2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat
{
37 SysConfigFormat sys_config_format
;
46 static Property iotkit_properties
[] = {
47 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE
, mainclk_frq
, 0),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
55 DEFINE_PROP_END_OF_LIST()
58 static Property armsse_properties
[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE
, mainclk_frq
, 0),
63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
64 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], false),
66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], false),
67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE
, cpu_fpu
[1], true),
68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE
, cpu_dsp
[1], true),
69 DEFINE_PROP_END_OF_LIST()
72 static const ARMSSEInfo armsse_variants
[] = {
77 .sys_version
= 0x41743,
79 .sys_config_format
= IoTKitFormat
,
82 .has_cachectrl
= false,
83 .has_cpusecctrl
= false,
85 .props
= iotkit_properties
,
91 .sys_version
= 0x22041743,
93 .sys_config_format
= SSE200Format
,
96 .has_cachectrl
= true,
97 .has_cpusecctrl
= true,
99 .props
= armsse_properties
,
103 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
105 /* Return the SYS_CONFIG value for this SSE */
108 switch (info
->sys_config_format
) {
111 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
112 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
116 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
117 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
118 sys_config
= deposit32(sys_config
, 24, 4, 2);
119 if (info
->num_cpus
> 1) {
120 sys_config
= deposit32(sys_config
, 10, 1, 1);
121 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
122 sys_config
= deposit32(sys_config
, 28, 4, 2);
126 g_assert_not_reached();
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common
[32] = {
137 /* 6, 7: per-CPU MHU interrupts */
139 /* 13: per-CPU icache interrupt */
145 /* 28, 29: per-CPU CTI interrupts */
146 /* 30, 31: reserved */
150 * Create an alias region in @container of @size bytes starting at @base
151 * which mirrors the memory starting at @orig.
153 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
154 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
156 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
157 /* The alias is even lower priority than unimplemented_device regions */
158 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
161 static void irq_status_forwarder(void *opaque
, int n
, int level
)
163 qemu_irq destirq
= opaque
;
165 qemu_set_irq(destirq
, level
);
168 static void nsccfg_handler(void *opaque
, int n
, int level
)
170 ARMSSE
*s
= ARM_SSE(opaque
);
175 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178 * system using the ARMSSE has a collection of control lines which
179 * are provided by the security controller and which we want to
180 * expose as control lines on the ARMSSE device itself, so the
181 * code using the ARMSSE can wire them up to the PPCs.
183 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
184 DeviceState
*armssedev
= DEVICE(s
);
185 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
186 DeviceState
*dev_splitter
= DEVICE(splitter
);
189 name
= g_strdup_printf("%s_nonsec", ppcname
);
190 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
192 name
= g_strdup_printf("%s_ap", ppcname
);
193 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
195 name
= g_strdup_printf("%s_irq_enable", ppcname
);
196 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
198 name
= g_strdup_printf("%s_irq_clear", ppcname
);
199 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
202 /* irq_status is a little more tricky, because we need to
203 * split it so we can send it both to the security controller
204 * and to our OR gate for the NVIC interrupt line.
205 * Connect up the splitter's outputs, and create a GPIO input
206 * which will pass the line state to the input splitter.
208 name
= g_strdup_printf("%s_irq_status", ppcname
);
209 qdev_connect_gpio_out(dev_splitter
, 0,
210 qdev_get_gpio_in_named(dev_secctl
,
212 qdev_connect_gpio_out(dev_splitter
, 1,
213 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
214 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
215 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
216 s
->irq_status_in
[ppcnum
], name
, 1);
220 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
222 /* Forward the 3rd output from the splitter device as a
223 * named GPIO output of the armsse object.
225 DeviceState
*dev
= DEVICE(s
);
226 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
228 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
229 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
231 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
234 static void armsse_init(Object
*obj
)
236 ARMSSE
*s
= ARM_SSE(obj
);
237 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(obj
);
238 const ARMSSEInfo
*info
= asc
->info
;
241 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
242 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
244 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
246 for (i
= 0; i
< info
->num_cpus
; i
++) {
248 * We put each CPU in its own cluster as they are logically
249 * distinct and may be configured differently.
