net: netmap: Fix compilation issue
[qemu/ar7.git] / block / io.c
blob8dcad3b3fe6ae52fd43f036772f0ebc91201d2a6
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "trace.h"
26 #include "sysemu/block-backend.h"
27 #include "block/blockjob.h"
28 #include "block/block_int.h"
29 #include "block/throttle-groups.h"
30 #include "qemu/error-report.h"
32 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
34 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
35 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
36 BlockCompletionFunc *cb, void *opaque);
37 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
38 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
39 BlockCompletionFunc *cb, void *opaque);
40 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
41 int64_t sector_num, int nb_sectors,
42 QEMUIOVector *iov);
43 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
44 int64_t sector_num, int nb_sectors,
45 QEMUIOVector *iov);
46 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
47 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
48 BdrvRequestFlags flags);
49 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
50 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
51 BdrvRequestFlags flags);
52 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
53 int64_t sector_num,
54 QEMUIOVector *qiov,
55 int nb_sectors,
56 BdrvRequestFlags flags,
57 BlockCompletionFunc *cb,
58 void *opaque,
59 bool is_write);
60 static void coroutine_fn bdrv_co_do_rw(void *opaque);
61 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
62 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
64 /* throttling disk I/O limits */
65 void bdrv_set_io_limits(BlockDriverState *bs,
66 ThrottleConfig *cfg)
68 int i;
70 throttle_group_config(bs, cfg);
72 for (i = 0; i < 2; i++) {
73 qemu_co_enter_next(&bs->throttled_reqs[i]);
77 /* this function drain all the throttled IOs */
78 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
80 bool drained = false;
81 bool enabled = bs->io_limits_enabled;
82 int i;
84 bs->io_limits_enabled = false;
86 for (i = 0; i < 2; i++) {
87 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
88 drained = true;
92 bs->io_limits_enabled = enabled;
94 return drained;
97 void bdrv_io_limits_disable(BlockDriverState *bs)
99 bs->io_limits_enabled = false;
100 bdrv_start_throttled_reqs(bs);
101 throttle_group_unregister_bs(bs);
104 /* should be called before bdrv_set_io_limits if a limit is set */
105 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
107 assert(!bs->io_limits_enabled);
108 throttle_group_register_bs(bs, group);
109 bs->io_limits_enabled = true;
112 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
114 /* this bs is not part of any group */
115 if (!bs->throttle_state) {
116 return;
119 /* this bs is a part of the same group than the one we want */
120 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
121 return;
124 /* need to change the group this bs belong to */
125 bdrv_io_limits_disable(bs);
126 bdrv_io_limits_enable(bs, group);
129 void bdrv_setup_io_funcs(BlockDriver *bdrv)
131 /* Block drivers without coroutine functions need emulation */
132 if (!bdrv->bdrv_co_readv) {
133 bdrv->bdrv_co_readv = bdrv_co_readv_em;
134 bdrv->bdrv_co_writev = bdrv_co_writev_em;
136 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
137 * the block driver lacks aio we need to emulate that too.
139 if (!bdrv->bdrv_aio_readv) {
140 /* add AIO emulation layer */
141 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
142 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
147 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
149 BlockDriver *drv = bs->drv;
150 Error *local_err = NULL;
152 memset(&bs->bl, 0, sizeof(bs->bl));
154 if (!drv) {
155 return;
158 /* Take some limits from the children as a default */
159 if (bs->file) {
160 bdrv_refresh_limits(bs->file->bs, &local_err);
161 if (local_err) {
162 error_propagate(errp, local_err);
163 return;
165 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
166 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
167 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
168 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
169 } else {
170 bs->bl.min_mem_alignment = 512;
171 bs->bl.opt_mem_alignment = getpagesize();
174 if (bs->backing) {
175 bdrv_refresh_limits(bs->backing->bs, &local_err);
176 if (local_err) {
177 error_propagate(errp, local_err);
178 return;
180 bs->bl.opt_transfer_length =
181 MAX(bs->bl.opt_transfer_length,
182 bs->backing->bs->bl.opt_transfer_length);
183 bs->bl.max_transfer_length =
184 MIN_NON_ZERO(bs->bl.max_transfer_length,
185 bs->backing->bs->bl.max_transfer_length);
186 bs->bl.opt_mem_alignment =
187 MAX(bs->bl.opt_mem_alignment,
188 bs->backing->bs->bl.opt_mem_alignment);
189 bs->bl.min_mem_alignment =
190 MAX(bs->bl.min_mem_alignment,
191 bs->backing->bs->bl.min_mem_alignment);
194 /* Then let the driver override it */
195 if (drv->bdrv_refresh_limits) {
196 drv->bdrv_refresh_limits(bs, errp);
201 * The copy-on-read flag is actually a reference count so multiple users may
202 * use the feature without worrying about clobbering its previous state.
203 * Copy-on-read stays enabled until all users have called to disable it.
205 void bdrv_enable_copy_on_read(BlockDriverState *bs)
207 bs->copy_on_read++;
210 void bdrv_disable_copy_on_read(BlockDriverState *bs)
212 assert(bs->copy_on_read > 0);
213 bs->copy_on_read--;
216 /* Check if any requests are in-flight (including throttled requests) */
217 bool bdrv_requests_pending(BlockDriverState *bs)
219 BdrvChild *child;
221 if (!QLIST_EMPTY(&bs->tracked_requests)) {
222 return true;
224 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
225 return true;
227 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
228 return true;
231 QLIST_FOREACH(child, &bs->children, next) {
232 if (bdrv_requests_pending(child->bs)) {
233 return true;
237 return false;
241 * Wait for pending requests to complete on a single BlockDriverState subtree
243 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
244 * AioContext.
246 * Only this BlockDriverState's AioContext is run, so in-flight requests must
247 * not depend on events in other AioContexts. In that case, use
248 * bdrv_drain_all() instead.
250 void bdrv_drain(BlockDriverState *bs)
252 bool busy = true;
254 while (busy) {
255 /* Keep iterating */
256 bdrv_flush_io_queue(bs);
257 busy = bdrv_requests_pending(bs);
258 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
263 * Wait for pending requests to complete across all BlockDriverStates
265 * This function does not flush data to disk, use bdrv_flush_all() for that
266 * after calling this function.
268 void bdrv_drain_all(void)
270 /* Always run first iteration so any pending completion BHs run */
271 bool busy = true;
272 BlockDriverState *bs = NULL;
273 GSList *aio_ctxs = NULL, *ctx;
275 while ((bs = bdrv_next(bs))) {
276 AioContext *aio_context = bdrv_get_aio_context(bs);
278 aio_context_acquire(aio_context);
279 if (bs->job) {
280 block_job_pause(bs->job);
282 aio_context_release(aio_context);
284 if (!g_slist_find(aio_ctxs, aio_context)) {
285 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
289 /* Note that completion of an asynchronous I/O operation can trigger any
290 * number of other I/O operations on other devices---for example a
291 * coroutine can submit an I/O request to another device in response to
292 * request completion. Therefore we must keep looping until there was no
293 * more activity rather than simply draining each device independently.
295 while (busy) {
296 busy = false;
298 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
299 AioContext *aio_context = ctx->data;
300 bs = NULL;
302 aio_context_acquire(aio_context);
303 while ((bs = bdrv_next(bs))) {
304 if (aio_context == bdrv_get_aio_context(bs)) {
305 bdrv_flush_io_queue(bs);
306 if (bdrv_requests_pending(bs)) {
307 busy = true;
308 aio_poll(aio_context, busy);
312 busy |= aio_poll(aio_context, false);
313 aio_context_release(aio_context);
317 bs = NULL;
318 while ((bs = bdrv_next(bs))) {
319 AioContext *aio_context = bdrv_get_aio_context(bs);
321 aio_context_acquire(aio_context);
322 if (bs->job) {
323 block_job_resume(bs->job);
325 aio_context_release(aio_context);
327 g_slist_free(aio_ctxs);
331 * Remove an active request from the tracked requests list
333 * This function should be called when a tracked request is completing.
