ppc/xive: Use the XiveFabric and XivePresenter interfaces
[qemu/ar7.git] / hw / intc / xive.c
blob8e683847bf8128dfd581ab369f8168a6ba21b05e
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
26 * XIVE Thread Interrupt Management context
30 * Convert a priority number to an Interrupt Pending Buffer (IPB)
31 * register, which indicates a pending interrupt at the priority
32 * corresponding to the bit number
34 static uint8_t priority_to_ipb(uint8_t priority)
36 return priority > XIVE_PRIORITY_MAX ?
37 0 : 1 << (XIVE_PRIORITY_MAX - priority);
41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42 * Interrupt Priority Register (PIPR), which contains the priority of
43 * the most favored pending notification.
45 static uint8_t ipb_to_pipr(uint8_t ibp)
47 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
50 static void ipb_update(uint8_t *regs, uint8_t priority)
52 regs[TM_IPB] |= priority_to_ipb(priority);
53 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
56 static uint8_t exception_mask(uint8_t ring)
58 switch (ring) {
59 case TM_QW1_OS:
60 return TM_QW1_NSR_EO;
61 case TM_QW3_HV_PHYS:
62 return TM_QW3_NSR_HE;
63 default:
64 g_assert_not_reached();
68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
70 switch (ring) {
71 case TM_QW0_USER:
72 return 0; /* Not supported */
73 case TM_QW1_OS:
74 return tctx->os_output;
75 case TM_QW2_HV_POOL:
76 case TM_QW3_HV_PHYS:
77 return tctx->hv_output;
78 default:
79 return 0;
83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
85 uint8_t *regs = &tctx->regs[ring];
86 uint8_t nsr = regs[TM_NSR];
87 uint8_t mask = exception_mask(ring);
89 qemu_irq_lower(xive_tctx_output(tctx, ring));
91 if (regs[TM_NSR] & mask) {
92 uint8_t cppr = regs[TM_PIPR];
94 regs[TM_CPPR] = cppr;
96 /* Reset the pending buffer bit */
97 regs[TM_IPB] &= ~priority_to_ipb(cppr);
98 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
100 /* Drop Exception bit */
101 regs[TM_NSR] &= ~mask;
104 return (nsr << 8) | regs[TM_CPPR];
107 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
109 uint8_t *regs = &tctx->regs[ring];
111 if (regs[TM_PIPR] < regs[TM_CPPR]) {
112 switch (ring) {
113 case TM_QW1_OS:
114 regs[TM_NSR] |= TM_QW1_NSR_EO;
115 break;
116 case TM_QW3_HV_PHYS:
117 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
118 break;
119 default:
120 g_assert_not_reached();
122 qemu_irq_raise(xive_tctx_output(tctx, ring));
126 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
128 if (cppr > XIVE_PRIORITY_MAX) {
129 cppr = 0xff;
132 tctx->regs[ring + TM_CPPR] = cppr;
134 /* CPPR has changed, check if we need to raise a pending exception */
135 xive_tctx_notify(tctx, ring);
138 static inline uint32_t xive_tctx_word2(uint8_t *ring)
140 return *((uint32_t *) &ring[TM_WORD2]);
144 * XIVE Thread Interrupt Management Area (TIMA)
147 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
148 uint64_t value, unsigned size)
150 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
153 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
155 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
158 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
159 unsigned size)
161 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
162 uint32_t qw2w2;
164 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
165 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
166 return qw2w2;
169 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
170 uint64_t value, unsigned size)
172 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
175 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
177 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
181 * Define an access map for each page of the TIMA that we will use in
182 * the memory region ops to filter values when doing loads and stores
183 * of raw registers values
185 * Registers accessibility bits :
187 * 0x0 - no access
188 * 0x1 - write only
189 * 0x2 - read only
190 * 0x3 - read/write
193 static const uint8_t xive_tm_hw_view[] = {
194 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
195 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
196 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
197 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
200 static const uint8_t xive_tm_hv_view[] = {
201 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
202 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
203 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
204 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
207 static const uint8_t xive_tm_os_view[] = {
208 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
209 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
214 static const uint8_t xive_tm_user_view[] = {
215 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
217 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
218 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
222 * Overall TIMA access map for the thread interrupt management context
223 * registers
225 static const uint8_t *xive_tm_views[] = {
226 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
227 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
228 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
229 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
233 * Computes a register access mask for a given offset in the TIMA
235 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
237 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
238 uint8_t reg_offset = offset & 0x3F;
239 uint8_t reg_mask = write ? 0x1 : 0x2;
240 uint64_t mask = 0x0;
241 int i;
243 for (i = 0; i < size; i++) {
244 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
245 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
249 return mask;
252 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
253 unsigned size)
255 uint8_t ring_offset = offset & 0x30;
256 uint8_t reg_offset = offset & 0x3F;
257 uint64_t mask = xive_tm_mask(offset, size, true);
258 int i;
261 * Only 4 or 8 bytes stores are allowed and the User ring is
262 * excluded
264 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
265 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
266 HWADDR_PRIx"\n", offset);
267 return;
271 * Use the register offset for the raw values and filter out
272 * reserved values
274 for (i = 0; i < size; i++) {
275 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
276 if (byte_mask) {
277 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
278 byte_mask;
283 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
285 uint8_t ring_offset = offset & 0x30;
286 uint8_t reg_offset = offset & 0x3F;
287 uint64_t mask = xive_tm_mask(offset, size, false);
288 uint64_t ret;
289 int i;
292 * Only 4 or 8 bytes loads are allowed and the User ring is
293 * excluded
295 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
296 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
297 HWADDR_PRIx"\n", offset);
298 return -1;
301 /* Use the register offset for the raw values */
302 ret = 0;
303 for (i = 0; i < size; i++) {
304 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
307 /* filter out reserved values */
308 return ret & mask;
312 * The TM context is mapped twice within each page. Stores and loads
313 * to the first mapping below 2K write and read the specified values
314 * without modification. The second mapping above 2K performs specific
315 * state changes (side effects) in addition to setting/returning the
316 * interrupt management area context of the processor thread.
