2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
29 //#define DEBUG_UNASSIGNED
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 static unsigned memory_region_transaction_depth
;
34 static bool memory_region_update_pending
;
35 static bool ioeventfd_update_pending
;
36 static bool global_dirty_log
= false;
38 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
39 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
41 static QTAILQ_HEAD(, AddressSpace
) address_spaces
42 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
44 typedef struct AddrRange AddrRange
;
47 * Note that signed integers are needed for negative offsetting in aliases
48 * (large MemoryRegion::alias_offset).
55 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
57 return (AddrRange
) { start
, size
};
60 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
62 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
65 static Int128
addrrange_end(AddrRange r
)
67 return int128_add(r
.start
, r
.size
);
70 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
72 int128_addto(&range
.start
, delta
);
76 static bool addrrange_contains(AddrRange range
, Int128 addr
)
78 return int128_ge(addr
, range
.start
)
79 && int128_lt(addr
, addrrange_end(range
));
82 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
84 return addrrange_contains(r1
, r2
.start
)
85 || addrrange_contains(r2
, r1
.start
);
88 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
90 Int128 start
= int128_max(r1
.start
, r2
.start
);
91 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
92 return addrrange_make(start
, int128_sub(end
, start
));
95 enum ListenerDirection
{ Forward
, Reverse
};
97 static bool memory_listener_match(MemoryListener
*listener
,
98 MemoryRegionSection
*section
)
100 return !listener
->address_space_filter
101 || listener
->address_space_filter
== section
->address_space
;
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
106 MemoryListener *_listener; \
108 switch (_direction) { \
110 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
111 if (_listener->_callback) { \
112 _listener->_callback(_listener, ##_args); \
117 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
118 memory_listeners, link) { \
119 if (_listener->_callback) { \
120 _listener->_callback(_listener, ##_args); \
129 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
131 MemoryListener *_listener; \
133 switch (_direction) { \
135 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
136 if (_listener->_callback \
137 && memory_listener_match(_listener, _section)) { \
138 _listener->_callback(_listener, _section, ##_args); \
143 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
144 memory_listeners, link) { \
145 if (_listener->_callback \
146 && memory_listener_match(_listener, _section)) { \
147 _listener->_callback(_listener, _section, ##_args); \
156 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
157 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
158 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
160 .address_space = (as), \
161 .offset_within_region = (fr)->offset_in_region, \
162 .size = (fr)->addr.size, \
163 .offset_within_address_space = int128_get64((fr)->addr.start), \
164 .readonly = (fr)->readonly, \
167 struct CoalescedMemoryRange
{
169 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
172 struct MemoryRegionIoeventfd
{
179 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a
,
180 MemoryRegionIoeventfd b
)
182 if (int128_lt(a
.addr
.start
, b
.addr
.start
)) {
184 } else if (int128_gt(a
.addr
.start
, b
.addr
.start
)) {
186 } else if (int128_lt(a
.addr
.size
, b
.addr
.size
)) {
188 } else if (int128_gt(a
.addr
.size
, b
.addr
.size
)) {
190 } else if (a
.match_data
< b
.match_data
) {
192 } else if (a
.match_data
> b
.match_data
) {
194 } else if (a
.match_data
) {
195 if (a
.data
< b
.data
) {
197 } else if (a
.data
> b
.data
) {
203 } else if (a
.e
> b
.e
) {
209 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a
,
210 MemoryRegionIoeventfd b
)
212 return !memory_region_ioeventfd_before(a
, b
)
213 && !memory_region_ioeventfd_before(b
, a
);
216 typedef struct FlatRange FlatRange
;
217 typedef struct FlatView FlatView
;
219 /* Range of memory in the global map. Addresses are absolute. */
222 hwaddr offset_in_region
;
224 uint8_t dirty_log_mask
;
229 /* Flattened global view of current active memory hierarchy. Kept in sorted
237 unsigned nr_allocated
;
240 typedef struct AddressSpaceOps AddressSpaceOps
;
242 #define FOR_EACH_FLAT_RANGE(var, view) \
243 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
245 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
247 return a
->mr
== b
->mr
248 && addrrange_equal(a
->addr
, b
->addr
)
249 && a
->offset_in_region
== b
->offset_in_region
250 && a
->romd_mode
== b
->romd_mode
251 && a
->readonly
== b
->readonly
;
254 static void flatview_init(FlatView
*view
)
259 view
->nr_allocated
= 0;
262 /* Insert a range into a given position. Caller is responsible for maintaining
265 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
267 if (view
->nr
== view
->nr_allocated
) {
268 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
269 view
->ranges
= g_realloc(view
->ranges
,
270 view
->nr_allocated
* sizeof(*view
->ranges
));
272 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
273 (view
->nr
- pos
) * sizeof(FlatRange
));
274 view
->ranges
[pos
] = *range
;
275 memory_region_ref(range
->mr
);
279 static void flatview_destroy(FlatView
*view
)
283 for (i
= 0; i
< view
->nr
; i
++) {
284 memory_region_unref(view
->ranges
[i
].mr
);
286 g_free(view
->ranges
);
290 static void flatview_ref(FlatView
*view
)
292 atomic_inc(&view
->ref
);
295 static void flatview_unref(FlatView
*view
)
297 if (atomic_fetch_dec(&view
->ref
) == 1) {
298 flatview_destroy(view
);
302 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
304 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
306 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
308 int128_make64(r2
->offset_in_region
))
309 && r1
->dirty_log_mask
== r2
->dirty_log_mask
310 && r1
->romd_mode
== r2
->romd_mode
311 && r1
->readonly
== r2
->readonly
;
314 /* Attempt to simplify a view by merging adjacent ranges */
315 static void flatview_simplify(FlatView
*view
)
320 while (i
< view
->nr
) {
323 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
324 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
328 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
329 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
334 static bool memory_region_big_endian(MemoryRegion
*mr
)
336 #ifdef TARGET_WORDS_BIGENDIAN
337 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
339 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
343 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
345 #ifdef TARGET_WORDS_BIGENDIAN
346 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
348 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
352 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