253 name
= g_strdup_printf("cluster%d", i
);
254 object_initialize_child(obj
, name
, &s
->cluster
[i
], TYPE_CPU_CLUSTER
);
255 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
258 name
= g_strdup_printf("armv7m%d", i
);
259 object_initialize_child(OBJECT(&s
->cluster
[i
]), name
, &s
->armv7m
[i
],
261 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type",
262 ARM_CPU_TYPE_NAME("cortex-m33"));
264 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
265 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
268 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
269 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
270 name
, &s
->container
, 0, UINT64_MAX
);
275 object_initialize_child(obj
, "secctl", &s
->secctl
, TYPE_IOTKIT_SECCTL
);
276 object_initialize_child(obj
, "apb-ppc0", &s
->apb_ppc0
, TYPE_TZ_PPC
);
277 object_initialize_child(obj
, "apb-ppc1", &s
->apb_ppc1
, TYPE_TZ_PPC
);
278 for (i
= 0; i
< info
->sram_banks
; i
++) {
279 char *name
= g_strdup_printf("mpc%d", i
);
280 object_initialize_child(obj
, name
, &s
->mpc
[i
], TYPE_TZ_MPC
);
283 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
286 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
287 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
288 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
290 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
293 object_initialize_child(obj
, "timer0", &s
->timer0
, TYPE_CMSDK_APB_TIMER
);
294 object_initialize_child(obj
, "timer1", &s
->timer1
, TYPE_CMSDK_APB_TIMER
);
295 object_initialize_child(obj
, "s32ktimer", &s
->s32ktimer
,
296 TYPE_CMSDK_APB_TIMER
);
297 object_initialize_child(obj
, "dualtimer", &s
->dualtimer
,
298 TYPE_CMSDK_APB_DUALTIMER
);
299 object_initialize_child(obj
, "s32kwatchdog", &s
->s32kwatchdog
,
300 TYPE_CMSDK_APB_WATCHDOG
);
301 object_initialize_child(obj
, "nswatchdog", &s
->nswatchdog
,
302 TYPE_CMSDK_APB_WATCHDOG
);
303 object_initialize_child(obj
, "swatchdog", &s
->swatchdog
,
304 TYPE_CMSDK_APB_WATCHDOG
);
305 object_initialize_child(obj
, "armsse-sysctl", &s
->sysctl
,
307 object_initialize_child(obj
, "armsse-sysinfo", &s
->sysinfo
,
308 TYPE_IOTKIT_SYSINFO
);
309 if (info
->has_mhus
) {
310 object_initialize_child(obj
, "mhu0", &s
->mhu
[0], TYPE_ARMSSE_MHU
);
311 object_initialize_child(obj
, "mhu1", &s
->mhu
[1], TYPE_ARMSSE_MHU
);
313 if (info
->has_ppus
) {
314 for (i
= 0; i
< info
->num_cpus
; i
++) {
315 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
316 int ppuidx
= CPU0CORE_PPU
+ i
;
318 object_initialize_child(obj
, name
, &s
->ppu
[ppuidx
],
319 TYPE_UNIMPLEMENTED_DEVICE
);
322 object_initialize_child(obj
, "DBG_PPU", &s
->ppu
[DBG_PPU
],
323 TYPE_UNIMPLEMENTED_DEVICE
);
324 for (i
= 0; i
< info
->sram_banks
; i
++) {
325 char *name
= g_strdup_printf("RAM%d_PPU", i
);
326 int ppuidx
= RAM0_PPU
+ i
;
328 object_initialize_child(obj
, name
, &s
->ppu
[ppuidx
],
329 TYPE_UNIMPLEMENTED_DEVICE
);
333 if (info
->has_cachectrl
) {
334 for (i
= 0; i
< info
->num_cpus
; i
++) {
335 char *name
= g_strdup_printf("cachectrl%d", i
);
337 object_initialize_child(obj
, name
, &s
->cachectrl
[i
],
338 TYPE_UNIMPLEMENTED_DEVICE
);
342 if (info
->has_cpusecctrl
) {
343 for (i
= 0; i
< info
->num_cpus
; i
++) {
344 char *name
= g_strdup_printf("cpusecctrl%d", i
);
346 object_initialize_child(obj
, name
, &s
->cpusecctrl
[i
],
347 TYPE_UNIMPLEMENTED_DEVICE
);
351 if (info
->has_cpuid
) {
352 for (i
= 0; i
< info
->num_cpus
; i
++) {
353 char *name
= g_strdup_printf("cpuid%d", i
);
355 object_initialize_child(obj
, name
, &s
->cpuid
[i
],
360 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
, TYPE_OR_IRQ
);
361 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
363 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
