Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20200305' into...
[qemu/ar7.git] / target / arm / m_helper.c
blob5e8a795d2028c9b0de325b26910b78a9bcad00f1
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #endif
36 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
37 uint32_t reg, uint32_t val)
39 /* Only APSR is actually writable */
40 if (!(reg & 4)) {
41 uint32_t apsrmask = 0;
43 if (mask & 8) {
44 apsrmask |= XPSR_NZCV | XPSR_Q;
46 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
47 apsrmask |= XPSR_GE;
49 xpsr_write(env, val, apsrmask);
53 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
55 uint32_t mask = 0;
57 if ((reg & 1) && el) {
58 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
60 if (!(reg & 4)) {
61 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
62 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
63 mask |= XPSR_GE;
66 /* EPSR reads as zero */
67 return xpsr_read(env) & mask;
70 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
72 uint32_t value = env->v7m.control[secure];
74 if (!secure) {
75 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
76 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
78 return value;
81 #ifdef CONFIG_USER_ONLY
83 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
85 uint32_t mask = extract32(maskreg, 8, 4);
86 uint32_t reg = extract32(maskreg, 0, 8);
88 switch (reg) {
89 case 0 ... 7: /* xPSR sub-fields */
90 v7m_msr_xpsr(env, mask, reg, val);
91 break;
92 case 20: /* CONTROL */
93 /* There are no sub-fields that are actually writable from EL0. */
94 break;
95 default:
96 /* Unprivileged writes to other registers are ignored */
97 break;
101 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
103 switch (reg) {
104 case 0 ... 7: /* xPSR sub-fields */
105 return v7m_mrs_xpsr(env, reg, 0);
106 case 20: /* CONTROL */
107 return v7m_mrs_control(env, 0);
108 default:
109 /* Unprivileged reads others as zero. */
110 return 0;
114 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
116 /* translate.c should never generate calls here in user-only mode */
117 g_assert_not_reached();
120 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
122 /* translate.c should never generate calls here in user-only mode */
123 g_assert_not_reached();
126 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
128 /* translate.c should never generate calls here in user-only mode */
129 g_assert_not_reached();
132 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
134 /* translate.c should never generate calls here in user-only mode */
135 g_assert_not_reached();
138 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
140 /* translate.c should never generate calls here in user-only mode */
141 g_assert_not_reached();
144 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
147 * The TT instructions can be used by unprivileged code, but in
148 * user-only emulation we don't have the MPU.
149 * Luckily since we know we are NonSecure unprivileged (and that in
150 * turn means that the A flag wasn't specified), all the bits in the
151 * register must be zero:
152 * IREGION: 0 because IRVALID is 0
153 * IRVALID: 0 because NS
154 * S: 0 because NS
155 * NSRW: 0 because NS
156 * NSR: 0 because NS
157 * RW: 0 because unpriv and A flag not set
158 * R: 0 because unpriv and A flag not set
159 * SRVALID: 0 because NS
160 * MRVALID: 0 because unpriv and A flag not set
161 * SREGION: 0 becaus SRVALID is 0
162 * MREGION: 0 because MRVALID is 0
164 return 0;
167 #else
170 * What kind of stack write are we doing? This affects how exceptions
171 * generated during the stacking are treated.
173 typedef enum StackingMode {
174 STACK_NORMAL,
175 STACK_IGNFAULTS,
176 STACK_LAZYFP,
177 } StackingMode;
179 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
180 ARMMMUIdx mmu_idx, StackingMode mode)
182 CPUState *cs = CPU(cpu);
183 CPUARMState *env = &cpu->env;
184 MemTxAttrs attrs = {};
185 MemTxResult txres;
186 target_ulong page_size;
187 hwaddr physaddr;
188 int prot;
189 ARMMMUFaultInfo fi = {};
190 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
191 int exc;
192 bool exc_secure;
194 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
195 &attrs, &prot, &page_size, &fi, NULL)) {
196 /* MPU/SAU lookup failed */
197 if (fi.type == ARMFault_QEMU_SFault) {
198 if (mode == STACK_LAZYFP) {
199 qemu_log_mask(CPU_LOG_INT,
200 "...SecureFault with SFSR.LSPERR "
201 "during lazy stacking\n");
202 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
203 } else {
204 qemu_log_mask(CPU_LOG_INT,
205 "...SecureFault with SFSR.AUVIOL "
206 "during stacking\n");
207 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
209 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
210 env->v7m.sfar = addr;
211 exc = ARMV7M_EXCP_SECURE;
212 exc_secure = false;
213 } else {
214 if (mode == STACK_LAZYFP) {
215 qemu_log_mask(CPU_LOG_INT,
216 "...MemManageFault with CFSR.MLSPERR\n");
217 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
218 } else {
219 qemu_log_mask(CPU_LOG_INT,
220 "...MemManageFault with CFSR.MSTKERR\n");
221 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
223 exc = ARMV7M_EXCP_MEM;
224 exc_secure = secure;
226 goto pend_fault;
228 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
229 attrs, &txres);
230 if (txres != MEMTX_OK) {
231 /* BusFault trying to write the data */
232 if (mode == STACK_LAZYFP) {
233 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
234 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
235 } else {
236 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
237 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
239 exc = ARMV7M_EXCP_BUS;
240 exc_secure = false;
241 goto pend_fault;
243 return true;
245 pend_fault:
247 * By pending the exception at this point we are making
248 * the IMPDEF choice "overridden exceptions pended" (see the
249 * MergeExcInfo() pseudocode). The other choice would be to not
250 * pend them now and then make a choice about which to throw away
251 * later if we have two derived exceptions.
252 * The only case when we must not pend the exception but instead
253 * throw it away is if we are doing the push of the callee registers
254 * and we've already generated a derived exception (this is indicated
255 * by the caller passing STACK_IGNFAULTS). Even in this case we will
256 * still update the fault status registers.
258 switch (mode) {
259 case STACK_NORMAL:
260 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
261 break;
262 case STACK_LAZYFP:
263 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
264 break;
265 case STACK_IGNFAULTS:
266 break;
268 return false;
271 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
272 ARMMMUIdx mmu_idx)
274 CPUState *cs = CPU(cpu);
275 CPUARMState *env = &cpu->env;
276 MemTxAttrs attrs = {};
277 MemTxResult txres;
278 target_ulong page_size;
279 hwaddr physaddr;
280 int prot;
281 ARMMMUFaultInfo fi = {};
282 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
283 int exc;
284 bool exc_secure;
285 uint32_t value;
287 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
288 &attrs, &prot, &page_size, &fi, NULL)) {
289 /* MPU/SAU lookup failed */
290 if (fi.type == ARMFault_QEMU_SFault) {
291 qemu_log_mask(CPU_LOG_INT,
292 "...SecureFault with SFSR.AUVIOL during unstack\n");
293 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
294 env->v7m.sfar = addr;
295 exc = ARMV7M_EXCP_SECURE;
296 exc_secure = false;
297 } else {
298 qemu_log_mask(CPU_LOG_INT,
299 "...MemManageFault with CFSR.MUNSTKERR\n");
300 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
301 exc = ARMV7M_EXCP_MEM;
302 exc_secure = secure;
304 goto pend_fault;
307 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
308 attrs, &txres);
309 if (txres != MEMTX_OK) {
310 /* BusFault trying to read the data */
311 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
312 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
313 exc = ARMV7M_EXCP_BUS;
314 exc_secure = false;
315 goto pend_fault;
318 *dest = value;
319 return true;
321 pend_fault:
323 * By pending the exception at this point we are making
324 * the IMPDEF choice "overridden exceptions pended" (see the
325 * MergeExcInfo() pseudocode). The other choice would be to not
326 * pend them now and then make a choice about which to throw away
327 * later if we have two derived exceptions.
329 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
330 return false;
333 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
336 * Preserve FP state (because LSPACT was set and we are about
337 * to execute an FP instruction). This corresponds to the
338 * PreserveFPState() pseudocode.
339 * We may throw an exception if the stacking fails.
341 ARMCPU *cpu = env_archcpu(env);
342 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
343 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
344 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
345 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
346 uint32_t fpcar = env->v7m.fpcar[is_secure];
347 bool stacked_ok = true;
348 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
349 bool take_exception;
351 /* Take the iothread lock as we are going to touch the NVIC */
352 qemu_mutex_lock_iothread();
354 /* Check the background context had access to the FPU */
355 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
356 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
357 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
358 stacked_ok = false;
359 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
360 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
361 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
362 stacked_ok = false;
365 if (!splimviol && stacked_ok) {
366 /* We only stack if the stack limit wasn't violated */
367 int i;
368 ARMMMUIdx mmu_idx;
370 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
371 for (i = 0; i < (ts ? 32 : 16); i += 2) {
372 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
373 uint32_t faddr = fpcar + 4 * i;
374 uint32_t slo = extract64(dn, 0, 32);
375 uint32_t shi = extract64(dn, 32, 32);
377 if (i >= 16) {
378 faddr += 8; /* skip the slot for the FPSCR */
380 stacked_ok = stacked_ok &&
381 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
382 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
385 stacked_ok = stacked_ok &&
386 v7m_stack_write(cpu, fpcar + 0x40,
387 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
391 * We definitely pended an exception, but it's possible that it
392 * might not be able to be taken now. If its priority permits us
393 * to take it now, then we must not update the LSPACT or FP regs,
394 * but instead jump out to take the exception immediately.