335 static void tracked_request_end(BdrvTrackedRequest *req)
337 if (req->serialising) {
338 req->bs->serialising_in_flight--;
341 QLIST_REMOVE(req, list);
342 qemu_co_queue_restart_all(&req->wait_queue);
346 * Add an active request to the tracked requests list
348 static void tracked_request_begin(BdrvTrackedRequest *req,
349 BlockDriverState *bs,
350 int64_t offset,
351 unsigned int bytes, bool is_write)
353 *req = (BdrvTrackedRequest){
354 .bs = bs,
355 .offset = offset,
356 .bytes = bytes,
357 .is_write = is_write,
358 .co = qemu_coroutine_self(),
359 .serialising = false,
360 .overlap_offset = offset,
361 .overlap_bytes = bytes,
364 qemu_co_queue_init(&req->wait_queue);
366 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
369 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
371 int64_t overlap_offset = req->offset & ~(align - 1);
372 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
373 - overlap_offset;
375 if (!req->serialising) {
376 req->bs->serialising_in_flight++;
377 req->serialising = true;
380 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
381 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
385 * Round a region to cluster boundaries
387 void bdrv_round_to_clusters(BlockDriverState *bs,
388 int64_t sector_num, int nb_sectors,
389 int64_t *cluster_sector_num,
390 int *cluster_nb_sectors)
392 BlockDriverInfo bdi;
394 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
395 *cluster_sector_num = sector_num;
396 *cluster_nb_sectors = nb_sectors;
397 } else {
398 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
399 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
400 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
401 nb_sectors, c);
405 static int bdrv_get_cluster_size(BlockDriverState *bs)
407 BlockDriverInfo bdi;
408 int ret;
410 ret = bdrv_get_info(bs, &bdi);
411 if (ret < 0 || bdi.cluster_size == 0) {
412 return bs->request_alignment;
413 } else {
414 return bdi.cluster_size;
418 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
419 int64_t offset, unsigned int bytes)
421 /* aaaa bbbb */
422 if (offset >= req->overlap_offset + req->overlap_bytes) {
423 return false;
425 /* bbbb aaaa */
426 if (req->overlap_offset >= offset + bytes) {
427 return false;
429 return true;
432 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
434 BlockDriverState *bs = self->bs;
435 BdrvTrackedRequest *req;
436 bool retry;
437 bool waited = false;
439 if (!bs->serialising_in_flight) {
440 return false;
443 do {
444 retry = false;
445 QLIST_FOREACH(req, &bs->tracked_requests, list) {
446 if (req == self || (!req->serialising && !self->serialising)) {
447 continue;
449 if (tracked_request_overlaps(req, self->overlap_offset,
450 self->overlap_bytes))
452 /* Hitting this means there was a reentrant request, for
453 * example, a block driver issuing nested requests. This must
454 * never happen since it means deadlock.
456 assert(qemu_coroutine_self() != req->co);
458 /* If the request is already (indirectly) waiting for us, or
459 * will wait for us as soon as it wakes up, then just go on
460 * (instead of producing a deadlock in the former case). */
461 if (!req->waiting_for) {
462 self->waiting_for = req;
463 qemu_co_queue_wait(&req->wait_queue);
464 self->waiting_for = NULL;
465 retry = true;
466 waited = true;
467 break;
471 } while (retry);
473 return waited;
476 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
477 size_t size)
479 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
480 return -EIO;
483 if (!bdrv_is_inserted(bs)) {
484 return -ENOMEDIUM;
487 if (offset < 0) {
488 return -EIO;
491 return 0;
494 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
495 int nb_sectors)
497 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
498 return -EIO;
501 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
502 nb_sectors * BDRV_SECTOR_SIZE);
505 typedef struct RwCo {
506 BlockDriverState *bs;
507 int64_t offset;
508 QEMUIOVector *qiov;
509 bool is_write;
510 int ret;
511 BdrvRequestFlags flags;
512 } RwCo;
514 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
516 RwCo *rwco = opaque;
518 if (!rwco->is_write) {
519 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
520 rwco->qiov->size, rwco->qiov,
521 rwco->flags);
522 } else {
523 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
524 rwco->qiov->size, rwco->qiov,
525 rwco->flags);
530 * Process a vectored synchronous request using coroutines
532 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
533 QEMUIOVector *qiov, bool is_write,
534 BdrvRequestFlags flags)
536 Coroutine *co;
537 RwCo rwco = {
538 .bs = bs,
539 .offset = offset,
540 .qiov = qiov,
541 .is_write = is_write,
542 .ret = NOT_DONE,
543 .flags = flags,
547 * In sync call context, when the vcpu is blocked, this throttling timer
548 * will not fire; so the I/O throttling function has to be disabled here
549 * if it has been enabled.
551 if (bs->io_limits_enabled) {
552 fprintf(stderr, "Disabling I/O throttling on '%s' due "
553 "to synchronous I/O.\n", bdrv_get_device_name(bs));
554 bdrv_io_limits_disable(bs);
557 if (qemu_in_coroutine()) {
558 /* Fast-path if already in coroutine context */
559 bdrv_rw_co_entry(&rwco);
560 } else {
561 AioContext *aio_context = bdrv_get_aio_context(bs);
563 co = qemu_coroutine_create(bdrv_rw_co_entry);
564 qemu_coroutine_enter(co, &rwco);
565 while (rwco.ret == NOT_DONE) {
566 aio_poll(aio_context, true);
569 return rwco.ret;
573 * Process a synchronous request using coroutines
575 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
576 int nb_sectors, bool is_write, BdrvRequestFlags flags)
578 QEMUIOVector qiov;
579 struct iovec iov = {
580 .iov_base = (void *)buf,
581 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
584 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
585 return -EINVAL;
588 qemu_iovec_init_external(&qiov, &iov, 1);
589 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
590 &qiov, is_write, flags);
593 /* return < 0 if error. See bdrv_write() for the return codes */
594 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
595 uint8_t *buf, int nb_sectors)
597 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
600 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
601 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
602 uint8_t *buf, int nb_sectors)
604 bool enabled;
605 int ret;
607 enabled = bs->io_limits_enabled;
608 bs->io_limits_enabled = false;
609 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
610 bs->io_limits_enabled = enabled;
611 return ret;
614 /* Return < 0 if error. Important errors are:
615 -EIO generic I/O error (may happen for all errors)
616 -ENOMEDIUM No media inserted.
617 -EINVAL Invalid sector number or nb_sectors
618 -EACCES Trying to write a read-only device
620 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
621 const uint8_t *buf, int nb_sectors)
623 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
626 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
627 int nb_sectors, BdrvRequestFlags flags)
629 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
630 BDRV_REQ_ZERO_WRITE | flags);
634 * Completely zero out a block device with the help of bdrv_write_zeroes.
