is what happens:
1161 * mru_block = xxx
1162 * rcu_read_unlock()
1163 * xxx removed from list
1164 * rcu_read_lock()
1165 * read mru_block
1166 * mru_block = NULL;
1167 * call_rcu(reclaim_ramblock, xxx);
1168 * rcu_read_unlock()
1170 * atomic_rcu_set is not needed here. The block was already published
1171 * when it was placed into the list. Here we're just making an extra
1172 * copy of the pointer.
1174 ram_list.mru_block = block;
1175 return block;
1178 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1180 CPUState *cpu;
1181 ram_addr_t start1;
1182 RAMBlock *block;
1183 ram_addr_t end;
1185 end = TARGET_PAGE_ALIGN(start + length);
1186 start &= TARGET_PAGE_MASK;
1188 rcu_read_lock();
1189 block = qemu_get_ram_block(start);
1190 assert(block == qemu_get_ram_block(end - 1));
1191 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1192 CPU_FOREACH(cpu) {
1193 tlb_reset_dirty(cpu, start1, length);
1195 rcu_read_unlock();
1198 /* Note: start and end must be within the same ram block. */
1199 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1200 ram_addr_t length,
1201 unsigned client)
1203 DirtyMemoryBlocks *blocks;
1204 unsigned long end, page;
1205 bool dirty = false;
1207 if (length == 0) {
1208 return false;
1211 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1212 page = start >> TARGET_PAGE_BITS;
1214 rcu_read_lock();
1216 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1218 while (page < end) {
1219 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1220 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1221 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1223 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1224 offset, num);
1225 page += num;
1228 rcu_read_unlock();
1230 if (dirty && tcg_enabled()) {
1231 tlb_reset_dirty_range_all(start, length);
1234 return dirty;
1237 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1238 (ram_addr_t start, ram_addr_t length, unsigned client)
1240 DirtyMemoryBlocks *blocks;
1241 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1242 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1243 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1244 DirtyBitmapSnapshot *snap;
1245 unsigned long page, end, dest;
1247 snap = g_malloc0(sizeof(*snap) +
1248 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1249 snap->start = first;
1250 snap->end = last;
1252 page = first >> TARGET_PAGE_BITS;
1253 end = last >> TARGET_PAGE_BITS;
1254 dest = 0;
1256 rcu_read_lock();
1258 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1260 while (page < end) {
1261 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1262 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1263 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1265 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1266 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1267 offset >>= BITS_PER_LEVEL;
1269 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1270 blocks->blocks[idx] + offset,
1271 num);
1272 page += num;
1273 dest += num >> BITS_PER_LEVEL;
1276 rcu_read_unlock();
1278 if (tcg_enabled()) {
1279 tlb_reset_dirty_range_all(start, length);
1282 return snap;
1285 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1286 ram_addr_t start,
1287 ram_addr_t length)
1289 unsigned long page, end;
1291 assert(start >= snap->start);
1292 assert(start + length <= snap->end);
1294 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1295 page = (start - snap->start) >> TARGET_PAGE_BITS;
1297 while (page < end) {
1298 if (test_bit(page, snap->dirty)) {
1299 return true;
1301 page++;
1303 return false;
1306 /* Called from RCU critical section */
1307 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1308 MemoryRegionSection *section,
1309 target_ulong vaddr,
1310 hwaddr paddr, hwaddr xlat,
1311 int prot,
1312 target_ulong *address)
1314 hwaddr iotlb;
1315 CPUWatchpoint *wp;
1317 if (memory_region_is_ram(section->mr)) {
1318 /* Normal RAM. */
1319 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1320 if (!section->readonly) {
1321 iotlb |= PHYS_SECTION_NOTDIRTY;
1322 } else {
1323 iotlb |= PHYS_SECTION_ROM;
1325 } else {
1326 AddressSpaceDispatch *d;
1328 d = flatview_to_dispatch(section->fv);
1329 iotlb = section - d->map.sections;
1330 iotlb += xlat;
1333 /* Make accesses to pages with watchpoints go via the
1334 watchpoint trap routines. */
1335 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1336 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1337 /* Avoid trapping reads of pages with a write breakpoint. */
1338 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1339 iotlb = PHYS_SECTION_WATCH + paddr;
1340 *address |= TLB_MMIO;
1341 break;
1346 return iotlb;
1348 #endif /* defined(CONFIG_USER_ONLY) */
1350 #if !defined(CONFIG_USER_ONLY)
1352 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1353 uint16_t section);
1354 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1356 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1357 qemu_anon_ram_alloc;
1360 * Set a custom physical guest memory alloator.
1361 * Accelerators with unusual needs may need this. Hopefully, we can
1362 * get rid of it eventually.
1364 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1366 phys_mem_alloc = alloc;
1369 static uint16_t phys_section_add(PhysPageMap *map,
1370 MemoryRegionSection *section)
1372 /* The physical section number is ORed with a page-aligned
1373 * pointer to produce the iotlb entries. Thus it should
1374 * never overflow into the page-aligned value.
1376 assert(map->sections_nb < TARGET_PAGE_SIZE);
1378 if (map->sections_nb == map->sections_nb_alloc) {
1379 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1380 map->sections = g_renew(MemoryRegionSection, map->sections,
1381 map->sections_nb_alloc);
1383 map->sections[map->sections_nb] = *section;
1384 memory_region_ref(section->mr);
1385 return map->sections_nb++;
1388 static void phys_section_destroy(MemoryRegion *mr)
1390 bool have_sub_page = mr->subpage;
1392 memory_region_unref(mr);
1394 if (have_sub_page) {
1395 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1396 object_unref(OBJECT(&subpage->iomem));
1397 g_free(subpage);
1401 static void phys_sections_free(PhysPageMap *map)
1403 while (map->sections_nb > 0) {
1404 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1405 phys_section_destroy(section->mr);
1407 g_free(map->sections);
1408 g_free(map->nodes);
1411 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1413 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1414 subpage_t *subpage;
1415 hwaddr base = section->offset_within_address_space
1416 & TARGET_PAGE_MASK;
1417 MemoryRegionSection *existing = phys_page_find(d, base);
1418 MemoryRegionSection subsection = {
1419 .offset_within_address_space = base,
1420 .size = int128_make64(TARGET_PAGE_SIZE),
1422 hwaddr start, end;
1424 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1426 if (!(existing->mr->subpage)) {
1427 subpage = subpage_init(fv, base);
1428 subsection.fv = fv;
1429 subsection.mr = &subpage->iomem;
1430 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1431 phys_section_add(&d->map, &subsection));
1432 } else {
1433 subpage = container_of(existing->mr, subpage_t, iomem);
1435 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1436 end = start + int128_get64(section->size) - 1;
1437 subpage_register(subpage, start, end,
1438 phys_section_add(&d->map, section));
1442 static void register_multipage(FlatView *fv,
1443 MemoryRegionSection *section)
1445 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1446 hwaddr start_addr = section->offset_within_address_space;
1447 uint16_t section_index = phys_section_add(&d->map, section);
1448 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1449 TARGET_PAGE_BITS));
1451 assert(num_pages);
1452 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1455 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1457 MemoryRegionSection now = *section, remain = *section;
1458 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1460 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1461 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1462 - now.offset_within_address_space;
1464 now.size = int128_min(int128_make64(left), now.size);
1465 register_subpage(fv, &now);
1466 } else {
1467 now.size = int128_zero();
1469 while (int128_ne(remain.size, now.size)) {
1470 remain.size = int128_sub(remain.size, now.size);
1471 remain.offset_within_address_space += int128_get64(now.size);
1472 remain.offset_within_region += int128_get64(now.size);
1473 now = remain;
1474 if (int128_lt(remain.size, page_size)) {
1475 register_subpage(fv, &now);
1476 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1477 now.size = page_size;
1478 register_subpage(fv, &now);
1479 } else {
1480 now.size = int128_and(now.size, int128_neg(page_size));
1481 register_multipage(fv, &now);
1486 void qemu_flush_coalesced_mmio_buffer(void)
1488 if (kvm_enabled())
1489 kvm_flush_coalesced_mmio_buffer();
1492 void qemu_mutex_lock_ramlist(void)
1494 qemu_mutex_lock(&ram_list.mutex);
1497 void qemu_mutex_unlock_ramlist(void)
1499 qemu_mutex_unlock(&ram_list.mutex);
1502 void ram_block_dump(Monitor *mon)
1504 RAMBlock *block;
1505 char *psize;
1507 rcu_read_lock();
1508 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1509 "Block Name", "PSize", "Offset", "Used", "Total");
1510 RAMBLOCK_FOREACH(block) {
1511 psize = size_to_str(block->page_size);
1512 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1513 " 0x%016" PRIx64 "\n", block->idstr, psize,
1514 (uint64_t)block->offset,
1515 (uint64_t)block->used_length,
1516 (uint64_t)block->max_length);
1517 g_free(psize);
1519 rcu_read_unlock();
1522 #ifdef __linux__
1524 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1525 * may or may not name the same files / on the same filesystem now as
1526 * when we actually open and map them. Iterate over the file
1527 * descriptors instead, and use qemu_fd_getpagesize().