354 if (memory_region_wrong_endianness(mr
)) {
359 *data
= bswap16(*data
);
362 *data
= bswap32(*data
);
365 *data
= bswap64(*data
);
373 static MemTxResult
memory_region_oldmmio_read_accessor(MemoryRegion
*mr
,
383 tmp
= mr
->ops
->old_mmio
.read
[ctz32(size
)](mr
->opaque
, addr
);
384 trace_memory_region_ops_read(mr
, addr
, tmp
, size
);
385 *value
|= (tmp
& mask
) << shift
;
389 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
399 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
400 trace_memory_region_ops_read(mr
, addr
, tmp
, size
);
401 *value
|= (tmp
& mask
) << shift
;
405 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
416 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
417 trace_memory_region_ops_read(mr
, addr
, tmp
, size
);
418 *value
|= (tmp
& mask
) << shift
;
422 static MemTxResult
memory_region_oldmmio_write_accessor(MemoryRegion
*mr
,
432 tmp
= (*value
>> shift
) & mask
;
433 trace_memory_region_ops_write(mr
, addr
, tmp
, size
);
434 mr
->ops
->old_mmio
.write
[ctz32(size
)](mr
->opaque
, addr
, tmp
);
438 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
448 tmp
= (*value
>> shift
) & mask
;
449 trace_memory_region_ops_write(mr
, addr
, tmp
, size
);
450 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
454 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
464 tmp
= (*value
>> shift
) & mask
;
465 trace_memory_region_ops_write(mr
, addr
, tmp
, size
);
466 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
469 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
472 unsigned access_size_min
,
473 unsigned access_size_max
,
474 MemTxResult (*access
)(MemoryRegion
*mr
,
484 uint64_t access_mask
;
485 unsigned access_size
;
487 MemTxResult r
= MEMTX_OK
;
489 if (!access_size_min
) {
492 if (!access_size_max
) {
496 /* FIXME: support unaligned access? */
497 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
498 access_mask
= -1ULL >> (64 - access_size
* 8);
499 if (memory_region_big_endian(mr
)) {
500 for (i
= 0; i
< size
; i
+= access_size
) {
501 r
|= access(mr
, addr
+ i
, value
, access_size
,
502 (size
- access_size
- i
) * 8, access_mask
, attrs
);
505 for (i
= 0; i
< size
; i
+= access_size
) {
506 r
|= access(mr
, addr
+ i
, value
, access_size
, i
* 8,
513 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
517 while (mr
->container
) {
520 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
521 if (mr
== as
->root
) {
528 /* Render a memory region into the global view. Ranges in @view obscure
531 static void render_memory_region(FlatView
*view
,
537 MemoryRegion
*subregion
;
539 hwaddr offset_in_region
;
549 int128_addto(&base
, int128_make64(mr
->addr
));
550 readonly
|= mr
->readonly
;
552 tmp
= addrrange_make(base
, mr
->size
);
554 if (!addrrange_intersects(tmp
, clip
)) {
558 clip
= addrrange_intersection(tmp
, clip
);
561 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
562 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
563 render_memory_region(view
, mr
->alias
, base
, clip
, readonly
);
567 /* Render subregions in priority order. */
568 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
569 render_memory_region(view
, subregion
, base
, clip
, readonly
);
572 if (!mr
->terminates
) {
576 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
581 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
582 fr
.romd_mode
= mr
->romd_mode
;
583 fr
.readonly
= readonly
;
585 /* Render the region itself into any gaps left by the current view. */
586 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
587 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
590 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
591 now
= int128_min(remain
,
592 int128_sub(view
->ranges
[i
].addr
.start
, base
));
593 fr
.offset_in_region
= offset_in_region
;
594 fr
.addr
= addrrange_make(base
, now
);
595 flatview_insert(view
, i
, &fr
);
597 int128_addto(&base
, now
);
598 offset_in_region
+= int128_get64(now
);
599 int128_subfrom(&remain
, now
);
601 now
= int128_sub(int128_min(int128_add(base
, remain
),
602 addrrange_end(view
->ranges
[i
].addr
)),
604 int128_addto(&base
, now
);
605 offset_in_region
+= int128_get64(now
);
606 int128_subfrom(&remain
, now
);
608 if (int128_nz(remain
)) {
609 fr
.offset_in_region
= offset_in_region
;
610 fr
.addr
= addrrange_make(base
, remain
);
611 flatview_insert(view
, i
, &fr
);
615 /* Render a memory topology into a list of disjoint absolute ranges. */
616 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
620 view
= g_new(FlatView
, 1);
624 render_memory_region(view
, mr
, int128_zero(),
625 addrrange_make(int128_zero(), int128_2_64()), false);
627 flatview_simplify(view
);
632 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
633 MemoryRegionIoeventfd
*fds_new
,
635 MemoryRegionIoeventfd
*fds_old
,
639 MemoryRegionIoeventfd
*fd
;
640 MemoryRegionSection section
;
642 /* Generate a symmetric difference of the old and new fd sets, adding
643 * and deleting as necessary.
647 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
648 if (iold
< fds_old_nb
649 && (inew
== fds_new_nb
650 || memory_region_ioeventfd_before(fds_old
[iold
],
653 section
= (MemoryRegionSection
) {
655 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
656 .size
= fd
->addr
.size
,
658 MEMORY_LISTENER_CALL(eventfd_del
, Forward
, §ion
,
659 fd
->match_data
, fd
->data
, fd
->e
);
661 } else if (inew
< fds_new_nb
662 && (iold
== fds_old_nb
663 || memory_region_ioeventfd_before(fds_new
[inew
],
666 section
= (MemoryRegionSection
) {
668 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
669 .size
= fd
->addr
.size
,
671 MEMORY_LISTENER_CALL(eventfd_add
, Reverse
, §ion
,
672 fd
->match_data
, fd
->data
, fd
->e
);
681 static FlatView
*address_space_get_flatview(AddressSpace
*as
)
686 view
= atomic_rcu_read(&as
->current_map
);
692 static void address_space_update_ioeventfds(AddressSpace
*as
)
696 unsigned ioeventfd_nb
= 0;
697 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
701 view
= address_space_get_flatview(as
);
702 FOR_EACH_FLAT_RANGE(fr
, view
) {
703 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
704 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
705 int128_sub(fr
->addr
.start
,
706 int128_make64(fr
->offset_in_region
)));
707 if (addrrange_intersects(fr
->addr
, tmp
)) {
709 ioeventfds
= g_realloc(ioeventfds
,
710 ioeventfd_nb
* sizeof(*ioeventfds
));
711 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
712 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
717 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
718 as
->ioeventfds
, as
->ioeventfd_nb
);
720 g_free(as
->ioeventfds
);
721 as
->ioeventfds
= ioeventfds
;
722 as
->ioeventfd_nb
= ioeventfd_nb
;
723 flatview_unref(view
);
726 static void address_space_update_topology_pass(AddressSpace
*as
,
727 const FlatView
*old_view
,
728 const FlatView
*new_view
,
732 FlatRange
*frold
, *frnew
;
734 /* Generate a symmetric difference of the old and new memory maps.
