Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-2.12-pull-request...
[qemu/ar7.git] / hw / net / imx_fec.c
blob9506f9b69f69cf7387c693be5e9ee4869998f884
1 /*
2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/net/imx_fec.h"
26 #include "sysemu/dma.h"
27 #include "qemu/log.h"
28 #include "net/checksum.h"
29 #include "net/eth.h"
31 /* For crc32 */
32 #include <zlib.h>
34 #ifndef DEBUG_IMX_FEC
35 #define DEBUG_IMX_FEC 0
36 #endif
38 #define FEC_PRINTF(fmt, args...) \
39 do { \
40 if (DEBUG_IMX_FEC) { \
41 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
42 __func__, ##args); \
43 } \
44 } while (0)
46 #ifndef DEBUG_IMX_PHY
47 #define DEBUG_IMX_PHY 0
48 #endif
50 #define PHY_PRINTF(fmt, args...) \
51 do { \
52 if (DEBUG_IMX_PHY) { \
53 fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
54 __func__, ##args); \
55 } \
56 } while (0)
58 #define IMX_MAX_DESC 1024
60 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
62 static char tmp[20];
63 sprintf(tmp, "index %d", index);
64 return tmp;
67 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
69 switch (index) {
70 case ENET_FRBR:
71 return "FRBR";
72 case ENET_FRSR:
73 return "FRSR";
74 case ENET_MIIGSK_CFGR:
75 return "MIIGSK_CFGR";
76 case ENET_MIIGSK_ENR:
77 return "MIIGSK_ENR";
78 default:
79 return imx_default_reg_name(s, index);
83 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
85 switch (index) {
86 case ENET_RSFL:
87 return "RSFL";
88 case ENET_RSEM:
89 return "RSEM";
90 case ENET_RAEM:
91 return "RAEM";
92 case ENET_RAFL:
93 return "RAFL";
94 case ENET_TSEM:
95 return "TSEM";
96 case ENET_TAEM:
97 return "TAEM";
98 case ENET_TAFL:
99 return "TAFL";
100 case ENET_TIPG:
101 return "TIPG";
102 case ENET_FTRL:
103 return "FTRL";
104 case ENET_TACC:
105 return "TACC";
106 case ENET_RACC:
107 return "RACC";
108 case ENET_ATCR:
109 return "ATCR";
110 case ENET_ATVR:
111 return "ATVR";
112 case ENET_ATOFF:
113 return "ATOFF";
114 case ENET_ATPER:
115 return "ATPER";
116 case ENET_ATCOR:
117 return "ATCOR";
118 case ENET_ATINC:
119 return "ATINC";
120 case ENET_ATSTMP:
121 return "ATSTMP";
122 case ENET_TGSR:
123 return "TGSR";
124 case ENET_TCSR0:
125 return "TCSR0";
126 case ENET_TCCR0:
127 return "TCCR0";
128 case ENET_TCSR1:
129 return "TCSR1";
130 case ENET_TCCR1:
131 return "TCCR1";
132 case ENET_TCSR2:
133 return "TCSR2";
134 case ENET_TCCR2:
135 return "TCCR2";
136 case ENET_TCSR3:
137 return "TCSR3";
138 case ENET_TCCR3:
139 return "TCCR3";
140 default:
141 return imx_default_reg_name(s, index);
145 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
147 switch (index) {
148 case ENET_EIR:
149 return "EIR";
150 case ENET_EIMR:
151 return "EIMR";
152 case ENET_RDAR:
153 return "RDAR";
154 case ENET_TDAR:
155 return "TDAR";
156 case ENET_ECR:
157 return "ECR";
158 case ENET_MMFR:
159 return "MMFR";
160 case ENET_MSCR:
161 return "MSCR";
162 case ENET_MIBC:
163 return "MIBC";
164 case ENET_RCR:
165 return "RCR";
166 case ENET_TCR:
167 return "TCR";
168 case ENET_PALR:
169 return "PALR";
170 case ENET_PAUR:
171 return "PAUR";
172 case ENET_OPD:
173 return "OPD";
174 case ENET_IAUR:
175 return "IAUR";
176 case ENET_IALR:
177 return "IALR";
178 case ENET_GAUR:
179 return "GAUR";
180 case ENET_GALR:
181 return "GALR";
182 case ENET_TFWR:
183 return "TFWR";
184 case ENET_RDSR:
185 return "RDSR";
186 case ENET_TDSR:
187 return "TDSR";
188 case ENET_MRBR:
189 return "MRBR";
190 default:
191 if (s->is_fec) {
192 return imx_fec_reg_name(s, index);
193 } else {
194 return imx_enet_reg_name(s, index);
200 * Versions of this device with more than one TX descriptor save the
201 * 2nd and 3rd descriptors in a subsection, to maintain migration
202 * compatibility with previous versions of the device that only
203 * supported a single descriptor.