1529 static int find_max_supported_pagesize(Object *obj, void *opaque)
1531 long *hpsize_min = opaque;
1533 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1534 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1536 if (hpsize < *hpsize_min) {
1537 *hpsize_min = hpsize;
1541 return 0;
1544 long qemu_getrampagesize(void)
1546 long hpsize = LONG_MAX;
1547 long mainrampagesize;
1548 Object *memdev_root;
1550 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1552 /* it's possible we have memory-backend objects with
1553 * hugepage-backed RAM. these may get mapped into system
1554 * address space via -numa parameters or memory hotplug
1555 * hooks. we want to take these into account, but we
1556 * also want to make sure these supported hugepage
1557 * sizes are applicable across the entire range of memory
1558 * we may boot from, so we take the min across all
1559 * backends, and assume normal pages in cases where a
1560 * backend isn't backed by hugepages.
1562 memdev_root = object_resolve_path("/objects", NULL);
1563 if (memdev_root) {
1564 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1566 if (hpsize == LONG_MAX) {
1567 /* No additional memory regions found ==> Report main RAM page size */
1568 return mainrampagesize;
1571 /* If NUMA is disabled or the NUMA nodes are not backed with a
1572 * memory-backend, then there is at least one node using "normal" RAM,
1573 * so if its page size is smaller we have got to report that size instead.
1575 if (hpsize > mainrampagesize &&
1576 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1577 static bool warned;
1578 if (!warned) {
1579 error_report("Huge page support disabled (n/a for main memory).");
1580 warned = true;
1582 return mainrampagesize;
1585 return hpsize;
1587 #else
1588 long qemu_getrampagesize(void)
1590 return getpagesize();
1592 #endif
1594 #ifdef __linux__
1595 static int64_t get_file_size(int fd)
1597 int64_t size = lseek(fd, 0, SEEK_END);
1598 if (size < 0) {
1599 return -errno;
1601 return size;
1604 static int file_ram_open(const char *path,
1605 const char *region_name,
1606 bool *created,
1607 Error **errp)
1609 char *filename;
1610 char *sanitized_name;
1611 char *c;
1612 int fd = -1;
1614 *created = false;
1615 for (;;) {
1616 fd = open(path, O_RDWR);
1617 if (fd >= 0) {
1618 /* @path names an existing file, use it */
1619 break;
1621 if (errno == ENOENT) {
1622 /* @path names a file that doesn't exist, create it */
1623 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1624 if (fd >= 0) {
1625 *created = true;
1626 break;
1628 } else if (errno == EISDIR) {
1629 /* @path names a directory, create a file there */
1630 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1631 sanitized_name = g_strdup(region_name);
1632 for (c = sanitized_name; *c != '\0'; c++) {
1633 if (*c == '/') {
1634 *c = '_';
1638 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1639 sanitized_name);
1640 g_free(sanitized_name);
1642 fd = mkstemp(filename);
1643 if (fd >= 0) {
1644 unlink(filename);
1645 g_free(filename);
1646 break;
1648 g_free(filename);
1650 if (errno != EEXIST && errno != EINTR) {
1651 error_setg_errno(errp, errno,
1652 "can't open backing store %s for guest RAM",
1653 path);
1654 return -1;
1657 * Try again on EINTR and EEXIST. The latter happens when
1658 * something else creates the file between our two open().
1662 return fd;
1665 static void *file_ram_alloc(RAMBlock *block,
1666 ram_addr_t memory,
1667 int fd,
1668 bool truncate,
1669 Error **errp)
1671 void *area;
1673 block->page_size = qemu_fd_getpagesize(fd);
1674 if (block->mr->align % block->page_size) {
1675 error_setg(errp, "alignment 0x%" PRIx64
1676 " must be multiples of page size 0x%zx",
1677 block->mr->align, block->page_size);
1678 return NULL;
1680 block->mr->align = MAX(block->page_size, block->mr->align);
1681 #if defined(__s390x__)
1682 if (kvm_enabled()) {
1683 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1685 #endif
1687 if (memory < block->page_size) {
1688 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1689 "or larger than page size 0x%zx",
1690 memory, block->page_size);
1691 return NULL;
1694 memory = ROUND_UP(memory, block->page_size);
1697 * ftruncate is not supported by hugetlbfs in older
1698 * hosts, so don't bother bailing out on errors.
1699 * If anything goes wrong with it under other filesystems,
1700 * mmap will fail.
1702 * Do not truncate the non-empty backend file to avoid corrupting
1703 * the existing data in the file. Disabling shrinking is not
1704 * enough. For example, the current vNVDIMM implementation stores
1705 * the guest NVDIMM labels at the end of the backend file. If the
1706 * backend file is later extended, QEMU will not be able to find
1707 * those labels. Therefore, extending the non-empty backend file
1708 * is disabled as well.
1710 if (truncate && ftruncate(fd, memory)) {
1711 perror("ftruncate");
1714 area = qemu_ram_mmap(fd, memory, block->mr->align,
1715 block->flags & RAM_SHARED);
1716 if (area == MAP_FAILED) {
1717 error_setg_errno(errp, errno,
1718 "unable to map backing store for guest RAM");
1719 return NULL;
1722 if (mem_prealloc) {
1723 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1724 if (errp && *errp) {
1725 qemu_ram_munmap(area, memory);
1726 return NULL;
1730 block->fd = fd;
1731 return area;
1733 #endif
1735 /* Allocate space within the ram_addr_t space that governs the
1736 * dirty bitmaps.
1737 * Called with the ramlist lock held.
1739 static ram_addr_t find_ram_offset(ram_addr_t size)
1741 RAMBlock *block, *next_block;
1742 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1744 assert(size != 0); /* it would hand out same offset multiple times */
1746 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1747 return 0;
1750 RAMBLOCK_FOREACH(block) {
1751 ram_addr_t candidate, next = RAM_ADDR_MAX;
1753 /* Align blocks to start on a 'long' in the bitmap
1754 * which makes the bitmap sync'ing take the fast path.
1756 candidate = block->offset + block->max_length;
1757 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1759 /* Search for the closest following block
1760 * and find the gap.
1762 RAMBLOCK_FOREACH(next_block) {
1763 if (next_block->offset >= candidate) {
1764 next = MIN(next, next_block->offset);
1768 /* If it fits remember our place and remember the size
1769 * of gap, but keep going so that we might find a smaller
1770 * gap to fill so avoiding fragmentation.
1772 if (next - candidate >= size && next - candidate < mingap) {
1773 offset = candidate;
1774 mingap = next - candidate;
1777 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1780 if (offset == RAM_ADDR_MAX) {
1781 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1782 (uint64_t)size);
1783 abort();
1786 trace_find_ram_offset(size, offset);
1788 return offset;
1791 unsigned long last_ram_page(void)
1793 RAMBlock *block;
1794 ram_addr_t last = 0;
1796 rcu_read_lock();
1797 RAMBLOCK_FOREACH(block) {
1798 last = MAX(last, block->offset + block->max_length);
1800 rcu_read_unlock();
1801 return last >> TARGET_PAGE_BITS;
1804 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1806 int ret;
1808 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1809 if (!machine_dump_guest_core(current_machine)) {
1810 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1811 if (ret) {
1812 perror("qemu_madvise");
1813 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1814 "but dump_guest_core=off specified\n");
1819 const char *qemu_ram_get_idstr(RAMBlock *rb)
1821 return rb->idstr;
1824 bool qemu_ram_is_shared(RAMBlock *rb)
1826 return rb->flags & RAM_SHARED;
1829 /* Note: Only set at the start of postcopy */
1830 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1832 return rb->flags & RAM_UF_ZEROPAGE;
1835 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1837 rb->flags |= RAM_UF_ZEROPAGE;
1840 /* Called with iothread lock held. */
1841 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1843 RAMBlock *block;
1845 assert(new_block);
1846 assert(!new_block->idstr[0]);
1848 if (dev) {
1849 char *id = qdev_get_dev_path(dev);
1850 if (id) {
1851 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1852 g_free(id);
1855 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1857 rcu_read_lock();
1858 RAMBLOCK_FOREACH(block) {
1859 if (block != new_block &&
1860 !strcmp(block->idstr, new_block->idstr)) {
1861 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1862 new_block->idstr);
1863 abort();
1866 rcu_read_unlock();
1869 /* Called with iothread lock held. */
1870 void qemu_ram_unset_idstr(RAMBlock *block)
1872 /* FIXME: arch_init.c assumes that this is not called throughout
1873 * migration. Ignore the problem since hot-unplug during migration
1874 * does not work anyway.
1876 if (block) {
1877 memset(block->idstr, 0, sizeof(block->idstr));
1881 size_t qemu_ram_pagesize(RAMBlock *rb)
1883 return rb->page_size;
1886 /* Returns the largest size of page in use */
1887 size_t qemu_ram_pagesize_largest(void)
1889 RAMBlock *block;
1890 size_t largest = 0;
1892 RAMBLOCK_FOREACH(block) {
1893 largest = MAX(largest, qemu_ram_pagesize(block));
1896 return largest;
1899 static int memory_try_enable_merging(void *addr, size_t len)
1901 if (!machine_mem_merge(current_machine)) {
1902 /* disabled by the user */
1903 return 0;
1906 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1909 /* Only legal before guest might have detected the memory size: e.g. on
1910 * incoming migration, or right after reset.