365 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
366 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
367 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
369 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
372 if (info
->num_cpus
> 1) {
373 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
374 if (irq_is_common
[i
]) {
375 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
376 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
378 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
385 static void armsse_exp_irq(void *opaque
, int n
, int level
)
387 qemu_irq
*irqarray
= opaque
;
389 qemu_set_irq(irqarray
[n
], level
);
392 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
394 ARMSSE
*s
= ARM_SSE(opaque
);
395 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
398 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
401 * Return a qemu_irq which can be used to signal IRQ n to
402 * all CPUs in the SSE.
404 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(s
);
405 const ARMSSEInfo
*info
= asc
->info
;
407 assert(irq_is_common
[irqno
]);
409 if (info
->num_cpus
== 1) {
410 /* Only one CPU -- just connect directly to it */
411 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
413 /* Connect to the splitter which feeds all CPUs */
414 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
418 static void map_ppu(ARMSSE
*s
, int ppuidx
, const char *name
, hwaddr addr
)
420 /* Map a PPU unimplemented device stub */
421 DeviceState
*dev
= DEVICE(&s
->ppu
[ppuidx
]);
423 qdev_prop_set_string(dev
, "name", name
);
424 qdev_prop_set_uint64(dev
, "size", 0x1000);
425 sysbus_realize(SYS_BUS_DEVICE(dev
), &error_fatal
);
426 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ppu
[ppuidx
]), 0, addr
);
429 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
431 ARMSSE
*s
= ARM_SSE(dev
);
432 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(dev
);
433 const ARMSSEInfo
*info
= asc
->info
;
437 SysBusDevice
*sbd_apb_ppc0
;
438 SysBusDevice
*sbd_secctl
;
439 DeviceState
*dev_apb_ppc0
;
440 DeviceState
*dev_apb_ppc1
;
441 DeviceState
*dev_secctl
;
442 DeviceState
*dev_splitter
;
443 uint32_t addr_width_max
;
445 if (!s
->board_memory
) {
446 error_setg(errp
, "memory property was not set");
450 if (!s
->mainclk_frq
) {
451 error_setg(errp
, "MAINCLK property was not set");
455 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
457 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
458 assert(is_power_of_2(info
->sram_banks
));
459 addr_width_max
= 24 - ctz32(info
->sram_banks
);
460 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
461 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
466 /* Handling of which devices should be available only to secure
467 * code is usually done differently for M profile than for A profile.
468 * Instead of putting some devices only into the secure address space,
469 * devices exist in both address spaces but with hard-wired security
470 * permissions that will cause the CPU to fault for non-secure accesses.
472 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
473 * which specifies hard-wired security permissions for different
474 * areas of the physical address space. For the ARMSSE IDAU, the
475 * top 4 bits of the physical address are the IDAU region ID, and
476 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
477 * region, otherwise it is an S region.
479 * The various devices and RAMs are generally all mapped twice,
480 * once into a region that the IDAU defines as secure and once
481 * into a non-secure region. They sit behind either a Memory
482 * Protection Controller (for RAM) or a Peripheral Protection
483 * Controller (for devices), which allow a more fine grained
484 * configuration of whether non-secure accesses are permitted.