205 static bool imx_eth_is_multi_tx_ring(void *opaque)
207 IMXFECState *s = IMX_FEC(opaque);
209 return s->tx_ring_num > 1;
212 static const VMStateDescription vmstate_imx_eth_txdescs = {
213 .name = "imx.fec/txdescs",
214 .version_id = 1,
215 .minimum_version_id = 1,
216 .needed = imx_eth_is_multi_tx_ring,
217 .fields = (VMStateField[]) {
218 VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
219 VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
220 VMSTATE_END_OF_LIST()
224 static const VMStateDescription vmstate_imx_eth = {
225 .name = TYPE_IMX_FEC,
226 .version_id = 2,
227 .minimum_version_id = 2,
228 .fields = (VMStateField[]) {
229 VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
230 VMSTATE_UINT32(rx_descriptor, IMXFECState),
231 VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
232 VMSTATE_UINT32(phy_status, IMXFECState),
233 VMSTATE_UINT32(phy_control, IMXFECState),
234 VMSTATE_UINT32(phy_advertise, IMXFECState),
235 VMSTATE_UINT32(phy_int, IMXFECState),
236 VMSTATE_UINT32(phy_int_mask, IMXFECState),
237 VMSTATE_END_OF_LIST()
239 .subsections = (const VMStateDescription * []) {
240 &vmstate_imx_eth_txdescs,
241 NULL
245 #define PHY_INT_ENERGYON (1 << 7)
246 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
247 #define PHY_INT_FAULT (1 << 5)
248 #define PHY_INT_DOWN (1 << 4)
249 #define PHY_INT_AUTONEG_LP (1 << 3)
250 #define PHY_INT_PARFAULT (1 << 2)
251 #define PHY_INT_AUTONEG_PAGE (1 << 1)
253 static void imx_eth_update(IMXFECState *s);
256 * The MII phy could raise a GPIO to the processor which in turn
257 * could be handled as an interrpt by the OS.
258 * For now we don't handle any GPIO/interrupt line, so the OS will
259 * have to poll for the PHY status.
261 static void phy_update_irq(IMXFECState *s)
263 imx_eth_update(s);
266 static void phy_update_link(IMXFECState *s)
268 /* Autonegotiation status mirrors link status. */
269 if (qemu_get_queue(s->nic)->link_down) {
270 PHY_PRINTF("link is down\n");
271 s->phy_status &= ~0x0024;
272 s->phy_int |= PHY_INT_DOWN;
273 } else {
274 PHY_PRINTF("link is up\n");
275 s->phy_status |= 0x0024;
276 s->phy_int |= PHY_INT_ENERGYON;
277 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
279 phy_update_irq(s);
282 static void imx_eth_set_link(NetClientState *nc)
284 phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
287 static void phy_reset(IMXFECState *s)
289 s->phy_status = 0x7809;
290 s->phy_control = 0x3000;
291 s->phy_advertise = 0x01e1;
292 s->phy_int_mask = 0;
293 s->phy_int = 0;
294 phy_update_link(s);
297 static uint32_t do_phy_read(IMXFECState *s, int reg)
299 uint32_t val;
301 if (reg > 31) {
302 /* we only advertise one phy */
303 return 0;
306 switch (reg) {
307 case 0: /* Basic Control */
308 val = s->phy_control;
309 break;
310 case 1: /* Basic Status */
311 val = s->phy_status;
312 break;
313 case 2: /* ID1 */
314 val = 0x0007;
315 break;
316 case 3: /* ID2 */
317 val = 0xc0d1;
318 break;
319 case 4: /* Auto-neg advertisement */
320 val = s->phy_advertise;
321 break;
322 case 5: /* Auto-neg Link Partner Ability */
323 val = 0x0f71;
324 break;
325 case 6: /* Auto-neg Expansion */
326 val = 1;
327 break;
328 case 29: /* Interrupt source. */
329 val = s->phy_int;
330 s->phy_int = 0;
331 phy_update_irq(s);
332 break;
333 case 30: /* Interrupt mask */
334 val = s->phy_int_mask;
335 break;
336 case 17:
337 case 18:
338 case 27:
339 case 31:
340 qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
341 TYPE_IMX_FEC, __func__, reg);
342 val = 0;
343 break;
344 default:
345 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
346 TYPE_IMX_FEC, __func__, reg);
347 val = 0;
348 break;
351 PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
353 return val;
356 static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
358 PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
360 if (reg > 31) {
361 /* we only advertise one phy */
362 return;
365 switch (reg) {
366 case 0: /* Basic Control */