735 * Kill ranges in the old map, and instantiate ranges in the new map.
738 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
739 if (iold
< old_view
->nr
) {
740 frold
= &old_view
->ranges
[iold
];
744 if (inew
< new_view
->nr
) {
745 frnew
= &new_view
->ranges
[inew
];
752 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
753 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
754 && !flatrange_equal(frold
, frnew
)))) {
755 /* In old but not in new, or in both but attributes changed. */
758 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
762 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
763 /* In both and unchanged (except logging may have changed) */
766 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
767 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
768 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
769 frold
->dirty_log_mask
,
770 frnew
->dirty_log_mask
);
772 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
773 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
774 frold
->dirty_log_mask
,
775 frnew
->dirty_log_mask
);
785 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
794 static void address_space_update_topology(AddressSpace
*as
)
796 FlatView
*old_view
= address_space_get_flatview(as
);
797 FlatView
*new_view
= generate_memory_topology(as
->root
);
799 address_space_update_topology_pass(as
, old_view
, new_view
, false);
800 address_space_update_topology_pass(as
, old_view
, new_view
, true);
802 /* Writes are protected by the BQL. */
803 atomic_rcu_set(&as
->current_map
, new_view
);
804 call_rcu(old_view
, flatview_unref
, rcu
);
806 /* Note that all the old MemoryRegions are still alive up to this
807 * point. This relieves most MemoryListeners from the need to
808 * ref/unref the MemoryRegions they get---unless they use them
809 * outside the iothread mutex, in which case precise reference
810 * counting is necessary.
812 flatview_unref(old_view
);
814 address_space_update_ioeventfds(as
);
817 void memory_region_transaction_begin(void)
819 qemu_flush_coalesced_mmio_buffer();
820 ++memory_region_transaction_depth
;
823 static void memory_region_clear_pending(void)
825 memory_region_update_pending
= false;
826 ioeventfd_update_pending
= false;
829 void memory_region_transaction_commit(void)
833 assert(memory_region_transaction_depth
);
834 --memory_region_transaction_depth
;
835 if (!memory_region_transaction_depth
) {
836 if (memory_region_update_pending
) {
837 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
839 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
840 address_space_update_topology(as
);
843 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
844 } else if (ioeventfd_update_pending
) {
845 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
846 address_space_update_ioeventfds(as
);
849 memory_region_clear_pending();
853 static void memory_region_destructor_none(MemoryRegion
*mr
)
857 static void memory_region_destructor_ram(MemoryRegion
*mr
)
859 qemu_ram_free(mr
->ram_addr
);
862 static void memory_region_destructor_ram_from_ptr(MemoryRegion
*mr
)
864 qemu_ram_free_from_ptr(mr
->ram_addr
);
867 static void memory_region_destructor_rom_device(MemoryRegion
*mr
)
869 qemu_ram_free(mr
->ram_addr
& TARGET_PAGE_MASK
);
872 static bool memory_region_need_escape(char c
)
874 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
877 static char *memory_region_escape_name(const char *name
)
884 for (p
= name
; *p
; p
++) {
885 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
887 if (bytes
== p
- name
) {
888 return g_memdup(name
, bytes
+ 1);
891 escaped
= g_malloc(bytes
+ 1);
892 for (p
= name
, q
= escaped
; *p
; p
++) {
894 if (unlikely(memory_region_need_escape(c
))) {
897 *q
++ = "0123456789abcdef"[c
>> 4];
898 c
= "0123456789abcdef"[c
& 15];
906 void memory_region_init(MemoryRegion
*mr
,
912 owner
= container_get(qdev_get_machine(), "/unattached");
915 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
916 mr
->size
= int128_make64(size
);
917 if (size
== UINT64_MAX
) {
918 mr
->size
= int128_2_64();
920 mr
->name
= g_strdup(name
);
923 char *escaped_name
= memory_region_escape_name(name
);
924 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
925 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
926 object_unref(OBJECT(mr
));
928 g_free(escaped_name
);
932 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, void *opaque
,
933 const char *name
, Error
**errp
)
935 MemoryRegion
*mr
= MEMORY_REGION(obj
);
936 uint64_t value
= mr
->addr
;
938 visit_type_uint64(v
, &value
, name
, errp
);
941 static void memory_region_get_container(Object
*obj
, Visitor
*v
, void *opaque
,
942 const char *name
, Error
**errp
)
944 MemoryRegion
*mr
= MEMORY_REGION(obj
);
945 gchar
*path
= (gchar
*)"";
948 path
= object_get_canonical_path(OBJECT(mr
->container
));
950 visit_type_str(v
, &path
, name
, errp
);
956 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
959 MemoryRegion
*mr
= MEMORY_REGION(obj
);
961 return OBJECT(mr
->container
);
964 static void memory_region_get_priority(Object
*obj
, Visitor
*v
, void *opaque
,
965 const char *name
, Error
**errp
)
967 MemoryRegion
*mr
= MEMORY_REGION(obj
);
968 int32_t value
= mr
->priority
;
970 visit_type_int32(v
, &value
, name
, errp
);
973 static bool memory_region_get_may_overlap(Object
*obj
, Error
**errp
)
975 MemoryRegion
*mr
= MEMORY_REGION(obj
);
977 return mr
->may_overlap
;
980 static void memory_region_get_size(Object
*obj
, Visitor
*v
, void *opaque
,
981 const char *name
, Error
**errp
)
983 MemoryRegion
*mr
= MEMORY_REGION(obj
);
984 uint64_t value
= memory_region_size(mr
);
986 visit_type_uint64(v
, &value
, name
, errp
);
989 static void memory_region_initfn(Object
*obj
)
991 MemoryRegion
*mr
= MEMORY_REGION(obj
);
994 mr
->ops
= &unassigned_mem_ops
;
995 mr
->ram_addr
= RAM_ADDR_INVALID
;
997 mr
->romd_mode
= true;
998 mr
->global_locking
= true;
999 mr
->destructor
= memory_region_destructor_none
;
1000 QTAILQ_INIT(&mr
->subregions
);
1001 QTAILQ_INIT(&mr
->coalesced