1912 * As memory core doesn't know how is memory accessed, it is up to
1913 * resize callback to update device state and/or add assertions to detect
1914 * misuse, if necessary.
1916 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1918 assert(block);
1920 newsize = HOST_PAGE_ALIGN(newsize);
1922 if (block->used_length == newsize) {
1923 return 0;
1926 if (!(block->flags & RAM_RESIZEABLE)) {
1927 error_setg_errno(errp, EINVAL,
1928 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1929 " in != 0x" RAM_ADDR_FMT, block->idstr,
1930 newsize, block->used_length);
1931 return -EINVAL;
1934 if (block->max_length < newsize) {
1935 error_setg_errno(errp, EINVAL,
1936 "Length too large: %s: 0x" RAM_ADDR_FMT
1937 " > 0x" RAM_ADDR_FMT, block->idstr,
1938 newsize, block->max_length);
1939 return -EINVAL;
1942 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1943 block->used_length = newsize;
1944 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1945 DIRTY_CLIENTS_ALL);
1946 memory_region_set_size(block->mr, newsize);
1947 if (block->resized) {
1948 block->resized(block->idstr, newsize, block->host);
1950 return 0;
1953 /* Called with ram_list.mutex held */
1954 static void dirty_memory_extend(ram_addr_t old_ram_size,
1955 ram_addr_t new_ram_size)
1957 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1958 DIRTY_MEMORY_BLOCK_SIZE);
1959 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1960 DIRTY_MEMORY_BLOCK_SIZE);
1961 int i;
1963 /* Only need to extend if block count increased */
1964 if (new_num_blocks <= old_num_blocks) {
1965 return;
1968 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1969 DirtyMemoryBlocks *old_blocks;
1970 DirtyMemoryBlocks *new_blocks;
1971 int j;
1973 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1974 new_blocks = g_malloc(sizeof(*new_blocks) +
1975 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1977 if (old_num_blocks) {
1978 memcpy(new_blocks->blocks, old_blocks->blocks,
1979 old_num_blocks * sizeof(old_blocks->blocks[0]));
1982 for (j = old_num_blocks; j < new_num_blocks; j++) {
1983 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1986 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1988 if (old_blocks) {
1989 g_free_rcu(old_blocks, rcu);
1994 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1996 RAMBlock *block;
1997 RAMBlock *last_block = NULL;
1998 ram_addr_t old_ram_size, new_ram_size;
1999 Error *err = NULL;
2001 old_ram_size = last_ram_page();
2003 qemu_mutex_lock_ramlist();
2004 new_block->offset = find_ram_offset(new_block->max_length);
2006 if (!new_block->host) {
2007 if (xen_enabled()) {
2008 xen_ram_alloc(new_block->offset, new_block->max_length,
2009 new_block->mr, &err);
2010 if (err) {
2011 error_propagate(errp, err);
2012 qemu_mutex_unlock_ramlist();
2013 return;
2015 } else {
2016 new_block->host = phys_mem_alloc(new_block->max_length,
2017 &new_block->mr->align, shared);
2018 if (!new_block->host) {
2019 error_setg_errno(errp, errno,
2020 "cannot set up guest memory '%s'",
2021 memory_region_name(new_block->mr));
2022 qemu_mutex_unlock_ramlist();
2023 return;
2025 memory_try_enable_merging(new_block->host, new_block->max_length);
2029 new_ram_size = MAX(old_ram_size,
2030 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2031 if (new_ram_size > old_ram_size) {
2032 dirty_memory_extend(old_ram_size, new_ram_size);
2034 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2035 * QLIST (which has an RCU-friendly variant) does not have insertion at
2036 * tail, so save the last element in last_block.
2038 RAMBLOCK_FOREACH(block) {
2039 last_block = block;
2040 if (block->max_length < new_block->max_length) {
2041 break;
2044 if (block) {
2045 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2046 } else if (last_block) {
2047 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2048 } else { /* list is empty */
2049 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2051 ram_list.mru_block = NULL;
2053 /* Write list before version */
2054 smp_wmb();
2055 ram_list.version++;
2056 qemu_mutex_unlock_ramlist();
2058 cpu_physical_memory_set_dirty_range(new_block->offset,
2059 new_block->used_length,
2060 DIRTY_CLIENTS_ALL);
2062 if (new_block->host) {
2063 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2064 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2065 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2066 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2067 ram_block_notify_add(new_block->host, new_block->max_length);
2071 #ifdef __linux__
2072 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2073 bool share, int fd,
2074 Error **errp)
2076 RAMBlock *new_block;
2077 Error *local_err = NULL;
2078 int64_t file_size;
2080 if (xen_enabled()) {
2081 error_setg(errp, "-mem-path not supported with Xen");
2082 return NULL;
2085 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2086 error_setg(errp,
2087 "host lacks kvm mmu notifiers, -mem-path unsupported");
2088 return NULL;
2091 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2093 * file_ram_alloc() needs to allocate just like
2094 * phys_mem_alloc, but we haven't bothered to provide
2095 * a hook there.
2097 error_setg(errp,
2098 "-mem-path not supported with this accelerator");
2099 return NULL;
2102 size = HOST_PAGE_ALIGN(size);
2103 file_size = get_file_size(fd);
2104 if (file_size > 0 && file_size < size) {
2105 error_setg(errp, "backing store %s size 0x%" PRIx64
2106 " does not match 'size' option 0x" RAM_ADDR_FMT,
2107 mem_path, file_size, size);
2108 return NULL;
2111 new_block = g_malloc0(sizeof(*new_block));
2112 new_block->mr = mr;
2113 new_block->used_length = size;
2114 new_block->max_length = size;
2115 new_block->flags = share ? RAM_SHARED : 0;
2116 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2117 if (!new_block->host) {
2118 g_free(new_block);
2119 return NULL;
2122 ram_block_add(new_block, &local_err, share);
2123 if (local_err) {
2124 g_free(new_block);
2125 error_propagate(errp, local_err);
2126 return NULL;
2128 return new_block;
2133 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2134 bool share, const char *mem_path,
2135 Error **errp)
2137 int fd;
2138 bool created;
2139 RAMBlock *block;
2141 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2142 if (fd < 0) {
2143 return NULL;
2146 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2147 if (!block) {
2148 if (created) {
2149 unlink(mem_path);
2151 close(fd);
2152 return NULL;
2155 return block;
2157 #endif
2159 static
2160 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2161 void (*resized)(const char*,
2162 uint64_t length,
2163 void *host),
2164 void *host, bool resizeable, bool share,
2165 MemoryRegion *mr, Error **errp)
2167 RAMBlock *new_block;
2168 Error *local_err = NULL;
2170 size = HOST_PAGE_ALIGN(size);
2171 max_size = HOST_PAGE_ALIGN(max_size);
2172 new_block = g_malloc0(sizeof(*new_block));
2173 new_block->mr = mr;
2174 new_block->resized = resized;
2175 new_block->used_length = size;
2176 new_block->max_length = max_size;
2177 assert(max_size >= size);
2178 new_block->fd = -1;
2179 new_block->page_size = getpagesize();
2180 new_block->host = host;
2181 if (host) {
2182 new_block->flags |= RAM_PREALLOC;
2184 if (resizeable) {
2185 new_block->flags |= RAM_RESIZEABLE;
2187 ram_block_add(new_block, &local_err, share);
2188 if (local_err) {
2189 g_free(new_block);
2190 error_propagate(errp, local_err);
2191 return NULL;
2193 return new_block;
2196 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2197 MemoryRegion *mr, Error **errp)
2199 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2200 false, mr, errp);
2203 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2204 MemoryRegion *mr, Error **errp)
2206 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2207 share, mr, errp);
2210 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2211 void (*resized)(const char*,
2212 uint64_t length,
2213 void *host),
2214 MemoryRegion *mr, Error **errp)
2216 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2217 false, mr, errp);
2220 static void reclaim_ramblock(RAMBlock *block)
2222 if (block->flags & RAM_PREALLOC) {
2224 } else if (xen_enabled()) {
2225 xen_invalidate_map_cache_entry(block->host);
2226 #ifndef _WIN32
2227 } else if (block->fd >= 0) {
2228 qemu_ram_munmap(block->host, block->max_length);
2229 close(block->fd);
2230 #endif
2231 } else {
2232 qemu_anon_ram_free(block->host, block->max_length);
2234 g_free(block);
2237 void qemu_ram_free(RAMBlock *block)
2239 if (!block) {
2240 return;
2243 if (block->host) {
2244 ram_block_notify_remove(block->host, block->max_length);
2247 qemu_mutex_lock_ramlist();
2248 QLIST_REMOVE_RCU(block, next);
2249 ram_list.mru_block = NULL;
2250 /* Write list before version */
2251 smp_wmb();
2252 ram_list.version++;
2253 call_rcu(block, reclaim_ramblock, rcu);
2254 qemu_mutex_unlock_ramlist();
2257 #ifndef _WIN32
2258 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2260 RAMBlock *block;
2261 ram_addr_t offset;
2262 int flags;
2263 void *area, *vaddr;
2265 RAMBLOCK_FOREACH(block) {
2266 offset = addr - block->offset;
2267 if (offset < block->max_length) {
2268 vaddr = ramblock_ptr(block, offset);
2269 if (block->flags & RAM_PREALLOC) {
2271 } else if (xen_enabled()) {
2272 abort();
2273 } else {
2274 flags = MAP_FIXED;
2275 if (block->fd >= 0) {
2276 flags |= (block->flags & RAM_SHARED ?