367 if (val & 0x8000) {
368 phy_reset(s);
369 } else {
370 s->phy_control = val & 0x7980;
371 /* Complete autonegotiation immediately. */
372 if (val & 0x1000) {
373 s->phy_status |= 0x0020;
376 break;
377 case 4: /* Auto-neg advertisement */
378 s->phy_advertise = (val & 0x2d7f) | 0x80;
379 break;
380 case 30: /* Interrupt mask */
381 s->phy_int_mask = val & 0xff;
382 phy_update_irq(s);
383 break;
384 case 17:
385 case 18:
386 case 27:
387 case 31:
388 qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
389 TYPE_IMX_FEC, __func__, reg);
390 break;
391 default:
392 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
393 TYPE_IMX_FEC, __func__, reg);
394 break;
398 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
400 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
403 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
405 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
408 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
410 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
413 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
415 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
418 static void imx_eth_update(IMXFECState *s)
420 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_TS_TIMER) {
421 qemu_set_irq(s->irq[1], 1);
422 } else {
423 qemu_set_irq(s->irq[1], 0);
426 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
427 qemu_set_irq(s->irq[0], 1);
428 } else {
429 qemu_set_irq(s->irq[0], 0);
433 static void imx_fec_do_tx(IMXFECState *s)
435 int frame_size = 0, descnt = 0;
436 uint8_t *ptr = s->frame;
437 uint32_t addr = s->tx_descriptor[0];
439 while (descnt++ < IMX_MAX_DESC) {
440 IMXFECBufDesc bd;
441 int len;
443 imx_fec_read_bd(&bd, addr);
444 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
445 addr, bd.flags, bd.length, bd.data);
446 if ((bd.flags & ENET_BD_R) == 0) {
447 /* Run out of descriptors to transmit. */
448 FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
449 break;
451 len = bd.length;
452 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
453 len = ENET_MAX_FRAME_SIZE - frame_size;
454 s->regs[ENET_EIR] |= ENET_INT_BABT;
456 dma_memory_read(&address_space_memory, bd.data, ptr, len);
457 ptr += len;
458 frame_size += len;
459 if (bd.flags & ENET_BD_L) {
460 /* Last buffer in frame. */
461 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
462 ptr = s->frame;
463 frame_size = 0;
464 s->regs[ENET_EIR] |= ENET_INT_TXF;
466 s->regs[ENET_EIR] |= ENET_INT_TXB;
467 bd.flags &= ~ENET_BD_R;
468 /* Write back the modified descriptor. */
469 imx_fec_write_bd(&bd, addr);
470 /* Advance to the next descriptor. */
471 if ((bd.flags & ENET_BD_W) != 0) {
472 addr = s->regs[ENET_TDSR];
473 } else {
474 addr += sizeof(bd);
478 s->tx_descriptor[0] = addr;
480 imx_eth_update(s);
483 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
485 int frame_size = 0, descnt = 0;
487 uint8_t *ptr = s->frame;
488 uint32_t addr, int_txb, int_txf, tdsr;
489 size_t ring;
491 switch (index) {
492 case ENET_TDAR:
493 ring = 0;
494 int_txb = ENET_INT_TXB;
495 int_txf = ENET_INT_TXF;
496 tdsr = ENET_TDSR;
497 break;
498 case ENET_TDAR1:
499 ring = 1;
500 int_txb = ENET_INT_TXB1;
501 int_txf = ENET_INT_TXF1;
502 tdsr = ENET_TDSR1;
503 break;
504 case ENET_TDAR2:
505 ring = 2;
506 int_txb = ENET_INT_TXB2;
507 int_txf = ENET_INT_TXF2;
508 tdsr = ENET_TDSR2;
509 break;
510 default:
511 qemu_log_mask(LOG_GUEST_ERROR,
512 "%s: bogus value for index %x\n",
513 __func__, index);
514 abort();
515 break;
518 addr = s->tx_descriptor[ring];
520 while (descnt++ < IMX_MAX_DESC) {
521 IMXENETBufDesc bd;
522 int len;
524 imx_enet_read_bd(&bd, addr);
525 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
526 "status %04x\n", addr, bd.flags, bd.length, bd.data,
527 bd.option, bd.status);
528 if ((bd.flags & ENET_BD_R) == 0) {
529 /* Run out of descriptors to transmit. */
530 break;
532 len = bd.length;
533 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