395 * If it's just pending and won't be taken until the current
396 * handler exits, then we do update LSPACT and the FP regs.
398 take_exception = !stacked_ok &&
399 armv7m_nvic_can_take_pending_exception(env->nvic);
401 qemu_mutex_unlock_iothread();
403 if (take_exception) {
404 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
407 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
409 if (ts) {
410 /* Clear s0 to s31 and the FPSCR */
411 int i;
413 for (i = 0; i < 32; i += 2) {
414 *aa32_vfp_dreg(env, i / 2) = 0;
416 vfp_set_fpscr(env, 0);
419 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
420 * unchanged.
425 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
426 * This may change the current stack pointer between Main and Process
427 * stack pointers if it is done for the CONTROL register for the current
428 * security state.
430 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
431 bool new_spsel,
432 bool secstate)
434 bool old_is_psp = v7m_using_psp(env);
436 env->v7m.control[secstate] =
437 deposit32(env->v7m.control[secstate],
438 R_V7M_CONTROL_SPSEL_SHIFT,
439 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
441 if (secstate == env->v7m.secure) {
442 bool new_is_psp = v7m_using_psp(env);
443 uint32_t tmp;
445 if (old_is_psp != new_is_psp) {
446 tmp = env->v7m.other_sp;
447 env->v7m.other_sp = env->regs[13];
448 env->regs[13] = tmp;
454 * Write to v7M CONTROL.SPSEL bit. This may change the current
455 * stack pointer between Main and Process stack pointers.
457 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
459 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
462 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
465 * Write a new value to v7m.exception, thus transitioning into or out
466 * of Handler mode; this may result in a change of active stack pointer.
468 bool new_is_psp, old_is_psp = v7m_using_psp(env);
469 uint32_t tmp;
471 env->v7m.exception = new_exc;
473 new_is_psp = v7m_using_psp(env);
475 if (old_is_psp != new_is_psp) {
476 tmp = env->v7m.other_sp;
477 env->v7m.other_sp = env->regs[13];
478 env->regs[13] = tmp;
482 /* Switch M profile security state between NS and S */
483 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
485 uint32_t new_ss_msp, new_ss_psp;
487 if (env->v7m.secure == new_secstate) {
488 return;
492 * All the banked state is accessed by looking at env->v7m.secure
493 * except for the stack pointer; rearrange the SP appropriately.
495 new_ss_msp = env->v7m.other_ss_msp;
496 new_ss_psp = env->v7m.other_ss_psp;
498 if (v7m_using_psp(env)) {
499 env->v7m.other_ss_psp = env->regs[13];
500 env->v7m.other_ss_msp = env->v7m.other_sp;
501 } else {
502 env->v7m.other_ss_msp = env->regs[13];
503 env->v7m.other_ss_psp = env->v7m.other_sp;
506 env->v7m.secure = new_secstate;
508 if (v7m_using_psp(env)) {
509 env->regs[13] = new_ss_psp;
510 env->v7m.other_sp = new_ss_msp;
511 } else {
512 env->regs[13] = new_ss_msp;
513 env->v7m.other_sp = new_ss_psp;
517 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
520 * Handle v7M BXNS:
521 * - if the return value is a magic value, do exception return (like BX)
522 * - otherwise bit 0 of the return value is the target security state
524 uint32_t min_magic;
526 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
527 /* Covers FNC_RETURN and EXC_RETURN magic */
528 min_magic = FNC_RETURN_MIN_MAGIC;
529 } else {
530 /* EXC_RETURN magic only */
531 min_magic = EXC_RETURN_MIN_MAGIC;
534 if (dest >= min_magic) {
536 * This is an exception return magic value; put it where
537 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
538 * Note that if we ever add gen_ss_advance() singlestep support to
539 * M profile this should count as an "instruction execution complete"
540 * event (compare gen_bx_excret_final_code()).
542 env->regs[15] = dest & ~1;
543 env->thumb = dest & 1;
544 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
545 /* notreached */
548 /* translate.c should have made BXNS UNDEF unless we're secure */
549 assert(env->v7m.secure);
551 if (!(dest & 1)) {
552 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
554 switch_v7m_security_state(env, dest & 1);
555 env->thumb = 1;
556 env->regs[15] = dest & ~1;
557 arm_rebuild_hflags(env);
560 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
563 * Handle v7M BLXNS:
564 * - bit 0 of the destination address is the target security state
567 /* At this point regs[15] is the address just after the BLXNS */
568 uint32_t nextinst = env->regs[15] | 1;
569 uint32_t sp = env->regs[13] - 8;
570 uint32_t saved_psr;
572 /* translate.c will have made BLXNS UNDEF unless we're secure */
573 assert(env->v7m.secure);
575 if (dest & 1) {
577 * Target is Secure, so this is just a normal BLX,
578 * except that the low bit doesn't indicate Thumb/not.
580 env->regs[14] = nextinst;
581 env->thumb = 1;
582 env->regs[15] = dest & ~1;
583 return;
586 /* Target is non-secure: first push a stack frame */
587 if (!QEMU_IS_ALIGNED(sp, 8)) {
588 qemu_log_mask(LOG_GUEST_ERROR,
589 "BLXNS with misaligned SP is UNPREDICTABLE\n");
592 if (sp < v7m_sp_limit(env)) {
593 raise_exception(env, EXCP_STKOF, 0, 1);
596 saved_psr = env->v7m.exception;
597 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
598 saved_psr |= XPSR_SFPA;
601 /* Note that these stores can throw exceptions on MPU faults */
602 cpu_stl_data_ra(env, sp, nextinst, GETPC());
603 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
605 env->regs[13] = sp;
606 env->regs[14] = 0xfeffffff;
607 if (arm_v7m_is_handler_mode(env)) {
609 * Write a dummy value to IPSR, to avoid leaking the current secure
610 * exception number to non-secure code. This is guaranteed not
611 * to cause write_v7m_exception() to actually change stacks.
613 write_v7m_exception(env, 1);
615 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
616 switch_v7m_security_state(env, 0);
617 env->thumb = 1;
618 env->regs[15] = dest;
619 arm_rebuild_hflags(env);
622 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
623 bool spsel)
626 * Return a pointer to the location where we currently store the
627 * stack pointer for the requested security state and thread mode.
628 * This pointer will become invalid if the CPU state is updated
629 * such that the stack pointers are switched around (eg changing
630 * the SPSEL control bit).
631 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
632 * Unlike that pseudocode, we require the caller to pass us in the
633 * SPSEL control bit value; this is because we also use this
634 * function in handling of pushing of the callee-saves registers
635 * part of the v8M stack frame (pseudocode PushCalleeStack()),
636 * and in the tailchain codepath the SPSEL bit comes from the exception
637 * return magic LR value from the previous exception. The pseudocode
638 * opencodes the stack-selection in PushCalleeStack(), but we prefer
639 * to make this utility function generic enough to do the job.
641 bool want_psp = threadmode && spsel;
643 if (secure == env->v7m.secure) {
644 if (want_psp == v7m_using_psp(env)) {
645 return &env->regs[13];
646 } else {
647 return &env->v7m.other_sp;
649 } else {
650 if (want_psp) {
651 return &env->v7m.other_ss_psp;
652 } else {
653 return &env->v7m.other_ss_msp;
658 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
659 uint32_t *pvec)
661 CPUState *cs = CPU(cpu);
662 CPUARMState *env = &cpu->env;
663 MemTxResult result;
664 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
665 uint32_t vector_entry;
666 MemTxAttrs attrs = {};
667 ARMMMUIdx mmu_idx;
668 bool exc_secure;
670 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
673 * We don't do a get_phys_addr() here because the rules for vector
674 * loads are special: they always use the default memory map, and
675 * the default memory map permits reads from all addresses.
676 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
677 * that we want this special case which would always say "yes",
678 * we just do the SAU lookup here followed by a direct physical load.
680 attrs.secure = targets_secure;
681 attrs.user = false;
683 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
684 V8M_SAttributes sattrs = {};
686 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
687 if (sattrs.ns) {
688 attrs.secure = false;
689 } else if (!targets_secure) {
691 * NS access to S memory: the underlying exception which we escalate
692 * to HardFault is SecureFault, which always targets Secure.