486 * (The other place that guest software can configure security
487 * permissions is in the architected SAU (Security Attribution
488 * Unit), which is entirely inside the CPU. The IDAU can upgrade
489 * the security attributes for a region to more restrictive than
490 * the SAU specifies, but cannot downgrade them.)
492 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
493 * 0x20000000..0x2007ffff 32KB FPGA block RAM
494 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
495 * 0x40000000..0x4000ffff base peripheral region 1
496 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
497 * 0x40020000..0x4002ffff system control element peripherals
498 * 0x40080000..0x400fffff base peripheral region 2
499 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
502 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
504 for (i
= 0; i
< info
->num_cpus
; i
++) {
505 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
506 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
510 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ 32);
512 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
513 * registers in the IoT Kit System Control Register block. In QEMU
514 * we set the initial value here, and also the reset value of the
515 * sysctl register, from this object's QOM init-svtor property.
516 * If the guest changes the INITSVTOR* registers at runtime then the
517 * code in iotkit-sysctl.c will update the CPU init-svtor property
518 * (which will then take effect on the next CPU warm-reset).
520 * Note that typically a board using the SSE-200 will have a system
521 * control processor whose boot firmware initializes the INITSVTOR*
522 * registers before powering up the CPUs. QEMU doesn't emulate
523 * the control processor, so instead we behave in the way that the
524 * firmware does: the initial value should be set by the board code
525 * (using the init-svtor property on the ARMSSE object) to match
526 * whatever its firmware does.
528 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
530 * CPUs start powered down if the corresponding bit in the CPUWAIT
531 * register is 1. In real hardware the CPUWAIT register reset value is
532 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
533 * CPUWAIT1_RST parameters), but since all the boards we care about
534 * start CPU0 and leave CPU1 powered off, we hard-code that in
535 * info->cpuwait_rst for now. We can add QOM properties for this
536 * later if necessary.
538 if (extract32(info
->cpuwait_rst
, i
, 1)) {
539 if (!object_property_set_bool(cpuobj
, "start-powered-off", true,
544 if (!s
->cpu_fpu
[i
]) {
545 if (!object_property_set_bool(cpuobj
, "vfp", false, errp
)) {
549 if (!s
->cpu_dsp
[i
]) {
550 if (!object_property_set_bool(cpuobj
, "dsp", false, errp
)) {
556 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
557 &s
->container_alias
[i
- 1], -1);
559 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
562 object_property_set_link(cpuobj
, "memory",
563 OBJECT(&s
->cpu_container
[i
]), &error_abort
);
564 object_property_set_link(cpuobj
, "idau", OBJECT(s
), &error_abort
);
565 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj
), errp
)) {
569 * The cluster must be realized after the armv7m container, as
570 * the container's CPU object is only created on realize, and the
571 * CPU must exist and have been parented into the cluster before
572 * the cluster is realized.
574 if (!qdev_realize(DEVICE(&s
->cluster
[i
]), NULL
, errp
)) {
578 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
579 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
580 for (j
= 0; j
< s
->exp_numirq
; j
++) {
581 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ 32);
584 gpioname
= g_strdup("EXP_IRQ");
586 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
588 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
590 gpioname
, s
->exp_numirq
);
594 /* Wire up the splitters that connect common IRQs to all CPUs */
595 if (info
->num_cpus
> 1) {
596 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
597 if (irq_is_common
[i
]) {
598 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
599 DeviceState
*devs
= DEVICE(splitter
);
602 if (!object_property_set_int(splitter
, "num-lines",
603 info
->num_cpus
, errp
)) {
606 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
609 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
610 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
612 qdev_connect_gpio_out(devs
, cpunum
,
613 qdev_get_gpio_in(cpudev
, i
));
619 /* Set up the big aliases first */
620 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
621 0x10000000, 0x10000000, 0x00000000);
622 make_alias(s
, &s
->alias2
, &s
->container
,
623 "alias 2", 0x30000000, 0x10000000, 0x20000000);
624 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
625 * a few extra devices that only appear there (generally the
626 * control interfaces for the protection controllers).