534 len = ENET_MAX_FRAME_SIZE - frame_size;
535 s->regs[ENET_EIR] |= ENET_INT_BABT;
537 dma_memory_read(&address_space_memory, bd.data, ptr, len);
538 ptr += len;
539 frame_size += len;
540 if (bd.flags & ENET_BD_L) {
541 if (bd.option & ENET_BD_PINS) {
542 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
543 if (IP_HEADER_VERSION(ip_hd) == 4) {
544 net_checksum_calculate(s->frame, frame_size);
547 if (bd.option & ENET_BD_IINS) {
548 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
549 /* We compute checksum only for IPv4 frames */
550 if (IP_HEADER_VERSION(ip_hd) == 4) {
551 uint16_t csum;
552 ip_hd->ip_sum = 0;
553 csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
554 ip_hd->ip_sum = cpu_to_be16(csum);
557 /* Last buffer in frame. */
559 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
560 ptr = s->frame;
562 frame_size = 0;
563 if (bd.option & ENET_BD_TX_INT) {
564 s->regs[ENET_EIR] |= int_txf;
567 if (bd.option & ENET_BD_TX_INT) {
568 s->regs[ENET_EIR] |= int_txb;
570 bd.flags &= ~ENET_BD_R;
571 /* Write back the modified descriptor. */
572 imx_enet_write_bd(&bd, addr);
573 /* Advance to the next descriptor. */
574 if ((bd.flags & ENET_BD_W) != 0) {
575 addr = s->regs[tdsr];
576 } else {
577 addr += sizeof(bd);
581 s->tx_descriptor[ring] = addr;
583 imx_eth_update(s);
586 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
588 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
589 imx_enet_do_tx(s, index);
590 } else {
591 imx_fec_do_tx(s);
595 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
597 IMXFECBufDesc bd;
599 imx_fec_read_bd(&bd, s->rx_descriptor);
601 s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
603 if (!s->regs[ENET_RDAR]) {
604 FEC_PRINTF("RX buffer full\n");
605 } else if (flush) {
606 qemu_flush_queued_packets(qemu_get_queue(s->nic));
610 static void imx_eth_reset(DeviceState *d)
612 IMXFECState *s = IMX_FEC(d);
614 /* Reset the Device */
615 memset(s->regs, 0, sizeof(s->regs));
616 s->regs[ENET_ECR] = 0xf0000000;
617 s->regs[ENET_MIBC] = 0xc0000000;
618 s->regs[ENET_RCR] = 0x05ee0001;
619 s->regs[ENET_OPD] = 0x00010000;
621 s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24)
622 | (s->conf.macaddr.a[1] << 16)
623 | (s->conf.macaddr.a[2] << 8)
624 | s->conf.macaddr.a[3];
625 s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24)
626 | (s->conf.macaddr.a[5] << 16)
627 | 0x8808;
629 if (s->is_fec) {
630 s->regs[ENET_FRBR] = 0x00000600;
631 s->regs[ENET_FRSR] = 0x00000500;
632 s->regs[ENET_MIIGSK_ENR] = 0x00000006;
633 } else {
634 s->regs[ENET_RAEM] = 0x00000004;
635 s->regs[ENET_RAFL] = 0x00000004;
636 s->regs[ENET_TAEM] = 0x00000004;
637 s->regs[ENET_TAFL] = 0x00000008;
638 s->regs[ENET_TIPG] = 0x0000000c;
639 s->regs[ENET_FTRL] = 0x000007ff;
640 s->regs[ENET_ATPER] = 0x3b9aca00;
643 s->rx_descriptor = 0;
644 memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
646 /* We also reset the PHY */
647 phy_reset(s);
650 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
652 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
653 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
654 return 0;
657 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
659 switch (index) {
660 case ENET_FRBR:
661 case ENET_FRSR:
662 case ENET_MIIGSK_CFGR:
663 case ENET_MIIGSK_ENR:
664 return s->regs[index];
665 default:
666 return imx_default_read(s, index);
670 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
672 switch (index) {
673 case ENET_RSFL:
674 case ENET_RSEM:
675 case ENET_RAEM:
676 case ENET_RAFL:
677 case ENET_TSEM:
678 case ENET_TAEM:
679 case ENET_TAFL:
680 case ENET_TIPG:
681 case ENET_FTRL:
682 case ENET_TACC:
683 case ENET_RACC:
684 case ENET_ATCR:
685 case ENET_ATVR:
686 case ENET_ATOFF:
687 case ENET_ATPER:
688 case ENET_ATCOR:
689 case ENET_ATINC:
690 case ENET_ATSTMP:
691 case ENET_TGSR:
692 case ENET_TCSR0:
693 case ENET_TCCR0:
694 case ENET_TCSR1:
695 case ENET_TCCR1:
696 case ENET_TCSR2:
697 case ENET_TCCR2:
698 case ENET_TCSR3:
699 case ENET_TCCR3:
700 return s->regs[index];
701 default:
702 return imx_default_read(s, index);
706 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
708 uint32_t value = 0;
709 IMXFECState *s = IMX_FEC(opaque);
710 uint32_t index = offset >> 2;
712 switch (index) {
713 case ENET_EIR:
714 case ENET_EIMR:
715 case ENET_RDAR:
716 case ENET_TDAR:
717 case ENET_ECR:
718 case ENET_MMFR:
719 case ENET_MSCR:
720 case ENET_MIBC:
721 case ENET_RCR:
722 case ENET_TCR:
723 case ENET_PALR:
724 case ENET_PAUR:
725 case ENET_OPD:
726 case ENET_IAUR:
727 case ENET_IALR:
728 case ENET_GAUR:
729 case ENET_GALR:
730 case ENET_TFWR:
731 case ENET_RDSR:
732 case ENET_TDSR:
733 case ENET_MRBR:
734 value = s->regs[index];
735 break;
736 default:
737 if (s->is_fec) {
738 value = imx_fec_read(s, index);
739 } else {
740 value = imx_enet_read(s, index);
742 break;
745 FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
746 value);
748 return value;
751 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
753 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
754 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
755 return;
758 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
760 switch (index) {
761 case ENET_FRBR:
762 /* FRBR is read only */
763 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
764 TYPE_IMX_FEC, __func__);
765 break;
766 case ENET_FRSR:
767 s->regs[index] = (value & 0x000003fc) | 0x00000400;
768 break;
769 case ENET_MIIGSK_CFGR:
770 s->regs[index] = value & 0x00000053;
771 break;
772 case ENET_MIIGSK_ENR:
773 s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
774 break;
775 default:
776 imx_default_write(s, index, value);
777 break;
781 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
783 switch (index) {
784 case ENET_RSFL:
785 case ENET_RSEM:
786 case ENET_RAEM:
787 case ENET_RAFL:
788 case ENET_TSEM:
789 case ENET_TAEM:
790 case ENET_TAFL:
791 s->regs[index] = value & 0x000001ff;
792 break;
793 case ENET_TIPG:
794 s->regs[index] = value & 0x0000001f;
795 break;
796 case ENET_FTRL:
797 s->regs[index] = value & 0x00003fff;
798 break;
799 case ENET_TACC:
800 s->regs[index] = value & 0x00000019;
801 break;
802 case ENET_RACC:
803 s->regs[index] = value & 0x000000C7;
804 break;
805 case ENET_ATCR:
806 s->regs[index] = value & 0x00002a9d;
807 break;
808 case ENET_ATVR:
809 case ENET_ATOFF:
810 case ENET_ATPER:
811 s->regs[index] = value;
812 break;
813 case ENET_ATSTMP:
814 /* ATSTMP is read only */
815 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
816 TYPE_IMX_FEC, __func__);
817 break;
818 case ENET_ATCOR:
819 s->regs[index] = value & 0x7fffffff;
820 break;
821 case ENET_ATINC:
822 s->regs[index] = value & 0x00007f7f;
823 break;
824 case ENET_TGSR:
825 /* implement clear timer flag */
826 value = value & 0x0000000f;
827 break;
828 case ENET_TCSR0:
829 case ENET_TCSR1:
830 case ENET_TCSR2:
831 case ENET_TCSR3:
832 value = value & 0x000000fd;
833 break;
834 case ENET_TCCR0:
835 case ENET_TCCR1:
836 case ENET_TCCR2:
837 case ENET_TCCR3:
838 s->regs[index] = value;
839 break;
840 default:
841 imx_default_write(s, index, value);
842 break;
846 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
847 unsigned size)
849 IMXFECState *s = IMX_FEC(opaque);
850 const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
851 uint32_t index = offset >> 2;
853 FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
854 (uint32_t)value);
856 switch (index) {
857 case ENET_EIR:
858 s->regs[index] &= ~value;
859 break;
860 case ENET_EIMR:
861 s->regs[index] = value;
862 break;
863 case ENET_RDAR:
864 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
865 if (!s->regs[index]) {
866 imx_eth_enable_rx(s, true);
868 } else {
869 s->regs[index] = 0;
871 break;
872 case ENET_TDAR1: /* FALLTHROUGH */
873 case ENET_TDAR2: /* FALLTHROUGH */
874 if (unlikely(single_tx_ring)) {
875 qemu_log_mask(LOG_GUEST_ERROR,