694 exc_secure = true;
695 goto load_fail;
699 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
700 attrs, &result);
701 if (result != MEMTX_OK) {
703 * Underlying exception is BusFault: its target security state
704 * depends on BFHFNMINS.
706 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
707 goto load_fail;
709 *pvec = vector_entry;
710 return true;
712 load_fail:
714 * All vector table fetch fails are reported as HardFault, with
715 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
716 * technically the underlying exception is a SecureFault or BusFault
717 * that is escalated to HardFault.) This is a terminal exception,
718 * so we will either take the HardFault immediately or else enter
719 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
720 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
721 * secure); otherwise it targets the same security state as the
722 * underlying exception.
724 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
725 exc_secure = true;
727 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
728 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
729 return false;
732 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
735 * Return the integrity signature value for the callee-saves
736 * stack frame section. @lr is the exception return payload/LR value
737 * whose FType bit forms bit 0 of the signature if FP is present.
739 uint32_t sig = 0xfefa125a;
741 if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
742 || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
743 sig |= 1;
745 return sig;
748 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
749 bool ignore_faults)
752 * For v8M, push the callee-saves register part of the stack frame.
753 * Compare the v8M pseudocode PushCalleeStack().
754 * In the tailchaining case this may not be the current stack.
756 CPUARMState *env = &cpu->env;
757 uint32_t *frame_sp_p;
758 uint32_t frameptr;
759 ARMMMUIdx mmu_idx;
760 bool stacked_ok;
761 uint32_t limit;
762 bool want_psp;
763 uint32_t sig;
764 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
766 if (dotailchain) {
767 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
768 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
769 !mode;
771 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
772 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
773 lr & R_V7M_EXCRET_SPSEL_MASK);
774 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
775 if (want_psp) {
776 limit = env->v7m.psplim[M_REG_S];
777 } else {
778 limit = env->v7m.msplim[M_REG_S];
780 } else {
781 mmu_idx = arm_mmu_idx(env);
782 frame_sp_p = &env->regs[13];
783 limit = v7m_sp_limit(env);
786 frameptr = *frame_sp_p - 0x28;
787 if (frameptr < limit) {
789 * Stack limit failure: set SP to the limit value, and generate
790 * STKOF UsageFault. Stack pushes below the limit must not be
791 * performed. It is IMPDEF whether pushes above the limit are
792 * performed; we choose not to.
794 qemu_log_mask(CPU_LOG_INT,
795 "...STKOF during callee-saves register stacking\n");
796 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
797 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
798 env->v7m.secure);
799 *frame_sp_p = limit;
800 return true;
804 * Write as much of the stack frame as we can. A write failure may
805 * cause us to pend a derived exception.
807 sig = v7m_integrity_sig(env, lr);
808 stacked_ok =
809 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
810 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
811 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
812 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
813 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
814 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
815 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
816 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
817 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
819 /* Update SP regardless of whether any of the stack accesses failed. */
820 *frame_sp_p = frameptr;
822 return !stacked_ok;
825 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
826 bool ignore_stackfaults)
829 * Do the "take the exception" parts of exception entry,
830 * but not the pushing of state to the stack. This is
831 * similar to the pseudocode ExceptionTaken() function.
833 CPUARMState *env = &cpu->env;
834 uint32_t addr;
835 bool targets_secure;
836 int exc;
837 bool push_failed = false;
839 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
840 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
841 targets_secure ? "secure" : "nonsecure", exc);
843 if (dotailchain) {
844 /* Sanitize LR FType and PREFIX bits */
845 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
846 lr |= R_V7M_EXCRET_FTYPE_MASK;
848 lr = deposit32(lr, 24, 8, 0xff);
851 if (arm_feature(env, ARM_FEATURE_V8)) {
852 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
853 (lr & R_V7M_EXCRET_S_MASK)) {
855 * The background code (the owner of the registers in the
856 * exception frame) is Secure. This means it may either already
857 * have or now needs to push callee-saves registers.
859 if (targets_secure) {
860 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
862 * We took an exception from Secure to NonSecure
863 * (which means the callee-saved registers got stacked)
864 * and are now tailchaining to a Secure exception.
865 * Clear DCRS so eventual return from this Secure
866 * exception unstacks the callee-saved registers.
868 lr &= ~R_V7M_EXCRET_DCRS_MASK;
870 } else {
872 * We're going to a non-secure exception; push the
873 * callee-saves registers to the stack now, if they're
874 * not already saved.
876 if (lr & R_V7M_EXCRET_DCRS_MASK &&
877 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
878 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
879 ignore_stackfaults);
881 lr |= R_V7M_EXCRET_DCRS_MASK;
885 lr &= ~R_V7M_EXCRET_ES_MASK;
886 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
887 lr |= R_V7M_EXCRET_ES_MASK;
889 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
890 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
891 lr |= R_V7M_EXCRET_SPSEL_MASK;
895 * Clear registers if necessary to prevent non-secure exception
896 * code being able to see register values from secure code.
897 * Where register values become architecturally UNKNOWN we leave
898 * them with their previous values.
900 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
901 if (!targets_secure) {
903 * Always clear the caller-saved registers (they have been
904 * pushed to the stack earlier in v7m_push_stack()).
905 * Clear callee-saved registers if the background code is
906 * Secure (in which case these regs were saved in
907 * v7m_push_callee_stack()).
909 int i;
911 for (i = 0; i < 13; i++) {
912 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
913 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
914 env->regs[i] = 0;
917 /* Clear EAPSR */
918 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
923 if (push_failed && !ignore_stackfaults) {
925 * Derived exception on callee-saves register stacking:
926 * we might now want to take a different exception which
927 * targets a different security state, so try again from the top.
929 qemu_log_mask(CPU_LOG_INT,
930 "...derived exception on callee-saves register stacking");
931 v7m_exception_taken(cpu, lr, true, true);
932 return;
935 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
936 /* Vector load failed: derived exception */
937 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
938 v7m_exception_taken(cpu, lr, true, true);
939 return;
943 * Now we've done everything that might cause a derived exception
944 * we can go ahead and activate whichever exception we're going to
945 * take (which might now be the derived exception).
947 armv7m_nvic_acknowledge_irq(env->nvic);
949 /* Switch to target security state -- must do this before writing SPSEL */
950 switch_v7m_security_state(env, targets_secure);
951 write_v7m_control_spsel(env, 0);
952 arm_clear_exclusive(env);
953 /* Clear SFPA and FPCA (has no effect if no FPU) */
954 env->v7m.control[M_REG_S] &=
955 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
956 /* Clear IT bits */
957 env->condexec_bits = 0;
958 env->regs[14] = lr;
959 env->regs[15] = addr & 0xfffffffe;
960 env->thumb = addr & 1;
961 arm_rebuild_hflags(env);
964 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
965 bool apply_splim)
968 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
969 * that we will need later in order to do lazy FP reg stacking.
971 bool is_secure = env->v7m.secure;
972 void *nvic = env->nvic;
974 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
975 * are banked and we want to update the bit in the bank for the
976 * current security state; and in one case we want to specifically
977 * update the NS banked version of a bit even if we are secure.
979 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
980 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
981 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
982 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
984 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
986 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
987 bool splimviol;
988 uint32_t splim = v7m_sp_limit(env);
989 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
990 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
992 splimviol = !ign && frameptr < splim;
993 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
996 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
998 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
1000 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1002 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1003 !arm_v7m_is_handler_mode(env));
1005 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1006 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1008 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1009 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1011 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1012 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1014 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1015 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1017 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1018 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1020 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1021 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1022 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1024 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1025 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1029 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1031 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1032 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1033 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1034 uintptr_t ra = GETPC();
1036 assert(env->v7m.secure);
1038 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1039 return;
1042 /* Check access to the coprocessor is permitted */
1043 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1044 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1047 if (lspact) {
1048 /* LSPACT should not be active when there is active FP state */
1049 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1052 if (fptr & 7) {
1053 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1057 * Note that we do not use v7m_stack_write() here, because the
1058 * accesses should not set the FSR bits for stacking errors if they
1059 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1060 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1061 * and longjmp out.