);
1003 op
= object_property_add(OBJECT(mr
), "container",
1004 "link<" TYPE_MEMORY_REGION
">",
1005 memory_region_get_container
,
1006 NULL
, /* memory_region_set_container */
1007 NULL
, NULL
, &error_abort
);
1008 op
->resolve
= memory_region_resolve_container
;
1010 object_property_add(OBJECT(mr
), "addr", "uint64",
1011 memory_region_get_addr
,
1012 NULL
, /* memory_region_set_addr */
1013 NULL
, NULL
, &error_abort
);
1014 object_property_add(OBJECT(mr
), "priority", "uint32",
1015 memory_region_get_priority
,
1016 NULL
, /* memory_region_set_priority */
1017 NULL
, NULL
, &error_abort
);
1018 object_property_add_bool(OBJECT(mr
), "may-overlap",
1019 memory_region_get_may_overlap
,
1020 NULL
, /* memory_region_set_may_overlap */
1022 object_property_add(OBJECT(mr
), "size", "uint64",
1023 memory_region_get_size
,
1024 NULL
, /* memory_region_set_size, */
1025 NULL
, NULL
, &error_abort
);
1028 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1031 #ifdef DEBUG_UNASSIGNED
1032 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1034 if (current_cpu
!= NULL
) {
1035 cpu_unassigned_access(current_cpu
, addr
, false, false, 0, size
);
1040 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1041 uint64_t val
, unsigned size
)
1043 #ifdef DEBUG_UNASSIGNED
1044 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1046 if (current_cpu
!= NULL
) {
1047 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1051 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1052 unsigned size
, bool is_write
)
1057 const MemoryRegionOps unassigned_mem_ops
= {
1058 .valid
.accepts
= unassigned_mem_accepts
,
1059 .endianness
= DEVICE_NATIVE_ENDIAN
,
1062 bool memory_region_access_valid(MemoryRegion
*mr
,
1067 int access_size_min
, access_size_max
;
1070 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1074 if (!mr
->ops
->valid
.accepts
) {
1078 access_size_min
= mr
->ops
->valid
.min_access_size
;
1079 if (!mr
->ops
->valid
.min_access_size
) {
1080 access_size_min
= 1;
1083 access_size_max
= mr
->ops
->valid
.max_access_size
;
1084 if (!mr
->ops
->valid
.max_access_size
) {
1085 access_size_max
= 4;
1088 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1089 for (i
= 0; i
< size
; i
+= access_size
) {
1090 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1099 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1107 if (mr
->ops
->read
) {
1108 return access_with_adjusted_size(addr
, pval
, size
,
1109 mr
->ops
->impl
.min_access_size
,
1110 mr
->ops
->impl
.max_access_size
,
1111 memory_region_read_accessor
,
1113 } else if (mr
->ops
->read_with_attrs
) {
1114 return access_with_adjusted_size(addr
, pval
, size
,
1115 mr
->ops
->impl
.min_access_size
,
1116 mr
->ops
->impl
.max_access_size
,
1117 memory_region_read_with_attrs_accessor
,
1120 return access_with_adjusted_size(addr
, pval
, size
, 1, 4,
1121 memory_region_oldmmio_read_accessor
,
1126 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1134 if (!memory_region_access_valid(mr
, addr
, size
, false)) {
1135 *pval
= unassigned_mem_read(mr
, addr
, size
);
1136 return MEMTX_DECODE_ERROR
;
1139 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1140 adjust_endianness(mr
, pval
, size
);
1144 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1150 if (!memory_region_access_valid(mr
, addr
, size
, true)) {
1151 unassigned_mem_write(mr
, addr
, data
, size
);
1152 return MEMTX_DECODE_ERROR
;
1155 adjust_endianness(mr
, &data
, size
);
1157 if (mr
->ops
->write
) {
1158 return access_with_adjusted_size(addr
, &data
, size
,
1159 mr
->ops
->impl
.min_access_size
,
1160 mr
->ops
->impl
.max_access_size
,
1161 memory_region_write_accessor
, mr
,
1163 } else if (mr
->ops
->write_with_attrs
) {
1165 access_with_adjusted_size(addr
, &data
, size
,
1166 mr
->ops
->impl
.min_access_size
,
1167 mr
->ops
->impl
.max_access_size
,
1168 memory_region_write_with_attrs_accessor
,
1171 return access_with_adjusted_size(addr
, &data
, size
, 1, 4,
1172 memory_region_oldmmio_write_accessor
,
1177 void memory_region_init_io(MemoryRegion
*mr
,
1179 const MemoryRegionOps
*ops
,
1184 memory_region_init(mr
, owner
, name
, size
);
1185 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1186 mr
->opaque
= opaque
;
1187 mr
->terminates
= true;
1190 void memory_region_init_ram(MemoryRegion
*mr
,
1196 memory_region_init(mr
, owner
, name
, size
);
1198 mr
->terminates
= true;
1199 mr
->destructor
= memory_region_destructor_ram
;
1200 mr
->ram_addr
= qemu_ram_alloc(size
, mr
, errp
);
1201 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1204 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1209 void (*resized
)(const char*,
1214 memory_region_init(mr
, owner
, name
, size
);
1216 mr
->terminates
= true;
1217 mr
->destructor
= memory_region_destructor_ram
;
1218 mr
->ram_addr
= qemu_ram_alloc_resizeable(size
, max_size
, resized
, mr
, errp
);
1219 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1223 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1224 struct Object
*owner
,
1231 memory_region_init(mr
, owner
, name
, size
);
1233 mr
->terminates
= true;
1234 mr
->destructor
= memory_region_destructor_ram
;
1235 mr
->ram_addr
= qemu_ram_alloc_from_file(size
, mr
, share
, path
, errp
);
1236 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1240 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1246 memory_region_init(mr
, owner
, name
, size
);
1248 mr
->terminates
= true;
1249 mr
->destructor
= memory_region_destructor_ram_from_ptr
;
1250 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1252 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1253 assert(ptr
!= NULL
);
1254 mr
->ram_addr
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1257 void memory_region_set_skip_dump(MemoryRegion
*mr
)
1259 mr
->skip_dump
= true;
1262 void memory_region_init_alias(MemoryRegion
*mr
,
1269 memory_region_init(mr
, owner
, name
, size
);
1271 mr
->alias_offset
= offset
;
1274 void memory_region_init_rom_device(MemoryRegion
*mr
,
1276 const MemoryRegionOps
*ops
,