876 "[%s]%s: trying to access TDAR2 or TDAR1\n",
877 TYPE_IMX_FEC, __func__);
878 return;
880 case ENET_TDAR: /* FALLTHROUGH */
881 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
882 s->regs[index] = ENET_TDAR_TDAR;
883 imx_eth_do_tx(s, index);
885 s->regs[index] = 0;
886 break;
887 case ENET_ECR:
888 if (value & ENET_ECR_RESET) {
889 return imx_eth_reset(DEVICE(s));
891 s->regs[index] = value;
892 if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
893 s->regs[ENET_RDAR] = 0;
894 s->rx_descriptor = s->regs[ENET_RDSR];
895 s->regs[ENET_TDAR] = 0;
896 s->regs[ENET_TDAR1] = 0;
897 s->regs[ENET_TDAR2] = 0;
898 s->tx_descriptor[0] = s->regs[ENET_TDSR];
899 s->tx_descriptor[1] = s->regs[ENET_TDSR1];
900 s->tx_descriptor[2] = s->regs[ENET_TDSR2];
902 break;
903 case ENET_MMFR:
904 s->regs[index] = value;
905 if (extract32(value, 29, 1)) {
906 /* This is a read operation */
907 s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
908 do_phy_read(s,
909 extract32(value,
910 18, 10)));
911 } else {
912 /* This a write operation */
913 do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
915 /* raise the interrupt as the PHY operation is done */
916 s->regs[ENET_EIR] |= ENET_INT_MII;
917 break;
918 case ENET_MSCR:
919 s->regs[index] = value & 0xfe;
920 break;
921 case ENET_MIBC:
922 /* TODO: Implement MIB. */
923 s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
924 break;
925 case ENET_RCR:
926 s->regs[index] = value & 0x07ff003f;
927 /* TODO: Implement LOOP mode. */
928 break;
929 case ENET_TCR:
930 /* We transmit immediately, so raise GRA immediately. */
931 s->regs[index] = value;
932 if (value & 1) {
933 s->regs[ENET_EIR] |= ENET_INT_GRA;
935 break;
936 case ENET_PALR:
937 s->regs[index] = value;
938 s->conf.macaddr.a[0] = value >> 24;
939 s->conf.macaddr.a[1] = value >> 16;
940 s->conf.macaddr.a[2] = value >> 8;
941 s->conf.macaddr.a[3] = value;
942 break;
943 case ENET_PAUR:
944 s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
945 s->conf.macaddr.a[4] = value >> 24;
946 s->conf.macaddr.a[5] = value >> 16;
947 break;
948 case ENET_OPD:
949 s->regs[index] = (value & 0x0000ffff) | 0x00010000;
950 break;
951 case ENET_IAUR:
952 case ENET_IALR:
953 case ENET_GAUR:
954 case ENET_GALR:
955 /* TODO: implement MAC hash filtering. */
956 break;
957 case ENET_TFWR:
958 if (s->is_fec) {
959 s->regs[index] = value & 0x3;
960 } else {
961 s->regs[index] = value & 0x13f;
963 break;
964 case ENET_RDSR:
965 if (s->is_fec) {
966 s->regs[index] = value & ~3;
967 } else {
968 s->regs[index] = value & ~7;
970 s->rx_descriptor = s->regs[index];
971 break;
972 case ENET_TDSR:
973 if (s->is_fec) {
974 s->regs[index] = value & ~3;
975 } else {
976 s->regs[index] = value & ~7;
978 s->tx_descriptor[0] = s->regs[index];
979 break;
980 case ENET_TDSR1:
981 if (unlikely(single_tx_ring)) {
982 qemu_log_mask(LOG_GUEST_ERROR,
983 "[%s]%s: trying to access TDSR1\n",
984 TYPE_IMX_FEC, __func__);
985 return;
988 s->regs[index] = value & ~7;
989 s->tx_descriptor[1] = s->regs[index];
990 break;
991 case ENET_TDSR2:
992 if (unlikely(single_tx_ring)) {
993 qemu_log_mask(LOG_GUEST_ERROR,
994 "[%s]%s: trying to access TDSR2\n",
995 TYPE_IMX_FEC, __func__);
996 return;
999 s->regs[index] = value & ~7;
1000 s->tx_descriptor[2] = s->regs[index];
1001 break;
1002 case ENET_MRBR:
1003 s->regs[index] = value & 0x00003ff0;
1004 break;
1005 default:
1006 if (s->is_fec) {
1007 imx_fec_write(s, index, value);
1008 } else {
1009 imx_enet_write(s, index, value);
1011 return;
1014 imx_eth_update(s);
1017 static int imx_eth_can_receive(NetClientState *nc)
1019 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1021 FEC_PRINTF("\n");
1023 return !!s->regs[ENET_RDAR];
1026 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1027 size_t len)
1029 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1030 IMXFECBufDesc bd;
1031 uint32_t flags = 0;
1032 uint32_t addr;
1033 uint32_t crc;
1034 uint32_t buf_addr;