1063 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1064 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1065 int i;
1067 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1068 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1069 uint32_t faddr = fptr + 4 * i;
1070 uint32_t slo = extract64(dn, 0, 32);
1071 uint32_t shi = extract64(dn, 32, 32);
1073 if (i >= 16) {
1074 faddr += 8; /* skip the slot for the FPSCR */
1076 cpu_stl_data_ra(env, faddr, slo, ra);
1077 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1079 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1082 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1083 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1085 if (ts) {
1086 for (i = 0; i < 32; i += 2) {
1087 *aa32_vfp_dreg(env, i / 2) = 0;
1089 vfp_set_fpscr(env, 0);
1091 } else {
1092 v7m_update_fpccr(env, fptr, false);
1095 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1098 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1100 uintptr_t ra = GETPC();
1102 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1103 assert(env->v7m.secure);
1105 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1106 return;
1109 /* Check access to the coprocessor is permitted */
1110 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1111 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1114 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1115 /* State in FP is still valid */
1116 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1117 } else {
1118 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1119 int i;
1120 uint32_t fpscr;
1122 if (fptr & 7) {
1123 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1126 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1127 uint32_t slo, shi;
1128 uint64_t dn;
1129 uint32_t faddr = fptr + 4 * i;
1131 if (i >= 16) {
1132 faddr += 8; /* skip the slot for the FPSCR */
1135 slo = cpu_ldl_data_ra(env, faddr, ra);
1136 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1138 dn = (uint64_t) shi << 32 | slo;
1139 *aa32_vfp_dreg(env, i / 2) = dn;
1141 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1142 vfp_set_fpscr(env, fpscr);
1145 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1148 static bool v7m_push_stack(ARMCPU *cpu)
1151 * Do the "set up stack frame" part of exception entry,
1152 * similar to pseudocode PushStack().
1153 * Return true if we generate a derived exception (and so
1154 * should ignore further stack faults trying to process
1155 * that derived exception.)
1157 bool stacked_ok = true, limitviol = false;
1158 CPUARMState *env = &cpu->env;
1159 uint32_t xpsr = xpsr_read(env);
1160 uint32_t frameptr = env->regs[13];
1161 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1162 uint32_t framesize;
1163 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1165 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1166 (env->v7m.secure || nsacr_cp10)) {
1167 if (env->v7m.secure &&
1168 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1169 framesize = 0xa8;
1170 } else {
1171 framesize = 0x68;
1173 } else {
1174 framesize = 0x20;
1177 /* Align stack pointer if the guest wants that */
1178 if ((frameptr & 4) &&
1179 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1180 frameptr -= 4;
1181 xpsr |= XPSR_SPREALIGN;
1184 xpsr &= ~XPSR_SFPA;
1185 if (env->v7m.secure &&
1186 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1187 xpsr |= XPSR_SFPA;
1190 frameptr -= framesize;
1192 if (arm_feature(env, ARM_FEATURE_V8)) {
1193 uint32_t limit = v7m_sp_limit(env);
1195 if (frameptr < limit) {
1197 * Stack limit failure: set SP to the limit value, and generate
1198 * STKOF UsageFault. Stack pushes below the limit must not be
1199 * performed. It is IMPDEF whether pushes above the limit are
1200 * performed; we choose not to.
1202 qemu_log_mask(CPU_LOG_INT,
1203 "...STKOF during stacking\n");
1204 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1205 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1206 env->v7m.secure);
1207 env->regs[13] = limit;
1209 * We won't try to perform any further memory accesses but
1210 * we must continue through the following code to check for
1211 * permission faults during FPU state preservation, and we
1212 * must update FPCCR if lazy stacking is enabled.
1214 limitviol = true;
1215 stacked_ok = false;
1220 * Write as much of the stack frame as we can. If we fail a stack
1221 * write this will result in a derived exception being pended
1222 * (which may be taken in preference to the one we started with
1223 * if it has higher priority).
1225 stacked_ok = stacked_ok &&
1226 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1227 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1228 mmu_idx, STACK_NORMAL) &&
1229 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1230 mmu_idx, STACK_NORMAL) &&
1231 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1232 mmu_idx, STACK_NORMAL) &&
1233 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1234 mmu_idx, STACK_NORMAL) &&
1235 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1236 mmu_idx, STACK_NORMAL) &&
1237 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1238 mmu_idx, STACK_NORMAL) &&
1239 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1241 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1242 /* FPU is active, try to save its registers */
1243 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1244 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1246 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1247 qemu_log_mask(CPU_LOG_INT,
1248 "...SecureFault because LSPACT and FPCA both set\n");
1249 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1250 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1251 } else if (!env->v7m.secure && !nsacr_cp10) {
1252 qemu_log_mask(CPU_LOG_INT,
1253 "...Secure UsageFault with CFSR.NOCP because "
1254 "NSACR.CP10 prevents stacking FP regs\n");
1255 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1256 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1257 } else {
1258 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1259 /* Lazy stacking disabled, save registers now */
1260 int i;
1261 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1262 arm_current_el(env) != 0);
1264 if (stacked_ok && !cpacr_pass) {
1266 * Take UsageFault if CPACR forbids access. The pseudocode
1267 * here does a full CheckCPEnabled() but we know the NSACR
1268 * check can never fail as we have already handled that.
1270 qemu_log_mask(CPU_LOG_INT,
1271 "...UsageFault with CFSR.NOCP because "
1272 "CPACR.CP10 prevents stacking FP regs\n");
1273 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1274 env->v7m.secure);
1275 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1276 stacked_ok = false;
1279 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1280 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1281 uint32_t faddr = frameptr + 0x20 + 4 * i;
1282 uint32_t slo = extract64(dn, 0, 32);
1283 uint32_t shi = extract64(dn, 32, 32);
1285 if (i >= 16) {
1286 faddr += 8; /* skip the slot for the FPSCR */
1288 stacked_ok = stacked_ok &&
1289 v7m_stack_write(cpu, faddr, slo,
1290 mmu_idx, STACK_NORMAL) &&
1291 v7m_stack_write(cpu, faddr + 4, shi,
1292 mmu_idx, STACK_NORMAL);
1294 stacked_ok = stacked_ok &&
1295 v7m_stack_write(cpu, frameptr + 0x60,
1296 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1297 if (cpacr_pass) {
1298 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1299 *aa32_vfp_dreg(env, i / 2) = 0;
1301 vfp_set_fpscr(env, 0);
1303 } else {
1304 /* Lazy stacking enabled, save necessary info to stack later */
1305 v7m_update_fpccr(env, frameptr + 0x20, true);
1311 * If we broke a stack limit then SP was already updated earlier;
1312 * otherwise we update SP regardless of whether any of the stack
1313 * accesses failed or we took some other kind of fault.
1315 if (!limitviol) {
1316 env->regs[13] = frameptr;
1319 return !stacked_ok;
1322 static void do_v7m_exception_exit(ARMCPU *cpu)
1324 CPUARMState *env = &cpu->env;
1325 uint32_t excret;
1326 uint32_t xpsr, xpsr_mask;
1327 bool ufault = false;
1328 bool sfault = false;
1329 bool return_to_sp_process;
1330 bool return_to_handler;
1331 bool rettobase = false;
1332 bool exc_secure = false;
1333 bool return_to_secure;
1334 bool ftype;
1335 bool restore_s16_s31;
1338 * If we're not in Handler mode then jumps to magic exception-exit
1339 * addresses don't have magic behaviour. However for the v8M
1340 * security extensions the magic secure-function-return has to
1341 * work in thread mode too, so to avoid doing an extra check in
1342 * the generated code we allow exception-exit magic to also cause the
1343 * internal exception and bring us here in thread mode. Correct code
1344 * will never try to do this (the following insn fetch will always
1345 * fault) so we the overhead of having taken an unnecessary exception
1346 * doesn't matter.
1348 if (!arm_v7m_is_handler_mode(env)) {
1349 return;
1353 * In the spec pseudocode ExceptionReturn() is called directly
1354 * from BXWritePC() and gets the full target PC value including
1355 * bit zero. In QEMU's implementation we treat it as a normal
1356 * jump-to-register (which is then caught later on), and so split
1357 * the target value up between env->regs[15] and env->thumb in
1358 * gen_bx(). Reconstitute it.
1360 excret = env->regs[15];
1361 if (env->thumb) {
1362 excret |= 1;
1365 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1366 " previous exception %d\n",
1367 excret, env->v7m.exception);
1369 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1370 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1371 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1372 excret);
1375 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1377 if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1378 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1379 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1380 "if FPU not present\n",
1381 excret);
1382 ftype = true;
1385 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1387 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1388 * we pick which FAULTMASK to clear.
1390 if (!env->v7m.secure &&
1391 ((excret & R_V7M_EXCRET_ES_MASK) ||
1392 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1393 sfault = 1;
1394 /* For all other purposes, treat ES as 0 (R_HXSR) */
1395 excret &= ~R_V7M_EXCRET_ES_MASK;
1397 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1400 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1402 * Auto-clear FAULTMASK on return from other than NMI.