2277 MAP_SHARED : MAP_PRIVATE);
2278 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2279 flags, block->fd, offset);
2280 } else {
2282 * Remap needs to match alloc. Accelerators that
2283 * set phys_mem_alloc never remap. If they did,
2284 * we'd need a remap hook here.
2286 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2288 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2289 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2290 flags, -1, 0);
2292 if (area != vaddr) {
2293 error_report("Could not remap addr: "
2294 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2295 length, addr);
2296 exit(1);
2298 memory_try_enable_merging(vaddr, length);
2299 qemu_ram_setup_dump(vaddr, length);
2304 #endif /* !_WIN32 */
2306 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2307 * This should not be used for general purpose DMA. Use address_space_map
2308 * or address_space_rw instead. For local memory (e.g. video ram) that the
2309 * device owns, use memory_region_get_ram_ptr.
2311 * Called within RCU critical section.
2313 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2315 RAMBlock *block = ram_block;
2317 if (block == NULL) {
2318 block = qemu_get_ram_block(addr);
2319 addr -= block->offset;
2322 if (xen_enabled() && block->host == NULL) {
2323 /* We need to check if the requested address is in the RAM
2324 * because we don't want to map the entire memory in QEMU.
2325 * In that case just map until the end of the page.
2327 if (block->offset == 0) {
2328 return xen_map_cache(addr, 0, 0, false);
2331 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2333 return ramblock_ptr(block, addr);
2336 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2337 * but takes a size argument.
2339 * Called within RCU critical section.
2341 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2342 hwaddr *size, bool lock)
2344 RAMBlock *block = ram_block;
2345 if (*size == 0) {
2346 return NULL;
2349 if (block == NULL) {
2350 block = qemu_get_ram_block(addr);
2351 addr -= block->offset;
2353 *size = MIN(*size, block->max_length - addr);
2355 if (xen_enabled() && block->host == NULL) {
2356 /* We need to check if the requested address is in the RAM
2357 * because we don't want to map the entire memory in QEMU.
2358 * In that case just map the requested area.
2360 if (block->offset == 0) {
2361 return xen_map_cache(addr, *size, lock, lock);
2364 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2367 return ramblock_ptr(block, addr);
2370 /* Return the offset of a hostpointer within a ramblock */
2371 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2373 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2374 assert((uintptr_t)host >= (uintptr_t)rb->host);
2375 assert(res < rb->max_length);
2377 return res;
2381 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2382 * in that RAMBlock.
2384 * ptr: Host pointer to look up
2385 * round_offset: If true round the result offset down to a page boundary
2386 * *ram_addr: set to result ram_addr
2387 * *offset: set to result offset within the RAMBlock
2389 * Returns: RAMBlock (or NULL if not found)
2391 * By the time this function returns, the returned pointer is not protected
2392 * by RCU anymore. If the caller is not within an RCU critical section and
2393 * does not hold the iothread lock, it must have other means of protecting the
2394 * pointer, such as a reference to the region that includes the incoming
2395 * ram_addr_t.
2397 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2398 ram_addr_t *offset)
2400 RAMBlock *block;
2401 uint8_t *host = ptr;
2403 if (xen_enabled()) {
2404 ram_addr_t ram_addr;
2405 rcu_read_lock();
2406 ram_addr = xen_ram_addr_from_mapcache(ptr);
2407 block = qemu_get_ram_block(ram_addr);
2408 if (block) {
2409 *offset = ram_addr - block->offset;
2411 rcu_read_unlock();
2412 return block;
2415 rcu_read_lock();
2416 block = atomic_rcu_read(&ram_list.mru_block);
2417 if (block && block->host && host - block->host < block->max_length) {
2418 goto found;
2421 RAMBLOCK_FOREACH(block) {
2422 /* This case append when the block is not mapped. */
2423 if (block->host == NULL) {
2424 continue;
2426 if (host - block->host < block->max_length) {
2427 goto found;
2431 rcu_read_unlock();
2432 return NULL;
2434 found:
2435 *offset = (host - block->host);
2436 if (round_offset) {
2437 *offset &= TARGET_PAGE_MASK;
2439 rcu_read_unlock();
2440 return block;
2444 * Finds the named RAMBlock
2446 * name: The name of RAMBlock to find
2448 * Returns: RAMBlock (or NULL if not found)
2450 RAMBlock *qemu_ram_block_by_name(const char *name)
2452 RAMBlock *block;
2454 RAMBLOCK_FOREACH(block) {
2455 if (!strcmp(name, block->idstr)) {
2456 return block;
2460 return NULL;
2463 /* Some of the softmmu routines need to translate from a host pointer
2464 (typically a TLB entry) back to a ram offset. */
2465 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2467 RAMBlock *block;
2468 ram_addr_t offset;
2470 block = qemu_ram_block_from_host(ptr, false, &offset);
2471 if (!block) {
2472 return RAM_ADDR_INVALID;
2475 return block->offset + offset;
2478 /* Called within RCU critical section. */
2479 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2480 CPUState *cpu,
2481 vaddr mem_vaddr,
2482 ram_addr_t ram_addr,
2483 unsigned size)
2485 ndi->cpu = cpu;
2486 ndi->ram_addr = ram_addr;
2487 ndi->mem_vaddr = mem_vaddr;
2488 ndi->size = size;
2489 ndi->locked = false;
2491 assert(tcg_enabled());
2492 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2493 ndi->locked = true;
2494 tb_lock();
2495 tb_invalidate_phys_page_fast(ram_addr, size);
2499 /* Called within RCU critical section. */
2500 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2502 if (ndi->locked) {
2503 tb_unlock();
2506 /* Set both VGA and migration bits for simplicity and to remove
2507 * the notdirty callback faster.
2509 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2510 DIRTY_CLIENTS_NOCODE);
2511 /* we remove the notdirty callback only if the code has been
2512 flushed */
2513 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2514 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2518 /* Called within RCU critical section. */
2519 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2520 uint64_t val, unsigned size)
2522 NotDirtyInfo ndi;
2524 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2525 ram_addr, size);
2527 switch (size) {
2528 case 1:
2529 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2530 break;
2531 case 2:
2532 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2533 break;
2534 case 4:
2535 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2536 break;
2537 case 8:
2538 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2539 break;
2540 default:
2541 abort();
2543 memory_notdirty_write_complete(&ndi);
2546 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2547 unsigned size, bool is_write)
2549 return is_write;
2552 static const MemoryRegionOps notdirty_mem_ops = {
2553 .write = notdirty_mem_write,
2554 .valid.accepts = notdirty_mem_accepts,
2555 .endianness = DEVICE_NATIVE_ENDIAN,
2556 .valid = {
2557 .min_access_size = 1,
2558 .max_access_size = 8,
2559 .unaligned = false,
2561 .impl = {
2562 .min_access_size = 1,
2563 .max_access_size = 8,
2564 .unaligned = false,
2568 /* Generate a debug exception if a watchpoint has been hit. */
2569 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2571 CPUState *cpu = current_cpu;
2572 CPUClass *cc = CPU_GET_CLASS(cpu);
2573 target_ulong vaddr;
2574 CPUWatchpoint *wp;
2576 assert(tcg_enabled());
2577 if (cpu->watchpoint_hit) {
2578 /* We re-entered the check after replacing the TB. Now raise
2579 * the debug interrupt so that is will trigger after the
2580 * current instruction. */
2581 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2582 return;
2584 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2585 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2586 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2587 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2588 && (wp->flags & flags)) {
2589 if (flags == BP_MEM_READ) {
2590 wp->flags |= BP_WATCHPOINT_HIT_READ;
2591 } else {
2592 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2594 wp->hitaddr = vaddr;
2595 wp->hitattrs = attrs;
2596 if (!cpu->watchpoint_hit) {
2597 if (wp->flags & BP_CPU &&
2598 !cc->debug_check_watchpoint(cpu, wp)) {
2599 wp->flags &= ~BP_WATCHPOINT_HIT;
2600 continue;
2602 cpu->watchpoint_hit = wp;
2604 /* Both tb_lock and iothread_mutex will be reset when
2605 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2606 * back into the cpu_exec main loop.