1035 uint8_t *crc_ptr;
1036 unsigned int buf_len;
1037 size_t size = len;
1039 FEC_PRINTF("len %d\n", (int)size);
1041 if (!s->regs[ENET_RDAR]) {
1042 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1043 TYPE_IMX_FEC, __func__);
1044 return 0;
1047 /* 4 bytes for the CRC. */
1048 size += 4;
1049 crc = cpu_to_be32(crc32(~0, buf, size));
1050 crc_ptr = (uint8_t *) &crc;
1052 /* Huge frames are truncated. */
1053 if (size > ENET_MAX_FRAME_SIZE) {
1054 size = ENET_MAX_FRAME_SIZE;
1055 flags |= ENET_BD_TR | ENET_BD_LG;
1058 /* Frames larger than the user limit just set error flags. */
1059 if (size > (s->regs[ENET_RCR] >> 16)) {
1060 flags |= ENET_BD_LG;
1063 addr = s->rx_descriptor;
1064 while (size > 0) {
1065 imx_fec_read_bd(&bd, addr);
1066 if ((bd.flags & ENET_BD_E) == 0) {
1067 /* No descriptors available. Bail out. */
1069 * FIXME: This is wrong. We should probably either
1070 * save the remainder for when more RX buffers are
1071 * available, or flag an error.
1073 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1074 TYPE_IMX_FEC, __func__);
1075 break;
1077 buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1078 bd.length = buf_len;
1079 size -= buf_len;
1081 FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1083 /* The last 4 bytes are the CRC. */
1084 if (size < 4) {
1085 buf_len += size - 4;
1087 buf_addr = bd.data;
1088 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1089 buf += buf_len;
1090 if (size < 4) {
1091 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1092 crc_ptr, 4 - size);
1093 crc_ptr += 4 - size;
1095 bd.flags &= ~ENET_BD_E;
1096 if (size == 0) {
1097 /* Last buffer in frame. */
1098 bd.flags |= flags | ENET_BD_L;
1099 FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1100 s->regs[ENET_EIR] |= ENET_INT_RXF;
1101 } else {
1102 s->regs[ENET_EIR] |= ENET_INT_RXB;
1104 imx_fec_write_bd(&bd, addr);
1105 /* Advance to the next descriptor. */
1106 if ((bd.flags & ENET_BD_W) != 0) {
1107 addr = s->regs[ENET_RDSR];
1108 } else {
1109 addr += sizeof(bd);
1112 s->rx_descriptor = addr;
1113 imx_eth_enable_rx(s, false);
1114 imx_eth_update(s);
1115 return len;
1118 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1119 size_t len)
1121 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1122 IMXENETBufDesc bd;
1123 uint32_t flags = 0;
1124 uint32_t addr;
1125 uint32_t crc;
1126 uint32_t buf_addr;
1127 uint8_t *crc_ptr;
1128 unsigned int buf_len;
1129 size_t size = len;
1130 bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1132 FEC_PRINTF("len %d\n", (int)size);
1134 if (!s->regs[ENET_RDAR]) {
1135 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1136 TYPE_IMX_FEC, __func__);
1137 return 0;
1140 /* 4 bytes for the CRC. */
1141 size += 4;
1142 crc = cpu_to_be32(crc32(~0, buf, size));
1143 crc_ptr = (uint8_t *) &crc;
1145 if (shift16) {
1146 size += 2;
1149 /* Huge frames are truncated. */
1150 if (size > s->regs[ENET_FTRL]) {
1151 size = s->regs[ENET_FTRL];
1152 flags |= ENET_BD_TR | ENET_BD_LG;
1155 /* Frames larger than the user limit just set error flags. */
1156 if (size > (s->regs[ENET_RCR] >> 16)) {
1157 flags |= ENET_BD_LG;
1160 addr = s->rx_descriptor;
1161 while (size > 0) {
1162 imx_enet_read_bd(&bd, addr);
1163 if ((bd.flags & ENET_BD_E) == 0) {
1164 /* No descriptors available. Bail out. */
1166 * FIXME: This is wrong. We should probably either
1167 * save the remainder for when more RX buffers are
1168 * available, or flag an error.
1170 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1171 TYPE_IMX_FEC, __func__);
1172 break;
1174 buf_len = MIN(size, s->regs[ENET_MRBR]);
1175 bd.length = buf_len;
1176 size -= buf_len;
1178 FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1180 /* The last 4 bytes are the CRC. */
1181 if (size < 4) {
1182 buf_len += size - 4;
1184 buf_addr = bd.data;
1186 if (shift16) {
1188 * If SHIFT16 bit of ENETx_RACC register is set we need to
1189 * align the payload to 4-byte boundary.