1403 * If the security extension is implemented then this only
1404 * happens if the raw execution priority is >= 0; the
1405 * value of the ES bit in the exception return value indicates
1406 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1408 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1409 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1410 env->v7m.faultmask[exc_secure] = 0;
1412 } else {
1413 env->v7m.faultmask[M_REG_NS] = 0;
1417 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1418 exc_secure)) {
1419 case -1:
1420 /* attempt to exit an exception that isn't active */
1421 ufault = true;
1422 break;
1423 case 0:
1424 /* still an irq active now */
1425 break;
1426 case 1:
1428 * We returned to base exception level, no nesting.
1429 * (In the pseudocode this is written using "NestedActivation != 1"
1430 * where we have 'rettobase == false'.)
1432 rettobase = true;
1433 break;
1434 default:
1435 g_assert_not_reached();
1438 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1439 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1440 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1441 (excret & R_V7M_EXCRET_S_MASK);
1443 if (arm_feature(env, ARM_FEATURE_V8)) {
1444 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1446 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1447 * we choose to take the UsageFault.
1449 if ((excret & R_V7M_EXCRET_S_MASK) ||
1450 (excret & R_V7M_EXCRET_ES_MASK) ||
1451 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1452 ufault = true;
1455 if (excret & R_V7M_EXCRET_RES0_MASK) {
1456 ufault = true;
1458 } else {
1459 /* For v7M we only recognize certain combinations of the low bits */
1460 switch (excret & 0xf) {
1461 case 1: /* Return to Handler */
1462 break;
1463 case 13: /* Return to Thread using Process stack */
1464 case 9: /* Return to Thread using Main stack */
1466 * We only need to check NONBASETHRDENA for v7M, because in
1467 * v8M this bit does not exist (it is RES1).
1469 if (!rettobase &&
1470 !(env->v7m.ccr[env->v7m.secure] &
1471 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1472 ufault = true;
1474 break;
1475 default:
1476 ufault = true;
1481 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1482 * Handler mode (and will be until we write the new XPSR.Interrupt
1483 * field) this does not switch around the current stack pointer.
1484 * We must do this before we do any kind of tailchaining, including
1485 * for the derived exceptions on integrity check failures, or we will
1486 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1488 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1491 * Clear scratch FP values left in caller saved registers; this
1492 * must happen before any kind of tail chaining.
1494 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1495 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1496 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1497 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1498 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1499 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1500 "stackframe: error during lazy state deactivation\n");
1501 v7m_exception_taken(cpu, excret, true, false);
1502 return;
1503 } else {
1504 /* Clear s0..s15 and FPSCR */
1505 int i;
1507 for (i = 0; i < 16; i += 2) {
1508 *aa32_vfp_dreg(env, i / 2) = 0;
1510 vfp_set_fpscr(env, 0);
1514 if (sfault) {
1515 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1516 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1517 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1518 "stackframe: failed EXC_RETURN.ES validity check\n");
1519 v7m_exception_taken(cpu, excret, true, false);
1520 return;
1523 if (ufault) {
1525 * Bad exception return: instead of popping the exception
1526 * stack, directly take a usage fault on the current stack.
1528 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1529 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1530 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1531 "stackframe: failed exception return integrity check\n");
1532 v7m_exception_taken(cpu, excret, true, false);
1533 return;
1537 * Tailchaining: if there is currently a pending exception that
1538 * is high enough priority to preempt execution at the level we're
1539 * about to return to, then just directly take that exception now,
1540 * avoiding an unstack-and-then-stack. Note that now we have
1541 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1542 * our current execution priority is already the execution priority we are
1543 * returning to -- none of the state we would unstack or set based on
1544 * the EXCRET value affects it.
1546 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1547 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1548 v7m_exception_taken(cpu, excret, true, false);
1549 return;
1552 switch_v7m_security_state(env, return_to_secure);
1556 * The stack pointer we should be reading the exception frame from
1557 * depends on bits in the magic exception return type value (and
1558 * for v8M isn't necessarily the stack pointer we will eventually
1559 * end up resuming execution with). Get a pointer to the location
1560 * in the CPU state struct where the SP we need is currently being
1561 * stored; we will use and modify it in place.
1562 * We use this limited C variable scope so we don't accidentally
1563 * use 'frame_sp_p' after we do something that makes it invalid.
1565 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1566 return_to_secure,
1567 !return_to_handler,
1568 return_to_sp_process);
1569 uint32_t frameptr = *frame_sp_p;
1570 bool pop_ok = true;
1571 ARMMMUIdx mmu_idx;
1572 bool return_to_priv = return_to_handler ||
1573 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1575 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1576 return_to_priv);
1578 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1579 arm_feature(env, ARM_FEATURE_V8)) {
1580 qemu_log_mask(LOG_GUEST_ERROR,
1581 "M profile exception return with non-8-aligned SP "
1582 "for destination state is UNPREDICTABLE\n");
1585 /* Do we need to pop callee-saved registers? */
1586 if (return_to_secure &&
1587 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1588 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1589 uint32_t actual_sig;
1591 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1593 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1594 /* Take a SecureFault on the current stack */
1595 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1596 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1597 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1598 "stackframe: failed exception return integrity "
1599 "signature check\n");
1600 v7m_exception_taken(cpu, excret, true, false);
1601 return;
1604 pop_ok = pop_ok &&
1605 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1606 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1607 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1608 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1609 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1610 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1611 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1612 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1614 frameptr += 0x28;
1617 /* Pop registers */
1618 pop_ok = pop_ok &&
1619 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1620 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1621 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1622 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1623 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1624 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1625 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1626 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1628 if (!pop_ok) {
1630 * v7m_stack_read() pended a fault, so take it (as a tail
1631 * chained exception on the same stack frame)
1633 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1634 v7m_exception_taken(cpu, excret, true, false);
1635 return;
1639 * Returning from an exception with a PC with bit 0 set is defined
1640 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1641 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1642 * the lsbit, and there are several RTOSes out there which incorrectly
1643 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1644 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1645 * complain about the badly behaved guest.
1647 if (env->regs[15] & 1) {
1648 env->regs[15] &= ~1U;
1649 if (!arm_feature(env, ARM_FEATURE_V8)) {
1650 qemu_log_mask(LOG_GUEST_ERROR,
1651 "M profile return from interrupt with misaligned "
1652 "PC is UNPREDICTABLE on v7M\n");
1656 if (arm_feature(env, ARM_FEATURE_V8)) {
1658 * For v8M we have to check whether the xPSR exception field
1659 * matches the EXCRET value for return to handler/thread
1660 * before we commit to changing the SP and xPSR.
1662 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1663 if (return_to_handler != will_be_handler) {
1665 * Take an INVPC UsageFault on the current stack.
1666 * By this point we will have switched to the security state
1667 * for the background state, so this UsageFault will target
1668 * that state.
1670 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1671 env->v7m.secure);
1672 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1673 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1674 "stackframe: failed exception return integrity "
1675 "check\n");
1676 v7m_exception_taken(cpu, excret, true, false);
1677 return;
1681 if (!ftype) {
1682 /* FP present and we need to handle it */
1683 if (!return_to_secure &&
1684 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1685 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1686 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1687 qemu_log_mask(CPU_LOG_INT,
1688 "...taking SecureFault on existing stackframe: "
1689 "Secure LSPACT set but exception return is "
1690 "not to secure state\n");
1691 v7m_exception_taken(cpu, excret, true, false);
1692 return;
1695 restore_s16_s31 = return_to_secure &&
1696 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1698 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1699 /* State in FPU is still valid, just clear LSPACT */
1700 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1701 } else {
1702 int i;
1703 uint32_t fpscr;
1704 bool cpacr_pass, nsacr_pass;
1706 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1707 return_to_priv);
1708 nsacr_pass = return_to_secure ||
1709 extract32(env->v7m.nsacr, 10, 1);
1711 if (!cpacr_pass) {
1712 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1713 return_to_secure);
1714 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1715 qemu_log_mask(CPU_LOG_INT,
1716 "...taking UsageFault on existing "
1717 "stackframe: CPACR.CP10 prevents unstacking "
1718 "FP regs\n");
1719 v7m_exception_taken(cpu, excret, true, false);
1720 return;
1721 } else if (!nsacr_pass) {
1722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1723 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1724 qemu_log_mask(CPU_LOG_INT,
1725 "...taking Secure UsageFault on existing "
1726 "stackframe: NSACR.CP10 prevents unstacking "
1727 "FP regs\n");
1728 v7m_exception_taken(cpu, excret, true, false);
1729 return;
1732 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1733 uint32_t slo, shi;
1734 uint64_t dn;
1735 uint32_t faddr = frameptr + 0x20 + 4 * i;
1737 if (i >= 16) {
1738 faddr += 8; /* Skip the slot for the FPSCR */
1741 pop_ok = pop_ok &&
1742 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1743 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1745 if (!pop_ok) {
1746 break;
1749 dn = (uint64_t)shi << 32 | slo;
1750 *aa32_vfp_dreg(env, i / 2) = dn;
1752 pop_ok = pop_ok &&
1753 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1754 if (pop_ok) {
1755 vfp_set_fpscr(env, fpscr);
1757 if (!pop_ok) {
1759 * These regs are 0 if security extension present;
1760 * otherwise merely UNKNOWN. We zero always.