2608 tb_lock();
2609 tb_check_watchpoint(cpu);
2610 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2611 cpu->exception_index = EXCP_DEBUG;
2612 cpu_loop_exit(cpu);
2613 } else {
2614 /* Force execution of one insn next time. */
2615 cpu->cflags_next_tb = 1 | curr_cflags();
2616 cpu_loop_exit_noexc(cpu);
2619 } else {
2620 wp->flags &= ~BP_WATCHPOINT_HIT;
2625 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2626 so these check for a hit then pass through to the normal out-of-line
2627 phys routines. */
2628 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2629 unsigned size, MemTxAttrs attrs)
2631 MemTxResult res;
2632 uint64_t data;
2633 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2634 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2636 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2637 switch (size) {
2638 case 1:
2639 data = address_space_ldub(as, addr, attrs, &res);
2640 break;
2641 case 2:
2642 data = address_space_lduw(as, addr, attrs, &res);
2643 break;
2644 case 4:
2645 data = address_space_ldl(as, addr, attrs, &res);
2646 break;
2647 case 8:
2648 data = address_space_ldq(as, addr, attrs, &res);
2649 break;
2650 default: abort();
2652 *pdata = data;
2653 return res;
2656 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2657 uint64_t val, unsigned size,
2658 MemTxAttrs attrs)
2660 MemTxResult res;
2661 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2662 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2664 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2665 switch (size) {
2666 case 1:
2667 address_space_stb(as, addr, val, attrs, &res);
2668 break;
2669 case 2:
2670 address_space_stw(as, addr, val, attrs, &res);
2671 break;
2672 case 4:
2673 address_space_stl(as, addr, val, attrs, &res);
2674 break;
2675 case 8:
2676 address_space_stq(as, addr, val, attrs, &res);
2677 break;
2678 default: abort();
2680 return res;
2683 static const MemoryRegionOps watch_mem_ops = {
2684 .read_with_attrs = watch_mem_read,
2685 .write_with_attrs = watch_mem_write,
2686 .endianness = DEVICE_NATIVE_ENDIAN,
2687 .valid = {
2688 .min_access_size = 1,
2689 .max_access_size = 8,
2690 .unaligned = false,
2692 .impl = {
2693 .min_access_size = 1,
2694 .max_access_size = 8,
2695 .unaligned = false,
2699 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2700 MemTxAttrs attrs, uint8_t *buf, int len);
2701 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2702 const uint8_t *buf, int len);
2703 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2704 bool is_write);
2706 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2707 unsigned len, MemTxAttrs attrs)
2709 subpage_t *subpage = opaque;
2710 uint8_t buf[8];
2711 MemTxResult res;
2713 #if defined(DEBUG_SUBPAGE)
2714 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2715 subpage, len, addr);
2716 #endif
2717 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2718 if (res) {
2719 return res;
2721 switch (len) {
2722 case 1:
2723 *data = ldub_p(buf);
2724 return MEMTX_OK;
2725 case 2:
2726 *data = lduw_p(buf);
2727 return MEMTX_OK;
2728 case 4:
2729 *data = ldl_p(buf);
2730 return MEMTX_OK;
2731 case 8:
2732 *data = ldq_p(buf);
2733 return MEMTX_OK;
2734 default:
2735 abort();
2739 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2740 uint64_t value, unsigned len, MemTxAttrs attrs)
2742 subpage_t *subpage = opaque;
2743 uint8_t buf[8];
2745 #if defined(DEBUG_SUBPAGE)
2746 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2747 " value %"PRIx64"\n",
2748 __func__, subpage, len, addr, value);
2749 #endif
2750 switch (len) {
2751 case 1:
2752 stb_p(buf, value);
2753 break;
2754 case 2:
2755 stw_p(buf, value);
2756 break;
2757 case 4:
2758 stl_p(buf, value);
2759 break;
2760 case 8:
2761 stq_p(buf, value);
2762 break;
2763 default:
2764 abort();
2766 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2769 static bool subpage_accepts(void *opaque, hwaddr addr,
2770 unsigned len, bool is_write)
2772 subpage_t *subpage = opaque;
2773 #if defined(DEBUG_SUBPAGE)
2774 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2775 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2776 #endif
2778 return flatview_access_valid(subpage->fv, addr + subpage->base,
2779 len, is_write);
2782 static const MemoryRegionOps subpage_ops = {
2783 .read_with_attrs = subpage_read,
2784 .write_with_attrs = subpage_write,
2785 .impl.min_access_size = 1,
2786 .impl.max_access_size = 8,
2787 .valid.min_access_size = 1,
2788 .valid.max_access_size = 8,
2789 .valid.accepts = subpage_accepts,
2790 .endianness = DEVICE_NATIVE_ENDIAN,
2793 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2794 uint16_t section)
2796 int idx, eidx;
2798 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2799 return -1;
2800 idx = SUBPAGE_IDX(start);
2801 eidx = SUBPAGE_IDX(end);
2802 #if defined(DEBUG_SUBPAGE)
2803 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2804 __func__, mmio, start, end, idx, eidx, section);
2805 #endif
2806 for (; idx <= eidx; idx++) {
2807 mmio->sub_section[idx] = section;
2810 return 0;
2813 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2815 subpage_t *mmio;
2817 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2818 mmio->fv = fv;
2819 mmio->base = base;
2820 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2821 NULL, TARGET_PAGE_SIZE);
2822 mmio->iomem.subpage = true;
2823 #if defined(DEBUG_SUBPAGE)
2824 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2825 mmio, base, TARGET_PAGE_SIZE);
2826 #endif
2827 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2829 return mmio;
2832 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2834 assert(fv);
2835 MemoryRegionSection section = {
2836 .fv = fv,
2837 .mr = mr,
2838 .offset_within_address_space = 0,
2839 .offset_within_region = 0,
2840 .size = int128_2_64(),
2843 return phys_section_add(map, &section);
2846 static void readonly_mem_write(void *opaque, hwaddr addr,
2847 uint64_t val, unsigned size)
2849 /* Ignore any write to ROM. */
2852 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2853 unsigned size, bool is_write)
2855 return is_write;
2858 /* This will only be used for writes, because reads are special cased
2859 * to directly access the underlying host ram.
2861 static const MemoryRegionOps readonly_mem_ops = {
2862 .write = readonly_mem_write,
2863 .valid.accepts = readonly_mem_accepts,
2864 .endianness = DEVICE_NATIVE_ENDIAN,
2865 .valid = {
2866 .min_access_size = 1,
2867 .max_access_size = 8,
2868 .unaligned = false,
2870 .impl = {
2871 .min_access_size = 1,
2872 .max_access_size = 8,
2873 .unaligned = false,
2877 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2879 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2880 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2881 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2882 MemoryRegionSection *sections = d->map.sections;
2884 return sections[index & ~TARGET_PAGE_MASK].mr;
2887 static void io_mem_init(void)
2889 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2890 NULL, NULL, UINT64_MAX);
2891 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2892 NULL, UINT64_MAX);
2894 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2895 * which can be called without the iothread mutex.
2897 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2898 NULL, UINT64_MAX);
2899 memory_region_clear_global_locking(&io_mem_notdirty);
2901 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2902 NULL, UINT64_MAX);
2905 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2907 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2908 uint16_t n;
2910 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2911 assert(n == PHYS_SECTION_UNASSIGNED);
2912 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2913 assert(n == PHYS_SECTION_NOTDIRTY);
2914 n = dummy_section(&d->map, fv, &io_mem_rom);
2915 assert(n == PHYS_SECTION_ROM);
2916 n = dummy_section(&d->map, fv, &io_mem_watch);
2917 assert(n == PHYS_SECTION_WATCH);
2919 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2921 return d;
2924 void address_space_dispatch_free(AddressSpaceDispatch *d)
2926 phys_sections_free(&d->map);
2927 g_free(d);
2930 static void tcg_commit(MemoryListener *listener)
2932 CPUAddressSpace *cpuas;
2933 AddressSpaceDispatch *d;
2935 /* since each CPU stores ram addresses in its TLB cache, we must
2936 reset the modified entries */
2937 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2938 cpu_reloading_memory_map();
2939 /* The CPU and TLB are protected by the iothread lock.
2940 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2941 * may have split the RCU critical section.
2943 d = address_space_to_dispatch(cpuas->as);
2944 atomic_rcu_set(&cpuas->memory_dispatch, d);
2945 tlb_flush(cpuas->cpu);
2948 static void memory_map_init(void)
2950 system_memory = g_malloc(sizeof(*system_memory));
2952 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2953 address_space_init(&address_space_memory, system_memory, "memory");
2955 system_io = g_malloc(sizeof(*system_io));
2956 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2957 65536);
2958 address_space_init(&address_space_io, system_io, "I/O");
2961 MemoryRegion *get_system_memory(void)
2963 return system_memory;
2966 MemoryRegion *get_system_io(void)
2968 return system_io;
2971 #endif /* !defined(CONFIG_USER_ONLY) */
2973 /* physical memory access (slow version, mainly for debug) */
2974 #if defined(CONFIG_USER_ONLY)
2975 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2976 uint8_t *buf, int len, int is_write)
2978 int l, flags;
2979 target_ulong page;
2980 void * p;
2982 while (len > 0) {
2983 page = addr & TARGET_PAGE_MASK;
2984 l = (page + TARGET_PAGE_SIZE) - addr;
2985 if (l > len)
2986 l = len;
2987 flags = page_get_flags(page);
2988 if (!(flags & PAGE_VALID))
2989 return -1;
2990 if (is_write) {
2991 if (!(flags & PAGE_WRITE))
2992 return -1;
2993 /* XXX: this code should not depend on lock_user */
2994 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2995 return -1;
2996 memcpy(p, buf, l);
2997 unlock_user(p, addr, l);
2998 } else {
2999 if (!(flags & PAGE_READ))
3000 return -1;
3001 /* XXX: this code should not depend on lock_user */
3002 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3003 return -1;
3004 memcpy(buf, p, l);
3005 unlock_user(p, addr, 0);
3007 len -= l;
3008 buf += l;
3009 addr += l;
3011 return 0;
3014 #else
3016 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3017 hwaddr length)
3019 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3020 addr += memory_region_get_ram_addr(mr);
3022 /* No early return if dirty_log_mask is or becomes 0, because
3023 * cpu_physical_memory_set_dirty_range will still call
3024 * xen_modified_memory.