318 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
320 return xive_tctx_accept(tctx, TM_QW1_OS);
323 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
324 uint64_t value, unsigned size)
326 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
330 * Adjust the IPB to allow a CPU to process event queues of other
331 * priorities during one physical interrupt cycle.
333 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
334 uint64_t value, unsigned size)
336 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
337 xive_tctx_notify(tctx, TM_QW1_OS);
340 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
341 uint32_t *nvt_idx, bool *vo)
343 if (nvt_blk) {
344 *nvt_blk = xive_nvt_blk(cam);
346 if (nvt_idx) {
347 *nvt_idx = xive_nvt_idx(cam);
349 if (vo) {
350 *vo = !!(cam & TM_QW1W2_VO);
354 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
355 uint32_t *nvt_idx, bool *vo)
357 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
358 uint32_t cam = be32_to_cpu(qw1w2);
360 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
361 return qw1w2;
364 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
366 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
369 static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset,
370 unsigned size)
372 uint32_t qw1w2;
373 uint32_t qw1w2_new;
374 uint8_t nvt_blk;
375 uint32_t nvt_idx;
376 bool vo;
378 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
380 if (!vo) {
381 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
382 nvt_blk, nvt_idx);
385 /* Invalidate CAM line */
386 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
387 xive_tctx_set_os_cam(tctx, qw1w2_new);
388 return qw1w2;
392 * Define a mapping of "special" operations depending on the TIMA page
393 * offset and the size of the operation.
395 typedef struct XiveTmOp {
396 uint8_t page_offset;
397 uint32_t op_offset;
398 unsigned size;
399 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
400 unsigned size);
401 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
402 } XiveTmOp;
404 static const XiveTmOp xive_tm_operations[] = {
406 * MMIOs below 2K : raw values and special operations without side
407 * effects
409 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
410 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
411 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
412 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
414 /* MMIOs above 2K : special operations with side effects */
415 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
416 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
417 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
418 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
419 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
420 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
421 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
424 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
426 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
427 uint32_t op_offset = offset & 0xFFF;
428 int i;
430 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
431 const XiveTmOp *xto = &xive_tm_operations[i];
433 /* Accesses done from a more privileged TIMA page is allowed */
434 if (xto->page_offset >= page_offset &&
435 xto->op_offset == op_offset &&
436 xto->size == size &&
437 ((write && xto->write_handler) || (!write && xto->read_handler))) {
438 return xto;
441 return NULL;
445 * TIMA MMIO handlers
447 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
448 unsigned size)
450 const XiveTmOp *xto;
453 * TODO: check V bit in Q[0-3]W2
457 * First, check for special operations in the 2K region
459 if (offset & 0x800) {
460 xto = xive_tm_find_op(offset, size, true);
461 if (!xto) {
462 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
463 "@%"HWADDR_PRIx"\n", offset);
464 } else {
465 xto->write_handler(tctx, offset, value, size);
467 return;
471 * Then, for special operations in the region below 2K.
473 xto = xive_tm_find_op(offset, size, true);
474 if (xto) {
475 xto->write_handler(tctx, offset, value, size);
476 return;
480 * Finish with raw access to the register values
482 xive_tm_raw_write(tctx, offset, value, size);
485 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
487 const XiveTmOp *xto;
490 * TODO: check V bit in Q[0-3]W2
494 * First, check for special operations in the 2K region
496 if (offset & 0x800) {
497 xto = xive_tm_find_op(offset, size, false);
498 if (!xto) {
499 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
500 "@%"HWADDR_PRIx"\n", offset);
501 return -1;
503 return xto->read_handler(tctx, offset, size);
507 * Then, for special operations in the region below 2K.
509 xto = xive_tm_find_op(offset, size, false);
510 if (xto) {
511 return xto->read_handler(tctx, offset, size);
515 * Finish with raw access to the register values
517 return xive_tm_raw_read(tctx, offset, size);
520 static void xive_tm_write(void *opaque, hwaddr offset,
521 uint64_t value, unsigned size)
523 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
525 xive_tctx_tm_write(tctx, offset, value, size);
528 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
530 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
532 return xive_tctx_tm_read(tctx, offset, size);
535 const MemoryRegionOps xive_tm_ops = {
536 .read = xive_tm_read,
537 .write = xive_tm_write,
538 .endianness = DEVICE_BIG_ENDIAN,
539 .valid = {
540 .min_access_size = 1,
541 .max_access_size = 8,
543 .impl = {
544 .min_access_size = 1,
545 .max_access_size = 8,
549 static char *xive_tctx_ring_print(uint8_t *ring)
551 uint32_t w2 = xive_tctx_word2(ring);
553 return g_strdup_printf("%02x %02x %02x %02x %02x "
554 "%02x %02x %02x %08x",
555 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
556 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
557 be32_to_cpu(w2));
560 static const char * const xive_tctx_ring_names[] = {
561 "USER", "OS", "POOL", "PHYS",
564 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
566 int cpu_index;
567 int i;
569 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
570 * are hot plugged or unplugged.