1191 const uint8_t zeros[2] = { 0 };
1193 dma_memory_write(&address_space_memory, buf_addr,
1194 zeros, sizeof(zeros));
1196 buf_addr += sizeof(zeros);
1197 buf_len -= sizeof(zeros);
1199 /* We only do this once per Ethernet frame */
1200 shift16 = false;
1203 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1204 buf += buf_len;
1205 if (size < 4) {
1206 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1207 crc_ptr, 4 - size);
1208 crc_ptr += 4 - size;
1210 bd.flags &= ~ENET_BD_E;
1211 if (size == 0) {
1212 /* Last buffer in frame. */
1213 bd.flags |= flags | ENET_BD_L;
1214 FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1215 if (bd.option & ENET_BD_RX_INT) {
1216 s->regs[ENET_EIR] |= ENET_INT_RXF;
1218 } else {
1219 if (bd.option & ENET_BD_RX_INT) {
1220 s->regs[ENET_EIR] |= ENET_INT_RXB;
1223 imx_enet_write_bd(&bd, addr);
1224 /* Advance to the next descriptor. */
1225 if ((bd.flags & ENET_BD_W) != 0) {
1226 addr = s->regs[ENET_RDSR];
1227 } else {
1228 addr += sizeof(bd);
1231 s->rx_descriptor = addr;
1232 imx_eth_enable_rx(s, false);
1233 imx_eth_update(s);
1234 return len;
1237 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1238 size_t len)
1240 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1242 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1243 return imx_enet_receive(nc, buf, len);
1244 } else {
1245 return imx_fec_receive(nc, buf, len);
1249 static const MemoryRegionOps imx_eth_ops = {
1250 .read = imx_eth_read,
1251 .write = imx_eth_write,
1252 .valid.min_access_size = 4,
1253 .valid.max_access_size = 4,
1254 .endianness = DEVICE_NATIVE_ENDIAN,
1257 static void imx_eth_cleanup(NetClientState *nc)
1259 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1261 s->nic = NULL;
1264 static NetClientInfo imx_eth_net_info = {
1265 .type = NET_CLIENT_DRIVER_NIC,
1266 .size = sizeof(NICState),
1267 .can_receive = imx_eth_can_receive,
1268 .receive = imx_eth_receive,
1269 .cleanup = imx_eth_cleanup,
1270 .link_status_changed = imx_eth_set_link,
1274 static void imx_eth_realize(DeviceState *dev, Error **errp)
1276 IMXFECState *s = IMX_FEC(dev);
1277 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1279 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1280 TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1281 sysbus_init_mmio(sbd, &s->iomem);
1282 sysbus_init_irq(sbd, &s->irq[0]);
1283 sysbus_init_irq(sbd, &s->irq[1]);
1285 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1287 s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1288 object_get_typename(OBJECT(dev)),
1289 DEVICE(dev)->id, s);
1291 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1294 static Property imx_eth_properties[] = {
1295 DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1296 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1297 DEFINE_PROP_END_OF_LIST(),
1300 static void imx_eth_class_init(ObjectClass *klass, void *data)
1302 DeviceClass *dc = DEVICE_CLASS(klass);
1304 dc->vmsd = &vmstate_imx_eth;
1305 dc->reset = imx_eth_reset;
1306 dc->props = imx_eth_properties;
1307 dc->realize = imx_eth_realize;
1308 dc->desc = "i.MX FEC/ENET Ethernet Controller";
1311 static void imx_fec_init(Object *obj)
1313 IMXFECState *s = IMX_FEC(obj);
1315 s->is_fec = true;
1318 static void imx_enet_init(Object *obj)
1320 IMXFECState *s = IMX_FEC(obj);
1322 s->is_fec = false;
1325 static const TypeInfo imx_fec_info = {
1326 .name = TYPE_IMX_FEC,
1327 .parent = TYPE_SYS_BUS_DEVICE,
1328 .instance_size = sizeof(IMXFECState),
1329 .instance_init = imx_fec_init,
1330 .class_init = imx_eth_class_init,
1333 static const TypeInfo imx_enet_info = {
1334 .name = TYPE_IMX_ENET,
1335 .parent = TYPE_IMX_FEC,
1336 .instance_init = imx_enet_init,
1339 static void imx_eth_register_types(void)
1341 type_register_static(&imx_fec_info);
1342 type_register_static(&imx_enet_info);
1345 type_init(imx_eth_register_types)