3026 if (dirty_log_mask) {
3027 dirty_log_mask =
3028 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3030 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3031 assert(tcg_enabled());
3032 tb_lock();
3033 tb_invalidate_phys_range(addr, addr + length);
3034 tb_unlock();
3035 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3037 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3040 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3042 unsigned access_size_max = mr->ops->valid.max_access_size;
3044 /* Regions are assumed to support 1-4 byte accesses unless
3045 otherwise specified. */
3046 if (access_size_max == 0) {
3047 access_size_max = 4;
3050 /* Bound the maximum access by the alignment of the address. */
3051 if (!mr->ops->impl.unaligned) {
3052 unsigned align_size_max = addr & -addr;
3053 if (align_size_max != 0 && align_size_max < access_size_max) {
3054 access_size_max = align_size_max;
3058 /* Don't attempt accesses larger than the maximum. */
3059 if (l > access_size_max) {
3060 l = access_size_max;
3062 l = pow2floor(l);
3064 return l;
3067 static bool prepare_mmio_access(MemoryRegion *mr)
3069 bool unlocked = !qemu_mutex_iothread_locked();
3070 bool release_lock = false;
3072 if (unlocked && mr->global_locking) {
3073 qemu_mutex_lock_iothread();
3074 unlocked = false;
3075 release_lock = true;
3077 if (mr->flush_coalesced_mmio) {
3078 if (unlocked) {
3079 qemu_mutex_lock_iothread();
3081 qemu_flush_coalesced_mmio_buffer();
3082 if (unlocked) {
3083 qemu_mutex_unlock_iothread();
3087 return release_lock;
3090 /* Called within RCU critical section. */
3091 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3092 MemTxAttrs attrs,
3093 const uint8_t *buf,
3094 int len, hwaddr addr1,
3095 hwaddr l, MemoryRegion *mr)
3097 uint8_t *ptr;
3098 uint64_t val;
3099 MemTxResult result = MEMTX_OK;
3100 bool release_lock = false;
3102 for (;;) {
3103 if (!memory_access_is_direct(mr, true)) {
3104 release_lock |= prepare_mmio_access(mr);
3105 l = memory_access_size(mr, l, addr1);
3106 /* XXX: could force current_cpu to NULL to avoid
3107 potential bugs */
3108 switch (l) {
3109 case 8:
3110 /* 64 bit write access */
3111 val = ldq_p(buf);
3112 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3113 attrs);
3114 break;
3115 case 4:
3116 /* 32 bit write access */
3117 val = (uint32_t)ldl_p(buf);
3118 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3119 attrs);
3120 break;
3121 case 2:
3122 /* 16 bit write access */
3123 val = lduw_p(buf);
3124 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3125 attrs);
3126 break;
3127 case 1:
3128 /* 8 bit write access */
3129 val = ldub_p(buf);
3130 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3131 attrs);
3132 break;
3133 default:
3134 abort();
3136 } else {
3137 /* RAM case */
3138 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3139 memcpy(ptr, buf, l);
3140 invalidate_and_set_dirty(mr, addr1, l);
3143 if (release_lock) {
3144 qemu_mutex_unlock_iothread();
3145 release_lock = false;
3148 len -= l;
3149 buf += l;
3150 addr += l;
3152 if (!len) {
3153 break;
3156 l = len;
3157 mr = flatview_translate(fv, addr, &addr1, &l, true);
3160 return result;
3163 /* Called from RCU critical section. */
3164 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3165 const uint8_t *buf, int len)
3167 hwaddr l;
3168 hwaddr addr1;
3169 MemoryRegion *mr;
3170 MemTxResult result = MEMTX_OK;
3172 l = len;
3173 mr = flatview_translate(fv, addr, &addr1, &l, true);
3174 result = flatview_write_continue(fv, addr, attrs, buf, len,
3175 addr1, l, mr);
3177 return result;
3180 /* Called within RCU critical section. */
3181 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3182 MemTxAttrs attrs, uint8_t *buf,
3183 int len, hwaddr addr1, hwaddr l,
3184 MemoryRegion *mr)
3186 uint8_t *ptr;
3187 uint64_t val;
3188 MemTxResult result = MEMTX_OK;
3189 bool release_lock = false;
3191 for (;;) {
3192 if (!memory_access_is_direct(mr, false)) {
3193 /* I/O case */
3194 release_lock |= prepare_mmio_access(mr);
3195 l = memory_access_size(mr, l, addr1);
3196 switch (l) {
3197 case 8:
3198 /* 64 bit read access */
3199 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3200 attrs);
3201 stq_p(buf, val);
3202 break;
3203 case 4:
3204 /* 32 bit read access */
3205 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3206 attrs);
3207 stl_p(buf, val);
3208 break;
3209 case 2:
3210 /* 16 bit read access */
3211 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3212 attrs);
3213 stw_p(buf, val);
3214 break;
3215 case 1:
3216 /* 8 bit read access */
3217 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3218 attrs);
3219 stb_p(buf, val);
3220 break;
3221 default:
3222 abort();
3224 } else {
3225 /* RAM case */
3226 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3227 memcpy(buf, ptr, l);
3230 if (release_lock) {
3231 qemu_mutex_unlock_iothread();
3232 release_lock = false;
3235 len -= l;
3236 buf += l;
3237 addr += l;
3239 if (!len) {
3240 break;
3243 l = len;
3244 mr = flatview_translate(fv, addr, &addr1, &l, false);
3247 return result;
3250 /* Called from RCU critical section. */
3251 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3252 MemTxAttrs attrs, uint8_t *buf, int len)
3254 hwaddr l;
3255 hwaddr addr1;
3256 MemoryRegion *mr;
3258 l = len;
3259 mr = flatview_translate(fv, addr, &addr1, &l, false);
3260 return flatview_read_continue(fv, addr, attrs, buf, len,
3261 addr1, l, mr);
3264 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3265 MemTxAttrs attrs, uint8_t *buf, int len)
3267 MemTxResult result = MEMTX_OK;
3268 FlatView *fv;
3270 if (len > 0) {
3271 rcu_read_lock();
3272 fv = address_space_to_flatview(as);
3273 result = flatview_read(fv, addr, attrs, buf, len);
3274 rcu_read_unlock();
3277 return result;
3280 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3281 MemTxAttrs attrs,
3282 const uint8_t *buf, int len)
3284 MemTxResult result = MEMTX_OK;
3285 FlatView *fv;
3287 if (len > 0) {
3288 rcu_read_lock();
3289 fv = address_space_to_flatview(as);
3290 result = flatview_write(fv, addr, attrs, buf, len);
3291 rcu_read_unlock();
3294 return result;
3297 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3298 uint8_t *buf, int len, bool is_write)
3300 if (is_write) {
3301 return address_space_write(as, addr, attrs, buf, len);
3302 } else {
3303 return address_space_read_full(as, addr, attrs, buf, len);
3307 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3308 int len, int is_write)
3310 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3311 buf, len, is_write);
3314 enum write_rom_type {
3315 WRITE_DATA,
3316 FLUSH_CACHE,
3319 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3320 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3322 hwaddr l;
3323 uint8_t *ptr;
3324 hwaddr addr1;
3325 MemoryRegion *mr;
3327 rcu_read_lock();
3328 while (len > 0) {
3329 l = len;
3330 mr = address_space_translate(as, addr, &addr1, &l, true);
3332 if (!(memory_region_is_ram(mr) ||
3333 memory_region_is_romd(mr))) {
3334 l = memory_access_size(mr, l, addr1);
3335 } else {
3336 /* ROM/RAM case */
3337 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3338 switch (type) {
3339 case WRITE_DATA:
3340 memcpy(ptr, buf, l);
3341 invalidate_and_set_dirty(mr, addr1, l);
3342 break;
3343 case FLUSH_CACHE:
3344 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3345 break;
3348 len -= l;
3349 buf += l;
3350 addr += l;
3352 rcu_read_unlock();
3355 /* used for ROM loading : can write in RAM and ROM */
3356 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3357 const uint8_t *buf, int len)
3359 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3362 void cpu_flush_icache_range(hwaddr start, int len)
3365 * This function should do the same thing as an icache flush that was
3366 * triggered from within the guest. For TCG we are always cache coherent,
3367 * so there is no need to flush anything. For KVM / Xen we need to flush
3368 * the host's instruction cache at least.