627 * We implement this by mapping those devices over the top of this
628 * alias MR at a higher priority. Some of the devices in this range
629 * are per-CPU, so we must put this alias in the per-cpu containers.
631 for (i
= 0; i
< info
->num_cpus
; i
++) {
632 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
633 "alias 3", 0x50000000, 0x10000000, 0x40000000);
636 /* Security controller */
637 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->secctl
), errp
)) {
640 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
641 dev_secctl
= DEVICE(&s
->secctl
);
642 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
643 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
645 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
646 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
648 /* The sec_resp_cfg output from the security controller must be split into
649 * multiple lines, one for each of the PPCs within the ARMSSE and one
650 * that will be an output from the ARMSSE to the system.
652 if (!object_property_set_int(OBJECT(&s
->sec_resp_splitter
),
653 "num-lines", 3, errp
)) {
656 if (!qdev_realize(DEVICE(&s
->sec_resp_splitter
), NULL
, errp
)) {
659 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
660 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
661 qdev_get_gpio_in(dev_splitter
, 0));
663 /* Each SRAM bank lives behind its own Memory Protection Controller */
664 for (i
= 0; i
< info
->sram_banks
; i
++) {
665 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
666 SysBusDevice
*sbd_mpc
;
667 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
669 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
670 sram_bank_size
, &err
);
673 error_propagate(errp
, err
);
676 object_property_set_link(OBJECT(&s
->mpc
[i
]), "downstream",
677 OBJECT(&s
->sram
[i
]), &error_abort
);
678 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mpc
[i
]), errp
)) {
681 /* Map the upstream end of the MPC into the right place... */
682 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
683 memory_region_add_subregion(&s
->container
,
684 0x20000000 + i
* sram_bank_size
,
685 sysbus_mmio_get_region(sbd_mpc
, 1));
686 /* ...and its register interface */
687 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
688 sysbus_mmio_get_region(sbd_mpc
, 0));
691 /* We must OR together lines from the MPC splitters to go to the NVIC */
692 if (!object_property_set_int(OBJECT(&s
->mpc_irq_orgate
), "num-lines",
693 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
697 if (!qdev_realize(DEVICE(&s
->mpc_irq_orgate
), NULL
, errp
)) {
700 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
701 armsse_get_common_irq_in(s
, 9));
703 /* Devices behind APB PPC0:
706 * 0x40002000: dual timer
707 * 0x40003000: MHU0 (SSE-200 only)
708 * 0x40004000: MHU1 (SSE-200 only)
709 * We must configure and realize each downstream device and connect
710 * it to the appropriate PPC port; then we can realize the PPC and
711 * map its upstream ends to the right place in the container.
713 qdev_prop_set_uint32(DEVICE(&s
->timer0
), "pclk-frq", s
->mainclk_frq
);
714 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->timer0
), errp
)) {
717 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer0
), 0,
718 armsse_get_common_irq_in(s
, 3));
719 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer0
), 0);
720 object_property_set_link(OBJECT(&s
->apb_ppc0
), "port[0]", OBJECT(mr
),
723 qdev_prop_set_uint32(DEVICE(&s
->timer1
), "pclk-frq", s
->mainclk_frq
);
724 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->timer1
), errp
)) {
727 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer1
), 0,
728 armsse_get_common_irq_in(s
, 4));
729 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer1
), 0);
730 object_property_set_link(OBJECT(&s
->apb_ppc0
), "port[1]", OBJECT(mr
),
733 qdev_prop_set_uint32(DEVICE(&s
->dualtimer
), "pclk-frq", s
->mainclk_frq
);
734 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->dualtimer
), errp
)) {
737 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->dualtimer
), 0,
738 armsse_get_common_irq_in(s
, 5));
739 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->dualtimer
), 0);
740 object_property_set_link(OBJECT(&s
->apb_ppc0
), "port[2]", OBJECT(mr
),
743 if (info
->has_mhus
) {
745 * An SSE-200 with only one CPU should have only one MHU created,
746 * with the region where the second MHU usually is being RAZ/WI.