572 if (!tctx) {
573 return;
576 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
578 if (kvm_irqchip_in_kernel()) {
579 Error *local_err = NULL;
581 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
582 if (local_err) {
583 error_report_err(local_err);
584 return;
588 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
589 " W2\n", cpu_index);
591 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
592 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
593 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
594 xive_tctx_ring_names[i], s);
595 g_free(s);
599 void xive_tctx_reset(XiveTCTX *tctx)
601 memset(tctx->regs, 0, sizeof(tctx->regs));
603 /* Set some defaults */
604 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
605 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
606 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
609 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
610 * CPPR is first set.
612 tctx->regs[TM_QW1_OS + TM_PIPR] =
613 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
614 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
615 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
618 static void xive_tctx_realize(DeviceState *dev, Error **errp)
620 XiveTCTX *tctx = XIVE_TCTX(dev);
621 PowerPCCPU *cpu;
622 CPUPPCState *env;
623 Error *local_err = NULL;
625 assert(tctx->cs);
627 cpu = POWERPC_CPU(tctx->cs);
628 env = &cpu->env;
629 switch (PPC_INPUT(env)) {
630 case PPC_FLAGS_INPUT_POWER9:
631 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
632 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
633 break;
635 default:
636 error_setg(errp, "XIVE interrupt controller does not support "
637 "this CPU bus model");
638 return;
641 /* Connect the presenter to the VCPU (required for CPU hotplug) */
642 if (kvm_irqchip_in_kernel()) {
643 kvmppc_xive_cpu_connect(tctx, &local_err);
644 if (local_err) {
645 error_propagate(errp, local_err);
646 return;
651 static int vmstate_xive_tctx_pre_save(void *opaque)
653 Error *local_err = NULL;
655 if (kvm_irqchip_in_kernel()) {
656 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
657 if (local_err) {
658 error_report_err(local_err);
659 return -1;
663 return 0;
666 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
668 Error *local_err = NULL;
670 if (kvm_irqchip_in_kernel()) {
672 * Required for hotplugged CPU, for which the state comes
673 * after all states of the machine.
675 kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
676 if (local_err) {
677 error_report_err(local_err);
678 return -1;
682 return 0;
685 static const VMStateDescription vmstate_xive_tctx = {
686 .name = TYPE_XIVE_TCTX,
687 .version_id = 1,
688 .minimum_version_id = 1,
689 .pre_save = vmstate_xive_tctx_pre_save,
690 .post_load = vmstate_xive_tctx_post_load,
691 .fields = (VMStateField[]) {
692 VMSTATE_BUFFER(regs, XiveTCTX),
693 VMSTATE_END_OF_LIST()
697 static Property xive_tctx_properties[] = {
698 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
699 DEFINE_PROP_END_OF_LIST(),
702 static void xive_tctx_class_init(ObjectClass *klass, void *data)
704 DeviceClass *dc = DEVICE_CLASS(klass);
706 dc->desc = "XIVE Interrupt Thread Context";
707 dc->realize = xive_tctx_realize;
708 dc->vmsd = &vmstate_xive_tctx;
709 dc->props = xive_tctx_properties;
711 * Reason: part of XIVE interrupt controller, needs to be wired up
712 * by xive_tctx_create().
714 dc->user_creatable = false;
717 static const TypeInfo xive_tctx_info = {
718 .name = TYPE_XIVE_TCTX,
719 .parent = TYPE_DEVICE,
720 .instance_size = sizeof(XiveTCTX),
721 .class_init = xive_tctx_class_init,
724 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
726 Error *local_err = NULL;
727 Object *obj;
729 obj = object_new(TYPE_XIVE_TCTX);
730 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
731 object_unref(obj);
732 object_property_set_link(obj, cpu, "cpu", &error_abort);
733 object_property_set_bool(obj, true, "realized", &local_err);
734 if (local_err) {
735 goto error;
738 return obj;
740 error:
741 object_unparent(obj);
742 error_propagate(errp, local_err);
743 return NULL;
746 void xive_tctx_destroy(XiveTCTX *tctx)
748 Object *obj = OBJECT(tctx);
750 object_unparent(obj);
754 * XIVE ESB helpers
757 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
759 uint8_t old_pq = *pq & 0x3;
761 *pq &= ~0x3;
762 *pq |= value & 0x3;
764 return old_pq;
767 static bool xive_esb_trigger(uint8_t *pq)
769 uint8_t old_pq = *pq & 0x3;
771 switch (old_pq) {
772 case XIVE_ESB_RESET:
773 xive_esb_set(pq, XIVE_ESB_PENDING);
774 return true;
775 case XIVE_ESB_PENDING:
776 case XIVE_ESB_QUEUED:
777 xive_esb_set(pq, XIVE_ESB_QUEUED);
778 return false;
779 case XIVE_ESB_OFF:
780 xive_esb_set(pq, XIVE_ESB_OFF);
781 return false;
782 default:
783 g_assert_not_reached();
787 static bool xive_esb_eoi(uint8_t *pq)
789 uint8_t old_pq = *pq & 0x3;
791 switch (old_pq) {
792 case XIVE_ESB_RESET:
793 case XIVE_ESB_PENDING:
794 xive_esb_set(pq, XIVE_ESB_RESET);
795 return false;
796 case XIVE_ESB_QUEUED:
797 xive_esb_set(pq, XIVE_ESB_PENDING);
798 return true;
799 case XIVE_ESB_OFF:
800 xive_esb_set(pq, XIVE_ESB_OFF);
801 return false;
802 default:
803 g_assert_not_reached();
808 * XIVE Interrupt Source (or IVSE)
811 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
813 assert(srcno < xsrc->nr_irqs);
815 return xsrc->status[srcno] & 0x3;
818 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
820 assert(srcno < xsrc->nr_irqs);
822 return xive_esb_set(&xsrc->status[srcno], pq);
826 * Returns whether the event notification should be forwarded.