635 * The operation is sped up by checking the block status and only writing
636 * zeroes to the device if they currently do not return zeroes. Optional
637 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
639 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
641 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
643 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
644 int n;
646 target_sectors = bdrv_nb_sectors(bs);
647 if (target_sectors < 0) {
648 return target_sectors;
651 for (;;) {
652 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
653 if (nb_sectors <= 0) {
654 return 0;
656 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
657 if (ret < 0) {
658 error_report("error getting block status at sector %" PRId64 ": %s",
659 sector_num, strerror(-ret));
660 return ret;
662 if (ret & BDRV_BLOCK_ZERO) {
663 sector_num += n;
664 continue;
666 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
667 if (ret < 0) {
668 error_report("error writing zeroes at sector %" PRId64 ": %s",
669 sector_num, strerror(-ret));
670 return ret;
672 sector_num += n;
676 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
678 QEMUIOVector qiov;
679 struct iovec iov = {
680 .iov_base = (void *)buf,
681 .iov_len = bytes,
683 int ret;
685 if (bytes < 0) {
686 return -EINVAL;
689 qemu_iovec_init_external(&qiov, &iov, 1);
690 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
691 if (ret < 0) {
692 return ret;
695 return bytes;
698 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
700 int ret;
702 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
703 if (ret < 0) {
704 return ret;
707 return qiov->size;
710 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
711 const void *buf, int bytes)
713 QEMUIOVector qiov;
714 struct iovec iov = {
715 .iov_base = (void *) buf,
716 .iov_len = bytes,
719 if (bytes < 0) {
720 return -EINVAL;
723 qemu_iovec_init_external(&qiov, &iov, 1);
724 return bdrv_pwritev(bs, offset, &qiov);
728 * Writes to the file and ensures that no writes are reordered across this
729 * request (acts as a barrier)
731 * Returns 0 on success, -errno in error cases.
733 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
734 const void *buf, int count)
736 int ret;
738 ret = bdrv_pwrite(bs, offset, buf, count);
739 if (ret < 0) {
740 return ret;
743 /* No flush needed for cache modes that already do it */
744 if (bs->enable_write_cache) {
745 bdrv_flush(bs);
748 return 0;
751 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
752 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
754 /* Perform I/O through a temporary buffer so that users who scribble over
755 * their read buffer while the operation is in progress do not end up
756 * modifying the image file. This is critical for zero-copy guest I/O
757 * where anything might happen inside guest memory.
759 void *bounce_buffer;
761 BlockDriver *drv = bs->drv;
762 struct iovec iov;
763 QEMUIOVector bounce_qiov;
764 int64_t cluster_sector_num;
765 int cluster_nb_sectors;
766 size_t skip_bytes;
767 int ret;
769 /* Cover entire cluster so no additional backing file I/O is required when
770 * allocating cluster in the image file.
772 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
773 &cluster_sector_num, &cluster_nb_sectors);
775 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
776 cluster_sector_num, cluster_nb_sectors);
778 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
779 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
780 if (bounce_buffer == NULL) {
781 ret = -ENOMEM;
782 goto err;
785 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
787 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
788 &bounce_qiov);
789 if (ret < 0) {
790 goto err;
793 if (drv->bdrv_co_write_zeroes &&
794 buffer_is_zero(bounce_buffer, iov.iov_len)) {
795 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
796 cluster_nb_sectors, 0);
797 } else {
798 /* This does not change the data on the disk, it is not necessary
799 * to flush even in cache=writethrough mode.
801 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
802 &bounce_qiov);
805 if (ret < 0) {
806 /* It might be okay to ignore write errors for guest requests. If this
807 * is a deliberate copy-on-read then we don't want to ignore the error.
808 * Simply report it in all cases.
810 goto err;
813 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
814 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
815 nb_sectors * BDRV_SECTOR_SIZE);
817 err:
818 qemu_vfree(bounce_buffer);
819 return ret;
823 * Forwards an already correctly aligned request to the BlockDriver. This
824 * handles copy on read and zeroing after EOF; any other features must be
825 * implemented by the caller.
827 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
828 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
829 int64_t align, QEMUIOVector *qiov, int flags)
831 BlockDriver *drv = bs->drv;
832 int ret;
834 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
835 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
837 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
838 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
839 assert(!qiov || bytes == qiov->size);
841 /* Handle Copy on Read and associated serialisation */
842 if (flags & BDRV_REQ_COPY_ON_READ) {
843 /* If we touch the same cluster it counts as an overlap. This
844 * guarantees that allocating writes will be serialized and not race
845 * with each other for the same cluster. For example, in copy-on-read
846 * it ensures that the CoR read and write operations are atomic and
847 * guest writes cannot interleave between them. */
848 mark_request_serialising(req, bdrv_get_cluster_size(bs));
851 wait_serialising_requests(req);
853 if (flags & BDRV_REQ_COPY_ON_READ) {
854 int pnum;
856 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
857 if (ret < 0) {
858 goto out;
861 if (!ret || pnum != nb_sectors) {
862 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
863 goto out;
867 /* Forward the request to the BlockDriver */
868 if (!bs->zero_beyond_eof) {
869 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
870 } else {
871 /* Read zeros after EOF */
872 int64_t total_sectors, max_nb_sectors;
874 total_sectors = bdrv_nb_sectors(bs);
875 if (total_sectors < 0) {
876 ret = total_sectors;
877 goto out;
880 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
881 align >> BDRV_SECTOR_BITS);
882 if (nb_sectors < max_nb_sectors) {
883 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
884 } else if (max_nb_sectors > 0) {
885 QEMUIOVector local_qiov;
887 qemu_iovec_init(&local_qiov, qiov->niov);
888 qemu_iovec_concat(&local_qiov, qiov, 0,
889 max_nb_sectors * BDRV_SECTOR_SIZE);
891 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
892 &local_qiov);
894 qemu_iovec_destroy(&local_qiov);
895 } else {
896 ret = 0;
899 /* Reading beyond end of file is supposed to produce zeroes */
900 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
901 uint64_t offset = MAX(0, total_sectors - sector_num);
902 uint64_t bytes = (sector_num + nb_sectors - offset) *
903 BDRV_SECTOR_SIZE;
904 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
908 out:
909 return ret;
913 * Handle a read request in coroutine context
915 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
916 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
917 BdrvRequestFlags flags)
919 BlockDriver *drv = bs->drv;
920 BdrvTrackedRequest req;
922 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
923 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
924 uint8_t *head_buf = NULL;
925 uint8_t *tail_buf = NULL;
926 QEMUIOVector local_qiov;
927 bool use_local_qiov = false;
928 int ret;
930 if (!drv) {
931 return -ENOMEDIUM;
934 ret = bdrv_check_byte_request(bs, offset, bytes);
935 if (ret < 0) {
936 return ret;
939 /* Don't do copy-on-read if we read data before write operation */
940 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_COPY_ON_READ)) {
941 flags |= BDRV_REQ_COPY_ON_READ;
944 /* throttling disk I/O */
945 if (bs->io_limits_enabled) {
946 throttle_group_co_io_limits_intercept(bs, bytes, false);
949 /* Align read if necessary by padding qiov */
950 if (offset & (align - 1)) {
951 head_buf = qemu_blockalign(bs, align);
952 qemu_iovec_init(&local_qiov, qiov->niov + 2);
953 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
954 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
955 use_local_qiov = true;
957 bytes += offset & (align - 1);
958 offset = offset & ~(align - 1);
961 if ((offset + bytes) & (align - 1)) {
962 if (!use_local_qiov) {
963 qemu_iovec_init(&local_qiov, qiov->niov + 1);
964 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
965 use_local_qiov = true;
967 tail_buf = qemu_blockalign(bs, align);
968 qemu_iovec_add(&local_qiov, tail_buf,
969 align - ((offset + bytes) & (align - 1)));
971 bytes = ROUND_UP(bytes, align);
974 tracked_request_begin(&req, bs, offset, bytes, false);
975 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
976 use_local_qiov ? &local_qiov : qiov,
977 flags);
978 tracked_request_end(&req);
980 if (use_local_qiov) {
981 qemu_iovec_destroy(&local_qiov);
982 qemu_vfree(head_buf);
983 qemu_vfree(tail_buf);
986 return ret;
989 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
990 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
991 BdrvRequestFlags flags)
993 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
994 return -EINVAL;
997 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
998 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1001 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1002 int nb_sectors, QEMUIOVector *qiov)
1004 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1006 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1009 int coroutine_fn bdrv_co_no_copy_on_readv(BlockDriverState *bs,
1010 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1012 trace_bdrv_co_no_copy_on_readv(bs, sector_num, nb_sectors);
1014 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1015 BDRV_REQ_NO_COPY_ON_READ);
1018 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1019 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1021 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1023 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1024 BDRV_REQ_COPY_ON_READ);
1027 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1029 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1030 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1032 BlockDriver *drv = bs->drv;
1033 QEMUIOVector qiov;
1034 struct iovec iov = {0};
1035 int ret = 0;
1037 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1038 BDRV_REQUEST_MAX_SECTORS);
1040 while (nb_sectors > 0 && !ret) {
1041 int num = nb_sectors;
1043 /* Align request. Block drivers can expect the "bulk" of the request
1044 * to be aligned.