747 * We don't implement that SSE-200 config; if we want to support
748 * it then this code needs to be enhanced to handle creating the
749 * RAZ/WI region instead of the second MHU.
751 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
753 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
756 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
758 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mhu
[i
]), errp
)) {
761 port
= g_strdup_printf("port[%d]", i
+ 3);
762 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
763 object_property_set_link(OBJECT(&s
->apb_ppc0
), port
, OBJECT(mr
),
768 * Each MHU has an irq line for each CPU:
769 * MHU 0 irq line 0 -> CPU 0 IRQ 6
770 * MHU 0 irq line 1 -> CPU 1 IRQ 6
771 * MHU 1 irq line 0 -> CPU 0 IRQ 7
772 * MHU 1 irq line 1 -> CPU 1 IRQ 7
774 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
775 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
777 sysbus_connect_irq(mhu_sbd
, cpunum
,
778 qdev_get_gpio_in(cpudev
, 6 + i
));
783 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc0
), errp
)) {
787 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc0
);
788 dev_apb_ppc0
= DEVICE(&s
->apb_ppc0
);
790 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 0);
791 memory_region_add_subregion(&s
->container
, 0x40000000, mr
);
792 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 1);
793 memory_region_add_subregion(&s
->container
, 0x40001000, mr
);
794 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 2);
795 memory_region_add_subregion(&s
->container
, 0x40002000, mr
);
796 if (info
->has_mhus
) {
797 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
798 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
799 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
800 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
802 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
803 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
804 qdev_get_gpio_in_named(dev_apb_ppc0
,
806 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
807 qdev_get_gpio_in_named(dev_apb_ppc0
,
810 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
811 qdev_get_gpio_in_named(dev_apb_ppc0
,
813 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
814 qdev_get_gpio_in_named(dev_apb_ppc0
,
816 qdev_connect_gpio_out(dev_splitter
, 0,
817 qdev_get_gpio_in_named(dev_apb_ppc0
,
820 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
821 * ones) are sent individually to the security controller, and also
822 * ORed together to give a single combined PPC interrupt to the NVIC.
824 if (!object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
825 "num-lines", NUM_PPCS
, errp
)) {
828 if (!qdev_realize(DEVICE(&s
->ppc_irq_orgate
), NULL
, errp
)) {
831 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
832 armsse_get_common_irq_in(s
, 10));
835 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
836 * private per-CPU region (all these devices are SSE-200 only):
837 * 0x50010000: L1 icache control registers
838 * 0x50011000: CPUSECCTRL (CPU local security control registers)
839 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
841 if (info
->has_cachectrl
) {
842 for (i
= 0; i
< info
->num_cpus
; i
++) {
843 char *name
= g_strdup_printf("cachectrl%d", i
);
846 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
848 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
849 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), errp
)) {
853 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
854 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
857 if (info
->has_cpusecctrl
) {
858 for (i
= 0; i
< info
->num_cpus
; i
++) {
859 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
862 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
864 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
865 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), errp
)) {
869 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
870 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
873 if (info
->has_cpuid
) {
874 for (i
= 0; i
< info
->num_cpus
; i
++) {
877 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
878 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpuid
[i
]), errp
)) {
882 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
883 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
887 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
888 /* Devices behind APB PPC1:
889 * 0x4002f000: S32K timer
891 qdev_prop_set_uint32(DEVICE(&s
->s32ktimer
), "pclk-frq", S32KCLK
);
892 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->s32ktimer