828 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
830 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
832 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
834 switch (old_pq) {
835 case XIVE_ESB_RESET:
836 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
837 return true;
838 default:
839 return false;
844 * Returns whether the event notification should be forwarded.
846 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
848 bool ret;
850 assert(srcno < xsrc->nr_irqs);
852 ret = xive_esb_trigger(&xsrc->status[srcno]);
854 if (xive_source_irq_is_lsi(xsrc, srcno) &&
855 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
856 qemu_log_mask(LOG_GUEST_ERROR,
857 "XIVE: queued an event on LSI IRQ %d\n", srcno);
860 return ret;
864 * Returns whether the event notification should be forwarded.
866 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
868 bool ret;
870 assert(srcno < xsrc->nr_irqs);
872 ret = xive_esb_eoi(&xsrc->status[srcno]);
875 * LSI sources do not set the Q bit but they can still be
876 * asserted, in which case we should forward a new event
877 * notification
879 if (xive_source_irq_is_lsi(xsrc, srcno) &&
880 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
881 ret = xive_source_lsi_trigger(xsrc, srcno);
884 return ret;
888 * Forward the source event notification to the Router
890 static void xive_source_notify(XiveSource *xsrc, int srcno)
892 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
894 if (xnc->notify) {
895 xnc->notify(xsrc->xive, srcno);
900 * In a two pages ESB MMIO setting, even page is the trigger page, odd
901 * page is for management
903 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
905 return !((addr >> shift) & 1);
908 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
910 return xive_source_esb_has_2page(xsrc) &&
911 addr_is_even(addr, xsrc->esb_shift - 1);
915 * ESB MMIO loads
916 * Trigger page Management/EOI page
918 * ESB MMIO setting 2 pages 1 or 2 pages
920 * 0x000 .. 0x3FF -1 EOI and return 0|1
921 * 0x400 .. 0x7FF -1 EOI and return 0|1
922 * 0x800 .. 0xBFF -1 return PQ
923 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
924 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
925 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
926 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
928 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
930 XiveSource *xsrc = XIVE_SOURCE(opaque);
931 uint32_t offset = addr & 0xFFF;
932 uint32_t srcno = addr >> xsrc->esb_shift;
933 uint64_t ret = -1;
935 /* In a two pages ESB MMIO setting, trigger page should not be read */
936 if (xive_source_is_trigger_page(xsrc, addr)) {
937 qemu_log_mask(LOG_GUEST_ERROR,
938 "XIVE: invalid load on IRQ %d trigger page at "
939 "0x%"HWADDR_PRIx"\n", srcno, addr);
940 return -1;
943 switch (offset) {
944 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
945 ret = xive_source_esb_eoi(xsrc, srcno);
947 /* Forward the source event notification for routing */
948 if (ret) {
949 xive_source_notify(xsrc, srcno);
951 break;
953 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
954 ret = xive_source_esb_get(xsrc, srcno);
955 break;
957 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
958 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
959 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
960 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
961 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
962 break;
963 default:
964 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
965 offset);
968 return ret;
972 * ESB MMIO stores
973 * Trigger page Management/EOI page
975 * ESB MMIO setting 2 pages 1 or 2 pages
977 * 0x000 .. 0x3FF Trigger Trigger
978 * 0x400 .. 0x7FF Trigger EOI
979 * 0x800 .. 0xBFF Trigger undefined
980 * 0xC00 .. 0xCFF Trigger PQ=00
981 * 0xD00 .. 0xDFF Trigger PQ=01
982 * 0xE00 .. 0xDFF Trigger PQ=10
983 * 0xF00 .. 0xDFF Trigger PQ=11
985 static void xive_source_esb_write(void *opaque, hwaddr addr,
986 uint64_t value, unsigned size)
988 XiveSource *xsrc = XIVE_SOURCE(opaque);
989 uint32_t offset = addr & 0xFFF;
990 uint32_t srcno = addr >> xsrc->esb_shift;
991 bool notify = false;
993 /* In a two pages ESB MMIO setting, trigger page only triggers */
994 if (xive_source_is_trigger_page(xsrc, addr)) {
995 notify = xive_source_esb_trigger(xsrc, srcno);
996 goto out;
999 switch (offset) {
1000 case 0 ... 0x3FF:
1001 notify = xive_source_esb_trigger(xsrc, srcno);
