qom: Crash more nicely on object_property_get_link() failure
[qemu/ar7.git] / hw / riscv / spike.c
blob3c87e04fdceb05aa8c6a24540e4b0a794a0b045c
1 /*
2 * QEMU RISC-V Spike Board
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This provides a RISC-V Board with the following devices:
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 * 2) PLIC (Platform Level Interrupt Controller)
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2 or later, as published by the Free Software Foundation.
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
22 * You should have received a copy of the GNU General Public License along with
23 * this program. If not, see <http://www.gnu.org/licenses/>.
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_htif.h"
35 #include "hw/riscv/riscv_hart.h"
36 #include "hw/riscv/sifive_clint.h"
37 #include "hw/riscv/spike.h"
38 #include "hw/riscv/boot.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/sysemu.h"
44 #include "exec/address-spaces.h"
46 #include <libfdt.h>
48 #if defined(TARGET_RISCV32)
49 # define BIOS_FILENAME "opensbi-riscv32-spike-fw_jump.elf"
50 #else
51 # define BIOS_FILENAME "opensbi-riscv64-spike-fw_jump.elf"
52 #endif
54 static const struct MemmapEntry {
55 hwaddr base;
56 hwaddr size;
57 } spike_memmap[] = {
58 [SPIKE_MROM] = { 0x1000, 0x11000 },
59 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
60 [SPIKE_DRAM] = { 0x80000000, 0x0 },
63 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
64 uint64_t mem_size, const char *cmdline)
66 void *fdt;
67 int cpu;
68 uint32_t *cells;
69 char *nodename;
71 fdt = s->fdt = create_device_tree(&s->fdt_size);
72 if (!fdt) {
73 error_report("create_device_tree() failed");
74 exit(1);
77 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
78 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
79 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
80 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
82 qemu_fdt_add_subnode(fdt, "/htif");
83 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
85 qemu_fdt_add_subnode(fdt, "/soc");
86 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
87 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
88 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
89 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
91 nodename = g_strdup_printf("/memory@%lx",
92 (long)memmap[SPIKE_DRAM].base);
93 qemu_fdt_add_subnode(fdt, nodename);
94 qemu_fdt_setprop_cells(fdt, nodename, "reg",
95 memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
96 mem_size >> 32, mem_size);
97 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
98 g_free(nodename);
100 qemu_fdt_add_subnode(fdt, "/cpus");
101 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
102 SIFIVE_CLINT_TIMEBASE_FREQ);
103 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
104 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
106 for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
107 nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
108 char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
109 char *isa = riscv_isa_string(&s->soc.harts[cpu]);
110 qemu_fdt_add_subnode(fdt, nodename);
111 #if defined(TARGET_RISCV32)
112 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
113 #else
114 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
115 #endif
116 qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
117 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
118 qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
119 qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
120 qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
121 qemu_fdt_add_subnode(fdt, intc);
122 qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
123 qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
124 qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
125 qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
126 g_free(isa);
127 g_free(intc);
128 g_free(nodename);
131 cells = g_new0(uint32_t, s->soc.num_harts * 4);
132 for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
133 nodename =
134 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
135 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
136 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
137 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
138 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
139 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
140 g_free(nodename);
142 nodename = g_strdup_printf("/soc/clint@%lx",
143 (long)memmap[SPIKE_CLINT].base);
144 qemu_fdt_add_subnode(fdt, nodename);
145 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
146 qemu_fdt_setprop_cells(fdt, nodename, "reg",
147 0x0, memmap[SPIKE_CLINT].base,
148 0x0, memmap[SPIKE_CLINT].size);
149 qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
150 cells, s->soc.num_harts * sizeof(uint32_t) * 4);
151 g_free(cells);
152 g_free(nodename);
154 if (cmdline) {
155 qemu_fdt_add_subnode(fdt, "/chosen");
156 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
160 static void spike_board_init(MachineState *machine)
162 const struct MemmapEntry *memmap = spike_memmap;
164 SpikeState *s = g_new0(SpikeState, 1);
165 MemoryRegion *system_memory = get_system_memory();
166 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
167 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
168 int i;
169 unsigned int smp_cpus = machine->smp.cpus;
171 /* Initialize SOC */
172 object_initialize_child(OBJECT(machine), "soc", &s->soc,
173 TYPE_RISCV_HART_ARRAY);
174 object_property_set_str(OBJECT(&s->soc), machine->cpu_type, "cpu-type",
175 &error_abort);
176 object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
177 &error_abort);
178 sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_abort);
180 /* register system main memory (actual RAM) */
181 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
182 machine->ram_size, &error_fatal);
183 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
184 main_mem);
186 /* create device tree */
187 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
189 /* boot rom */
190 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
191 memmap[SPIKE_MROM].size, &error_fatal);
192 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
193 mask_rom);
195 riscv_find_and_load_firmware(machine, BIOS_FILENAME,
196 memmap[SPIKE_DRAM].base,
197 htif_symbol_callback);
199 if (machine->kernel_filename) {
200 uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename,
201 htif_symbol_callback);
203 if (machine->initrd_filename) {
204 hwaddr start;
205 hwaddr end = riscv_load_initrd(machine->initrd_filename,
206 machine->ram_size, kernel_entry,
207 &start);
208 qemu_fdt_setprop_cell(s->fdt, "/chosen",
209 "linux,initrd-start", start);
210 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
211 end);
215 /* reset vector */
216 uint32_t reset_vec[8] = {
217 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
218 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
219 0xf1402573, /* csrr a0, mhartid */
220 #if defined(TARGET_RISCV32)
221 0x0182a283, /* lw t0, 24(t0) */
222 #elif defined(TARGET_RISCV64)
223 0x0182b283, /* ld t0, 24(t0) */
224 #endif
225 0x00028067, /* jr t0 */
226 0x00000000,
227 memmap[SPIKE_DRAM].base, /* start: .dword DRAM_BASE */
228 0x00000000,
229 /* dtb: */
232 /* copy in the reset vector in little_endian byte order */
233 for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
234 reset_vec[i] = cpu_to_le32(reset_vec[i]);
236 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
237 memmap[SPIKE_MROM].base, &address_space_memory);
239 /* copy in the device tree */
240 if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
241 memmap[SPIKE_MROM].size - sizeof(reset_vec)) {
242 error_report("not enough space to store device-tree");
243 exit(1);
245 qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
246 rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
247 memmap[SPIKE_MROM].base + sizeof(reset_vec),
248 &address_space_memory);
250 /* initialize HTIF using symbols found in load_kernel */
251 htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
253 /* Core Local Interruptor (timer and IPI) */
254 sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
255 smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
256 false);
259 static void spike_machine_init(MachineClass *mc)
261 mc->desc = "RISC-V Spike Board";
262 mc->init = spike_board_init;
263 mc->max_cpus = 8;
264 mc->is_default = true;
265 mc->default_cpu_type = SPIKE_V1_10_0_CPU;
268 DEFINE_MACHINE("spike", spike_machine_init)