), errp
)) {
895 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32ktimer
), 0,
896 armsse_get_common_irq_in(s
, 2));
897 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->s32ktimer
), 0);
898 object_property_set_link(OBJECT(&s
->apb_ppc1
), "port[0]", OBJECT(mr
),
901 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc1
), errp
)) {
904 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->apb_ppc1
), 0);
905 memory_region_add_subregion(&s
->container
, 0x4002f000, mr
);
907 dev_apb_ppc1
= DEVICE(&s
->apb_ppc1
);
908 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
909 qdev_get_gpio_in_named(dev_apb_ppc1
,
911 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
912 qdev_get_gpio_in_named(dev_apb_ppc1
,
914 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
915 qdev_get_gpio_in_named(dev_apb_ppc1
,
917 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
918 qdev_get_gpio_in_named(dev_apb_ppc1
,
920 qdev_connect_gpio_out(dev_splitter
, 1,
921 qdev_get_gpio_in_named(dev_apb_ppc1
,
924 if (!object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_VERSION",
925 info
->sys_version
, errp
)) {
928 if (!object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_CONFIG",
929 armsse_sys_config_value(s
, info
), errp
)) {
932 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->sysinfo
), errp
)) {
935 /* System information registers */
936 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysinfo
), 0, 0x40020000);
937 /* System control registers */
938 object_property_set_int(OBJECT(&s
->sysctl
), "SYS_VERSION",
939 info
->sys_version
, &error_abort
);
940 object_property_set_int(OBJECT(&s
->sysctl
), "CPUWAIT_RST",
941 info
->cpuwait_rst
, &error_abort
);
942 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR0_RST",
943 s
->init_svtor
, &error_abort
);
944 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR1_RST",
945 s
->init_svtor
, &error_abort
);
946 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->sysctl
), errp
)) {
949 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysctl
), 0, 0x50021000);
951 if (info
->has_ppus
) {
952 /* CPUnCORE_PPU for each CPU */
953 for (i
= 0; i
< info
->num_cpus
; i
++) {
954 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
956 map_ppu(s
, CPU0CORE_PPU
+ i
, name
, 0x50023000 + i
* 0x2000);
958 * We don't support CPU debug so don't create the
959 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
963 map_ppu(s
, DBG_PPU
, "DBG_PPU", 0x50029000);
965 for (i
= 0; i
< info
->sram_banks
; i
++) {
966 char *name
= g_strdup_printf("RAM%d_PPU", i
);
968 map_ppu(s
, RAM0_PPU
+ i
, name
, 0x5002a000 + i
* 0x1000);
973 /* This OR gate wires together outputs from the secure watchdogs to NMI */
974 if (!object_property_set_int(OBJECT(&s
->nmi_orgate
), "num-lines", 2,
978 if (!qdev_realize(DEVICE(&s
->nmi_orgate
), NULL
, errp
)) {
981 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
982 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
984 qdev_prop_set_uint32(DEVICE(&s
->s32kwatchdog
), "wdogclk-frq", S32KCLK
);
985 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->s32kwatchdog
), errp
)) {
988 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0,
989 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 0));
990 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0, 0x5002e000);
992 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
994 qdev_prop_set_uint32(DEVICE(&s
->nswatchdog
), "wdogclk-frq", s
->mainclk_frq
);
995 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->nswatchdog
), errp
)) {
998 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->nswatchdog
), 0,
999 armsse_get_common_irq_in(s
, 1));
1000 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->nswatchdog
), 0, 0x40081000);
1002 qdev_prop_set_uint32(DEVICE(&s
->swatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1003 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->swatchdog
), errp
)) {
1006 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->swatchdog
), 0,
1007 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 1));
1008 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->swatchdog
), 0, 0x50081000);
1010 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1011 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1013 if (!object_property_set_int(splitter
, "num-lines", 2, errp
)) {
1016 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1021 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1022 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1024 armsse_forward_ppc(s
, ppcname
, i
);