1002 break;
1004 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1005 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1006 qemu_log_mask(LOG_GUEST_ERROR,
1007 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1008 return;
1011 notify = xive_source_esb_eoi(xsrc, srcno);
1012 break;
1014 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1015 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1016 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1017 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1018 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1019 break;
1021 default:
1022 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1023 offset);
1024 return;
1027 out:
1028 /* Forward the source event notification for routing */
1029 if (notify) {
1030 xive_source_notify(xsrc, srcno);
1034 static const MemoryRegionOps xive_source_esb_ops = {
1035 .read = xive_source_esb_read,
1036 .write = xive_source_esb_write,
1037 .endianness = DEVICE_BIG_ENDIAN,
1038 .valid = {
1039 .min_access_size = 8,
1040 .max_access_size = 8,
1042 .impl = {
1043 .min_access_size = 8,
1044 .max_access_size = 8,
1048 void xive_source_set_irq(void *opaque, int srcno, int val)
1050 XiveSource *xsrc = XIVE_SOURCE(opaque);
1051 bool notify = false;
1053 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1054 if (val) {
1055 notify = xive_source_lsi_trigger(xsrc, srcno);
1056 } else {
1057 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1059 } else {
1060 if (val) {
1061 notify = xive_source_esb_trigger(xsrc, srcno);
1065 /* Forward the source event notification for routing */
1066 if (notify) {
1067 xive_source_notify(xsrc, srcno);
1071 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1073 int i;
1075 for (i = 0; i < xsrc->nr_irqs; i++) {
1076 uint8_t pq = xive_source_esb_get(xsrc, i);
1078 if (pq == XIVE_ESB_OFF) {
1079 continue;
1082 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1083 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1084 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1085 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1086 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1090 static void xive_source_reset(void *dev)
1092 XiveSource *xsrc = XIVE_SOURCE(dev);
1094 /* Do not clear the LSI bitmap */
1096 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1097 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1100 static void xive_source_realize(DeviceState *dev, Error **errp)
1102 XiveSource *xsrc = XIVE_SOURCE(dev);
1104 assert(xsrc->xive);
1106 if (!xsrc->nr_irqs) {
1107 error_setg(errp, "Number of interrupt needs to be greater than 0");
1108 return;
1111 if (xsrc->esb_shift != XIVE_ESB_4K &&
1112 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1113 xsrc->esb_shift != XIVE_ESB_64K &&
1114 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1115 error_setg(errp, "Invalid ESB shift setting");
1116 return;
1119 xsrc->status = g_malloc0(xsrc->nr_irqs);
1120 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1122 if (!kvm_irqchip_in_kernel()) {
1123 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1124 &xive_source_esb_ops, xsrc, "xive.esb",
1125 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1128 qemu_register_reset(xive_source_reset, dev);
1131 static const VMStateDescription vmstate_xive_source = {
1132 .name = TYPE_XIVE_SOURCE,
1133 .version_id = 1,
1134 .minimum_version_id = 1,
1135 .fields = (VMStateField[]) {
1136 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1137 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1138 VMSTATE_END_OF_LIST()
1143 * The default XIVE interrupt source setting for the ESB MMIOs is two
1144 * 64k pages without Store EOI, to be in sync with KVM.
1146 static Property xive_source_properties[] = {
1147 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1148 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1149 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1150 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1151 XiveNotifier *),
1152 DEFINE_PROP_END_OF_LIST(),
1155 static void xive_source_class_init(ObjectClass *klass, void *data)
1157 DeviceClass *dc = DEVICE_CLASS(klass);
1159 dc->desc = "XIVE Interrupt Source";
1160 dc->props = xive_source_properties;
1161 dc->realize = xive_source_realize;
1162 dc->vmsd = &vmstate_xive_source;
1164 * Reason: part of XIVE interrupt controller, needs to be wired up,
1165 * e.g. by spapr_xive_instance_init().