1282 memory_region_init(mr
, owner
, name
, size
);
1284 mr
->opaque
= opaque
;
1285 mr
->terminates
= true;
1286 mr
->rom_device
= true;
1287 mr
->destructor
= memory_region_destructor_rom_device
;
1288 mr
->ram_addr
= qemu_ram_alloc(size
, mr
, errp
);
1291 void memory_region_init_iommu(MemoryRegion
*mr
,
1293 const MemoryRegionIOMMUOps
*ops
,
1297 memory_region_init(mr
, owner
, name
, size
);
1298 mr
->iommu_ops
= ops
,
1299 mr
->terminates
= true; /* then re-forwards */
1300 notifier_list_init(&mr
->iommu_notify
);
1303 static void memory_region_finalize(Object
*obj
)
1305 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1307 assert(!mr
->container
);
1309 /* We know the region is not visible in any address space (it
1310 * does not have a container and cannot be a root either because
1311 * it has no references, so we can blindly clear mr->enabled.
1312 * memory_region_set_enabled instead could trigger a transaction
1313 * and cause an infinite loop.
1315 mr
->enabled
= false;
1316 memory_region_transaction_begin();
1317 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1318 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1319 memory_region_del_subregion(mr
, subregion
);
1321 memory_region_transaction_commit();
1324 memory_region_clear_coalescing(mr
);
1325 g_free((char *)mr
->name
);
1326 g_free(mr
->ioeventfds
);
1329 Object
*memory_region_owner(MemoryRegion
*mr
)
1331 Object
*obj
= OBJECT(mr
);
1335 void memory_region_ref(MemoryRegion
*mr
)
1337 /* MMIO callbacks most likely will access data that belongs
1338 * to the owner, hence the need to ref/unref the owner whenever
1339 * the memory region is in use.
1341 * The memory region is a child of its owner. As long as the
1342 * owner doesn't call unparent itself on the memory region,
1343 * ref-ing the owner will also keep the memory region alive.
1344 * Memory regions without an owner are supposed to never go away,
1345 * but we still ref/unref them for debugging purposes.
1347 Object
*obj
= OBJECT(mr
);
1348 if (obj
&& obj
->parent
) {
1349 object_ref(obj
->parent
);
1355 void memory_region_unref(MemoryRegion
*mr
)
1357 Object
*obj
= OBJECT(mr
);
1358 if (obj
&& obj
->parent
) {
1359 object_unref(obj
->parent
);
1365 uint64_t memory_region_size(MemoryRegion
*mr
)
1367 if (int128_eq(mr
->size
, int128_2_64())) {
1370 return int128_get64(mr
->size
);
1373 const char *memory_region_name(const MemoryRegion
*mr
)
1376 ((MemoryRegion
*)mr
)->name
=
1377 object_get_canonical_path_component(OBJECT(mr
));
1382 bool memory_region_is_ram(MemoryRegion
*mr
)
1387 bool memory_region_is_skip_dump(MemoryRegion
*mr
)
1389 return mr
->skip_dump
;
1392 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1394 uint8_t mask
= mr
->dirty_log_mask
;
1395 if (global_dirty_log
) {
1396 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1401 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1403 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1406 bool memory_region_is_rom(MemoryRegion
*mr
)
1408 return mr
->ram
&& mr
->readonly
;
1411 bool memory_region_is_iommu(MemoryRegion
*mr
)
1413 return mr
->iommu_ops
;
1416 void memory_region_register_iommu_notifier(MemoryRegion
*mr
, Notifier
*n
)
1418 notifier_list_add(&mr
->iommu_notify
, n
);
1421 void memory_region_iommu_replay(MemoryRegion
*mr
, Notifier
*n
,
1422 hwaddr granularity
, bool is_write
)
1425 IOMMUTLBEntry iotlb
;
1427 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1428 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
1429 if (iotlb
.perm
!= IOMMU_NONE
) {
1430 n
->notify(n
, &iotlb
);
1433 /* if (2^64 - MR size) < granularity, it's possible to get an
1434 * infinite loop here. This should catch such a wraparound */
1435 if ((addr
+ granularity
) < addr
) {
1441 void memory_region_unregister_iommu_notifier(Notifier
*n
)
1446 void memory_region_notify_iommu(MemoryRegion
*mr
,
1447 IOMMUTLBEntry entry
)
1449 assert(memory_region_is_iommu(mr
));
1450 notifier_list_notify(&mr
->iommu_notify
, &entry
);
1453 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1455 uint8_t mask
= 1 << client
;
1456 uint8_t old_logging
;
1458 assert(client
== DIRTY_MEMORY_VGA
);
1459 old_logging
= mr
->vga_logging_count
;
1460 mr
->vga_logging_count
+= log
? 1 : -1;
1461 if (!!old_logging
== !!mr
->vga_logging_count
) {
1465 memory_region_transaction_begin();
1466 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1467 memory_region_update_pending
|= mr
->enabled
;
1468 memory_region_transaction_commit();
1471 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1472 hwaddr size
, unsigned client
)
1474 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1475 return cpu_physical_memory_get_dirty(mr
->ram_addr
+ addr
, size
, client
);
1478 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1481 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1482 cpu_physical_memory_set_dirty_range(mr
->ram_addr
+ addr
, size
,
1483 memory_region_get_dirty_log_mask(mr
));
1486 bool memory_region_test_and_clear_dirty(MemoryRegion
*mr
, hwaddr addr
,
1487 hwaddr size
, unsigned client
)
1489 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1490 return cpu_physical_memory_test_and_clear_dirty(mr
->ram_addr
+ addr
,
1495 void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1500 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1501 FlatView
*view
= address_space_get_flatview(as
);
1502 FOR_EACH_FLAT_RANGE(fr
, view
) {
1504 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, log_sync
);
1507 flatview_unref(view
);
1511 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
1513 if (mr
->readonly
!= readonly
) {
1514 memory_region_transaction_begin();
1515 mr
->readonly
= readonly
;
1516 memory_region_update_pending
|= mr
->enabled
;
1517 memory_region_transaction_commit();
1521 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
1523 if (mr
->romd_mode
!= romd_mode
) {
1524 memory_region_transaction_begin();
1525 mr
->romd_mode
= romd_mode
;
1526 memory_region_update_pending
|= mr
->enabled
;
1527 memory_region_transaction_commit();