1028 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1029 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1031 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1035 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1036 /* Wire up IRQ splitter for internal PPCs */
1037 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1038 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1039 i
- NUM_EXTERNAL_PPCS
);
1040 TZPPC
*ppc
= (i
== NUM_EXTERNAL_PPCS
) ? &s
->apb_ppc0
: &s
->apb_ppc1
;
1042 qdev_connect_gpio_out(devs
, 0,
1043 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1044 qdev_connect_gpio_out(devs
, 1,
1045 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1046 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1047 qdev_get_gpio_in(devs
, 0));
1051 /* Wire up the splitters for the MPC IRQs */
1052 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1053 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1054 DeviceState
*dev_splitter
= DEVICE(splitter
);
1056 if (!object_property_set_int(OBJECT(splitter
), "num-lines", 2,
1060 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1064 if (i
< IOTS_NUM_EXP_MPC
) {
1065 /* Splitter input is from GPIO input line */
1066 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1067 qdev_connect_gpio_out(dev_splitter
, 0,
1068 qdev_get_gpio_in_named(dev_secctl
,
1069 "mpcexp_status", i
));
1071 /* Splitter input is from our own MPC */
1072 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1074 qdev_get_gpio_in(dev_splitter
, 0));
1075 qdev_connect_gpio_out(dev_splitter
, 0,
1076 qdev_get_gpio_in_named(dev_secctl
,
1078 i
- IOTS_NUM_EXP_MPC
));
1081 qdev_connect_gpio_out(dev_splitter
, 1,
1082 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1084 /* Create GPIO inputs which will pass the line state for our
1085 * mpcexp_irq inputs to the correct splitter devices.
1087 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1090 armsse_forward_sec_resp_cfg(s
);
1092 /* Forward the MSC related signals */
1093 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1094 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1095 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1096 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1097 armsse_get_common_irq_in(s
, 11));
1100 * Expose our container region to the board model; this corresponds
1101 * to the AHB Slave Expansion ports which allow bus master devices
1102 * (eg DMA controllers) in the board model to make transactions into
1103 * devices in the ARMSSE.
1105 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1107 system_clock_scale
= NANOSECONDS_PER_SECOND
/ s
->mainclk_frq
;
1110 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1111 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1114 * For ARMSSE systems the IDAU responses are simple logical functions
1115 * of the address bits. The NSC attribute is guest-adjustable via the
1116 * NSCCFG register in the security controller.
1118 ARMSSE
*s
= ARM_SSE(ii
);
1119 int region
= extract32(address
, 28, 4);
1121 *ns
= !(region
& 1);
1122 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1123 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1124 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1128 static const VMStateDescription armsse_vmstate
= {
1131 .minimum_version_id
= 1,
1132 .fields
= (VMStateField
[]) {
1133 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1134 VMSTATE_END_OF_LIST()
1138 static void armsse_reset(DeviceState
*dev
)
1140 ARMSSE
*s
= ARM_SSE(dev
);
1145 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1147 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1148 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1149 ARMSSEClass
*asc
= ARM_SSE_CLASS(klass
);
1150 const ARMSSEInfo
*info
= data
;
1152 dc
->realize
= armsse_realize
;
1153 dc
->vmsd
= &armsse_vmstate
;
1154 device_class_set_props(dc
, info
->props
);
1155 dc
->reset
= armsse_reset
;
1156 iic
->check
= armsse_idau_check
;
1160 static const TypeInfo armsse_info
= {
1161 .name
= TYPE_ARM_SSE
,
1162 .parent
= TYPE_SYS_BUS_DEVICE
,
1163 .instance_size
= sizeof(ARMSSE
),
1164 .class_size
= sizeof(ARMSSEClass
),
1165 .instance_init
= armsse_init
,
1167 .interfaces
= (InterfaceInfo
[]) {
1168 { TYPE_IDAU_INTERFACE
},
1173 static void armsse_register_types(void)
1177 type_register_static(&armsse_info
);
1179 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1181 .name
= armsse_variants
[i
].name
,
1182 .parent
= TYPE_ARM_SSE
,
1183 .class_init
= armsse_class_init
,
1184 .class_data
= (void *)&armsse_variants
[i
],
1190 type_init(armsse_register_types
);