1167 dc->user_creatable = false;
1170 static const TypeInfo xive_source_info = {
1171 .name = TYPE_XIVE_SOURCE,
1172 .parent = TYPE_DEVICE,
1173 .instance_size = sizeof(XiveSource),
1174 .class_init = xive_source_class_init,
1178 * XiveEND helpers
1181 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1183 uint64_t qaddr_base = xive_end_qaddr(end);
1184 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1185 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1186 uint32_t qentries = 1 << (qsize + 10);
1187 int i;
1190 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1192 monitor_printf(mon, " [ ");
1193 qindex = (qindex - (width - 1)) & (qentries - 1);
1194 for (i = 0; i < width; i++) {
1195 uint64_t qaddr = qaddr_base + (qindex << 2);
1196 uint32_t qdata = -1;
1198 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1199 sizeof(qdata))) {
1200 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1201 HWADDR_PRIx "\n", qaddr);
1202 return;
1204 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1205 be32_to_cpu(qdata));
1206 qindex = (qindex + 1) & (qentries - 1);
1208 monitor_printf(mon, "]");
1211 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1213 uint64_t qaddr_base = xive_end_qaddr(end);
1214 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1215 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1216 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1217 uint32_t qentries = 1 << (qsize + 10);
1219 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1220 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1221 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1222 uint8_t pq;
1224 if (!xive_end_is_valid(end)) {
1225 return;
1228 pq = xive_get_field32(END_W1_ESn, end->w1);
1230 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1231 end_idx,
1232 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1233 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1234 xive_end_is_valid(end) ? 'v' : '-',
1235 xive_end_is_enqueue(end) ? 'q' : '-',
1236 xive_end_is_notify(end) ? 'n' : '-',
1237 xive_end_is_backlog(end) ? 'b' : '-',
1238 xive_end_is_escalate(end) ? 'e' : '-',
1239 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1240 xive_end_is_silent_escalation(end) ? 's' : '-',
1241 priority, nvt_blk, nvt_idx);
1243 if (qaddr_base) {
1244 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1245 qaddr_base, qindex, qentries, qgen);
1246 xive_end_queue_pic_print_info(end, 6, mon);
1248 monitor_printf(mon, "\n");
1251 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1253 uint64_t qaddr_base = xive_end_qaddr(end);
1254 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1255 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1256 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1258 uint64_t qaddr = qaddr_base + (qindex << 2);
1259 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1260 uint32_t qentries = 1 << (qsize + 10);
1262 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1263 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1264 HWADDR_PRIx "\n", qaddr);
1265 return;
1268 qindex = (qindex + 1) & (qentries - 1);
1269 if (qindex == 0) {
1270 qgen ^= 1;
1271 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1273 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1276 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1277 Monitor *mon)
1279 XiveEAS *eas = (XiveEAS *) &end->w4;
1280 uint8_t pq;
1282 if (!xive_end_is_escalate(end)) {
1283 return;
1286 pq = xive_get_field32(END_W1_ESe, end->w1);
1288 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1289 end_idx,
1290 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1291 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1292 xive_eas_is_valid(eas) ? 'V' : ' ',
1293 xive_eas_is_masked(eas) ? 'M' : ' ',
1294 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1295 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1296 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1300 * XIVE Router (aka. Virtualization Controller or IVRE)
1303 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1304 XiveEAS *eas)
1306 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1308 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1311 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1312 XiveEND *end)
1314 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1316 return xrc->get_end(xrtr, end_blk, end_idx, end);
1319 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1320 XiveEND *end, uint8_t word_number)
1322 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1324 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1327 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1328 XiveNVT *nvt)
1330 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1332 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1335 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1336 XiveNVT *nvt, uint8_t word_number)
1338 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1340 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1343 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1345 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1347 return xrc->get_tctx(xrtr, cs);
1351 * Encode the HW CAM line in the block group mode format :
1353 * chip << 19 | 0000000 0 0001 thread (7Bit)
1355 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1357 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1358 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1360 return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1364 * The thread context register words are in big-endian format.
1366 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1367 uint8_t format,
1368 uint8_t nvt_blk, uint32_t nvt_idx,
1369 bool cam_ignore, uint32_t logic_serv)
1371 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1372 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1373 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1374 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1375 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1378 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1379 * identifier are ignored in the "CAM" match.
1382 if (format == 0) {
1383 if (cam_ignore == true) {
1385 * F=0 & i=1: Logical server notification (bits ignored at
1386 * the end of the NVT identifier)
1388 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1389 nvt_blk, nvt_idx);
1390 return -1;
1393 /* F=0 & i=0: Specific NVT notification */
1395 /* PHYS ring */
1396 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1397 cam == xive_tctx_hw_cam_line(tctx)) {
1398 return TM_QW3_HV_PHYS;
1401 /* HV POOL ring */
1402 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1403 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1404 return TM_QW2_HV_POOL;
1407 /* OS ring */
1408 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1409 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1410 return TM_QW1_OS;
1412 } else {
1413 /* F=1 : User level Event-Based Branch (EBB) notification */
1415 /* USER ring */
1416 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1417 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1418 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1419 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1420 return TM_QW0_USER;
1423 return -1;
1427 * This is our simple Xive Presenter Engine model. It is merged in the
1428 * Router as it does not require an extra object.
1430 * It receives notification requests sent by the IVRE to find one
1431 * matching NVT (or more) dispatched on the processor threads. In case
1432 * of a single NVT notification, the process is abreviated and the
1433 * thread is signaled if a match is found. In case of a logical server
1434 * notification (bits ignored at the end of the NVT identifier), the
1435 * IVPE and IVRE select a winning thread using different filters. This
1436 * involves 2 or 3 exchanges on the PowerBus that the model does not
1437 * support.