1762 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1763 *aa32_vfp_dreg(env, i / 2) = 0;
1765 vfp_set_fpscr(env, 0);
1769 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1770 V7M_CONTROL, FPCA, !ftype);
1772 /* Commit to consuming the stack frame */
1773 frameptr += 0x20;
1774 if (!ftype) {
1775 frameptr += 0x48;
1776 if (restore_s16_s31) {
1777 frameptr += 0x40;
1781 * Undo stack alignment (the SPREALIGN bit indicates that the original
1782 * pre-exception SP was not 8-aligned and we added a padding word to
1783 * align it, so we undo this by ORing in the bit that increases it
1784 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1785 * would work too but a logical OR is how the pseudocode specifies it.)
1787 if (xpsr & XPSR_SPREALIGN) {
1788 frameptr |= 4;
1790 *frame_sp_p = frameptr;
1793 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1794 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1795 xpsr_mask &= ~XPSR_GE;
1797 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1798 xpsr_write(env, xpsr, xpsr_mask);
1800 if (env->v7m.secure) {
1801 bool sfpa = xpsr & XPSR_SFPA;
1803 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1804 V7M_CONTROL, SFPA, sfpa);
1808 * The restored xPSR exception field will be zero if we're
1809 * resuming in Thread mode. If that doesn't match what the
1810 * exception return excret specified then this is a UsageFault.
1811 * v7M requires we make this check here; v8M did it earlier.
1813 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1815 * Take an INVPC UsageFault by pushing the stack again;
1816 * we know we're v7M so this is never a Secure UsageFault.
1818 bool ignore_stackfaults;
1820 assert(!arm_feature(env, ARM_FEATURE_V8));
1821 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1822 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1823 ignore_stackfaults = v7m_push_stack(cpu);
1824 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1825 "failed exception return integrity check\n");
1826 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1827 return;
1830 /* Otherwise, we have a successful exception exit. */
1831 arm_clear_exclusive(env);
1832 arm_rebuild_hflags(env);
1833 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1836 static bool do_v7m_function_return(ARMCPU *cpu)
1839 * v8M security extensions magic function return.
1840 * We may either:
1841 * (1) throw an exception (longjump)
1842 * (2) return true if we successfully handled the function return
1843 * (3) return false if we failed a consistency check and have
1844 * pended a UsageFault that needs to be taken now
1846 * At this point the magic return value is split between env->regs[15]
1847 * and env->thumb. We don't bother to reconstitute it because we don't
1848 * need it (all values are handled the same way).
1850 CPUARMState *env = &cpu->env;
1851 uint32_t newpc, newpsr, newpsr_exc;
1853 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1856 bool threadmode, spsel;
1857 TCGMemOpIdx oi;
1858 ARMMMUIdx mmu_idx;
1859 uint32_t *frame_sp_p;
1860 uint32_t frameptr;
1862 /* Pull the return address and IPSR from the Secure stack */
1863 threadmode = !arm_v7m_is_handler_mode(env);
1864 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1866 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1867 frameptr = *frame_sp_p;
1870 * These loads may throw an exception (for MPU faults). We want to
1871 * do them as secure, so work out what MMU index that is.
1873 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1874 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1875 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1876 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1878 /* Consistency checks on new IPSR */
1879 newpsr_exc = newpsr & XPSR_EXCP;
1880 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1881 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1882 /* Pend the fault and tell our caller to take it */
1883 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1884 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1885 env->v7m.secure);
1886 qemu_log_mask(CPU_LOG_INT,
1887 "...taking INVPC UsageFault: "
1888 "IPSR consistency check failed\n");
1889 return false;
1892 *frame_sp_p = frameptr + 8;
1895 /* This invalidates frame_sp_p */
1896 switch_v7m_security_state(env, true);
1897 env->v7m.exception = newpsr_exc;
1898 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1899 if (newpsr & XPSR_SFPA) {
1900 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1902 xpsr_write(env, 0, XPSR_IT);
1903 env->thumb = newpc & 1;
1904 env->regs[15] = newpc & ~1;
1905 arm_rebuild_hflags(env);
1907 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1908 return true;
1911 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1912 uint32_t addr, uint16_t *insn)
1915 * Load a 16-bit portion of a v7M instruction, returning true on success,
1916 * or false on failure (in which case we will have pended the appropriate
1917 * exception).
1918 * We need to do the instruction fetch's MPU and SAU checks
1919 * like this because there is no MMU index that would allow
1920 * doing the load with a single function call. Instead we must
1921 * first check that the security attributes permit the load
1922 * and that they don't mismatch on the two halves of the instruction,
1923 * and then we do the load as a secure load (ie using the security
1924 * attributes of the address, not the CPU, as architecturally required).
1926 CPUState *cs = CPU(cpu);
1927 CPUARMState *env = &cpu->env;
1928 V8M_SAttributes sattrs = {};
1929 MemTxAttrs attrs = {};
1930 ARMMMUFaultInfo fi = {};
1931 MemTxResult txres;
1932 target_ulong page_size;
1933 hwaddr physaddr;
1934 int prot;
1936 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
1937 if (!sattrs.nsc || sattrs.ns) {
1939 * This must be the second half of the insn, and it straddles a
1940 * region boundary with the second half not being S&NSC.
1942 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1943 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1944 qemu_log_mask(CPU_LOG_INT,
1945 "...really SecureFault with SFSR.INVEP\n");
1946 return false;
1948 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
1949 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
1950 /* the MPU lookup failed */
1951 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
1952 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
1953 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
1954 return false;
1956 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
1957 attrs, &txres);
1958 if (txres != MEMTX_OK) {
1959 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
1960 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
1961 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
1962 return false;
1964 return true;
1967 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
1970 * Check whether this attempt to execute code in a Secure & NS-Callable
1971 * memory region is for an SG instruction; if so, then emulate the
1972 * effect of the SG instruction and return true. Otherwise pend
1973 * the correct kind of exception and return false.
1975 CPUARMState *env = &cpu->env;
1976 ARMMMUIdx mmu_idx;
1977 uint16_t insn;
1980 * We should never get here unless get_phys_addr_pmsav8() caused
1981 * an exception for NS executing in S&NSC memory.
1983 assert(!env->v7m.secure);
1984 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
1986 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
1987 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1989 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
1990 return false;
1993 if (!env->thumb) {
1994 goto gen_invep;
1997 if (insn != 0xe97f) {
1999 * Not an SG instruction first half (we choose the IMPDEF
2000 * early-SG-check option).
2002 goto gen_invep;
2005 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2006 return false;
2009 if (insn != 0xe97f) {
2011 * Not an SG instruction second half (yes, both halves of the SG
2012 * insn have the same hex value)
2014 goto gen_invep;
2018 * OK, we have confirmed that we really have an SG instruction.
2019 * We know we're NS in S memory so don't need to repeat those checks.
2021 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2022 ", executing it\n", env->regs[15]);
2023 env->regs[14] &= ~1;
2024 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2025 switch_v7m_security_state(env, true);
2026 xpsr_write(env, 0, XPSR_IT);
2027 env->regs[15] += 4;
2028 arm_rebuild_hflags(env);
2029 return true;
2031 gen_invep:
2032 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2033 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2034 qemu_log_mask(CPU_LOG_INT,
2035 "...really SecureFault with SFSR.INVEP\n");
2036 return false;
2039 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2041 ARMCPU *cpu = ARM_CPU(cs);
2042 CPUARMState *env = &cpu->env;
2043 uint32_t lr;
2044 bool ignore_stackfaults;
2046 arm_log_exception(cs->exception_index);
2049 * For exceptions we just mark as pending on the NVIC, and let that
2050 * handle it.
2052 switch (cs->exception_index) {
2053 case EXCP_UDEF:
2054 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2055 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2056 break;
2057 case EXCP_NOCP:
2060 * NOCP might be directed to something other than the current
2061 * security state if this fault is because of NSACR; we indicate
2062 * the target security state using exception.target_el.
2064 int target_secstate;
2066 if (env->exception.target_el == 3) {
2067 target_secstate = M_REG_S;
2068 } else {
2069 target_secstate = env->v7m.secure;
2071 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2072 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2073 break;
2075 case EXCP_INVSTATE:
2076 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2077 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2078 break;
2079 case EXCP_STKOF:
2080 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2081 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2082 break;
2083 case EXCP_LSERR:
2084 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2085 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2086 break;
2087 case EXCP_UNALIGNED:
2088 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2089 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2090 break;
2091 case EXCP_SWI:
2092 /* The PC already points to the next instruction. */
2093 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2094 break;
2095 case EXCP_PREFETCH_ABORT:
2096 case EXCP_DATA_ABORT:
2098 * Note that for M profile we don't have a guest facing FSR, but
2099 * the env->exception.fsr will be populated by the code that
2100 * raises the fault, in the A profile short-descriptor format.