1046 if (bs->bl.write_zeroes_alignment
1047 && num > bs->bl.write_zeroes_alignment) {
1048 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1049 /* Make a small request up to the first aligned sector. */
1050 num = bs->bl.write_zeroes_alignment;
1051 num -= sector_num % bs->bl.write_zeroes_alignment;
1052 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1053 /* Shorten the request to the last aligned sector. num cannot
1054 * underflow because num > bs->bl.write_zeroes_alignment.
1056 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1060 /* limit request size */
1061 if (num > max_write_zeroes) {
1062 num = max_write_zeroes;
1065 ret = -ENOTSUP;
1066 /* First try the efficient write zeroes operation */
1067 if (drv->bdrv_co_write_zeroes) {
1068 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1071 if (ret == -ENOTSUP) {
1072 /* Fall back to bounce buffer if write zeroes is unsupported */
1073 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1074 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1075 num = MIN(num, max_xfer_len);
1076 iov.iov_len = num * BDRV_SECTOR_SIZE;
1077 if (iov.iov_base == NULL) {
1078 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1079 if (iov.iov_base == NULL) {
1080 ret = -ENOMEM;
1081 goto fail;
1083 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1085 qemu_iovec_init_external(&qiov, &iov, 1);
1087 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1089 /* Keep bounce buffer around if it is big enough for all
1090 * all future requests.
1092 if (num < max_xfer_len) {
1093 qemu_vfree(iov.iov_base);
1094 iov.iov_base = NULL;
1098 sector_num += num;
1099 nb_sectors -= num;
1102 fail:
1103 qemu_vfree(iov.iov_base);
1104 return ret;
1108 * Forwards an already correctly aligned write request to the BlockDriver.
1110 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1111 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1112 QEMUIOVector *qiov, int flags)
1114 BlockDriver *drv = bs->drv;
1115 bool waited;
1116 int ret;
1118 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1119 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1121 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1122 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1123 assert(!qiov || bytes == qiov->size);
1125 waited = wait_serialising_requests(req);
1126 assert(!waited || !req->serialising);
1127 assert(req->overlap_offset <= offset);
1128 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1130 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1132 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1133 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1134 qemu_iovec_is_zero(qiov)) {
1135 flags |= BDRV_REQ_ZERO_WRITE;
1136 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1137 flags |= BDRV_REQ_MAY_UNMAP;
1141 if (ret < 0) {
1142 /* Do nothing, write notifier decided to fail this request */
1143 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1144 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1145 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1146 } else {
1147 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1148 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1150 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1152 if (ret == 0 && !bs->enable_write_cache) {
1153 ret = bdrv_co_flush(bs);
1156 bdrv_set_dirty(bs, sector_num, nb_sectors);
1158 if (bs->wr_highest_offset < offset + bytes) {
1159 bs->wr_highest_offset = offset + bytes;
1162 if (ret >= 0) {
1163 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1166 return ret;
1169 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1170 int64_t offset,
1171 unsigned int bytes,
1172 BdrvRequestFlags flags,
1173 BdrvTrackedRequest *req)
1175 uint8_t *buf = NULL;
1176 QEMUIOVector local_qiov;
1177 struct iovec iov;
1178 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1179 unsigned int head_padding_bytes, tail_padding_bytes;
1180 int ret = 0;
1182 head_padding_bytes = offset & (align - 1);
1183 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1186 assert(flags & BDRV_REQ_ZERO_WRITE);
1187 if (head_padding_bytes || tail_padding_bytes) {
1188 buf = qemu_blockalign(bs, align);
1189 iov = (struct iovec) {
1190 .iov_base = buf,
1191 .iov_len = align,
1193 qemu_iovec_init_external(&local_qiov, &iov, 1);
1195 if (head_padding_bytes) {
1196 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1198 /* RMW the unaligned part before head. */
1199 mark_request_serialising(req, align);
1200 wait_serialising_requests(req);
1201 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1202 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1203 align, &local_qiov, 0);
1204 if (ret < 0) {
1205 goto fail;
1207 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1209 memset(buf + head_padding_bytes, 0, zero_bytes);
1210 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1211 &local_qiov,
1212 flags & ~BDRV_REQ_ZERO_WRITE);
1213 if (ret < 0) {
1214 goto fail;
1216 offset += zero_bytes;
1217 bytes -= zero_bytes;
1220 assert(!bytes || (offset & (align - 1)) == 0);
1221 if (bytes >= align) {
1222 /* Write the aligned part in the middle. */
1223 uint64_t aligned_bytes = bytes & ~(align - 1);
1224 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1225 NULL, flags);
1226 if (ret < 0) {
1227 goto fail;
1229 bytes -= aligned_bytes;
1230 offset += aligned_bytes;
1233 assert(!bytes || (offset & (align - 1)) == 0);
1234 if (bytes) {
1235 assert(align == tail_padding_bytes + bytes);
1236 /* RMW the unaligned part after tail. */
1237 mark_request_serialising(req, align);
1238 wait_serialising_requests(req);
1239 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1240 ret = bdrv_aligned_preadv(bs, req, offset, align,
1241 align, &local_qiov, 0);
1242 if (ret < 0) {
1243 goto fail;
1245 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1247 memset(buf, 0, bytes);
1248 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1249 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1251 fail:
1252 qemu_vfree(buf);
1253 return ret;
1258 * Handle a write request in coroutine context
1260 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1261 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1262 BdrvRequestFlags flags)
1264 BdrvTrackedRequest req;
1265 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1266 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1267 uint8_t *head_buf = NULL;
1268 uint8_t *tail_buf = NULL;
1269 QEMUIOVector local_qiov;
1270 bool use_local_qiov = false;
1271 int ret;
1273 if (!bs->drv) {
1274 return -ENOMEDIUM;
1276 if (bs->read_only) {
1277 return -EPERM;
1280 ret = bdrv_check_byte_request(bs, offset, bytes);
1281 if (ret < 0) {
1282 return ret;
1285 /* throttling disk I/O */
1286 if (bs->io_limits_enabled) {
1287 throttle_group_co_io_limits_intercept(bs, bytes, true);
1291 * Align write if necessary by performing a read-modify-write cycle.