1531 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
1532 hwaddr size
, unsigned client
)
1534 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1535 cpu_physical_memory_test_and_clear_dirty(mr
->ram_addr
+ addr
, size
,
1539 int memory_region_get_fd(MemoryRegion
*mr
)
1542 return memory_region_get_fd(mr
->alias
);
1545 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1547 return qemu_get_ram_fd(mr
->ram_addr
& TARGET_PAGE_MASK
);
1550 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
1553 return memory_region_get_ram_ptr(mr
->alias
) + mr
->alias_offset
;
1556 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1558 return qemu_get_ram_ptr(mr
->ram_addr
& TARGET_PAGE_MASK
);
1561 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
1563 assert(mr
->ram_addr
!= RAM_ADDR_INVALID
);
1565 qemu_ram_resize(mr
->ram_addr
, newsize
, errp
);
1568 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
1572 CoalescedMemoryRange
*cmr
;
1574 MemoryRegionSection section
;
1576 view
= address_space_get_flatview(as
);
1577 FOR_EACH_FLAT_RANGE(fr
, view
) {
1579 section
= (MemoryRegionSection
) {
1580 .address_space
= as
,
1581 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
1582 .size
= fr
->addr
.size
,
1585 MEMORY_LISTENER_CALL(coalesced_mmio_del
, Reverse
, §ion
,
1586 int128_get64(fr
->addr
.start
),
1587 int128_get64(fr
->addr
.size
));
1588 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
1589 tmp
= addrrange_shift(cmr
->addr
,
1590 int128_sub(fr
->addr
.start
,
1591 int128_make64(fr
->offset_in_region
)));
1592 if (!addrrange_intersects(tmp
, fr
->addr
)) {
1595 tmp
= addrrange_intersection(tmp
, fr
->addr
);
1596 MEMORY_LISTENER_CALL(coalesced_mmio_add
, Forward
, §ion
,
1597 int128_get64(tmp
.start
),
1598 int128_get64(tmp
.size
));
1602 flatview_unref(view
);
1605 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
1609 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1610 memory_region_update_coalesced_range_as(mr
, as
);
1614 void memory_region_set_coalescing(MemoryRegion
*mr
)
1616 memory_region_clear_coalescing(mr
);
1617 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
1620 void memory_region_add_coalescing(MemoryRegion
*mr
,
1624 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
1626 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
1627 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
1628 memory_region_update_coalesced_range(mr
);
1629 memory_region_set_flush_coalesced(mr
);
1632 void memory_region_clear_coalescing(MemoryRegion
*mr
)
1634 CoalescedMemoryRange
*cmr
;
1635 bool updated
= false;
1637 qemu_flush_coalesced_mmio_buffer();
1638 mr
->flush_coalesced_mmio
= false;
1640 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
1641 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
1642 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
1648 memory_region_update_coalesced_range(mr
);
1652 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
1654 mr
->flush_coalesced_mmio
= true;
1657 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
1659 qemu_flush_coalesced_mmio_buffer();
1660 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
1661 mr
->flush_coalesced_mmio
= false;
1665 void memory_region_set_global_locking(MemoryRegion
*mr
)
1667 mr
->global_locking
= true;
1670 void memory_region_clear_global_locking(MemoryRegion
*mr
)
1672 mr
->global_locking
= false;
1675 void memory_region_add_eventfd(MemoryRegion
*mr
,
1682 MemoryRegionIoeventfd mrfd
= {
1683 .addr
.start
= int128_make64(addr
),
1684 .addr
.size
= int128_make64(size
),
1685 .match_data
= match_data
,
1692 adjust_endianness(mr
, &mrfd
.data
, size
);
1694 memory_region_transaction_begin();
1695 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1696 if (memory_region_ioeventfd_before(mrfd
, mr
->ioeventfds
[i
])) {
1701 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1702 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
1703 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
1704 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
1705 mr
->ioeventfds
[i
] = mrfd
;
1706 ioeventfd_update_pending
|= mr
->enabled
;
1707 memory_region_transaction_commit();
1710 void memory_region_del_eventfd(MemoryRegion
*mr
,
1717 MemoryRegionIoeventfd mrfd
= {
1718 .addr
.start
= int128_make64(addr
),
1719 .addr
.size
= int128_make64(size
),
1720 .match_data
= match_data
,
1727 adjust_endianness(mr
, &mrfd
.data
, size
);
1729 memory_region_transaction_begin();
1730 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1731 if (memory_region_ioeventfd_equal(mrfd
, mr
->ioeventfds
[i
])) {
1735 assert(i
!= mr
->ioeventfd_nb
);
1736 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
1737 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
1739 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1740 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
1741 ioeventfd_update_pending
|= mr
->enabled
;
1742 memory_region_transaction_commit();
1745 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
1747 hwaddr offset
= subregion
->addr
;
1748 MemoryRegion
*mr
= subregion
->container
;
1749 MemoryRegion
*other
;
1751 memory_region_transaction_begin();
1753 memory_region_ref(subregion
);
1754 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
1755 if (subregion
->may_overlap
|| other
->may_overlap
) {
1758 if (int128_ge(int128_make64(offset
),
1759 int128_add(int128_make64(other
->addr
), other
->size
))
1760 || int128_le(int128_add(int128_make64(offset
), subregion
->size
),
1761 int128_make64(other
->addr
))) {
1765 printf("warning: subregion collision %llx/%llx (%s) "
1766 "vs %llx/%llx (%s)\n",
1767 (unsigned long long)offset
,
1768 (unsigned long long)int128_get64(subregion
->size
),
1770 (unsigned long long)other
->addr
,
1771 (unsigned long long)int128_get64(other
->size
),
1775 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
1776 if (subregion
->priority
>= other
->priority
) {
1777 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
1781 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