1439 * The parameters represent what is sent on the PowerBus
1441 static bool xive_presenter_notify(uint8_t format,
1442 uint8_t nvt_blk, uint32_t nvt_idx,
1443 bool cam_ignore, uint8_t priority,
1444 uint32_t logic_serv)
1446 XiveFabric *xfb = XIVE_FABRIC(qdev_get_machine());
1447 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1448 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1449 int count;
1452 * Ask the machine to scan the interrupt controllers for a match
1454 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1455 priority, logic_serv, &match);
1456 if (count < 0) {
1457 return false;
1460 /* handle CPU exception delivery */
1461 if (count) {
1462 ipb_update(&match.tctx->regs[match.ring], priority);
1463 xive_tctx_notify(match.tctx, match.ring);
1466 return !!count;
1470 * Notification using the END ESe/ESn bit (Event State Buffer for
1471 * escalation and notification). Profide futher coalescing in the
1472 * Router.
1474 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1475 uint32_t end_idx, XiveEND *end,
1476 uint32_t end_esmask)
1478 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1479 bool notify = xive_esb_trigger(&pq);
1481 if (pq != xive_get_field32(end_esmask, end->w1)) {
1482 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1483 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1486 /* ESe/n[Q]=1 : end of notification */
1487 return notify;
1491 * An END trigger can come from an event trigger (IPI or HW) or from
1492 * another chip. We don't model the PowerBus but the END trigger
1493 * message has the same parameters than in the function below.
1495 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1496 uint32_t end_idx, uint32_t end_data)
1498 XiveEND end;
1499 uint8_t priority;
1500 uint8_t format;
1501 uint8_t nvt_blk;
1502 uint32_t nvt_idx;
1503 XiveNVT nvt;
1504 bool found;
1506 /* END cache lookup */
1507 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1508 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1509 end_idx);
1510 return;
1513 if (!xive_end_is_valid(&end)) {
1514 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1515 end_blk, end_idx);
1516 return;
1519 if (xive_end_is_enqueue(&end)) {
1520 xive_end_enqueue(&end, end_data);
1521 /* Enqueuing event data modifies the EQ toggle and index */
1522 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1526 * When the END is silent, we skip the notification part.
1528 if (xive_end_is_silent_escalation(&end)) {
1529 goto do_escalation;
1533 * The W7 format depends on the F bit in W6. It defines the type
1534 * of the notification :
1536 * F=0 : single or multiple NVT notification
1537 * F=1 : User level Event-Based Branch (EBB) notification, no
1538 * priority
1540 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1541 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1543 /* The END is masked */
1544 if (format == 0 && priority == 0xff) {
1545 return;
1549 * Check the END ESn (Event State Buffer for notification) for
1550 * even futher coalescing in the Router
1552 if (!xive_end_is_notify(&end)) {
1553 /* ESn[Q]=1 : end of notification */
1554 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1555 &end, END_W1_ESn)) {
1556 return;
1561 * Follows IVPE notification
1563 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1564 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1566 /* NVT cache lookup */
1567 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1568 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1569 nvt_blk, nvt_idx);
1570 return;
1573 if (!xive_nvt_is_valid(&nvt)) {
1574 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1575 nvt_blk, nvt_idx);
1576 return;
1579 found = xive_presenter_notify(format, nvt_blk, nvt_idx,
1580 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1581 priority,
1582 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1584 /* TODO: Auto EOI. */
1586 if (found) {
1587 return;
1591 * If no matching NVT is dispatched on a HW thread :
1592 * - specific VP: update the NVT structure if backlog is activated
1593 * - logical server : forward request to IVPE (not supported)
1595 if (xive_end_is_backlog(&end)) {
1596 uint8_t ipb;
1598 if (format == 1) {
1599 qemu_log_mask(LOG_GUEST_ERROR,
1600 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1601 end_blk, end_idx);
1602 return;
1605 * Record the IPB in the associated NVT structure for later
1606 * use. The presenter will resend the interrupt when the vCPU
1607 * is dispatched again on a HW thread.
1609 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority);
1610 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1611 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1614 * On HW, follows a "Broadcast Backlog" to IVPEs
1618 do_escalation:
1620 * If activated, escalate notification using the ESe PQ bits and
1621 * the EAS in w4-5
1623 if (!xive_end_is_escalate(&end)) {
1624 return;
1628 * Check the END ESe (Event State Buffer for escalation) for even
1629 * futher coalescing in the Router
1631 if (!xive_end_is_uncond_escalation(&end)) {
1632 /* ESe[Q]=1 : end of notification */
1633 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1634 &end, END_W1_ESe)) {
1635 return;
1640 * The END trigger becomes an Escalation trigger
1642 xive_router_end_notify(xrtr,
1643 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1644 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1645 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1648 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1650 XiveRouter *xrtr = XIVE_ROUTER(xn);
1651 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1652 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1653 XiveEAS eas;
1655 /* EAS cache lookup */
1656 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1657 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1658 return;
1662 * The IVRE checks the State Bit Cache at this point. We skip the
1663 * SBC lookup because the state bits of the sources are modeled
1664 * internally in QEMU.
