target/riscv: rvv-1.0: floating-point reciprocal estimate instruction
[qemu/ar7.git] / target / arm / vec_internal.h
blob2a3355829068269fb1ca3041395210bbfa19a1ab
1 /*
2 * ARM AdvSIMD / SVE Vector Helpers
4 * Copyright (c) 2020 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef TARGET_ARM_VEC_INTERNALS_H
21 #define TARGET_ARM_VEC_INTERNALS_H
24 * Note that vector data is stored in host-endian 64-bit chunks,
25 * so addressing units smaller than that needs a host-endian fixup.
27 * The H<N> macros are used when indexing an array of elements of size N.
29 * The H1_<N> macros are used when performing byte arithmetic and then
30 * casting the final pointer to a type of size N.
32 #ifdef HOST_WORDS_BIGENDIAN
33 #define H1(x) ((x) ^ 7)
34 #define H1_2(x) ((x) ^ 6)
35 #define H1_4(x) ((x) ^ 4)
36 #define H2(x) ((x) ^ 3)
37 #define H4(x) ((x) ^ 1)
38 #else
39 #define H1(x) (x)
40 #define H1_2(x) (x)
41 #define H1_4(x) (x)
42 #define H2(x) (x)
43 #define H4(x) (x)
44 #endif
46 * Access to 64-bit elements isn't host-endian dependent; we provide H8
47 * and H1_8 so that when a function is being generated from a macro we
48 * can pass these rather than an empty macro argument, for clarity.
50 #define H8(x) (x)
51 #define H1_8(x) (x)
53 /* Data for expanding active predicate bits to bytes, for byte elements. */
54 extern const uint64_t expand_pred_b_data[256];
56 static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
58 uint64_t *d = vd + opr_sz;
59 uintptr_t i;
61 for (i = opr_sz; i < max_sz; i += 8) {
62 *d++ = 0;
66 static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits,
67 bool round, uint32_t *sat)
69 if (shift <= -bits) {
70 /* Rounding the sign bit always produces 0. */
71 if (round) {
72 return 0;
74 return src >> 31;
75 } else if (shift < 0) {
76 if (round) {
77 src >>= -shift - 1;
78 return (src >> 1) + (src & 1);
80 return src >> -shift;
81 } else if (shift < bits) {
82 int32_t val = src << shift;
83 if (bits == 32) {
84 if (!sat || val >> shift == src) {
85 return val;
87 } else {
88 int32_t extval = sextract32(val, 0, bits);
89 if (!sat || val == extval) {
90 return extval;
93 } else if (!sat || src == 0) {
94 return 0;
97 *sat = 1;
98 return (1u << (bits - 1)) - (src >= 0);
101 static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits,
102 bool round, uint32_t *sat)
104 if (shift <= -(bits + round)) {
105 return 0;
106 } else if (shift < 0) {
107 if (round) {
108 src >>= -shift - 1;
109 return (src >> 1) + (src & 1);
111 return src >> -shift;
112 } else if (shift < bits) {
113 uint32_t val = src << shift;
114 if (bits == 32) {
115 if (!sat || val >> shift == src) {
116 return val;
118 } else {
119 uint32_t extval = extract32(val, 0, bits);
120 if (!sat || val == extval) {
121 return extval;
124 } else if (!sat || src == 0) {
125 return 0;
128 *sat = 1;
129 return MAKE_64BIT_MASK(0, bits);
132 static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits,
133 bool round, uint32_t *sat)
135 if (sat && src < 0) {
136 *sat = 1;
137 return 0;
139 return do_uqrshl_bhs(src, shift, bits, round, sat);
142 static inline int64_t do_sqrshl_d(int64_t src, int64_t shift,
143 bool round, uint32_t *sat)
145 if (shift <= -64) {
146 /* Rounding the sign bit always produces 0. */
147 if (round) {
148 return 0;
150 return src >> 63;
151 } else if (shift < 0) {
152 if (round) {
153 src >>= -shift - 1;
154 return (src >> 1) + (src & 1);
156 return src >> -shift;
157 } else if (shift < 64) {
158 int64_t val = src << shift;
159 if (!sat || val >> shift == src) {
160 return val;
162 } else if (!sat || src == 0) {
163 return 0;
166 *sat = 1;
167 return src < 0 ? INT64_MIN : INT64_MAX;
170 static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift,
171 bool round, uint32_t *sat)
173 if (shift <= -(64 + round)) {
174 return 0;
175 } else if (shift < 0) {
176 if (round) {
177 src >>= -shift - 1;
178 return (src >> 1) + (src & 1);
180 return src >> -shift;
181 } else if (shift < 64) {
182 uint64_t val = src << shift;
183 if (!sat || val >> shift == src) {
184 return val;
186 } else if (!sat || src == 0) {
187 return 0;
190 *sat = 1;
191 return UINT64_MAX;
194 static inline int64_t do_suqrshl_d(int64_t src, int64_t shift,
195 bool round, uint32_t *sat)
197 if (sat && src < 0) {
198 *sat = 1;
199 return 0;
201 return do_uqrshl_d(src, shift, round, sat);
204 int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool);
205 int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *);
206 int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *);
207 int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool);
210 * 8 x 8 -> 16 vector polynomial multiply where the inputs are
211 * in the low 8 bits of each 16-bit element
213 uint64_t pmull_h(uint64_t op1, uint64_t op2);
215 * 16 x 16 -> 32 vector polynomial multiply where the inputs are
216 * in the low 16 bits of each 32-bit element
218 uint64_t pmull_w(uint64_t op1, uint64_t op2);
220 #endif /* TARGET_ARM_VEC_INTERNALS_H */