1783 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
1784 memory_region_transaction_commit();
1787 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
1789 MemoryRegion
*subregion
)
1791 assert(!subregion
->container
);
1792 subregion
->container
= mr
;
1793 subregion
->addr
= offset
;
1794 memory_region_update_container_subregions(subregion
);
1797 void memory_region_add_subregion(MemoryRegion
*mr
,
1799 MemoryRegion
*subregion
)
1801 subregion
->may_overlap
= false;
1802 subregion
->priority
= 0;
1803 memory_region_add_subregion_common(mr
, offset
, subregion
);
1806 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
1808 MemoryRegion
*subregion
,
1811 subregion
->may_overlap
= true;
1812 subregion
->priority
= priority
;
1813 memory_region_add_subregion_common(mr
, offset
, subregion
);
1816 void memory_region_del_subregion(MemoryRegion
*mr
,
1817 MemoryRegion
*subregion
)
1819 memory_region_transaction_begin();
1820 assert(subregion
->container
== mr
);
1821 subregion
->container
= NULL
;
1822 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
1823 memory_region_unref(subregion
);
1824 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
1825 memory_region_transaction_commit();
1828 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
1830 if (enabled
== mr
->enabled
) {
1833 memory_region_transaction_begin();
1834 mr
->enabled
= enabled
;
1835 memory_region_update_pending
= true;
1836 memory_region_transaction_commit();
1839 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
1841 Int128 s
= int128_make64(size
);
1843 if (size
== UINT64_MAX
) {
1846 if (int128_eq(s
, mr
->size
)) {
1849 memory_region_transaction_begin();
1851 memory_region_update_pending
= true;
1852 memory_region_transaction_commit();
1855 static void memory_region_readd_subregion(MemoryRegion
*mr
)
1857 MemoryRegion
*container
= mr
->container
;
1860 memory_region_transaction_begin();
1861 memory_region_ref(mr
);
1862 memory_region_del_subregion(container
, mr
);
1863 mr
->container
= container
;
1864 memory_region_update_container_subregions(mr
);
1865 memory_region_unref(mr
);
1866 memory_region_transaction_commit();
1870 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
1872 if (addr
!= mr
->addr
) {
1874 memory_region_readd_subregion(mr
);
1878 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
1882 if (offset
== mr
->alias_offset
) {
1886 memory_region_transaction_begin();
1887 mr
->alias_offset
= offset
;
1888 memory_region_update_pending
|= mr
->enabled
;
1889 memory_region_transaction_commit();
1892 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
1894 return mr
->ram_addr
;
1897 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
1902 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
1904 const AddrRange
*addr
= addr_
;
1905 const FlatRange
*fr
= fr_
;
1907 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
1909 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
1915 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
1917 return bsearch(&addr
, view
->ranges
, view
->nr
,
1918 sizeof(FlatRange
), cmp_flatrange_addr
);
1921 bool memory_region_is_mapped(MemoryRegion
*mr
)
1923 return mr
->container
? true : false;
1926 /* Same as memory_region_find, but it does not add a reference to the
1927 * returned region. It must be called from an RCU critical section.
1929 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
1930 hwaddr addr
, uint64_t size
)
1932 MemoryRegionSection ret
= { .mr
= NULL
};
1940 for (root
= mr
; root
->container
; ) {
1941 root
= root
->container
;
1945 as
= memory_region_to_address_space(root
);
1949 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
1951 view
= atomic_rcu_read(&as
->current_map
);
1952 fr
= flatview_lookup(view
, range
);
1957 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
1962 ret
.address_space
= as
;
1963 range
= addrrange_intersection(range
, fr
->addr
);
1964 ret
.offset_within_region
= fr
->offset_in_region
;
1965 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
1967 ret
.size
= range
.size
;
1968 ret
.offset_within_address_space
= int128_get64(range
.start
);
1969 ret
.readonly
= fr
->readonly
;
1973 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
1974 hwaddr addr
, uint64_t size
)
1976 MemoryRegionSection ret
;
1978 ret
= memory_region_find_rcu(mr
, addr
, size
);
1980 memory_region_ref(ret
.mr
);
1986 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
1991 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
1993 return mr
&& mr
!= container
;
1996 void address_space_sync_dirty_bitmap(AddressSpace
*as
)
2001 view
= address_space_get_flatview(as
);
2002 FOR_EACH_FLAT_RANGE(fr
, view
) {
2003 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, log_sync
);
2005 flatview_unref(view
);
2008 void memory_global_dirty_log_start(void)
2010 global_dirty_log
= true;
2012 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2014 /* Refresh DIRTY_LOG_MIGRATION bit. */
2015 memory_region_transaction_begin();
2016 memory_region_update_pending
= true;
2017 memory_region_transaction_commit();
2020 void memory_global_dirty_log_stop(void)
2022 global_dirty_log
= false;
2024 /* Refresh DIRTY_LOG_MIGRATION bit. */
2025 memory_region_transaction_begin();
2026 memory_region_update_pending
= true;
2027 memory_region_transaction_commit();
2029 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2032 static void listener_add_address_space(MemoryListener
*listener
,
2038 if (listener
->address_space_filter
2039 && listener
->address_space_filter
!= as
) {
2043 if (listener
->begin
) {
2044 listener
->begin(listener
);
2046 if (global_dirty_log
) {
2047 if (listener
->log_global_start
) {
2048 listener
->log_global_start(listener
);
2052 view
= address_space_get_flatview(as
);
2053 FOR_EACH_FLAT_RANGE(fr
, view
) {
2054 MemoryRegionSection section
= {
2056 .address_space
= as
,
2057 .offset_within_region
= fr
->offset_in_region
,
2058 .size
= fr
->addr
.size
,
2059 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2060 .readonly
= fr