1292 * Pad qiov with the read parts and be sure to have a tracked request not
1293 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1295 tracked_request_begin(&req, bs, offset, bytes, true);
1297 if (!qiov) {
1298 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1299 goto out;
1302 if (offset & (align - 1)) {
1303 QEMUIOVector head_qiov;
1304 struct iovec head_iov;
1306 mark_request_serialising(&req, align);
1307 wait_serialising_requests(&req);
1309 head_buf = qemu_blockalign(bs, align);
1310 head_iov = (struct iovec) {
1311 .iov_base = head_buf,
1312 .iov_len = align,
1314 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1316 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1317 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1318 align, &head_qiov, 0);
1319 if (ret < 0) {
1320 goto fail;
1322 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1324 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1325 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1326 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1327 use_local_qiov = true;
1329 bytes += offset & (align - 1);
1330 offset = offset & ~(align - 1);
1333 if ((offset + bytes) & (align - 1)) {
1334 QEMUIOVector tail_qiov;
1335 struct iovec tail_iov;
1336 size_t tail_bytes;
1337 bool waited;
1339 mark_request_serialising(&req, align);
1340 waited = wait_serialising_requests(&req);
1341 assert(!waited || !use_local_qiov);
1343 tail_buf = qemu_blockalign(bs, align);
1344 tail_iov = (struct iovec) {
1345 .iov_base = tail_buf,
1346 .iov_len = align,
1348 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1350 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1351 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1352 align, &tail_qiov, 0);
1353 if (ret < 0) {
1354 goto fail;
1356 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1358 if (!use_local_qiov) {
1359 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1360 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1361 use_local_qiov = true;
1364 tail_bytes = (offset + bytes) & (align - 1);
1365 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1367 bytes = ROUND_UP(bytes, align);
1370 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1371 use_local_qiov ? &local_qiov : qiov,
1372 flags);
1374 fail:
1376 if (use_local_qiov) {
1377 qemu_iovec_destroy(&local_qiov);
1379 qemu_vfree(head_buf);
1380 qemu_vfree(tail_buf);
1381 out:
1382 tracked_request_end(&req);
1383 return ret;
1386 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1387 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1388 BdrvRequestFlags flags)
1390 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1391 return -EINVAL;
1394 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1395 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1398 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1399 int nb_sectors, QEMUIOVector *qiov)
1401 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1403 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1406 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1407 int64_t sector_num, int nb_sectors,
1408 BdrvRequestFlags flags)
1410 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1412 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1413 flags &= ~BDRV_REQ_MAY_UNMAP;
1416 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1417 BDRV_REQ_ZERO_WRITE | flags);
1420 int bdrv_flush_all(void)
1422 BlockDriverState *bs = NULL;
1423 int result = 0;
1425 while ((bs = bdrv_next(bs))) {
1426 AioContext *aio_context = bdrv_get_aio_context(bs);
1427 int ret;
1429 aio_context_acquire(aio_context);
1430 ret = bdrv_flush(bs);
1431 if (ret < 0 && !result) {
1432 result = ret;
1434 aio_context_release(aio_context);
1437 return result;
1440 typedef struct BdrvCoGetBlockStatusData {
1441 BlockDriverState *bs;
1442 BlockDriverState *base;
1443 int64_t sector_num;
1444 int nb_sectors;
1445 int *pnum;
1446 int64_t ret;
1447 bool done;
1448 } BdrvCoGetBlockStatusData;
1451 * Returns the allocation status of the specified sectors.
1452 * Drivers not implementing the functionality are assumed to not support
1453 * backing files, hence all their sectors are reported as allocated.
1455 * If 'sector_num' is beyond the end of the disk image the return value is 0
1456 * and 'pnum' is set to 0.
1458 * 'pnum' is set to the number of sectors (including and immediately following
1459 * the specified sector) that are known to be in the same
1460 * allocated/unallocated state.
1462 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1463 * beyond the end of the disk image it will be clamped.
1465 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1466 int64_t sector_num,
1467 int nb_sectors, int *pnum)
1469 int64_t total_sectors;
1470 int64_t n;
1471 int64_t ret, ret2;
1473 total_sectors = bdrv_nb_sectors(bs);
1474 if (total_sectors < 0) {
1475 return total_sectors;
1478 if (sector_num >= total_sectors) {
1479 *pnum = 0;
1480 return 0;
1483 n = total_sectors - sector_num;
1484 if (n < nb_sectors) {
1485 nb_sectors = n;
1488 if (!bs->drv->bdrv_co_get_block_status) {
1489 *pnum = nb_sectors;
1490 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1491 if (bs->drv->protocol_name) {
1492 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1494 return ret;
1497 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1498 if (ret < 0) {
1499 *pnum = 0;
1500 return ret;
1503 if (ret & BDRV_BLOCK_RAW) {
1504 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1505 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1506 *pnum, pnum);
1509 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1510 ret |= BDRV_BLOCK_ALLOCATED;
1511 } else {
1512 if (bdrv_unallocated_blocks_are_zero(bs)) {
1513 ret |= BDRV_BLOCK_ZERO;
1514 } else if (bs->backing) {
1515 BlockDriverState *bs2 = bs->backing->bs;
1516 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1517 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1518 ret |= BDRV_BLOCK_ZERO;
1523 if (bs->file &&
1524 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1525 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1526 int file_pnum;
1528 ret2 = bdrv_co_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1529 *pnum, &file_pnum);
1530 if (ret2 >= 0) {
1531 /* Ignore errors. This is just providing extra information, it
1532 * is useful but not necessary.
1534 if (!file_pnum) {
1535 /* !file_pnum indicates an offset at or beyond the EOF; it is
1536 * perfectly valid for the format block driver to point to such
1537 * offsets, so catch it and mark everything as zero */
1538 ret |= BDRV_BLOCK_ZERO;
1539 } else {
1540 /* Limit request to the range reported by the protocol driver */
1541 *pnum = file_pnum;
1542 ret |= (ret2 & BDRV_BLOCK_ZERO);
1547 return ret;
1550 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1551 BlockDriverState *base,
1552 int64_t sector_num,
1553 int nb_sectors,
1554 int *pnum)
1556 BlockDriverState *p;
1557 int64_t ret = 0;
1559 assert(bs != base);
1560 for (p = bs; p != base; p = backing_bs(p)) {
1561 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum);
1562 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1563 break;
1565 /* [sector_num, pnum] unallocated on this layer, which could be only
1566 * the first part of [sector_num, nb_sectors]. */
1567 nb_sectors = MIN(nb_sectors, *pnum);
1569 return ret;
1572 /* Coroutine wrapper for bdrv_get_block_status_above() */
1573 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1575 BdrvCoGetBlockStatusData *data = opaque;
1577 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1578 data->sector_num,
1579 data->nb_sectors,
1580 data->pnum);
1581 data->done = true;
1585 * Synchronous wrapper around bdrv_co_get_block_status_above().
1587 * See bdrv_co_get_block_status_above() for details.
1589 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1590 BlockDriverState *base,
1591 int64_t sector_num,
1592 int nb_sectors, int *pnum)
1594 Coroutine *co;
1595 BdrvCoGetBlockStatusData data = {
1596 .bs = bs,
1597 .base = base,
1598 .sector_num = sector_num,
1599 .nb_sectors = nb_sectors,
1600 .pnum = pnum,
1601 .done = false,
1604 if (qemu_in_coroutine()) {
1605 /* Fast-path if already in coroutine context */
1606 bdrv_get_block_status_above_co_entry(&data);
1607 } else {
1608 AioContext *aio_context = bdrv_get_aio_context(bs);
1610 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1611 qemu_coroutine_enter(co, &data);
1612 while (!data.done) {
1613 aio_poll(aio_context, true);
1616 return data.ret;
1619 int64_t bdrv_get_block_status(BlockDriverState *bs,
1620 int64_t sector_num,
1621 int nb_sectors, int *pnum)
1623 return bdrv_get_block_status_above(bs, backing_bs(bs),
1624 sector_num, nb_sectors, pnum);
1627 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1628 int nb_sectors, int *pnum)
1630 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1631 if (ret < 0) {
1632 return ret;
1634 return !!(ret & BDRV_BLOCK_ALLOCATED);
1638 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1640 * Return true if the given sector is allocated in any image between
1641 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1642 * sector is allocated in any image of the chain. Return false otherwise.
1644 * 'pnum' is set to the number of sectors (including and immediately following
1645 * the specified sector) that are known to be in the same
1646 * allocated/unallocated state.