2102 switch (env->exception.fsr & 0xf) {
2103 case M_FAKE_FSR_NSC_EXEC:
2105 * Exception generated when we try to execute code at an address
2106 * which is marked as Secure & Non-Secure Callable and the CPU
2107 * is in the Non-Secure state. The only instruction which can
2108 * be executed like this is SG (and that only if both halves of
2109 * the SG instruction have the same security attributes.)
2110 * Everything else must generate an INVEP SecureFault, so we
2111 * emulate the SG instruction here.
2113 if (v7m_handle_execute_nsc(cpu)) {
2114 return;
2116 break;
2117 case M_FAKE_FSR_SFAULT:
2119 * Various flavours of SecureFault for attempts to execute or
2120 * access data in the wrong security state.
2122 switch (cs->exception_index) {
2123 case EXCP_PREFETCH_ABORT:
2124 if (env->v7m.secure) {
2125 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2126 qemu_log_mask(CPU_LOG_INT,
2127 "...really SecureFault with SFSR.INVTRAN\n");
2128 } else {
2129 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2130 qemu_log_mask(CPU_LOG_INT,
2131 "...really SecureFault with SFSR.INVEP\n");
2133 break;
2134 case EXCP_DATA_ABORT:
2135 /* This must be an NS access to S memory */
2136 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2137 qemu_log_mask(CPU_LOG_INT,
2138 "...really SecureFault with SFSR.AUVIOL\n");
2139 break;
2141 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2142 break;
2143 case 0x8: /* External Abort */
2144 switch (cs->exception_index) {
2145 case EXCP_PREFETCH_ABORT:
2146 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2147 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2148 break;
2149 case EXCP_DATA_ABORT:
2150 env->v7m.cfsr[M_REG_NS] |=
2151 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2152 env->v7m.bfar = env->exception.vaddress;
2153 qemu_log_mask(CPU_LOG_INT,
2154 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2155 env->v7m.bfar);
2156 break;
2158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2159 break;
2160 default:
2162 * All other FSR values are either MPU faults or "can't happen
2163 * for M profile" cases.
2165 switch (cs->exception_index) {
2166 case EXCP_PREFETCH_ABORT:
2167 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2168 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2169 break;
2170 case EXCP_DATA_ABORT:
2171 env->v7m.cfsr[env->v7m.secure] |=
2172 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2173 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2174 qemu_log_mask(CPU_LOG_INT,
2175 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2176 env->v7m.mmfar[env->v7m.secure]);
2177 break;
2179 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2180 env->v7m.secure);
2181 break;
2183 break;
2184 case EXCP_SEMIHOST:
2185 qemu_log_mask(CPU_LOG_INT,
2186 "...handling as semihosting call 0x%x\n",
2187 env->regs[0]);
2188 env->regs[0] = do_arm_semihosting(env);
2189 env->regs[15] += env->thumb ? 2 : 4;
2190 return;
2191 case EXCP_BKPT:
2192 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2193 break;
2194 case EXCP_IRQ:
2195 break;
2196 case EXCP_EXCEPTION_EXIT:
2197 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2198 /* Must be v8M security extension function return */
2199 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2200 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2201 if (do_v7m_function_return(cpu)) {
2202 return;
2204 } else {
2205 do_v7m_exception_exit(cpu);
2206 return;
2208 break;
2209 case EXCP_LAZYFP:
2211 * We already pended the specific exception in the NVIC in the
2212 * v7m_preserve_fp_state() helper function.
2214 break;
2215 default:
2216 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2217 return; /* Never happens. Keep compiler happy. */
2220 if (arm_feature(env, ARM_FEATURE_V8)) {
2221 lr = R_V7M_EXCRET_RES1_MASK |
2222 R_V7M_EXCRET_DCRS_MASK;
2224 * The S bit indicates whether we should return to Secure
2225 * or NonSecure (ie our current state).
2226 * The ES bit indicates whether we're taking this exception
2227 * to Secure or NonSecure (ie our target state). We set it
2228 * later, in v7m_exception_taken().
2229 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2230 * This corresponds to the ARM ARM pseudocode for v8M setting
2231 * some LR bits in PushStack() and some in ExceptionTaken();
2232 * the distinction matters for the tailchain cases where we
2233 * can take an exception without pushing the stack.
2235 if (env->v7m.secure) {
2236 lr |= R_V7M_EXCRET_S_MASK;
2238 } else {
2239 lr = R_V7M_EXCRET_RES1_MASK |
2240 R_V7M_EXCRET_S_MASK |
2241 R_V7M_EXCRET_DCRS_MASK |
2242 R_V7M_EXCRET_ES_MASK;
2243 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2244 lr |= R_V7M_EXCRET_SPSEL_MASK;
2247 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2248 lr |= R_V7M_EXCRET_FTYPE_MASK;
2250 if (!arm_v7m_is_handler_mode(env)) {
2251 lr |= R_V7M_EXCRET_MODE_MASK;
2254 ignore_stackfaults = v7m_push_stack(cpu);
2255 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2258 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2260 unsigned el = arm_current_el(env);
2262 /* First handle registers which unprivileged can read */
2263 switch (reg) {
2264 case 0 ... 7: /* xPSR sub-fields */
2265 return v7m_mrs_xpsr(env, reg, el);
2266 case 20: /* CONTROL */
2267 return v7m_mrs_control(env, env->v7m.secure);
2268 case 0x94: /* CONTROL_NS */
2270 * We have to handle this here because unprivileged Secure code
2271 * can read the NS CONTROL register.
2273 if (!env->v7m.secure) {
2274 return 0;
2276 return env->v7m.control[M_REG_NS] |
2277 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2280 if (el == 0) {
2281 return 0; /* unprivileged reads others as zero */
2284 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2285 switch (reg) {
2286 case 0x88: /* MSP_NS */
2287 if (!env->v7m.secure) {
2288 return 0;
2290 return env->v7m.other_ss_msp;
2291 case 0x89: /* PSP_NS */
2292 if (!env->v7m.secure) {
2293 return 0;
2295 return env->v7m.other_ss_psp;
2296 case 0x8a: /* MSPLIM_NS */
2297 if (!env->v7m.secure) {
2298 return 0;
2300 return env->v7m.msplim[M_REG_NS];
2301 case 0x8b: /* PSPLIM_NS */
2302 if (!env->v7m.secure) {
2303 return 0;
2305 return env->v7m.psplim[M_REG_NS];
2306 case 0x90: /* PRIMASK_NS */
2307 if (!env->v7m.secure) {
2308 return 0;
2310 return env->v7m.primask[M_REG_NS];
2311 case 0x91: /* BASEPRI_NS */
2312 if (!env->v7m.secure) {
2313 return 0;
2315 return env->v7m.basepri[M_REG_NS];
2316 case 0x93: /* FAULTMASK_NS */
2317 if (!env->v7m.secure) {
2318 return 0;
2320 return env->v7m.faultmask[M_REG_NS];
2321 case 0x98: /* SP_NS */
2324 * This gives the non-secure SP selected based on whether we're
2325 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2327 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2329 if (!env->v7m.secure) {
2330 return 0;
2332 if (!arm_v7m_is_handler_mode(env) && spsel) {
2333 return env->v7m.other_ss_psp;
2334 } else {
2335 return env->v7m.other_ss_msp;
2338 default:
2339 break;
2343 switch (reg) {
2344 case 8: /* MSP */
2345 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2346 case 9: /* PSP */
2347 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2348 case 10: /* MSPLIM */
2349 if (!arm_feature(env, ARM_FEATURE_V8)) {
2350 goto bad_reg;
2352 return env->v7m.msplim[env->v7m.secure];
2353 case 11: /* PSPLIM */
2354 if (!arm_feature(env, ARM_FEATURE_V8)) {
2355 goto bad_reg;
2357 return env->v7m.psplim[env->v7m.secure];
2358 case 16: /* PRIMASK */
2359 return env->v7m.primask[env->v7m.secure];
2360 case 17: /* BASEPRI */
2361 case 18: /* BASEPRI_MAX */
2362 return env->v7m.basepri[env->v7m.secure];
2363 case 19: /* FAULTMASK */
2364 return env->v7m.faultmask[env->v7m.secure];
2365 default:
2366 bad_reg:
2367 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2368 " register %d\n", reg);
2369 return 0;
2373 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2376 * We're passed bits [11..0] of the instruction; extract
2377 * SYSm and the mask bits.