->readonly
,
2062 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2063 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2065 if (listener
->region_add
) {
2066 listener
->region_add(listener
, §ion
);
2069 if (listener
->commit
) {
2070 listener
->commit(listener
);
2072 flatview_unref(view
);
2075 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*filter
)
2077 MemoryListener
*other
= NULL
;
2080 listener
->address_space_filter
= filter
;
2081 if (QTAILQ_EMPTY(&memory_listeners
)
2082 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2083 memory_listeners
)->priority
) {
2084 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2086 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2087 if (listener
->priority
< other
->priority
) {
2091 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2094 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2095 listener_add_address_space(listener
, as
);
2099 void memory_listener_unregister(MemoryListener
*listener
)
2101 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2104 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2106 memory_region_ref(root
);
2107 memory_region_transaction_begin();
2109 as
->current_map
= g_new(FlatView
, 1);
2110 flatview_init(as
->current_map
);
2111 as
->ioeventfd_nb
= 0;
2112 as
->ioeventfds
= NULL
;
2113 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2114 as
->name
= g_strdup(name
? name
: "anonymous");
2115 address_space_init_dispatch(as
);
2116 memory_region_update_pending
|= root
->enabled
;
2117 memory_region_transaction_commit();
2120 static void do_address_space_destroy(AddressSpace
*as
)
2122 MemoryListener
*listener
;
2124 address_space_destroy_dispatch(as
);
2126 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2127 assert(listener
->address_space_filter
!= as
);
2130 flatview_unref(as
->current_map
);
2132 g_free(as
->ioeventfds
);
2133 memory_region_unref(as
->root
);
2136 void address_space_destroy(AddressSpace
*as
)
2138 MemoryRegion
*root
= as
->root
;
2140 /* Flush out anything from MemoryListeners listening in on this */
2141 memory_region_transaction_begin();
2143 memory_region_transaction_commit();
2144 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2145 address_space_unregister(as
);
2147 /* At this point, as->dispatch and as->current_map are dummy
2148 * entries that the guest should never use. Wait for the old
2149 * values to expire before freeing the data.
2152 call_rcu(as
, do_address_space_destroy
, rcu
);
2155 typedef struct MemoryRegionList MemoryRegionList
;
2157 struct MemoryRegionList
{
2158 const MemoryRegion
*mr
;
2159 QTAILQ_ENTRY(MemoryRegionList
) queue
;
2162 typedef QTAILQ_HEAD(queue
, MemoryRegionList
) MemoryRegionListHead
;
2164 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2165 const MemoryRegion
*mr
, unsigned int level
,
2167 MemoryRegionListHead
*alias_print_queue
)
2169 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2170 MemoryRegionListHead submr_print_queue
;
2171 const MemoryRegion
*submr
;
2178 for (i
= 0; i
< level
; i
++) {
2183 MemoryRegionList
*ml
;
2186 /* check if the alias is already in the queue */
2187 QTAILQ_FOREACH(ml
, alias_print_queue
, queue
) {
2188 if (ml
->mr
== mr
->alias
) {
2194 ml
= g_new(MemoryRegionList
, 1);
2196 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, queue
);
2198 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2199 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2200 "-" TARGET_FMT_plx
"%s\n",
2203 + (int128_nz(mr
->size
) ?
2204 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2205 int128_one())) : 0),
2207 mr
->romd_mode
? 'R' : '-',
2208 !mr
->readonly
&& !(mr
->rom_device
&& mr
->romd_mode
) ? 'W'
2210 memory_region_name(mr
),
2211 memory_region_name(mr
->alias
),
2214 + (int128_nz(mr
->size
) ?
2215 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2216 int128_one())) : 0),
2217 mr
->enabled
? "" : " [disabled]");
2220 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %c%c): %s%s\n",
2223 + (int128_nz(mr
->size
) ?
2224 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2225 int128_one())) : 0),
2227 mr
->romd_mode
? 'R' : '-',
2228 !mr
->readonly
&& !(mr
->rom_device
&& mr
->romd_mode
) ? 'W'
2230 memory_region_name(mr
),
2231 mr
->enabled
? "" : " [disabled]");
2234 QTAILQ_INIT(&submr_print_queue
);
2236 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2237 new_ml
= g_new(MemoryRegionList
, 1);
2239 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2240 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2241 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2242 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2243 QTAILQ_INSERT_BEFORE(ml
, new_ml
, queue
);
2249 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, queue
);
2253 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2254 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, base
+ mr
->addr
,
2258 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, queue
, next_ml
) {
2263 void mtree_info(fprintf_function mon_printf
, void *f
)
2265 MemoryRegionListHead ml_head
;
2266 MemoryRegionList
*ml
, *ml2
;
2269 QTAILQ_INIT(&ml_head
);
2271 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2272 mon_printf(f
, "address-space: %s\n", as
->name
);
2273 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
);
2274 mon_printf(f
, "\n");
2277 /* print aliased regions */
2278 QTAILQ_FOREACH(ml
, &ml_head
, queue
) {
2279 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
2280 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
);
2281 mon_printf(f
, "\n");
2284 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, queue
, ml2
) {
2289 static const TypeInfo memory_region_info
= {
2290 .parent
= TYPE_OBJECT
,
2291 .name
= TYPE_MEMORY_REGION
,
2292 .instance_size
= sizeof(MemoryRegion
),
2293 .instance_init
= memory_region_initfn
,
2294 .instance_finalize
= memory_region_finalize
,
2297 static void memory_register_types(void)
2299 type_register_static(&memory_region_info
);
2302 type_init(memory_register_types
)