3370 if (tcg_enabled()) {
3371 return;
3374 cpu_physical_memory_write_rom_internal(&address_space_memory,
3375 start, NULL, len, FLUSH_CACHE);
3378 typedef struct {
3379 MemoryRegion *mr;
3380 void *buffer;
3381 hwaddr addr;
3382 hwaddr len;
3383 bool in_use;
3384 } BounceBuffer;
3386 static BounceBuffer bounce;
3388 typedef struct MapClient {
3389 QEMUBH *bh;
3390 QLIST_ENTRY(MapClient) link;
3391 } MapClient;
3393 QemuMutex map_client_list_lock;
3394 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3395 = QLIST_HEAD_INITIALIZER(map_client_list);
3397 static void cpu_unregister_map_client_do(MapClient *client)
3399 QLIST_REMOVE(client, link);
3400 g_free(client);
3403 static void cpu_notify_map_clients_locked(void)
3405 MapClient *client;
3407 while (!QLIST_EMPTY(&map_client_list)) {
3408 client = QLIST_FIRST(&map_client_list);
3409 qemu_bh_schedule(client->bh);
3410 cpu_unregister_map_client_do(client);
3414 void cpu_register_map_client(QEMUBH *bh)
3416 MapClient *client = g_malloc(sizeof(*client));
3418 qemu_mutex_lock(&map_client_list_lock);
3419 client->bh = bh;
3420 QLIST_INSERT_HEAD(&map_client_list, client, link);
3421 if (!atomic_read(&bounce.in_use)) {
3422 cpu_notify_map_clients_locked();
3424 qemu_mutex_unlock(&map_client_list_lock);
3427 void cpu_exec_init_all(void)
3429 qemu_mutex_init(&ram_list.mutex);
3430 /* The data structures we set up here depend on knowing the page size,
3431 * so no more changes can be made after this point.
3432 * In an ideal world, nothing we did before we had finished the
3433 * machine setup would care about the target page size, and we could
3434 * do this much later, rather than requiring board models to state
3435 * up front what their requirements are.
3437 finalize_target_page_bits();
3438 io_mem_init();
3439 memory_map_init();
3440 qemu_mutex_init(&map_client_list_lock);
3443 void cpu_unregister_map_client(QEMUBH *bh)
3445 MapClient *client;
3447 qemu_mutex_lock(&map_client_list_lock);
3448 QLIST_FOREACH(client, &map_client_list, link) {
3449 if (client->bh == bh) {
3450 cpu_unregister_map_client_do(client);
3451 break;
3454 qemu_mutex_unlock(&map_client_list_lock);
3457 static void cpu_notify_map_clients(void)
3459 qemu_mutex_lock(&map_client_list_lock);
3460 cpu_notify_map_clients_locked();
3461 qemu_mutex_unlock(&map_client_list_lock);
3464 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3465 bool is_write)
3467 MemoryRegion *mr;
3468 hwaddr l, xlat;
3470 while (len > 0) {
3471 l = len;
3472 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3473 if (!memory_access_is_direct(mr, is_write)) {
3474 l = memory_access_size(mr, l, addr);
3475 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3476 return false;
3480 len -= l;
3481 addr += l;
3483 return true;
3486 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3487 int len, bool is_write)
3489 FlatView *fv;
3490 bool result;
3492 rcu_read_lock();
3493 fv = address_space_to_flatview(as);
3494 result = flatview_access_valid(fv, addr, len, is_write);
3495 rcu_read_unlock();
3496 return result;
3499 static hwaddr
3500 flatview_extend_translation(FlatView *fv, hwaddr addr,
3501 hwaddr target_len,
3502 MemoryRegion *mr, hwaddr base, hwaddr len,
3503 bool is_write)
3505 hwaddr done = 0;
3506 hwaddr xlat;
3507 MemoryRegion *this_mr;
3509 for (;;) {
3510 target_len -= len;
3511 addr += len;
3512 done += len;
3513 if (target_len == 0) {
3514 return done;
3517 len = target_len;
3518 this_mr = flatview_translate(fv, addr, &xlat,
3519 &len, is_write);
3520 if (this_mr != mr || xlat != base + done) {
3521 return done;
3526 /* Map a physical memory region into a host virtual address.
3527 * May map a subset of the requested range, given by and returned in *plen.
3528 * May return NULL if resources needed to perform the mapping are exhausted.
3529 * Use only for reads OR writes - not for read-modify-write operations.
3530 * Use cpu_register_map_client() to know when retrying the map operation is
3531 * likely to succeed.
3533 void *address_space_map(AddressSpace *as,
3534 hwaddr addr,
3535 hwaddr *plen,
3536 bool is_write)
3538 hwaddr len = *plen;
3539 hwaddr l, xlat;
3540 MemoryRegion *mr;
3541 void *ptr;
3542 FlatView *fv;
3544 if (len == 0) {
3545 return NULL;
3548 l = len;
3549 rcu_read_lock();
3550 fv = address_space_to_flatview(as);
3551 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3553 if (!memory_access_is_direct(mr, is_write)) {
3554 if (atomic_xchg(&bounce.in_use, true)) {
3555 rcu_read_unlock();
3556 return NULL;
3558 /* Avoid unbounded allocations */
3559 l = MIN(l, TARGET_PAGE_SIZE);
3560 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3561 bounce.addr = addr;
3562 bounce.len = l;
3564 memory_region_ref(mr);
3565 bounce.mr = mr;
3566 if (!is_write) {
3567 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3568 bounce.buffer, l);
3571 rcu_read_unlock();
3572 *plen = l;
3573 return bounce.buffer;
3577 memory_region_ref(mr);
3578 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3579 l, is_write);
3580 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3581 rcu_read_unlock();
3583 return ptr;
3586 /* Unmaps a memory region previously mapped by address_space_map().
3587 * Will also mark the memory as dirty if is_write == 1. access_len gives
3588 * the amount of memory that was actually read or written by the caller.
3590 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3591 int is_write, hwaddr access_len)
3593 if (buffer != bounce.buffer) {
3594 MemoryRegion *mr;
3595 ram_addr_t addr1;
3597 mr = memory_region_from_host(buffer, &addr1);
3598 assert(mr != NULL);
3599 if (is_write) {
3600 invalidate_and_set_dirty(mr, addr1, access_len);
3602 if (xen_enabled()) {
3603 xen_invalidate_map_cache_entry(buffer);
3605 memory_region_unref(mr);
3606 return;
3608 if (is_write) {
3609 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3610 bounce.buffer, access_len);
3612 qemu_vfree(bounce.buffer);
3613 bounce.buffer = NULL;
3614 memory_region_unref(bounce.mr);
3615 atomic_mb_set(&bounce.in_use, false);
3616 cpu_notify_map_clients();
3619 void *cpu_physical_memory_map(hwaddr addr,
3620 hwaddr *plen,
3621 int is_write)
3623 return address_space_map(&address_space_memory, addr, plen, is_write);
3626 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3627 int is_write, hwaddr access_len)
3629 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3632 #define ARG1_DECL AddressSpace *as
3633 #define ARG1 as
3634 #define SUFFIX
3635 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3636 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3637 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3638 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3639 #define RCU_READ_LOCK(...) rcu_read_lock()
3640 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3641 #include "memory_ldst.inc.c"
3643 int64_t address_space_cache_init(MemoryRegionCache *cache,
3644 AddressSpace *as,
3645 hwaddr addr,
3646 hwaddr len,
3647 bool is_write)
3649 AddressSpaceDispatch *d;
3650 hwaddr l;
3651 MemoryRegion *mr;
3653 assert(len > 0);
3655 l = len;
3656 cache->fv = address_space_get_flatview(as);
3657 d = flatview_to_dispatch(cache->fv);
3658 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3660 mr = cache->mrs.mr;
3661 memory_region_ref(mr);
3662 if (memory_access_is_direct(mr, is_write)) {
3663 l = flatview_extend_translation(cache->fv, addr, len, mr,
3664 cache->xlat, l, is_write);
3665 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3666 } else {
3667 cache->ptr = NULL;
3670 cache->len = l;
3671 cache->is_write = is_write;
3672 return l;
3675 void address_space_cache_invalidate(MemoryRegionCache *cache,
3676 hwaddr addr,
3677 hwaddr access_len)
3679 assert(cache->is_write);
3680 if (likely(cache->ptr)) {
3681 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3685 void address_space_cache_destroy(MemoryRegionCache *cache)
3687 if (!cache->mrs.mr) {
3688 return;
3691 if (xen_enabled()) {
3692 xen_invalidate_map_cache_entry(cache->ptr);
3694 memory_region_unref(cache->mrs.mr);
3695 flatview_unref(cache->fv);
3696 cache->mrs.mr = NULL;
3697 cache->fv = NULL;
3700 /* Called from RCU critical section. This function has the same
3701 * semantics as address_space_translate, but it only works on a
3702 * predefined range of a MemoryRegion that was mapped with
3703 * address_space_cache_init.
3705 static inline MemoryRegion *address_space_translate_cached(
3706 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3707 hwaddr *plen, bool is_write)
3709 MemoryRegionSection section;
3710 MemoryRegion *mr;
3711 IOMMUMemoryRegion *iommu_mr;
3712 AddressSpace *target_as;
3714 assert(!cache->ptr);
3715 *xlat = addr + cache->xlat;
3717 mr = cache->mrs.mr;
3718 iommu_mr = memory_region_get_iommu(mr);
3719 if (!iommu_mr) {
3720 /* MMIO region. */
3721 return mr;
3724 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3725 NULL, is_write, true,
3726 &target_as);
3727 return section.mr;
3730 /* Called from RCU critical section. address_space_read_cached uses this
3731 * out of line function when the target is an MMIO or IOMMU region.