1649 int bdrv_is_allocated_above(BlockDriverState *top,
1650 BlockDriverState *base,
1651 int64_t sector_num,
1652 int nb_sectors, int *pnum)
1654 BlockDriverState *intermediate;
1655 int ret, n = nb_sectors;
1657 intermediate = top;
1658 while (intermediate && intermediate != base) {
1659 int pnum_inter;
1660 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1661 &pnum_inter);
1662 if (ret < 0) {
1663 return ret;
1664 } else if (ret) {
1665 *pnum = pnum_inter;
1666 return 1;
1670 * [sector_num, nb_sectors] is unallocated on top but intermediate
1671 * might have
1673 * [sector_num+x, nr_sectors] allocated.
1675 if (n > pnum_inter &&
1676 (intermediate == top ||
1677 sector_num + pnum_inter < intermediate->total_sectors)) {
1678 n = pnum_inter;
1681 intermediate = backing_bs(intermediate);
1684 *pnum = n;
1685 return 0;
1688 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1689 const uint8_t *buf, int nb_sectors)
1691 BlockDriver *drv = bs->drv;
1692 int ret;
1694 if (!drv) {
1695 return -ENOMEDIUM;
1697 if (!drv->bdrv_write_compressed) {
1698 return -ENOTSUP;
1700 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1701 if (ret < 0) {
1702 return ret;
1705 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1707 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1710 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1711 int64_t pos, int size)
1713 QEMUIOVector qiov;
1714 struct iovec iov = {
1715 .iov_base = (void *) buf,
1716 .iov_len = size,
1719 qemu_iovec_init_external(&qiov, &iov, 1);
1720 return bdrv_writev_vmstate(bs, &qiov, pos);
1723 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1725 BlockDriver *drv = bs->drv;
1727 if (!drv) {
1728 return -ENOMEDIUM;
1729 } else if (drv->bdrv_save_vmstate) {
1730 return drv->bdrv_save_vmstate(bs, qiov, pos);
1731 } else if (bs->file) {
1732 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1735 return -ENOTSUP;
1738 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1739 int64_t pos, int size)
1741 BlockDriver *drv = bs->drv;
1742 if (!drv)
1743 return -ENOMEDIUM;
1744 if (drv->bdrv_load_vmstate)
1745 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1746 if (bs->file)
1747 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1748 return -ENOTSUP;
1751 /**************************************************************/
1752 /* async I/Os */
1754 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1755 QEMUIOVector *qiov, int nb_sectors,
1756 BlockCompletionFunc *cb, void *opaque)
1758 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1760 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1761 cb, opaque, false);
1764 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1765 QEMUIOVector *qiov, int nb_sectors,
1766 BlockCompletionFunc *cb, void *opaque)
1768 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1770 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1771 cb, opaque, true);
1774 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1775 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1776 BlockCompletionFunc *cb, void *opaque)
1778 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1780 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1781 BDRV_REQ_ZERO_WRITE | flags,
1782 cb, opaque, true);
1786 typedef struct MultiwriteCB {
1787 int error;
1788 int num_requests;
1789 int num_callbacks;
1790 struct {
1791 BlockCompletionFunc *cb;
1792 void *opaque;
1793 QEMUIOVector *free_qiov;
1794 } callbacks[];
1795 } MultiwriteCB;
1797 static void multiwrite_user_cb(MultiwriteCB *mcb)
1799 int i;
1801 for (i = 0; i < mcb->num_callbacks; i++) {
1802 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1803 if (mcb->callbacks[i].free_qiov) {
1804 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1806 g_free(mcb->callbacks[i].free_qiov);
1810 static void multiwrite_cb(void *opaque, int ret)
1812 MultiwriteCB *mcb = opaque;
1814 trace_multiwrite_cb(mcb, ret);
1816 if (ret < 0 && !mcb->error) {
1817 mcb->error = ret;
1820 mcb->num_requests--;
1821 if (mcb->num_requests == 0) {
1822 multiwrite_user_cb(mcb);
1823 g_free(mcb);
1827 static int multiwrite_req_compare(const void *a, const void *b)
1829 const BlockRequest *req1 = a, *req2 = b;
1832 * Note that we can't simply subtract req2->sector from req1->sector
1833 * here as that could overflow the return value.
1835 if (req1->sector > req2->sector) {
1836 return 1;
1837 } else if (req1->sector < req2->sector) {
1838 return -1;
1839 } else {
1840 return 0;
1845 * Takes a bunch of requests and tries to merge them. Returns the number of
1846 * requests that remain after merging.
1848 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1849 int num_reqs, MultiwriteCB *mcb)
1851 int i, outidx;
1853 // Sort requests by start sector
1854 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1856 // Check if adjacent requests touch the same clusters. If so, combine them,
1857 // filling up gaps with zero sectors.
1858 outidx = 0;
1859 for (i = 1; i < num_reqs; i++) {
1860 int merge = 0;
1861 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1863 // Handle exactly sequential writes and overlapping writes.
1864 if (reqs[i].sector <= oldreq_last) {
1865 merge = 1;
1868 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1869 merge = 0;
1872 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1873 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1874 merge = 0;
1877 if (merge) {
1878 size_t size;
1879 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1880 qemu_iovec_init(qiov,
1881 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1883 // Add the first request to the merged one. If the requests are
1884 // overlapping, drop the last sectors of the first request.
1885 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1886 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1888 // We should need to add any zeros between the two requests
1889 assert (reqs[i].sector <= oldreq_last);
1891 // Add the second request
1892 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1894 // Add tail of first request, if necessary
1895 if (qiov->size < reqs[outidx].qiov->size) {
1896 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1897 reqs[outidx].qiov->size - qiov->size);
1900 reqs[outidx].nb_sectors = qiov->size >> 9;
1901 reqs[outidx].qiov = qiov;
1903 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1904 } else {
1905 outidx++;
1906 reqs[outidx].sector = reqs[i].sector;
1907 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1908 reqs[outidx].qiov = reqs[i].qiov;
1912 if (bs->blk) {
1913 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1914 num_reqs - outidx - 1);
1917 return outidx + 1;
1921 * Submit multiple AIO write requests at once.
1923 * On success, the function returns 0 and all requests in the reqs array have
1924 * been submitted. In error case this function returns -1, and any of the
1925 * requests may or may not be submitted yet. In particular, this means that the
1926 * callback will be called for some of the requests, for others it won't. The
1927 * caller must check the error field of the BlockRequest to wait for the right
1928 * callbacks (if error != 0, no callback will be called).
1930 * The implementation may modify the contents of the reqs array, e.g. to merge
1931 * requests. However, the fields opaque and error are left unmodified as they
1932 * are used to signal failure for a single request to the caller.
1934 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1936 MultiwriteCB *mcb;
1937 int i;
1939 /* don't submit writes if we don't have a medium */
1940 if (bs->drv == NULL) {
1941 for (i = 0; i < num_reqs; i++) {
1942 reqs[i].error = -ENOMEDIUM;
1944 return -1;
1947 if (num_reqs == 0) {
1948 return 0;
1951 // Create MultiwriteCB structure
1952 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1953 mcb->num_requests = 0;
1954 mcb->num_callbacks = num_reqs;
1956 for (i = 0; i < num_reqs; i++) {
1957 mcb->callbacks[i].cb = reqs[i].cb;
1958 mcb->callbacks[i].opaque = reqs[i].opaque;
1961 // Check for mergable requests
1962 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1964 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1966 /* Run the aio requests. */
1967 mcb->num_requests = num_reqs;
1968 for (i = 0; i < num_reqs; i++) {
1969 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1970 reqs[i].nb_sectors, reqs[i].flags,
1971 multiwrite_cb, mcb,
1972 true);
1975 return 0;
1978 void bdrv_aio_cancel(BlockAIOCB *acb)
1980 qemu_aio_ref(acb);
1981 bdrv_aio_cancel_async(acb);
1982 while (acb->refcnt > 1) {
1983 if (acb->aiocb_info->get_aio_context) {
1984 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1985 } else if (acb->bs) {
1986 aio_poll(bdrv_get_aio_context(acb->bs), true);
1987 } else {
1988 abort();
1991 qemu_aio_unref(acb);
1994 /* Async version of aio cancel. The caller is not blocked if the acb implements
1995 * cancel_async, otherwise we do nothing and let the request normally complete.