2378 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2379 * we choose to treat them as if the mask bits were valid.
2380 * NB that the pseudocode 'mask' variable is bits [11..10],
2381 * whereas ours is [11..8].
2383 uint32_t mask = extract32(maskreg, 8, 4);
2384 uint32_t reg = extract32(maskreg, 0, 8);
2385 int cur_el = arm_current_el(env);
2387 if (cur_el == 0 && reg > 7 && reg != 20) {
2389 * only xPSR sub-fields and CONTROL.SFPA may be written by
2390 * unprivileged code
2392 return;
2395 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2396 switch (reg) {
2397 case 0x88: /* MSP_NS */
2398 if (!env->v7m.secure) {
2399 return;
2401 env->v7m.other_ss_msp = val;
2402 return;
2403 case 0x89: /* PSP_NS */
2404 if (!env->v7m.secure) {
2405 return;
2407 env->v7m.other_ss_psp = val;
2408 return;
2409 case 0x8a: /* MSPLIM_NS */
2410 if (!env->v7m.secure) {
2411 return;
2413 env->v7m.msplim[M_REG_NS] = val & ~7;
2414 return;
2415 case 0x8b: /* PSPLIM_NS */
2416 if (!env->v7m.secure) {
2417 return;
2419 env->v7m.psplim[M_REG_NS] = val & ~7;
2420 return;
2421 case 0x90: /* PRIMASK_NS */
2422 if (!env->v7m.secure) {
2423 return;
2425 env->v7m.primask[M_REG_NS] = val & 1;
2426 return;
2427 case 0x91: /* BASEPRI_NS */
2428 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2429 return;
2431 env->v7m.basepri[M_REG_NS] = val & 0xff;
2432 return;
2433 case 0x93: /* FAULTMASK_NS */
2434 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2435 return;
2437 env->v7m.faultmask[M_REG_NS] = val & 1;
2438 return;
2439 case 0x94: /* CONTROL_NS */
2440 if (!env->v7m.secure) {
2441 return;
2443 write_v7m_control_spsel_for_secstate(env,
2444 val & R_V7M_CONTROL_SPSEL_MASK,
2445 M_REG_NS);
2446 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2447 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2448 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2451 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2452 * RES0 if the FPU is not present, and is stored in the S bank
2454 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
2455 extract32(env->v7m.nsacr, 10, 1)) {
2456 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2457 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2459 return;
2460 case 0x98: /* SP_NS */
2463 * This gives the non-secure SP selected based on whether we're
2464 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2466 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2467 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2468 uint32_t limit;
2470 if (!env->v7m.secure) {
2471 return;
2474 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2476 if (val < limit) {
2477 CPUState *cs = env_cpu(env);
2479 cpu_restore_state(cs, GETPC(), true);
2480 raise_exception(env, EXCP_STKOF, 0, 1);
2483 if (is_psp) {
2484 env->v7m.other_ss_psp = val;
2485 } else {
2486 env->v7m.other_ss_msp = val;
2488 return;
2490 default:
2491 break;
2495 switch (reg) {
2496 case 0 ... 7: /* xPSR sub-fields */
2497 v7m_msr_xpsr(env, mask, reg, val);
2498 break;
2499 case 8: /* MSP */
2500 if (v7m_using_psp(env)) {
2501 env->v7m.other_sp = val;
2502 } else {
2503 env->regs[13] = val;
2505 break;
2506 case 9: /* PSP */
2507 if (v7m_using_psp(env)) {
2508 env->regs[13] = val;
2509 } else {
2510 env->v7m.other_sp = val;
2512 break;
2513 case 10: /* MSPLIM */
2514 if (!arm_feature(env, ARM_FEATURE_V8)) {
2515 goto bad_reg;
2517 env->v7m.msplim[env->v7m.secure] = val & ~7;
2518 break;
2519 case 11: /* PSPLIM */
2520 if (!arm_feature(env, ARM_FEATURE_V8)) {
2521 goto bad_reg;
2523 env->v7m.psplim[env->v7m.secure] = val & ~7;
2524 break;
2525 case 16: /* PRIMASK */
2526 env->v7m.primask[env->v7m.secure] = val & 1;
2527 break;
2528 case 17: /* BASEPRI */
2529 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2530 goto bad_reg;
2532 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2533 break;
2534 case 18: /* BASEPRI_MAX */
2535 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2536 goto bad_reg;
2538 val &= 0xff;
2539 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2540 || env->v7m.basepri[env->v7m.secure] == 0)) {
2541 env->v7m.basepri[env->v7m.secure] = val;
2543 break;
2544 case 19: /* FAULTMASK */
2545 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2546 goto bad_reg;
2548 env->v7m.faultmask[env->v7m.secure] = val & 1;
2549 break;
2550 case 20: /* CONTROL */
2552 * Writing to the SPSEL bit only has an effect if we are in
2553 * thread mode; other bits can be updated by any privileged code.
2554 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2555 * env->v7m.control, so we only need update the others.
2556 * For v7M, we must just ignore explicit writes to SPSEL in handler
2557 * mode; for v8M the write is permitted but will have no effect.
2558 * All these bits are writes-ignored from non-privileged code,
2559 * except for SFPA.
2561 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2562 !arm_v7m_is_handler_mode(env))) {
2563 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2565 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2566 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2567 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2569 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
2571 * SFPA is RAZ/WI from NS or if no FPU.
2572 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2573 * Both are stored in the S bank.
2575 if (env->v7m.secure) {
2576 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2577 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2579 if (cur_el > 0 &&
2580 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2581 extract32(env->v7m.nsacr, 10, 1))) {
2582 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2583 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2586 break;
2587 default:
2588 bad_reg:
2589 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2590 " register %d\n", reg);
2591 return;
2595 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2597 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2598 bool forceunpriv = op & 1;
2599 bool alt = op & 2;
2600 V8M_SAttributes sattrs = {};
2601 uint32_t tt_resp;
2602 bool r, rw, nsr, nsrw, mrvalid;
2603 int prot;
2604 ARMMMUFaultInfo fi = {};
2605 MemTxAttrs attrs = {};
2606 hwaddr phys_addr;
2607 ARMMMUIdx mmu_idx;
2608 uint32_t mregion;
2609 bool targetpriv;
2610 bool targetsec = env->v7m.secure;
2611 bool is_subpage;
2614 * Work out what the security state and privilege level we're
2615 * interested in is...
2617 if (alt) {
2618 targetsec = !targetsec;
2621 if (forceunpriv) {
2622 targetpriv = false;
2623 } else {
2624 targetpriv = arm_v7m_is_handler_mode(env) ||
2625 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2628 /* ...and then figure out which MMU index this is */
2629 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2632 * We know that the MPU and SAU don't care about the access type
2633 * for our purposes beyond that we don't want to claim to be
2634 * an insn fetch, so we arbitrarily call this a read.
2638 * MPU region info only available for privileged or if
2639 * inspecting the other MPU state.
2641 if (arm_current_el(env) != 0 || alt) {
2642 /* We can ignore the return value as prot is always set */
2643 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2644 &phys_addr, &attrs, &prot, &is_subpage,
2645 &fi, &mregion);
2646 if (mregion == -1) {
2647 mrvalid = false;
2648 mregion = 0;
2649 } else {
2650 mrvalid = true;
2652 r = prot & PAGE_READ;
2653 rw = prot & PAGE_WRITE;
2654 } else {
2655 r = false;
2656 rw = false;
2657 mrvalid = false;
2658 mregion = 0;
2661 if (env->v7m.secure) {
2662 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2663 nsr = sattrs.ns && r;
2664 nsrw = sattrs.ns && rw;
2665 } else {
2666 sattrs.ns = true;
2667 nsr = false;
2668 nsrw = false;
2671 tt_resp = (sattrs.iregion << 24) |
2672 (sattrs.irvalid << 23) |
2673 ((!sattrs.ns) << 22) |
2674 (nsrw << 21) |
2675 (nsr << 20) |
2676 (rw << 19) |
2677 (r << 18) |
2678 (sattrs.srvalid << 17) |
2679 (mrvalid << 16) |
2680 (sattrs.sregion << 8) |
2681 mregion;
2683 return tt_resp;
2686 #endif /* !CONFIG_USER_ONLY */
2688 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2689 bool secstate, bool priv, bool negpri)
2691 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2693 if (priv) {
2694 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2697 if (negpri) {
2698 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2701 if (secstate) {
2702 mmu_idx |= ARM_MMU_IDX_M_S;
2705 return mmu_idx;
2708 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2709 bool secstate, bool priv)
2711 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2713 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2716 /* Return the MMU index for a v7M CPU in the specified security state */
2717 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2719 bool priv = arm_current_el(env) != 0;
2721 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);