1667 if (!xive_eas_is_valid(&eas)) {
1668 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1669 return;
1672 if (xive_eas_is_masked(&eas)) {
1673 /* Notification completed */
1674 return;
1678 * The event trigger becomes an END trigger
1680 xive_router_end_notify(xrtr,
1681 xive_get_field64(EAS_END_BLOCK, eas.w),
1682 xive_get_field64(EAS_END_INDEX, eas.w),
1683 xive_get_field64(EAS_END_DATA, eas.w));
1686 static void xive_router_class_init(ObjectClass *klass, void *data)
1688 DeviceClass *dc = DEVICE_CLASS(klass);
1689 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1691 dc->desc = "XIVE Router Engine";
1692 xnc->notify = xive_router_notify;
1695 static const TypeInfo xive_router_info = {
1696 .name = TYPE_XIVE_ROUTER,
1697 .parent = TYPE_SYS_BUS_DEVICE,
1698 .abstract = true,
1699 .class_size = sizeof(XiveRouterClass),
1700 .class_init = xive_router_class_init,
1701 .interfaces = (InterfaceInfo[]) {
1702 { TYPE_XIVE_NOTIFIER },
1703 { TYPE_XIVE_PRESENTER },
1708 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1710 if (!xive_eas_is_valid(eas)) {
1711 return;
1714 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1715 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1716 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1717 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1718 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1722 * END ESB MMIO loads
1724 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1726 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1727 uint32_t offset = addr & 0xFFF;
1728 uint8_t end_blk;
1729 uint32_t end_idx;
1730 XiveEND end;
1731 uint32_t end_esmask;
1732 uint8_t pq;
1733 uint64_t ret = -1;
1735 end_blk = xsrc->block_id;
1736 end_idx = addr >> (xsrc->esb_shift + 1);
1738 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1739 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1740 end_idx);
1741 return -1;
1744 if (!xive_end_is_valid(&end)) {
1745 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1746 end_blk, end_idx);
1747 return -1;
1750 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1751 pq = xive_get_field32(end_esmask, end.w1);
1753 switch (offset) {
1754 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1755 ret = xive_esb_eoi(&pq);
1757 /* Forward the source event notification for routing ?? */
1758 break;
1760 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1761 ret = pq;
1762 break;
1764 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1765 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1766 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1767 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1768 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1769 break;
1770 default:
1771 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1772 offset);
1773 return -1;
1776 if (pq != xive_get_field32(end_esmask, end.w1)) {
1777 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1778 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1781 return ret;
1785 * END ESB MMIO stores are invalid
1787 static void xive_end_source_write(void *opaque, hwaddr addr,
1788 uint64_t value, unsigned size)
1790 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1791 HWADDR_PRIx"\n", addr);
1794 static const MemoryRegionOps xive_end_source_ops = {
1795 .read = xive_end_source_read,
1796 .write = xive_end_source_write,
1797 .endianness = DEVICE_BIG_ENDIAN,
1798 .valid = {
1799 .min_access_size = 8,
1800 .max_access_size = 8,
1802 .impl = {
1803 .min_access_size = 8,
1804 .max_access_size = 8,
1808 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1810 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1812 assert(xsrc->xrtr);
1814 if (!xsrc->nr_ends) {
1815 error_setg(errp, "Number of interrupt needs to be greater than 0");
1816 return;
1819 if (xsrc->esb_shift != XIVE_ESB_4K &&
1820 xsrc->esb_shift != XIVE_ESB_64K) {
1821 error_setg(errp, "Invalid ESB shift setting");
1822 return;
1826 * Each END is assigned an even/odd pair of MMIO pages, the even page
1827 * manages the ESn field while the odd page manages the ESe field.
1829 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1830 &xive_end_source_ops, xsrc, "xive.end",
1831 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1834 static Property xive_end_source_properties[] = {
1835 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1836 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1837 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1838 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1839 XiveRouter *),
1840 DEFINE_PROP_END_OF_LIST(),
1843 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1845 DeviceClass *dc = DEVICE_CLASS(klass);
1847 dc->desc = "XIVE END Source";
1848 dc->props = xive_end_source_properties;
1849 dc->realize = xive_end_source_realize;
1851 * Reason: part of XIVE interrupt controller, needs to be wired up,
1852 * e.g. by spapr_xive_instance_init().
1854 dc->user_creatable = false;
1857 static const TypeInfo xive_end_source_info = {
1858 .name = TYPE_XIVE_END_SOURCE,
1859 .parent = TYPE_DEVICE,
1860 .instance_size = sizeof(XiveENDSource),
1861 .class_init = xive_end_source_class_init,
1865 * XIVE Notifier
1867 static const TypeInfo xive_notifier_info = {
1868 .name = TYPE_XIVE_NOTIFIER,
1869 .parent = TYPE_INTERFACE,
1870 .class_size = sizeof(XiveNotifierClass),
1874 * XIVE Presenter
1876 static const TypeInfo xive_presenter_info = {
1877 .name = TYPE_XIVE_PRESENTER,
1878 .parent = TYPE_INTERFACE,
1879 .class_size = sizeof(XivePresenterClass),
1883 * XIVE Fabric
1885 static const TypeInfo xive_fabric_info = {
1886 .name = TYPE_XIVE_FABRIC,
1887 .parent = TYPE_INTERFACE,
1888 .class_size = sizeof(XiveFabricClass),
1891 static void xive_register_types(void)
1893 type_register_static(&xive_fabric_info);
1894 type_register_static(&xive_source_info);
1895 type_register_static(&xive_notifier_info);
1896 type_register_static(&xive_presenter_info);
1897 type_register_static(&xive_router_info);
1898 type_register_static(&xive_end_source_info);
1899 type_register_static(&xive_tctx_info);
1902 type_init(xive_register_types)