1996 * In either case the completion callback must be called. */
1997 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1999 if (acb->aiocb_info->cancel_async) {
2000 acb->aiocb_info->cancel_async(acb);
2004 /**************************************************************/
2005 /* async block device emulation */
2007 typedef struct BlockAIOCBSync {
2008 BlockAIOCB common;
2009 QEMUBH *bh;
2010 int ret;
2011 /* vector translation state */
2012 QEMUIOVector *qiov;
2013 uint8_t *bounce;
2014 int is_write;
2015 } BlockAIOCBSync;
2017 static const AIOCBInfo bdrv_em_aiocb_info = {
2018 .aiocb_size = sizeof(BlockAIOCBSync),
2021 static void bdrv_aio_bh_cb(void *opaque)
2023 BlockAIOCBSync *acb = opaque;
2025 if (!acb->is_write && acb->ret >= 0) {
2026 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2028 qemu_vfree(acb->bounce);
2029 acb->common.cb(acb->common.opaque, acb->ret);
2030 qemu_bh_delete(acb->bh);
2031 acb->bh = NULL;
2032 qemu_aio_unref(acb);
2035 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2036 int64_t sector_num,
2037 QEMUIOVector *qiov,
2038 int nb_sectors,
2039 BlockCompletionFunc *cb,
2040 void *opaque,
2041 int is_write)
2044 BlockAIOCBSync *acb;
2046 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2047 acb->is_write = is_write;
2048 acb->qiov = qiov;
2049 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2050 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2052 if (acb->bounce == NULL) {
2053 acb->ret = -ENOMEM;
2054 } else if (is_write) {
2055 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2056 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2057 } else {
2058 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2061 qemu_bh_schedule(acb->bh);
2063 return &acb->common;
2066 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2067 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2068 BlockCompletionFunc *cb, void *opaque)
2070 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2073 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2074 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2075 BlockCompletionFunc *cb, void *opaque)
2077 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2081 typedef struct BlockAIOCBCoroutine {
2082 BlockAIOCB common;
2083 BlockRequest req;
2084 bool is_write;
2085 bool need_bh;
2086 bool *done;
2087 QEMUBH* bh;
2088 } BlockAIOCBCoroutine;
2090 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2091 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2094 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2096 if (!acb->need_bh) {
2097 acb->common.cb(acb->common.opaque, acb->req.error);
2098 qemu_aio_unref(acb);
2102 static void bdrv_co_em_bh(void *opaque)
2104 BlockAIOCBCoroutine *acb = opaque;
2106 assert(!acb->need_bh);
2107 qemu_bh_delete(acb->bh);
2108 bdrv_co_complete(acb);
2111 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2113 acb->need_bh = false;
2114 if (acb->req.error != -EINPROGRESS) {
2115 BlockDriverState *bs = acb->common.bs;
2117 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2118 qemu_bh_schedule(acb->bh);
2122 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2123 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2125 BlockAIOCBCoroutine *acb = opaque;
2126 BlockDriverState *bs = acb->common.bs;
2128 if (!acb->is_write) {
2129 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2130 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2131 } else {
2132 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2133 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2136 bdrv_co_complete(acb);
2139 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2140 int64_t sector_num,
2141 QEMUIOVector *qiov,
2142 int nb_sectors,
2143 BdrvRequestFlags flags,
2144 BlockCompletionFunc *cb,
2145 void *opaque,
2146 bool is_write)
2148 Coroutine *co;
2149 BlockAIOCBCoroutine *acb;
2151 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2152 acb->need_bh = true;
2153 acb->req.error = -EINPROGRESS;
2154 acb->req.sector = sector_num;
2155 acb->req.nb_sectors = nb_sectors;
2156 acb->req.qiov = qiov;
2157 acb->req.flags = flags;
2158 acb->is_write = is_write;
2160 co = qemu_coroutine_create(bdrv_co_do_rw);
2161 qemu_coroutine_enter(co, acb);
2163 bdrv_co_maybe_schedule_bh(acb);
2164 return &acb->common;
2167 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2169 BlockAIOCBCoroutine *acb = opaque;
2170 BlockDriverState *bs = acb->common.bs;
2172 acb->req.error = bdrv_co_flush(bs);
2173 bdrv_co_complete(acb);
2176 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2177 BlockCompletionFunc *cb, void *opaque)
2179 trace_bdrv_aio_flush(bs, opaque);
2181 Coroutine *co;
2182 BlockAIOCBCoroutine *acb;
2184 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2185 acb->need_bh = true;
2186 acb->req.error = -EINPROGRESS;
2188 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2189 qemu_coroutine_enter(co, acb);
2191 bdrv_co_maybe_schedule_bh(acb);
2192 return &acb->common;
2195 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2197 BlockAIOCBCoroutine *acb = opaque;
2198 BlockDriverState *bs = acb->common.bs;
2200 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2201 bdrv_co_complete(acb);
2204 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2205 int64_t sector_num, int nb_sectors,
2206 BlockCompletionFunc *cb, void *opaque)
2208 Coroutine *co;
2209 BlockAIOCBCoroutine *acb;
2211 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2213 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2214 acb->need_bh = true;
2215 acb->req.error = -EINPROGRESS;
2216 acb->req.sector = sector_num;
2217 acb->req.nb_sectors = nb_sectors;
2218 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2219 qemu_coroutine_enter(co, acb);
2221 bdrv_co_maybe_schedule_bh(acb);
2222 return &acb->common;
2225 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2226 BlockCompletionFunc *cb, void *opaque)
2228 BlockAIOCB *acb;
2230 acb = g_malloc(aiocb_info->aiocb_size);
2231 acb->aiocb_info = aiocb_info;
2232 acb->bs = bs;
2233 acb->cb = cb;
2234 acb->opaque = opaque;
2235 acb->refcnt = 1;
2236 return acb;
2239 void qemu_aio_ref(void *p)
2241 BlockAIOCB *acb = p;
2242 acb->refcnt++;
2245 void qemu_aio_unref(void *p)
2247 BlockAIOCB *acb = p;
2248 assert(acb->refcnt > 0);
2249 if (--acb->refcnt == 0) {
2250 g_free(acb);
2254 /**************************************************************/
2255 /* Coroutine block device emulation */
2257 typedef struct CoroutineIOCompletion {
2258 Coroutine *coroutine;
2259 int ret;
2260 } CoroutineIOCompletion;
2262 static void bdrv_co_io_em_complete(void *opaque, int ret)
2264 CoroutineIOCompletion *co = opaque;
2266 co->ret = ret;
2267 qemu_coroutine_enter(co->coroutine, NULL);
2270 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2271 int nb_sectors, QEMUIOVector *iov,
2272 bool is_write)
2274 CoroutineIOCompletion co = {
2275 .coroutine = qemu_coroutine_self(),
2277 BlockAIOCB *acb;
2279 if (is_write) {
2280 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2281 bdrv_co_io_em_complete, &co);
2282 } else {
2283 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2284 bdrv_co_io_em_complete, &co);
2287 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2288 if (!acb) {
2289 return -EIO;
2291 qemu_coroutine_yield();
2293 return co.ret;
2296 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2297 int64_t sector_num, int nb_sectors,
2298 QEMUIOVector *iov)
2300 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2303 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2304 int64_t sector_num, int nb_sectors,
2305 QEMUIOVector *iov)
2307 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2310 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2312 RwCo *rwco = opaque;
2314 rwco->ret = bdrv_co_flush(rwco->bs);
2317 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2319 int ret;
2321 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2322 bdrv_is_sg(bs)) {
2323 return 0;
2326 /* Write back cached data to the OS even with cache=unsafe */
2327 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2328 if (bs->drv->bdrv_co_flush_to_os) {
2329 ret = bs->drv->bdrv_co_flush_to_os(bs);
2330 if (ret < 0) {
2331 return ret;
2335 /* But don't actually force it to the disk with cache=unsafe */
2336 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2337 goto flush_parent;
2340 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2341 if (bs->drv->bdrv_co_flush_to_disk) {
2342 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2343 } else if (bs->drv->bdrv_aio_flush) {
2344 BlockAIOCB *acb;
2345 CoroutineIOCompletion co = {
2346 .coroutine = qemu_coroutine_self(),
2349 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2350 if (acb == NULL) {
2351 ret = -EIO;
2352 } else {
2353 qemu_coroutine_yield();
2354 ret = co.ret;
2356 } else {
2358 * Some block drivers always operate in either writethrough or unsafe
2359 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2360 * know how the server works (because the behaviour is hardcoded or
2361 * depends on server-side configuration), so we can't ensure that
2362 * everything is safe on disk. Returning an error doesn't work because
2363 * that would break guests even if the server operates in writethrough
2364 * mode.