3733 void
3734 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3735 void *buf, int len)
3737 hwaddr addr1, l;
3738 MemoryRegion *mr;
3740 l = len;
3741 mr = address_space_translate_cached(cache, addr, &addr1, &l, false);
3742 flatview_read_continue(cache->fv,
3743 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3744 addr1, l, mr);
3747 /* Called from RCU critical section. address_space_write_cached uses this
3748 * out of line function when the target is an MMIO or IOMMU region.
3750 void
3751 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3752 const void *buf, int len)
3754 hwaddr addr1, l;
3755 MemoryRegion *mr;
3757 l = len;
3758 mr = address_space_translate_cached(cache, addr, &addr1, &l, true);
3759 flatview_write_continue(cache->fv,
3760 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3761 addr1, l, mr);
3764 #define ARG1_DECL MemoryRegionCache *cache
3765 #define ARG1 cache
3766 #define SUFFIX _cached_slow
3767 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3768 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3769 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3770 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3771 #define RCU_READ_LOCK() ((void)0)
3772 #define RCU_READ_UNLOCK() ((void)0)
3773 #include "memory_ldst.inc.c"
3775 /* virtual memory access for debug (includes writing to ROM) */
3776 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3777 uint8_t *buf, int len, int is_write)
3779 int l;
3780 hwaddr phys_addr;
3781 target_ulong page;
3783 cpu_synchronize_state(cpu);
3784 while (len > 0) {
3785 int asidx;
3786 MemTxAttrs attrs;
3788 page = addr & TARGET_PAGE_MASK;
3789 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3790 asidx = cpu_asidx_from_attrs(cpu, attrs);
3791 /* if no physical page mapped, return an error */
3792 if (phys_addr == -1)
3793 return -1;
3794 l = (page + TARGET_PAGE_SIZE) - addr;
3795 if (l > len)
3796 l = len;
3797 phys_addr += (addr & ~TARGET_PAGE_MASK);
3798 if (is_write) {
3799 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3800 phys_addr, buf, l);
3801 } else {
3802 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3803 MEMTXATTRS_UNSPECIFIED,
3804 buf, l, 0);
3806 len -= l;
3807 buf += l;
3808 addr += l;
3810 return 0;
3814 * Allows code that needs to deal with migration bitmaps etc to still be built
3815 * target independent.
3817 size_t qemu_target_page_size(void)
3819 return TARGET_PAGE_SIZE;
3822 int qemu_target_page_bits(void)
3824 return TARGET_PAGE_BITS;
3827 int qemu_target_page_bits_min(void)
3829 return TARGET_PAGE_BITS_MIN;
3831 #endif
3834 * A helper function for the _utterly broken_ virtio device model to find out if
3835 * it's running on a big endian machine. Don't do this at home kids!
3837 bool target_words_bigendian(void);
3838 bool target_words_bigendian(void)
3840 #if defined(TARGET_WORDS_BIGENDIAN)
3841 return true;
3842 #else
3843 return false;
3844 #endif
3847 #ifndef CONFIG_USER_ONLY
3848 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3850 MemoryRegion*mr;
3851 hwaddr l = 1;
3852 bool res;
3854 rcu_read_lock();
3855 mr = address_space_translate(&address_space_memory,
3856 phys_addr, &phys_addr, &l, false);
3858 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3859 rcu_read_unlock();
3860 return res;
3863 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3865 RAMBlock *block;
3866 int ret = 0;
3868 rcu_read_lock();
3869 RAMBLOCK_FOREACH(block) {
3870 ret = func(block->idstr, block->host, block->offset,
3871 block->used_length, opaque);
3872 if (ret) {
3873 break;
3876 rcu_read_unlock();
3877 return ret;
3881 * Unmap pages of memory from start to start+length such that
3882 * they a) read as 0, b) Trigger whatever fault mechanism
3883 * the OS provides for postcopy.
3884 * The pages must be unmapped by the end of the function.
3885 * Returns: 0 on success, none-0 on failure
3888 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3890 int ret = -1;
3892 uint8_t *host_startaddr = rb->host + start;
3894 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3895 error_report("ram_block_discard_range: Unaligned start address: %p",
3896 host_startaddr);
3897 goto err;
3900 if ((start + length) <= rb->used_length) {
3901 bool need_madvise, need_fallocate;
3902 uint8_t *host_endaddr = host_startaddr + length;
3903 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3904 error_report("ram_block_discard_range: Unaligned end address: %p",
3905 host_endaddr);
3906 goto err;
3909 errno = ENOTSUP; /* If we are missing MADVISE etc */
3911 /* The logic here is messy;
3912 * madvise DONTNEED fails for hugepages
3913 * fallocate works on hugepages and shmem
3915 need_madvise = (rb->page_size == qemu_host_page_size);
3916 need_fallocate = rb->fd != -1;
3917 if (need_fallocate) {
3918 /* For a file, this causes the area of the file to be zero'd
3919 * if read, and for hugetlbfs also causes it to be unmapped
3920 * so a userfault will trigger.
3922 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3923 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3924 start, length);
3925 if (ret) {
3926 ret = -errno;
3927 error_report("ram_block_discard_range: Failed to fallocate "
3928 "%s:%" PRIx64 " +%zx (%d)",
3929 rb->idstr, start, length, ret);
3930 goto err;
3932 #else
3933 ret = -ENOSYS;
3934 error_report("ram_block_discard_range: fallocate not available/file"
3935 "%s:%" PRIx64 " +%zx (%d)",
3936 rb->idstr, start, length, ret);
3937 goto err;
3938 #endif
3940 if (need_madvise) {
3941 /* For normal RAM this causes it to be unmapped,
3942 * for shared memory it causes the local mapping to disappear
3943 * and to fall back on the file contents (which we just
3944 * fallocate'd away).
3946 #if defined(CONFIG_MADVISE)
3947 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3948 if (ret) {
3949 ret = -errno;
3950 error_report("ram_block_discard_range: Failed to discard range "
3951 "%s:%" PRIx64 " +%zx (%d)",
3952 rb->idstr, start, length, ret);
3953 goto err;
3955 #else
3956 ret = -ENOSYS;
3957 error_report("ram_block_discard_range: MADVISE not available"
3958 "%s:%" PRIx64 " +%zx (%d)",
3959 rb->idstr, start, length, ret);
3960 goto err;
3961 #endif
3963 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3964 need_madvise, need_fallocate, ret);
3965 } else {
3966 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3967 "/%zx/" RAM_ADDR_FMT")",
3968 rb->idstr, start, length, rb->used_length);
3971 err:
3972 return ret;
3975 #endif
3977 void page_size_init(void)
3979 /* NOTE: we can always suppose that qemu_host_page_size >=
3980 TARGET_PAGE_SIZE */
3981 if (qemu_host_page_size == 0) {
3982 qemu_host_page_size = qemu_real_host_page_size;
3984 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3985 qemu_host_page_size = TARGET_PAGE_SIZE;
3987 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3990 #if !defined(CONFIG_USER_ONLY)
3992 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3993 int start, int end, int skip, int ptr)
3995 if (start == end - 1) {
3996 mon(f, "\t%3d ", start);
3997 } else {
3998 mon(f, "\t%3d..%-3d ", start, end - 1);
4000 mon(f, " skip=%d ", skip);
4001 if (ptr == PHYS_MAP_NODE_NIL) {
4002 mon(f, " ptr=NIL");
4003 } else if (!skip) {
4004 mon(f, " ptr=#%d", ptr);
4005 } else {
4006 mon(f, " ptr=[%d]", ptr);
4008 mon(f, "\n");
4011 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4012 int128_sub((size), int128_one())) : 0)
4014 void mtree_print_dispatch(fprintf_function mon, void *f,
4015 AddressSpaceDispatch *d, MemoryRegion *root)
4017 int i;
4019 mon(f, " Dispatch\n");
4020 mon(f, " Physical sections\n");
4022 for (i = 0; i < d->map.sections_nb; ++i) {
4023 MemoryRegionSection *s = d->map.sections + i;
4024 const char *names[] = { " [unassigned]", " [not dirty]",
4025 " [ROM]", " [watch]" };
4027 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4029 s->offset_within_address_space,
4030 s->offset_within_address_space + MR_SIZE(s->mr->size),
4031 s->mr->name ? s->mr->name : "(noname)",
4032 i < ARRAY_SIZE(names) ? names[i] : "",
4033 s->mr == root ? " [ROOT]" : "",
4034 s == d->mru_section ? " [MRU]" : "",
4035 s->mr->is_iommu ? " [iommu]" : "");
4037 if (s->mr->alias) {
4038 mon(f, " alias=%s", s->mr->alias->name ?
4039 s->mr->alias->name : "noname");
4041 mon(f, "\n");
4044 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4045 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4046 for (i = 0; i < d->map.nodes_nb; ++i) {
4047 int j, jprev;
4048 PhysPageEntry prev;
4049 Node *n = d->map.nodes + i;
4051 mon(f, " [%d]\n", i);
4053 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4054 PhysPageEntry *pe = *n + j;
4056 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4057 continue;
4060 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4062 jprev = j;
4063 prev = *pe;
4066 if (jprev != ARRAY_SIZE(*n)) {
4067 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4072 #endif