2366 * Let's hope the user knows what he's doing.
2368 ret = 0;
2370 if (ret < 0) {
2371 return ret;
2374 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2375 * in the case of cache=unsafe, so there are no useless flushes.
2377 flush_parent:
2378 return bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2381 int bdrv_flush(BlockDriverState *bs)
2383 Coroutine *co;
2384 RwCo rwco = {
2385 .bs = bs,
2386 .ret = NOT_DONE,
2389 if (qemu_in_coroutine()) {
2390 /* Fast-path if already in coroutine context */
2391 bdrv_flush_co_entry(&rwco);
2392 } else {
2393 AioContext *aio_context = bdrv_get_aio_context(bs);
2395 co = qemu_coroutine_create(bdrv_flush_co_entry);
2396 qemu_coroutine_enter(co, &rwco);
2397 while (rwco.ret == NOT_DONE) {
2398 aio_poll(aio_context, true);
2402 return rwco.ret;
2405 typedef struct DiscardCo {
2406 BlockDriverState *bs;
2407 int64_t sector_num;
2408 int nb_sectors;
2409 int ret;
2410 } DiscardCo;
2411 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2413 DiscardCo *rwco = opaque;
2415 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2418 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2419 int nb_sectors)
2421 int max_discard, ret;
2423 if (!bs->drv) {
2424 return -ENOMEDIUM;
2427 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2428 if (ret < 0) {
2429 return ret;
2430 } else if (bs->read_only) {
2431 return -EPERM;
2434 /* Do nothing if disabled. */
2435 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2436 return 0;
2439 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2440 return 0;
2443 bdrv_set_dirty(bs, sector_num, nb_sectors);
2445 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2446 while (nb_sectors > 0) {
2447 int ret;
2448 int num = nb_sectors;
2450 /* align request */
2451 if (bs->bl.discard_alignment &&
2452 num >= bs->bl.discard_alignment &&
2453 sector_num % bs->bl.discard_alignment) {
2454 if (num > bs->bl.discard_alignment) {
2455 num = bs->bl.discard_alignment;
2457 num -= sector_num % bs->bl.discard_alignment;
2460 /* limit request size */
2461 if (num > max_discard) {
2462 num = max_discard;
2465 if (bs->drv->bdrv_co_discard) {
2466 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2467 } else {
2468 BlockAIOCB *acb;
2469 CoroutineIOCompletion co = {
2470 .coroutine = qemu_coroutine_self(),
2473 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2474 bdrv_co_io_em_complete, &co);
2475 if (acb == NULL) {
2476 return -EIO;
2477 } else {
2478 qemu_coroutine_yield();
2479 ret = co.ret;
2482 if (ret && ret != -ENOTSUP) {
2483 return ret;
2486 sector_num += num;
2487 nb_sectors -= num;
2489 return 0;
2492 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2494 Coroutine *co;
2495 DiscardCo rwco = {
2496 .bs = bs,
2497 .sector_num = sector_num,
2498 .nb_sectors = nb_sectors,
2499 .ret = NOT_DONE,
2502 if (qemu_in_coroutine()) {
2503 /* Fast-path if already in coroutine context */
2504 bdrv_discard_co_entry(&rwco);
2505 } else {
2506 AioContext *aio_context = bdrv_get_aio_context(bs);
2508 co = qemu_coroutine_create(bdrv_discard_co_entry);
2509 qemu_coroutine_enter(co, &rwco);
2510 while (rwco.ret == NOT_DONE) {
2511 aio_poll(aio_context, true);
2515 return rwco.ret;
2518 /* needed for generic scsi interface */
2520 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2522 BlockDriver *drv = bs->drv;
2524 if (drv && drv->bdrv_ioctl)
2525 return drv->bdrv_ioctl(bs, req, buf);
2526 return -ENOTSUP;
2529 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2530 unsigned long int req, void *buf,
2531 BlockCompletionFunc *cb, void *opaque)
2533 BlockDriver *drv = bs->drv;
2535 if (drv && drv->bdrv_aio_ioctl)
2536 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2537 return NULL;
2540 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2542 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2545 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2547 return memset(qemu_blockalign(bs, size), 0, size);
2550 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2552 size_t align = bdrv_opt_mem_align(bs);
2554 /* Ensure that NULL is never returned on success */
2555 assert(align > 0);
2556 if (size == 0) {
2557 size = align;
2560 return qemu_try_memalign(align, size);
2563 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2565 void *mem = qemu_try_blockalign(bs, size);
2567 if (mem) {
2568 memset(mem, 0, size);
2571 return mem;
2575 * Check if all memory in this vector is sector aligned.
2577 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2579 int i;
2580 size_t alignment = bdrv_min_mem_align(bs);
2582 for (i = 0; i < qiov->niov; i++) {
2583 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2584 return false;
2586 if (qiov->iov[i].iov_len % alignment) {
2587 return false;
2591 return true;
2594 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2595 NotifierWithReturn *notifier)
2597 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2600 void bdrv_io_plug(BlockDriverState *bs)
2602 BlockDriver *drv = bs->drv;
2603 if (drv && drv->bdrv_io_plug) {
2604 drv->bdrv_io_plug(bs);
2605 } else if (bs->file) {
2606 bdrv_io_plug(bs->file->bs);
2610 void bdrv_io_unplug(BlockDriverState *bs)
2612 BlockDriver *drv = bs->drv;
2613 if (drv && drv->bdrv_io_unplug) {
2614 drv->bdrv_io_unplug(bs);
2615 } else if (bs->file) {
2616 bdrv_io_unplug(bs->file->bs);
2620 void bdrv_flush_io_queue(BlockDriverState *bs)
2622 BlockDriver *drv = bs->drv;
2623 if (drv && drv->bdrv_flush_io_queue) {
2624 drv->bdrv_flush_io_queue(bs);
2625 } else if (bs->file) {
2626 bdrv_flush_io_queue(bs->file->bs);
2628 bdrv_start_throttled_reqs(bs);
2631 void bdrv_drained_begin(BlockDriverState *bs)
2633 if (!bs->quiesce_counter++) {
2634 aio_disable_external(bdrv_get_aio_context(bs));
2636 bdrv_drain(bs);
2639 void bdrv_drained_end(BlockDriverState *bs)
2641 assert(bs->quiesce_counter > 0);
2642 if (--bs->quiesce_counter > 0) {
2643 return;
2645 aio_enable_external(bdrv_get_aio_context(bs));